JP3877996B2 - Fiber-reinforced plastic composite material and method for producing the same - Google Patents

Fiber-reinforced plastic composite material and method for producing the same Download PDF

Info

Publication number
JP3877996B2
JP3877996B2 JP2001335447A JP2001335447A JP3877996B2 JP 3877996 B2 JP3877996 B2 JP 3877996B2 JP 2001335447 A JP2001335447 A JP 2001335447A JP 2001335447 A JP2001335447 A JP 2001335447A JP 3877996 B2 JP3877996 B2 JP 3877996B2
Authority
JP
Japan
Prior art keywords
fiber
reinforced plastic
composite material
ceramic particles
single particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001335447A
Other languages
Japanese (ja)
Other versions
JP2003136634A (en
Inventor
敏夫 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakura Rubber Co Ltd
Original Assignee
Sakura Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakura Rubber Co Ltd filed Critical Sakura Rubber Co Ltd
Priority to JP2001335447A priority Critical patent/JP3877996B2/en
Publication of JP2003136634A publication Critical patent/JP2003136634A/en
Application granted granted Critical
Publication of JP3877996B2 publication Critical patent/JP3877996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化プラスチック複合材料およびその製造方法に関する。
【0002】
【従来の技術】
この種の繊維強化プラスチック複合材料は、例えば炭素繊維強化エポキシ樹脂のような繊維強化プラスチックからなるプリプレグを複数重ね合わせて積層した構造を有し、例えば航空機の翼のような各種構造材に利用されている。前記繊維強化プラスチック複合材料は、引張り力および圧縮力が繰り返し加わると、複数の繊維強化プラスチック層の界面での層間剥離に起因して疲労することから、層間剥離を防ぐための改良が望まれている。
【0003】
このようなことから、従来の繊維強化プラスチック複合材料は、繊維強化プラスチックのマトリックス樹脂にゴムや樹脂のような他の成分を添加したプリプレグを複数重ね、加熱加圧して積層する方法、繊維強化プラスチックからなるプリプレグをそれらの間に接着剤層を介在して重ね合わせ、加熱加圧して積層する方法により製造されている。しかしながら、これらの方法で製造された繊維強化プラスチック複合材料においても、複数の繊維強化プラスチック層の界面での層間剥離を効果的に防止することが困難であった。
【0004】
一方、"IMPROVING THE FATIGUE RESISTANCE OF CARBON/EPOXY LAMINATES WITH DISPERSED-PARTICLE INTERLAYERS" Act mater. Vol. 46, No. 7, pp. 2455-2460, 1998には、複数のカーボン繊維強化エポキシ樹脂層の積層界面に例えば変性アモルファスポリアミドのようなポリマーの粒子を多数分散させたカーボン繊維強化エポキシ樹脂複合材料が開示されている。なお、前記論文に関連した発明は、特開平7−41577号公報にも開示されている。
【0005】
【発明が解決しようとする課題】
このようなカーボン繊維強化エポキシ樹脂複合材料は、カーボン繊維強化エポキシ樹脂層の積層界面に多数のポリマー粒子を分散させることにより、ポリマー粒子のアンカー作用によりカーボン繊維強化エポキシ樹脂層の接着力および剪断力の向上が認められるものの、引張り力および圧縮力が繰り返し加わった時の内部発熱に伴う積層界面の熱劣化に起因する疲労を改善することが困難であった。
【0006】
本発明は、引張り力および圧縮力が繰り返し加わった時の内部発熱に伴う積層界面の熱劣化を防止して、耐疲労性を向上した繊維強化プラスチック複合材料およびその製造方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明に係る繊維強化プラスチック複合材料は、複数の繊維強化プラスチック層を積層するとともに、それらの積層界面に複数の高熱伝導性のセラミック粒子を少なくとも一部がその積層界面の中央部から外周縁に向けて互いに面方向に接触した状態で存在させて熱伝達の経路を形成するように面内において単一粒子分散させた層を介在することを特徴とするものである。
【0008】
本発明に係る繊維強化プラスチック複合材料の製造方法は、繊維強化プラスチックからなるプリプレグの表面に複数の高熱伝導性のセラミック粒子を厚さ方向に重なることなく散布することにより前記セラミック粒子を面内において単一粒子分散させ、かつ前記セラミック粒子の少なくとも一部がその面内の中央部から外周縁に向けて互いに面方向に接触した状態で存在させて熱伝達の経路となる層を形成する工程と、
前記単一粒子分散層を有するプリプレグを複数用意し、これらを積層した後、加熱加圧する工程と
を含むことを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0010】
本発明の繊維強化プラスチック複合材料は、複数の繊維強化プラスチック層を積層するとともに、それらの層の積層界面に高熱伝導性のセラミック粒子を面内において単一粒子分散させた層として介在した構造を有する。
【0011】
具体的には、図1に示すように例えば8つの繊維強化プラスチック層1を積層し、これら繊維強化プラスチック層1の積層界面に高熱伝導性のセラミック粒子2をその面内において単一粒子分散させた層(単一粒子分散層)3として介在することにより繊維強化プラスチック複合材料を構成している。
【0012】
ここで、『単一粒子分散層』とは多数の高熱伝導性のセラミック粒子が繊維強化プラスチック層の積層界面にその面方向に単一状態で分散されて層を形成していることを意味する。別の言い方をすれば、『単一粒子分散層』とは多数の高熱伝導性のセラミック粒子が前記積層界面に積層方向に重なり合うことなく、面方向に個々の状態で分散されて層を形成していることを意味する。
【0013】
前記単一粒子分散層を構成する前記セラミック粒子は、前記繊維強化プラスチック層の積層界面で全てが個々独立して存在せず、少なくとも一部がその積層界面の中央部から外周縁に向けて互いに面方向に接触した状態で存在し、熱伝達の経路を形成することが必要である。このような形態の単一粒子分散層は、例えば平均粒径3μmの六方晶窒化ホウ素(h−BN)粒子を高熱伝導性のセラミック粒子として用いた場合、これらのh−BN粒子を前記積層界面に1cm2当たり、
0.09mg以上、より好ましくは0.184mg以上存在させることにより実現することが可能になる。
【0014】
前記繊維強化プラスチックとしては、熱硬化性樹脂または熱可塑性樹脂をガラス繊維、炭素繊維、アラミッド繊維および炭化ケイ素繊維から選ばれる少なくとも1つの強化繊維で強化されたものをあげることができる。ここに用いる熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂等を挙げることができる。前記熱可塑性樹脂としては、例えばナイロン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド等を挙げることができる。前記強化繊維としては、クロスの形態、一方向に配列された形態のものを用いることができる。
【0015】
特に、前記繊維強化プラスチックとしては前記強化繊維が一方向に配列されたものを用い、積層方向に隣接する繊維強化プラスチック層間においてそれら繊維強化プラスチック層中の強化繊維の配列方向を異ならせることが好ましい。配列方向を異ならせて積層する形態としては、例えば直交積層、斜交積層、擬似等方性を挙げることができる。
