JP3869227B2 - Vehicle power generation control device - Google Patents

Vehicle power generation control device Download PDF

Info

Publication number
JP3869227B2
JP3869227B2 JP2001175879A JP2001175879A JP3869227B2 JP 3869227 B2 JP3869227 B2 JP 3869227B2 JP 2001175879 A JP2001175879 A JP 2001175879A JP 2001175879 A JP2001175879 A JP 2001175879A JP 3869227 B2 JP3869227 B2 JP 3869227B2
Authority
JP
Japan
Prior art keywords
vehicle
voltage
headlamp
power generation
generated voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001175879A
Other languages
Japanese (ja)
Other versions
JP2002369403A (en
Inventor
克英 菊地
哲郎 菊地
尚彦 大久保
寿夫 丹羽
昌宏 谷澤
岳士 佐田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2001175879A priority Critical patent/JP3869227B2/en
Publication of JP2002369403A publication Critical patent/JP2002369403A/en
Application granted granted Critical
Publication of JP3869227B2 publication Critical patent/JP3869227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は車両用発電制御装置に関する。
【0002】
【従来の技術】
本出願人らの出願になる特開平5ー103433号公報は、バッテリ電圧が収束するべき調整電圧を、車両加速時に低値に、車両減速時に高値に切り替えて燃費向上を図り、更に、この調整電圧切り替えを徐々に行うことにより切り替え時の前照灯光量急変を防止することを提案している。以下、この技術を、変速時調整電圧徐変式車両用発電制御装置又は単に、徐変型発電制御装置と呼ぶことにする。
【0003】
【発明が解決しようとする課題】
しかしながら、上記した徐変型発電制御装置では、調整電圧切り替え時に、前照灯の光量変化速度の低減のために調整電圧変化率を低下させると、この徐変型発電制御装置の本来の目的である燃費向上効果が低下するという問題があった。また、印加電圧の変動により動作性能が変動する車両用電気負荷に対して前記前照灯の場合と同様の問題が発生する。
【0004】
本発明は上記問題点に鑑みなされたものであり、燃費向上効果の低下を抑止しつつ、車両用電気負荷の動作性能の変動低減が可能な車両用発電制御装置を提供することを、その目的としている。
【0005】
【課題を解決するための手段】
請求項1記載の車両用発電制御装置は、エンジンにより駆動されて発電した電力を車両の前照灯を含む電気負荷およびバッテリに給電する発電機の発電電圧を所定値に制御する制御部と、前記前照灯の作動を検出する前照灯作動検出手段と、前記車両の走行状態を検出する走行状態検出手段とを備え、前記制御部は、車両加速時に前記発電電圧の徐減を、車両減速時に前記発電電圧の徐増を指令する車両用発電制御装置において、前記制御部が、前照灯作動時かつ車両変速時の前記発電電圧を前照灯非作動時かつ車両変速時の前記発電電圧より低速で変化させることを指令し、かつ、前照灯作動時かつ車両減速時の前記発電電圧狙い値を前照灯非作動時かつ車両減速時の前記発電電圧狙い値より低く設定することを特徴としている。
【0006】
すなわち、この構成では、上記した車両用変速時に発電電圧を徐変する徐変型発電制御装置において、前照灯作動時の発電電圧徐変速度を前照灯非作動時よりも低速化するので、従来の徐変型発電制御装置よりも車両変速時の前照灯光量変動を低減することができる。更に、前照灯非作動時には発電電圧徐変速度を低速化しないので、燃費向上効果の低下を減らすことができる。
【0007】
請求項2記載の構成は請求項1記載の車両用