【0016】
前記繊維強化プラスチックは、前述した構造を有するとともに、さらに高熱伝導性のセラミック粒子を分散して含有することを許容する。
【0017】
前記高熱伝導性のセラミックは、常温で0.01cal/cm・s・℃以上、より好ましくは常温で0.03cal/cm・s・℃以上、さらに好ましくは常温で0.07cal/cm・s・℃以上の熱伝導率を有することが望ましい。このようなセラミックとしては、例えば窒化アルミニウム[AlN](常温での熱伝導率;0.07cal/cm・s・℃)、六方晶窒化ホウ素[h−BN](常温での熱伝導率;0.08cal/cm・s・℃)、立法晶窒化ホウ素[cBN](常温での熱伝導率;3.1cal/cm・s・℃)等を挙げることができる。
【0018】
前記セラミック粒子は、3〜6μmの平均粒径を有することが好ましい。また、前記セラミック粒子は粒径が単一粒子分散層内または単一粒子分散層間で揃っていても、不揃いであってもよい。
【0019】
前記各単一粒子分散層は、そのセラミック粒子の密度が前記各積層界面の間で異なる、例えば積層方向に任意のパターンもしくは積層方向に意図した分布のパターンになる、ように形成することを許容する。より具体的には、前記各単一粒子分散層は、そのセラミック粒子の密度が前記各積層界面の間で積層方向に段階的に変化するように形成することを許容する。
【0020】
次に、本発明に係る繊維強化プラスチック複合材料の製造方法を説明する。
【0021】
(第1工程)
繊維強化プラスチックからなるプリプレグの表面に高熱伝導性のセラミック粒子を厚さ方向に重なることなく散布する。このとき、前記プレプレグ表面は粘着性を有するため、散布されたセラミック粒子は前記プレプレグ表面に付着してその面内において単一粒子分散されて層を形成する。つまり、本発明の繊維強化プラスチック複合材料で説明した単一粒子分散層がプリプレグ表面に形成される。
【0022】
前記繊維強化プラスチックおよび高熱伝導性のセラミックとしては、本発明の繊維強化プラスチック複合材料で説明したのと同様なものを用いることができる。
【0023】
前記プリプレグを構成する前記繊維強化プラスチックは、特に熱硬化性樹脂または熱可塑性樹脂を一方向に配列されたガラス繊維、炭素繊維、アラミッド繊維および炭化ケイ素繊維から選ばれる少なくとも1つの強化繊維で強化されたものを用いることが好ましい。
【0024】
前記プリプレグの表面に前記セラミック粒子を散布する際、全てのセラミック粒子を前記プリプレグ表面に個々独立して付着せず、少なくとも一部のセラミック粒子がそのプリプレグ表面の中央部から外周縁に向けて互いに面方向に接触するように付着させ、後述する加熱加圧による積層後において積層界面に熱伝達の経路が作られるように散布することが必要である。このような熱伝達の経路を形成するには、例えば平均粒径3μmの六方晶窒化ホウ素(h−BN)粒子を高熱伝導性のセラミック粒子として用いた場合、これらのh−BN粒子を前記プリプレグ表面に1cm2当たり、0.09mg以上、より好ましくは0.184mg以上になるように散布することにより実現することが可能になる。
【0025】
複数の前記プリプレグの表面に前記セラミック粒子をそれぞれ散布する際、前記プリプレグ間で前記セラミック粒子が前記プリプレグ表面に異なる密度で付着させて単一粒子分散層を形成することを許容する。
【0026】
(第2工程)
前記単一粒子分散層を有するプリプレグを複数用意し、これらを積層した後、加熱加圧することにより複数の繊維強化プラスチック層の積層界面に前記セラミック粒子を面内において単一粒子分散させた層、つまり単一粒子分散層として介在した構造を有する繊維強化プラスチック複合材料を製造する。
【0027】
前記加熱加圧処理は、使用されるプリプレグを構成する樹脂および繊維の組み合わせによって決定することが好ましい。例えば、航空機用部品として用いる繊維強化プラスチックの場合は、121〜132℃、0.4MPa程度で加熱加圧すればよい。
【0028】
前記セラミック粒子が異なる密度を有する単一粒子分散層を持つ複数のプリプレグを積層する際、前記単一粒子分散層の前記セラミック粒子の密度が例えば前記プリプレグの積層方向に任意のパターンもしくは積層方向に意図した分布のパターンになるように積層する、より具体的には積層方向に段階的に変化するように積層することを許容する。
【0029】
前記プリプレグを構成する前記繊維強化プラスチックとして、熱硬化性樹脂または熱可塑性樹脂を一方向に配列されたガラス繊維、炭素繊維、アラミッド繊維および炭化ケイ素繊維から選ばれる少なくとも1つの強化繊維で強化されたものを用いる場合、前記単一粒子分散層を有する複数の前記プリプレグを積層する際、隣接する前記プリプレグ間でその繊維強化プラスチック中の前記強化繊維の配列方向を異ならせることが好ましい。配列方向を異ならせて積層する形態としては、例えば直交積層方法、斜交積層方法、擬似等方性を挙げることができる。
【0030】
以上説明したように、本発明によれば複数の繊維強化プラスチック層を積層するとともに、それらの層界面に高熱伝導性のセラミック粒子を面内において単一粒子分散させた層として介在させることによって、前記単一粒子分散層の各セラミック粒子によるアンカー効果により前記繊維強化プラスチック層間の接着力を向上できる。
【0031】
また、前記セラミック粒子はポリマー粒子に比べて機械的強度が高いために、前記繊維強化プラスチック層の積層界面の剪断力を向上することができる。なお、前記繊維強化プラスチック層の積層界面にセラミック粒子が積層方向に重なって多層粒子分散して層を形成した場合には、引張り力および圧縮力が繰り返し付与されるとそれらセラミック粒子間での滑りにより剪断力がかえって低下する虞がある。
【0032】
このような構造の繊維強化プラスチック複合材料において、引張り力および圧縮力が繰り返し付与されても、長期間に亘って複数の繊維強化プラスチック層の界面での層間剥離を防いで、優れた耐疲労性を発現できる。
【0033】
さらに、本発明に係る繊維強化プラスチック複合材料の特徴は、単一粒子分散層を構成するセラミック粒子が高熱伝導性(例えば常温で0.01cal/cm・s・℃以上の熱伝導率)を有することで、かかる高熱伝導性のセラミック粒子を用いることによって、引張り力および圧縮力が繰り返し付与されたときの機械的な疲労とは別の熱劣化に起因する疲労を防止することができる。
【0034】
すなわち、通常、繊維強化プラスチック複合材料に引張り力および圧縮力が繰り返し付与すると、内部発熱(特に積層界面での発熱)を生じ、その積層界面が熱劣化する。積層界面の熱劣化は、剪断力等の低下要因になる。
【0035】
これに対し、本発明では前記引張り力および圧縮力が繰り返し付与されたときに内部発熱(特に積層界面の発熱)を生じた場合、その熱を高熱伝導性(例えば常温で0.01cal/cm・s・℃以上の熱伝導率)のセラミック粒子からなる単一粒子分散層を通して積層界面の外周縁に放散することができるため、前記内部発熱に伴う積層界面の熱劣化を緩和ないし防止でき、その積層界面での剪断力の低下を防ぐことができる。その結果、長期間に亘って複数の繊維強化プラスチック層の界面での層間剥離を防止できる。
【0036】
したがって、複数の繊維強化プラスチック層を積層するとともに、それらの層界面に高熱伝導性のセラミック粒子を面内において単一粒子分散させた層として介在させることによって、前記単一粒子分散層による前記各繊維強化プラスチック層の積層界面での接着力の向上および剪断力の向上と、高熱伝導性のセラミック粒子からなる単一粒子分散層の熱放散性による熱劣化に伴う剪断力の低下の防止との相乗作用により層間剥離を防止できるため、優れた耐疲労性を有する繊維強化プラスチック複合材料を実現できる。
【0037】
また、複数の繊維強化プラスチック層の積層界面に単一粒子分散層をセラミック粒子の密度を異ならせて介在させる、例えば単一粒子分散層をセラミック粒子の密度が前記各積層界面の間で積層方向に段階的に変化するように介在させることによって、使用形態、つまり引張り力および圧縮力が受ける形態に対応して層間剥離を効果的に防止して耐疲労性を向上した繊維強化プラスチック複合材料を実現することができる。
【0038】
さらに、前記繊維強化プラスチックとしては前記強化繊維が一方向に配列されたものを用い、積層方向に隣接する繊維強化プラスチック層間においてそれら繊維強化プラスチック層中の強化繊維の配列方向を異ならせることによって、積層界面の面方向への引張り力、圧縮力の繰り返しに対する機械的な強度をさらに向上させた繊維強化プラスチック複合材料を実現できる。
【0039】
本発明の方法によれば、繊維強化プラスチックからなるプリプレグの表面に高熱伝導性のセラミック粒子を厚さ方向に重なることなく散布することにより前記セラミック粒子を面内において単一粒子分散させた層を形成し、この単一粒子分散層を有するプリプレグを複数用意し、これらを積層した後、加熱加圧することによって、前述したように単一粒子分散層による各繊維強化プラスチック層の積層界面での接着力の向上および剪断力の向上と高熱伝導性のセラミック粒子からなる単一粒子分散層の熱放散性による熱劣化に伴う剪断力の低下の防止との相乗作用により層間剥離が防止され、優れた耐疲労性を有する繊維強化プラスチック複合材料を製造することができる。
【0040】
【実施例】
以下、本発明の好ましい実施例を図面を参照して詳細に説明する。
【0041】
(実施例1)
まず、図2の(a)に示すようにマトリックスとしてエポキシ樹脂、強化繊維としてカーボン繊維を組み合わせ、前記カーボン繊維が一方向(図2(a)中の矢印方向を0°とする)に配列された厚さ0.11mmのプリプレグ(東レ社製商品名;T800H/#2500)11を8枚用意した。つづいて、これらのプリプレグ11の表面に図示しない平均粒径3μmの多数の六方晶窒化ホウ素[h−BN](常温での熱伝導率;0.08cal/cm・s・℃)粒子を前記プリプレグ11表面の1cm2当たりの重量が0.184mgになるようにそれぞれ散布した。このとき、前記h−BN粒子は前記プリプレグ11表面に個々独立して付着せず、大部分のh−BN粒子はそれらプリプレグ11表面中央部から外周縁に向けて互いに面方向に接触した状態で付着し、単一粒子分散層が形成された。
【0042】
次いで、図2の(b)に示すように前記単一粒子分散層(図示せず)が形成されたプリプレグ111〜118をそれらのカーボン繊維の配列方向が0°、+45°、−45°、90°、90°、−45°、+45°、0°になるように重ね合わせた。つづいて、この積層物をオートクレーブ内の加圧装置に設置し、図3に示すようにオートクレーブ内の温度を2℃/分の昇温速度で約50分かけて130℃まで上昇させ、途中から前記加圧装置による前記積層物に対して0.4MPaの圧力を加え、この温度および圧力を180分維持した後、オートクレーブ内の温度を徐々に冷却して400分後に約40℃とした。なお、前記積層物への加圧は冷却過程でも続行して最終のカーボン繊維強化エポキシ樹脂複合材料の反り発生を防いだ。このような加熱加圧により図2の(c)および図4に示す厚さ0.9mmのカーボン繊維強化エポキシ樹脂複合材料12を製造した。
【0043】
得られたカーボン繊維強化エポキシ樹脂複合材料12は図4に示すように8枚のカーボン繊維強化エポキシ樹脂層131〜138がそれらのカーボン繊維の配列方向が0°、+45°、−45°、90°、90°、−45°、+45°、0°になるように積層し、これらカーボン繊維強化エポキシ樹脂層131〜138の積層界面にh−BN粒子14がその面内において単一粒子分散させた層(単一粒子分散層)15として介在した構造を有していた。
【0044】
(比較例1)
単一粒子分散層が表面に形成されていないカーボン繊維強化エポキシ樹脂からなる厚さ0.11mmのプリプレグ(東レ社製商品名;T800H/#2500)を8枚用意し、これらプリプレグを実施例1と同様に積み重ね、加熱加圧することにより厚さ0.9mmのカーボン繊維強化エポキシ樹脂複合材料を製造した。
【0045】
(比較例2)
カーボン繊維強化エポキシ樹脂からなる厚さ0.11mmのプリプレグ(東レ社製商品名;T800H/#2500)の表面に平均粒径3μmのPZT(PbZrO3−PbTiO3[常温での熱伝導率;0.003cal/cm・s・℃])粒子を散布して実施例1と同様な形態の単一粒子分散層を形成した後、この単一粒子分散層が形成されたプリプレグを8枚用意し、これらプリプレグを実施例1と同様に積み重ね、加熱加圧することにより厚さ0.9mmのカーボン繊維強化エポキシ樹脂複合材料を製造した。
【0046】
得られた実施例1および比較例1,2のカーボン繊維強化エポキシ樹脂複合材料について、次のような引張り疲労試験を行った。
【0047】
前記各カーボン繊維強化エポキシ樹脂複合材料を裁断加工して図5の(a),(b)に示す長さ130mm,幅10mm,厚さ0.9mmの短冊片31とし、この短冊片31の両面にガラス繊維強化エポキシ樹脂からなる保護板32をその短冊片31の長さ40mmの中央付近が表裏で露出するように貼り付けることにより試験片33を作製した。
【0048】
電気油圧サーボ式疲労試験機(森エンジニアリング社製商品名;L7−2.50−S)を用い、その一対の把持部材で前記試験片33両端の保護板32を挟持し、最小応力と最大応力の比、すなわち応力比が0.1と一定で、荷重が一定の引張疲労試験条件にて、疲労試験を実施した。繰返し速度(周波数)は、10Hzで、正弦波で実施した。この試験により疲労繰り返し数(疲労寿命)と最大繰り返し応力の関係を求めた。この結果を図6に示す。
【0049】
図6から明らかなように図4に示すカーボン繊維強化エポキシ樹脂層131〜138の積層界面にh−BN粒子14がその面内において単一粒子分散させた層(単一粒子分散層)15として介在した構造を有する実施例1のカーボン繊維強化エポキシ樹脂複合材料は、単にカーボン繊維強化エポキシ樹脂層を積層した構造を有する比較例1のカーボン繊維強化エポキシ樹脂複合材料に比べて疲労繰り返し数(疲労寿命)の増加に伴う最大繰り返し応力の低下度合いが低く、優れた耐疲労性を有することがわかる。
【0050】
一方、カーボン繊維強化エポキシ樹脂層の積層界面にセラミックの一種であるPZT粒子が実施例1と同様な形態の単一粒子分散層として介在した構造を有する比較例2のカーボン繊維強化エポキシ樹脂複合材料は、単にカーボン繊維強化エポキシ樹脂層を積層した構造を有する比較例1のカーボン繊維強化エポキシ樹脂複合材料に比べて耐疲労性が低下することがわかる。このことから、単一粒子分散層を構成する材料はセラミック粒子であれば全て高い耐疲労性を示すわけではなく、高熱伝導性を有する特定のセラミック粒子により単一粒子分散層を形成することにより初めて優れた耐疲労性を発現できることがわかる。
【0051】
また、前記実施例1および比較例1の試験片について前記電気油圧サーボ式疲労試験機(森エンジニアリング社製商品名;L7−2.50−S)を用い引張り疲労試験を行っている間に、赤外線温度検出装置(NEC三栄株式会社製商品名;サーモトレーサーTH1104)を用いて図5に示す試験片33の短冊片31外表面の温度推移を測定した。その結果を図7に示す。
【0052】
図7から明らかなように実施例1の試験片は、比較例1の試験片に比べて外表面の温度が10℃前後高くなることがわかる。このことは、実施例1のカーボン繊維強化エポキシ樹脂複合材料は図4に示すカーボン繊維強化エポキシ樹脂層131〜138の積層界面に高熱伝導性のh−BN粒子14がその面内において単一粒子分散させた層(単一粒子分散層)15として介在させているため、引張り疲労試験時における試験片の内部発熱を前記単一粒子分散層15により外部に良好に放散したことを証明するもので、結果として複合材料の内部を冷却する効果を発現できる。
【0053】
なお、前記実施例1では繊維強化プラスチック樹脂としてカーボン繊維強化エポキシ樹脂、高熱伝導性のセラミック粒子としてh−BN粒子を例にして説明したが、カーボン繊維強化フェノール樹脂のような他の繊維強化プラスチック樹脂、AlN、cBNの粒子のような他の高熱伝導性のセラミック粒子を用いても実施例1と同等またはそれ以上の優れた耐疲労性を有する繊維強化プラスチック複合材料を得ることができる。
【0054】
【発明の効果】
以上詳述したように本発明によれば、引張り力および圧縮力が繰り返し加わった時の内部発熱に伴う積層界面の熱劣化を防ぎ、層間剥離を効果的に防止して耐疲労性を向上した航空機の翼のような各種構造材に有用な繊維強化プラスチック複合材料およびその製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る繊維強化プラスチック複合材料を示す部分切欠斜視図。
【図2】本発明の実施例1におけるカーボン繊維強化エポキシ樹脂複合材料を製造する工程を示す図。
【図3】本発明の実施例1におけるカーボン繊維強化エポキシ樹脂複合材料を製造する際のオートクレーブでの加熱加圧条件を示すグラフ。
【図4】本発明の実施例1により製造されたカーボン繊維強化エポキシ樹脂複合材料を示す部分切欠斜視図。
【図5】本発明の実施例1および比較例1,2を評価するための試験片を示す図。
【図6】本発明の実施例1および比較例1,2の試験片を用いて引張り疲労試験を行った結果を示すグラフ。
【図7】本発明の実施例1および比較例1の試験片を用いて引張り疲労試験を行った時のそれら試験片外表面の温度変化を示すグラフ。
【符号の説明】
1…繊維強化プラスチック層、
2…セラミック粒子、
3,15…単一粒子分散層、
11,111〜118…プリプレグ、
12…カーボン繊維強化エポキシ樹脂複合材料、
131〜138…カーボン繊維強化エポキシ樹脂層、
14…h−BN粒子、
31…短冊片、
33…試験片。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber-reinforced plastic composite material and a method for producing the same.
[0002]
[Prior art]
This type of fiber reinforced plastic composite material has a structure in which a plurality of prepregs made of fiber reinforced plastic such as carbon fiber reinforced epoxy resin are stacked and laminated, and is used for various structural materials such as aircraft wings. ing. The fiber reinforced plastic composite material fatigues due to delamination at the interface between a plurality of fiber reinforced plastic layers when a tensile force and a compressive force are repeatedly applied. Therefore, an improvement for preventing delamination is desired. Yes.
[0003]
Therefore, the conventional fiber reinforced plastic composite material is a method of laminating a plurality of prepregs in which other components such as rubber and resin are added to a matrix resin of fiber reinforced plastic, and laminating by heating and pressing, fiber reinforced plastic The prepregs made of these are manufactured by a method of laminating them with an adhesive layer interposed therebetween, and laminating them by heating and pressing. However, even in the fiber reinforced plastic composite material manufactured by these methods, it is difficult to effectively prevent delamination at the interfaces of the plurality of fiber reinforced plastic layers.
[0004]
On the other hand, "IMPROVING THE FATIGUE RESISTANCE OF CARBON / EPOXY LAMINATES WITH DISPERSED-PARTICLE INTERLAYERS" Act mater. Vol. Discloses a carbon fiber reinforced epoxy resin composite material in which a large number of polymer particles such as modified amorphous polyamide are dispersed. The invention related to the paper is also disclosed in Japanese Patent Laid-Open No. 7-41577.
[0005]
[Problems to be solved by the invention]
Such a carbon fiber reinforced epoxy resin composite material disperses a large number of polymer particles at the lamination interface of the carbon fiber reinforced epoxy resin layer, and thereby the adhesion and shear force of the carbon fiber reinforced epoxy resin layer due to the anchoring action of the polymer particles. However, it was difficult to improve fatigue due to thermal degradation of the laminated interface caused by internal heat generation when tensile force and compressive force were repeatedly applied.
[0006]
An object of the present invention is to provide a fiber-reinforced plastic composite material having improved fatigue resistance by preventing thermal deterioration of the laminated interface caused by internal heat generation when tensile force and compressive force are repeatedly applied, and a method for producing the same. It is.
[0007]
[Means for Solving the Problems]
The fiber reinforced plastic composite material according to the present invention is formed by laminating a plurality of fiber reinforced plastic layers, and at least a part of a plurality of high thermal conductivity ceramic particles at the laminated interface from the central portion to the outer periphery of the laminated interface. It is characterized by interposing a layer in which single particles are dispersed in the plane so as to form a heat transfer path by being in contact with each other in the plane direction .
[0008]
In the method for producing a fiber reinforced plastic composite material according to the present invention, a plurality of high thermal conductivity ceramic particles are dispersed in a thickness direction on a surface of a prepreg made of fiber reinforced plastic without overlapping the ceramic particles in a plane. A step of dispersing single particles and forming a layer serving as a heat transfer path by allowing at least a part of the ceramic particles to exist in a state of being in contact with each other in the plane direction from the central portion to the outer peripheral edge of the ceramic particles ; ,
Preparing a plurality of prepregs having the single particle dispersion layer, laminating them, and then heating and pressing.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0010]
The fiber reinforced plastic composite material of the present invention has a structure in which a plurality of fiber reinforced plastic layers are laminated and a layer in which single particles of high thermal conductivity ceramic particles are dispersed in a plane at the lamination interface of these layers. Have.
[0011]
Specifically, as shown in FIG. 1, for example, eight fiber reinforced plastic layers 1 are laminated, and ceramic particles 2 having high thermal conductivity are dispersed in a single particle in the plane of the laminated interface of these fiber reinforced plastic layers 1. By interposing as a layer (single particle dispersion layer) 3, a fiber reinforced plastic composite material is formed.
[0012]
Here, “single particle dispersion layer” means that a large number of high thermal conductivity ceramic particles are dispersed in a single state in the plane direction at the lamination interface of the fiber reinforced plastic layer to form a layer. . In other words, the “single particle dispersed layer” is a layer in which a large number of high thermal conductivity ceramic particles are dispersed individually in the plane direction without overlapping the lamination interface in the lamination direction. Means that
[0013]
The ceramic particles constituting the single particle dispersed layer are not all individually present at the lamination interface of the fiber reinforced plastic layer, and at least a part of the ceramic particles is formed from the center of the lamination interface toward the outer periphery. It is necessary to form a heat transfer path that exists in contact with the surface. In the case of using a hexagonal boron nitride (h-BN) particle having an average particle diameter of 3 μm, for example, as a highly thermally conductive ceramic particle, the single particle dispersed layer having such a form is used for the h-BN particles. Per 1 cm 2
It can be realized by the presence of 0.09 mg or more, more preferably 0.184 mg or more.
[0014]
Examples of the fiber reinforced plastic include a thermosetting resin or a thermoplastic resin reinforced with at least one reinforcing fiber selected from glass fiber, carbon fiber, aramid fiber, and silicon carbide fiber. Examples of the thermosetting resin used here include an epoxy resin, a phenol resin, and an unsaturated polyester resin. Examples of the thermoplastic resin include nylon, polyetheretherketone, polyphenylene sulfide, and the like. As the reinforcing fiber, a cloth form or a form arranged in one direction can be used.
[0015]
In particular, the fiber-reinforced plastic is preferably one in which the reinforcing fibers are arranged in one direction, and the arrangement direction of the reinforcing fibers in the fiber-reinforced plastic layer is preferably different between the fiber-reinforced plastic layers adjacent to each other in the stacking direction. . Examples of the form of lamination with different arrangement directions include orthogonal lamination, oblique lamination, and pseudo-isotropicity.
[0016]
The fiber reinforced plastic has the above-described structure, and further allows the ceramic particles having high thermal conductivity to be dispersed therein.
[0017]
The high thermal conductivity ceramic is 0.01 cal / cm · s · ° C. or more at room temperature, more preferably 0.03 cal / cm · s · ° C. or more at room temperature, and further preferably 0.07 cal / cm · s · ° C. at room temperature. It is desirable to have a thermal conductivity of ℃ or higher. Examples of such ceramics include aluminum nitride [AlN] (thermal conductivity at room temperature; 0.07 cal / cm · s · ° C.), hexagonal boron nitride [h-BN] (thermal conductivity at room temperature; 0 .08 cal / cm · s · ° C.), cubic boron nitride [cBN] (thermal conductivity at room temperature; 3.1 cal / cm · s · ° C.), and the like.
[0018]
The ceramic particles preferably have an average particle size of 3 to 6 μm. The ceramic particles may have a uniform particle size in the single particle dispersion layer or in the single particle dispersion layer, or may be uneven.
[0019]
Each single particle dispersed layer is allowed to be formed such that the density of the ceramic particles differs between the respective lamination interfaces, for example, an arbitrary pattern in the lamination direction or a pattern having an intended distribution in the lamination direction. To do. More specifically, each single particle dispersion layer is allowed to be formed such that the density of the ceramic particles changes stepwise in the stacking direction between the stack interfaces.
[0020]
Next, the manufacturing method of the fiber reinforced plastic composite material which concerns on this invention is demonstrated.
[0021]
(First step)
Highly thermally conductive ceramic particles are spread on the surface of a prepreg made of fiber reinforced plastic without overlapping in the thickness direction. At this time, since the surface of the prepreg has adhesiveness, the dispersed ceramic particles adhere to the surface of the prepreg and are dispersed in a single particle within the surface to form a layer. That is, the single particle dispersion layer described in the fiber reinforced plastic composite material of the present invention is formed on the prepreg surface.
[0022]
As the fiber reinforced plastic and the ceramic having high thermal conductivity, the same materials as those described in the fiber reinforced plastic composite material of the present invention can be used.
[0023]
The fiber reinforced plastic constituting the prepreg is particularly reinforced with at least one reinforcing fiber selected from glass fiber, carbon fiber, aramid fiber and silicon carbide fiber in which thermosetting resin or thermoplastic resin is arranged in one direction. It is preferable to use the same.
[0024]
When spraying the ceramic particles on the surface of the prepreg, all the ceramic particles are not individually adhered to the surface of the prepreg, and at least some ceramic particles are mutually attached toward the outer peripheral edge from the central portion of the prepreg surface. It is necessary to adhere so as to contact in the surface direction and to spread so that a heat transfer path is formed at the lamination interface after lamination by heating and pressurization described later. In order to form such a heat transfer path, for example, when hexagonal boron nitride (h-BN) particles having an average particle diameter of 3 μm are used as ceramic particles having high thermal conductivity, these h-BN particles are converted into the prepreg. It can be realized by spraying on the surface so that it becomes 0.09 mg or more, more preferably 0.184 mg or more per 1 cm 2 .
[0025]
When the ceramic particles are dispersed on the surfaces of the plurality of prepregs, the ceramic particles are allowed to adhere to the prepreg surfaces at different densities to form a single particle dispersion layer.
[0026]
(Second step)
A plurality of prepregs having the single particle dispersion layer are prepared, and after laminating them, a layer in which the ceramic particles are dispersed in a single particle in a plane at the lamination interface of a plurality of fiber reinforced plastic layers by heating and pressing, That is, a fiber reinforced plastic composite material having a structure intervening as a single particle dispersion layer is produced.
[0027]
The heat and pressure treatment is preferably determined by a combination of resin and fibers constituting the prepreg used. For example, in the case of a fiber reinforced plastic used as an aircraft part, it may be heated and pressurized at 121 to 132 ° C. and about 0.4 MPa.
[0028]
When laminating a plurality of prepregs having a single particle dispersion layer in which the ceramic particles have different densities, the density of the ceramic particles of the single particle dispersion layer is, for example, in an arbitrary pattern or lamination direction in the prepreg lamination direction. Lamination is performed so as to obtain a pattern having an intended distribution, and more specifically, lamination may be performed so as to change stepwise in the lamination direction.
[0029]
The fiber reinforced plastic constituting the prepreg is reinforced with at least one reinforcing fiber selected from glass fiber, carbon fiber, aramid fiber and silicon carbide fiber in which a thermosetting resin or a thermoplastic resin is arranged in one direction. When using a thing, when laminating | stacking several said prepreg which has the said single particle dispersion layer, it is preferable to make the arrangement direction of the said reinforced fiber in the fiber reinforced plastic differ between the said adjacent prepregs. Examples of the form of lamination with different arrangement directions include an orthogonal lamination method, an oblique lamination method, and pseudo-isotropic.
[0030]
As described above, according to the present invention, by laminating a plurality of fiber reinforced plastic layers and interposing them as a layer in which high thermal conductivity ceramic particles are dispersed in a single particle in the plane at the interface between the layers, The adhesive force between the fiber reinforced plastic layers can be improved by the anchor effect of the ceramic particles of the single particle dispersed layer.
[0031]
In addition, since the ceramic particles have higher mechanical strength than the polymer particles, the shearing force at the lamination interface of the fiber reinforced plastic layer can be improved. When ceramic particles overlap the lamination direction of the fiber reinforced plastic layer and the multilayer particles are dispersed to form a layer, slipping between the ceramic particles is caused by repeated application of tensile force and compressive force. As a result, the shearing force may be reduced.
[0032]
In a fiber reinforced plastic composite material having such a structure, even if tensile and compressive forces are repeatedly applied, it prevents delamination at the interface of multiple fiber reinforced plastic layers over a long period of time, and has excellent fatigue resistance Can be expressed.
[0033]
Furthermore, the fiber-reinforced plastic composite material according to the present invention is characterized in that the ceramic particles constituting the single particle dispersion layer have high thermal conductivity (for example, thermal conductivity of 0.01 cal / cm · s · ° C. or more at room temperature). Thus, by using such highly thermally conductive ceramic particles, fatigue due to thermal deterioration different from mechanical fatigue when tensile force and compressive force are repeatedly applied can be prevented.
[0034]
That is, normally, when a tensile force and a compressive force are repeatedly applied to a fiber reinforced plastic composite material, internal heat generation (particularly heat generation at the lamination interface) occurs, and the lamination interface is thermally deteriorated. Thermal degradation of the lamination interface becomes a factor of decreasing shearing force and the like.
[0035]
On the other hand, in the present invention, when internal heat generation (particularly heat generation at the lamination interface) occurs when the tensile force and compression force are repeatedly applied, the heat is transferred to high thermal conductivity (for example, 0.01 cal / cm · s · ° C. or higher thermal conductivity) can be dissipated to the outer peripheral edge of the laminated interface through a single particle dispersion layer made of ceramic particles, so that thermal degradation of the laminated interface due to the internal heat generation can be mitigated or prevented, It is possible to prevent a decrease in shear force at the lamination interface. As a result, it is possible to prevent delamination at the interfaces of the plurality of fiber reinforced plastic layers over a long period of time.
[0036]
Therefore, by laminating a plurality of fiber reinforced plastic layers and interposing them as layers in which high thermal conductive ceramic particles are dispersed in a single particle in the plane at each layer interface, Improvement of adhesion and shearing force at the laminated interface of fiber reinforced plastic layer, and prevention of reduction of shearing force due to thermal degradation due to heat dissipation of single particle dispersion layer made of ceramic particles with high thermal conductivity Since delamination can be prevented by a synergistic action, a fiber-reinforced plastic composite material having excellent fatigue resistance can be realized.
[0037]
Also, a single particle dispersion layer is interposed in the lamination interface of a plurality of fiber reinforced plastic layers with different density of ceramic particles, for example, a single particle dispersion layer has a ceramic particle density between the lamination interfaces in the lamination direction. A fiber-reinforced plastic composite material that effectively prevents delamination and improves fatigue resistance in accordance with the usage form, that is, the form that the tensile force and compressive force receive, by interposing them in a stepwise manner. Can be realized.
[0038]
Further, as the fiber reinforced plastic, the fiber reinforced plastic is used in which the reinforced fibers are arranged in one direction, and the fiber reinforced plastic layers adjacent to each other in the laminating direction are arranged in different directions in the fiber reinforced plastic layer. It is possible to realize a fiber-reinforced plastic composite material that further improves the mechanical strength against repeated tensile and compressive forces in the plane direction of the laminated interface.
[0039]
According to the method of the present invention, a layer in which the ceramic particles are dispersed in a single particle in a plane by dispersing high thermal conductivity ceramic particles without overlapping in the thickness direction on the surface of a prepreg made of fiber reinforced plastic. By forming and preparing a plurality of prepregs having this single particle dispersed layer, laminating them, and then applying heat and pressure, as described above, adhesion at the lamination interface of each fiber reinforced plastic layer by the single particle dispersed layer Delamination is prevented by the synergistic effect of the improvement of force and shear force and the prevention of decrease in shear force due to thermal deterioration due to heat dissipation of single particle dispersion layer made of ceramic particles with high thermal conductivity. A fiber reinforced plastic composite material having fatigue resistance can be produced.
[0040]
【Example】
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0041]
Example 1
First, as shown in FIG. 2A, an epoxy resin is used as a matrix and carbon fibers are used as reinforcing fibers, and the carbon fibers are arranged in one direction (the arrow direction in FIG. 2A is 0 °). Eight prepregs (trade name: T800H / # 2500 manufactured by Toray Industries, Inc.) 11 having a thickness of 0.11 mm were prepared. Subsequently, a large number of hexagonal boron nitride [h-BN] (thermal conductivity at room temperature; 0.08 cal / cm · s · ° C.) particles having an average particle diameter of 3 μm (not shown) are placed on the surfaces of these prepregs 11. Each of the 11 surfaces was sprayed so that the weight per 1 cm 2 was 0.184 mg. At this time, the h-BN particles do not adhere independently to the surface of the prepreg 11, and most of the h-BN particles are in contact with each other in the plane direction from the center of the surface of the prepreg 11 toward the outer peripheral edge. As a result, a single particle dispersion layer was formed.
[0042]
Then, the as shown in FIG. 2 (b) single-particle dispersed layer (not shown) the prepreg 11 1 to 11 8 are formed an array direction of their carbon fibers 0 °, + 45 °, -45 The images were superposed so that the angles were 90 °, 90 °, 90 °, −45 °, + 45 °, and 0 °. Subsequently, this laminate was placed in a pressure device in the autoclave, and the temperature in the autoclave was increased to 130 ° C. over about 50 minutes at a rate of 2 ° C./min as shown in FIG. A pressure of 0.4 MPa was applied to the laminate by the pressure device, and this temperature and pressure were maintained for 180 minutes, and then the temperature in the autoclave was gradually cooled to about 40 ° C. after 400 minutes. The pressurization to the laminate was continued even in the cooling process to prevent warping of the final carbon fiber reinforced epoxy resin composite material. The carbon fiber reinforced epoxy resin composite material 12 having a thickness of 0.9 mm shown in FIG. 2C and FIG. 4 was manufactured by such heating and pressing.
[0043]
As shown in FIG. 4, the obtained carbon fiber reinforced epoxy resin composite material 12 has eight carbon fiber reinforced epoxy resin layers 13 1 to 13 8 whose arrangement directions of the carbon fibers are 0 °, + 45 °, and −45 °. , 90 °, 90 °, −45 °, + 45 °, and 0 °, and h-BN particles 14 are formed in the plane of the carbon fiber reinforced epoxy resin layers 13 1 to 13 8 in the plane. It had a structure intervening as a single particle dispersed layer (single particle dispersed layer) 15.
[0044]
(Comparative Example 1)
Eight prepregs (trade name, T800H / # 2500, manufactured by Toray Industries, Inc.) made of carbon fiber reinforced epoxy resin having no single particle dispersion layer formed on the surface were prepared. A carbon fiber reinforced epoxy resin composite material having a thickness of 0.9 mm was manufactured by stacking and heating and pressing in the same manner as in Example 1.
[0045]
(Comparative Example 2)
PZT (PbZrO 3 —PbTiO 3 ) having an average particle size of 3 μm on the surface of a prepreg made of carbon fiber reinforced epoxy resin (trade name: T800H / # 2500, manufactured by Toray Industries, Inc .; thermal conductivity at room temperature; 0 .003 cal / cm · s · ° C.] to form a single particle dispersion layer having the same form as in Example 1, and then preparing eight prepregs having the single particle dispersion layer formed thereon, These prepregs were stacked in the same manner as in Example 1 and heated and pressed to produce a 0.9 mm thick carbon fiber reinforced epoxy resin composite material.
[0046]
The carbon fiber reinforced epoxy resin composite materials of Example 1 and Comparative Examples 1 and 2 thus obtained were subjected to the following tensile fatigue test.
[0047]
Each of the carbon fiber reinforced epoxy resin composite materials is cut into a strip piece 31 having a length of 130 mm, a width of 10 mm, and a thickness of 0.9 mm shown in FIGS. A test piece 33 was prepared by attaching a protective plate 32 made of glass fiber reinforced epoxy resin so that the center of the strip piece 31 having a length of 40 mm was exposed on the front and back sides.
[0048]
Using an electro-hydraulic servo type fatigue tester (trade name: L7-2.50-S manufactured by Mori Engineering Co., Ltd.), the protective plates 32 at both ends of the test piece 33 are held between the pair of gripping members, and the minimum and maximum stresses are held. The fatigue test was carried out under the tensile fatigue test conditions with a constant ratio of 0.1, ie, a stress ratio of 0.1 and a constant load. The repetition rate (frequency) was 10 Hz, and a sine wave was used. This test determined the relationship between the number of fatigue repetitions (fatigue life) and the maximum repetition stress. The result is shown in FIG.
[0049]
As apparent from FIG. 6, a layer in which h-BN particles 14 are dispersed in a single particle in the plane of the laminated interface of carbon fiber reinforced epoxy resin layers 13 1 to 13 8 shown in FIG. 4 (single particle dispersed layer). The carbon fiber reinforced epoxy resin composite material of Example 1 having an intervening structure 15 is the number of fatigue repetitions compared with the carbon fiber reinforced epoxy resin composite material of Comparative Example 1 having a structure in which carbon fiber reinforced epoxy resin layers are simply laminated. It can be seen that the degree of decrease in the maximum repetitive stress accompanying an increase in (fatigue life) is low and has excellent fatigue resistance.
[0050]
On the other hand, the carbon fiber reinforced epoxy resin composite material of Comparative Example 2 having a structure in which PZT particles, which is a kind of ceramic, are interposed as a single particle dispersion layer having the same form as in Example 1 at the laminated interface of the carbon fiber reinforced epoxy resin layers It can be seen that the fatigue resistance is lower than that of the carbon fiber reinforced epoxy resin composite material of Comparative Example 1 having a structure in which carbon fiber reinforced epoxy resin layers are simply laminated. For this reason, not all materials constituting the single particle dispersion layer are ceramic particles, so they do not exhibit high fatigue resistance, but by forming a single particle dispersion layer with specific ceramic particles having high thermal conductivity. It can be seen that excellent fatigue resistance can be expressed for the first time.
[0051]
While performing the tensile fatigue test on the test pieces of Example 1 and Comparative Example 1 using the electrohydraulic servo type fatigue tester (trade name: L7-2.50-S manufactured by Mori Engineering Co., Ltd.) The temperature transition of the outer surface of the strip piece 31 of the test piece 33 shown in FIG. 5 was measured using an infrared temperature detector (trade name manufactured by NEC Sanei Co., Ltd .; Thermotracer TH1104). The result is shown in FIG.
[0052]
As is clear from FIG. 7, it can be seen that the test piece of Example 1 has an outer surface temperature of about 10 ° C. higher than that of the test piece of Comparative Example 1. This indicates that the carbon fiber reinforced epoxy resin composite material of Example 1 has high thermal conductivity h-BN particles 14 on the laminating interface of the carbon fiber reinforced epoxy resin layers 13 1 to 13 8 shown in FIG. Since it is interposed as a single particle dispersed layer (single particle dispersed layer) 15, it is proved that the internal heat generation of the test piece during the tensile fatigue test was dissipated well to the outside by the single particle dispersed layer 15. As a result, the effect of cooling the inside of the composite material can be exhibited.
[0053]
In the first embodiment, the carbon fiber reinforced epoxy resin is used as the fiber reinforced plastic resin and the h-BN particles are used as the high thermal conductive ceramic particles. However, other fiber reinforced plastics such as a carbon fiber reinforced phenol resin are used. Even if other high thermal conductivity ceramic particles such as resin, AlN, and cBN particles are used, a fiber reinforced plastic composite material having excellent fatigue resistance equivalent to or higher than that of Example 1 can be obtained.
[0054]
【The invention's effect】
As described above in detail, according to the present invention, thermal degradation of the laminated interface due to internal heat generation when tensile force and compressive force are repeatedly applied is prevented, delamination is effectively prevented, and fatigue resistance is improved. A fiber-reinforced plastic composite material useful for various structural materials such as aircraft wings and a method for manufacturing the same can be provided.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing a fiber-reinforced plastic composite material according to the present invention.
FIG. 2 is a diagram showing a process of manufacturing a carbon fiber reinforced epoxy resin composite material in Example 1 of the present invention.
FIG. 3 is a graph showing heating and pressing conditions in an autoclave when producing a carbon fiber reinforced epoxy resin composite material in Example 1 of the present invention.
FIG. 4 is a partially cutaway perspective view showing a carbon fiber reinforced epoxy resin composite material manufactured according to Example 1 of the present invention.
FIG. 5 is a view showing a test piece for evaluating Example 1 and Comparative Examples 1 and 2 of the present invention.
FIG. 6 is a graph showing the results of a tensile fatigue test using the test pieces of Example 1 and Comparative Examples 1 and 2 of the present invention.
FIG. 7 is a graph showing temperature changes on the outer surfaces of test pieces when a tensile fatigue test is performed using the test pieces of Example 1 and Comparative Example 1 of the present invention.
[Explanation of symbols]
1 ... Fiber reinforced plastic layer,
2 ... Ceramic particles,
3, 15 ... single particle dispersion layer,
11, 11 1 to 11 8 ... prepreg,
12 ... Carbon fiber reinforced epoxy resin composite material,
13 1 to 13 8 ... carbon fiber reinforced epoxy resin layer,
14 ... h-BN particles,
31 ... strips,
33 ... Test piece.

Claims (13)

複数の繊維強化プラスチック層を積層するとともに、それらの積層界面に複数の高熱伝導性のセラミック粒子を少なくとも一部がその積層界面の中央部から外周縁に向けて互いに面方向に接触した状態で存在させて熱伝達の経路を形成するように面内において単一粒子分散させた層を介在することを特徴とする繊維強化プラスチック複合材料。With stacking a plurality of fiber-reinforced plastic layer, there are at least some multiple of the high thermal conductivity of the ceramic particles to their lamination interface is toward the outer peripheral edge from the center of the laminate interface in contact with the plane directions A fiber-reinforced plastic composite material comprising a layer in which a single particle is dispersed in a plane so as to form a heat transfer path . 前記繊維強化プラスチックは、熱硬化性樹脂または熱可塑性樹脂をガラス繊維、炭素繊維、アラミッド繊維および炭化ケイ素繊維から選ばれる少なくとも1つの強化繊維で強化したものであることを特徴とする請求項1記載の繊維強化プラスチック複合材料。  2. The fiber reinforced plastic is a thermosetting resin or a thermoplastic resin reinforced with at least one reinforcing fiber selected from glass fiber, carbon fiber, aramid fiber, and silicon carbide fiber. Fiber reinforced plastic composite material. 前記繊維強化プラスチックは、熱硬化性樹脂または熱可塑性樹脂を一方向に配列されたガラス繊維、炭素繊維、アラミッド繊維および炭化ケイ素繊維から選ばれる少なくとも1つの強化繊維で強化したものであることを特徴とする請求項1記載の繊維強化プラスチック複合材料。  The fiber reinforced plastic is a thermosetting resin or a thermoplastic resin reinforced with at least one reinforcing fiber selected from glass fiber, carbon fiber, aramid fiber and silicon carbide fiber arranged in one direction. The fiber-reinforced plastic composite material according to claim 1. 前記繊維強化プラスチックは、熱硬化性樹脂または熱可塑性樹脂をガラス繊維、炭素繊維、アラミッド繊維および炭化ケイ素繊維から選ばれる少なくとも1つの強化繊維で強化され、さらに高熱伝導性のセラミック粒子が分散して含有するものであることを特徴とする請求項1記載の繊維強化プラスチック複合材料。  In the fiber reinforced plastic, a thermosetting resin or a thermoplastic resin is reinforced with at least one reinforcing fiber selected from glass fiber, carbon fiber, aramid fiber, and silicon carbide fiber, and ceramic particles having high thermal conductivity are further dispersed. The fiber-reinforced plastic composite material according to claim 1, which is contained. 前記高熱伝導性のセラミックは、常温で0.01cal/cm・s・℃以上の熱伝導率を有することを特徴とする請求項1記載の繊維強化プラスチック複合材料。  2. The fiber-reinforced plastic composite material according to claim 1, wherein the high thermal conductive ceramic has a thermal conductivity of 0.01 cal / cm · s · ° C. or more at room temperature. 前記高熱伝導性のセラミックは、窒化ホウ素であることを特徴とする請求項5記載の繊維強化プラスチック複合材料。  6. The fiber-reinforced plastic composite material according to claim 5, wherein the high thermal conductivity ceramic is boron nitride. 前記高熱伝導性のセラミックは、窒化アルミニウムであることを特徴とする請求項5記載の繊維強化プラスチック複合材料。  6. The fiber-reinforced plastic composite material according to claim 5, wherein the high thermal conductivity ceramic is aluminum nitride. 前記各単一粒子分散層は、前記セラミック粒子の密度が前記積層界面間で異なるように形成されていることを特徴とする請求項1ないし7いずれか記載の繊維強化プラスチック複合材料。  The fiber reinforced plastic composite material according to any one of claims 1 to 7, wherein each single particle dispersion layer is formed so that the density of the ceramic particles is different between the laminated interfaces. 前記各単一粒子分散層は、前記セラミック粒子の密度が前記繊維強化プラスチックの積層方向に段階的に変化するように形成されていることを特徴とする請求項1ないし7いずれか記載の繊維強化プラスチック複合材料。  The fiber reinforced fiber according to any one of claims 1 to 7, wherein each of the single particle dispersed layers is formed so that the density of the ceramic particles changes stepwise in the lamination direction of the fiber reinforced plastic. Plastic composite material. 繊維強化プラスチックからなるプリプレグの表面に複数の高熱伝導性のセラミック粒子を厚さ方向に重なることなく散布することにより前記セラミック粒子を面内において単一粒子分散させ、かつ前記セラミック粒子の少なくとも一部がその面内の中央部から外周縁に向けて互いに面方向に接触した状態で存在させて熱伝達の経路となる層を形成する工程と、
前記単一粒子分散層を有するプリプレグを複数用意し、これらを積層した後、加熱加圧する工程と
を含むことを特徴とする繊維強化プラスチック複合材料の製造方法。
Dispersing a plurality of high thermal conductive ceramic particles on the surface of a prepreg made of fiber reinforced plastic without overlapping in the thickness direction, the ceramic particles are dispersed in a single particle in the plane , and at least a part of the ceramic particles Forming a layer serving as a heat transfer path by being present in contact with each other in the plane direction from the center in the plane toward the outer periphery ,
A method of producing a fiber-reinforced plastic composite material, comprising: preparing a plurality of prepregs having the single particle dispersion layer, laminating them, and then heating and pressing.
前記プリプレグの表面に前記セラミック粒子を散布する際、複数のプリプレグ間で前記セラミック粒子が異なる密度で単一粒子分散された層を形成することを特徴とする請求項10記載の繊維強化プラスチック複合材料の製造方法。  11. The fiber-reinforced plastic composite material according to claim 10, wherein when the ceramic particles are dispersed on the surface of the prepreg, a layer in which the ceramic particles are dispersed in a single particle at a different density between a plurality of prepregs is formed. Manufacturing method. 前記セラミック粒子が異なる密度の単一粒子分散層を有する複数のプリプレグを積層する際、前記単一粒子分散層のセラミック粒子の密度が前記プリプレグの積層方向に段階的に変化するように積層することを特徴とする請求項11記載の繊維強化プラスチック複合材料の製造方法。  When laminating a plurality of prepregs in which the ceramic particles have single particle dispersion layers having different densities, the ceramic particles in the single particle dispersion layer are laminated so that the density of the prepreg changes stepwise in the prepreg lamination direction. The method for producing a fiber-reinforced plastic composite material according to claim 11. 前記プリプレグを構成する前記繊維強化プラスチックとして、熱硬化性樹脂または熱可塑性樹脂を一方向に配列されたガラス繊維、炭素繊維、アラミッド繊維および炭化ケイ素繊維から選ばれる少なくとも1つの強化繊維で強化されたものを用い、前記単一粒子分散層を有する複数の前記プリプレグを積層する際、隣接する前記プリプレグ間でその繊維強化プラスチック中の前記強化繊維の配列方向を異ならせることを特徴とする請求項10ないし12いずれか記載の繊維強化プラスチック複合材料の製造方法。  The fiber reinforced plastic constituting the prepreg is reinforced with at least one reinforcing fiber selected from glass fiber, carbon fiber, aramid fiber and silicon carbide fiber in which a thermosetting resin or a thermoplastic resin is arranged in one direction. 11. When laminating a plurality of the prepregs having the single particle dispersion layer, the arrangement direction of the reinforcing fibers in the fiber reinforced plastic is different between adjacent prepregs. The manufacturing method of the fiber reinforced plastics composite material in any one of thru | or 12.
JP2001335447A 2001-10-31 2001-10-31 Fiber-reinforced plastic composite material and method for producing the same Expired - Lifetime JP3877996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001335447A JP3877996B2 (en) 2001-10-31 2001-10-31 Fiber-reinforced plastic composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001335447A JP3877996B2 (en) 2001-10-31 2001-10-31 Fiber-reinforced plastic composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003136634A JP2003136634A (en) 2003-05-14
JP3877996B2 true JP3877996B2 (en) 2007-02-07

Family

ID=19150435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001335447A Expired - Lifetime JP3877996B2 (en) 2001-10-31 2001-10-31 Fiber-reinforced plastic composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3877996B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672280B2 (en) * 2004-04-19 2011-04-20 敏夫 谷本 roll
CN101466598B (en) 2006-03-10 2013-02-27 豪富公司 Low density lightning strike protection for use in airplanes
US7600979B2 (en) * 2006-11-28 2009-10-13 General Electric Company CMC articles having small complex features
US20080166563A1 (en) * 2007-01-04 2008-07-10 Goodrich Corporation Electrothermal heater made from thermally conducting electrically insulating polymer material
US8048253B2 (en) 2007-09-26 2011-11-01 Fiberforge Corporation System and method for the rapid, automated creation of advanced composite tailored blanks
CN101684622B (en) * 2008-09-25 2012-09-05 康准电子科技(昆山)有限公司 Forming method of fiber products
US8561934B2 (en) 2009-08-28 2013-10-22 Teresa M. Kruckenberg Lightning strike protection
DE102011007837A1 (en) * 2011-04-21 2012-10-25 Evonik Degussa Gmbh Adhesive-free composite of a polyarylene ether ketone and a metal foil
MX2014001657A (en) * 2011-08-29 2014-03-21 Cytec Tech Corp Interlaminar toughening of thermoplastics.
WO2014140146A1 (en) 2013-03-12 2014-09-18 Dieffenbacher GmbH Maschinen- und Anlagenbau Method and systems for producing advanced composite components
JP6540994B2 (en) * 2015-05-22 2019-07-10 国立研究開発法人物質・材料研究機構 Fiber-reinforced plastic and method for producing the same
CN108186251A (en) * 2018-01-16 2018-06-22 北京氧与芳香医药研究院 Fragrant oxygen therapy health preserving cabin and system
KR102173036B1 (en) * 2019-01-17 2020-11-03 한국기계연구원 Composite and method for manufacturing composite

Also Published As

Publication number Publication date
JP2003136634A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP3877996B2 (en) Fiber-reinforced plastic composite material and method for producing the same
KR102443005B1 (en) Laminated Graphene-Based Thermally Conductive Films and Methods for Manufacturing Films
CA2556234C (en) Aluminum-fiber laminate
US7368860B2 (en) High performance piezoelectric actuator
US6268049B1 (en) Circulation system using column core
US4274901A (en) Method of making a partial interlaminar separation composite system
US4229473A (en) Partial interlaminar separation system for composites
JP5029601B2 (en) Laminate manufacturing apparatus and method
JPH09507443A (en) Thermally conductive non-metallic honeycomb and process
EP2121300A2 (en) Composite laminate having a damping interlayer and method of making the same
JP2003080607A (en) Preform, frp comprising the same and method for manufacturing them
WO2004098870A1 (en) A structural composite material for acoustic damping
WO2022054388A1 (en) Method for manufacturing sandwich panel and sandwich panel
US20050051262A1 (en) Mandrel and method for manufacturing composite structures
US20160265157A1 (en) Structured flock fiber reinforced layer
EP3388215B1 (en) Sandwich panel, method for producing unidirectional prepreg, and method for producing sandwich panel
JP3822182B2 (en) Manufacturing method of composite material honeycomb sandwich structure
JPH0583072B2 (en)
JPH0872200A (en) Composite molding
JP2004035604A (en) Semi-impregnated prepreg
TW202126476A (en) Composite material structure and method for manufacturing the same wherein the composite material structure includes a plurality of composite material unit layers and at least one reinforcing member
Tanimoto Interleaving methodology for property tailoring of CFRP laminates
JP2005029781A (en) Reinforcing fibrous base material and fiber-reinforced composite material
JPH0628946B2 (en) Impact resistant plate
JPH04251714A (en) Manufacture of carbon fiber reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061101

R150 Certificate of patent or registration of utility model

Ref document number: 3877996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term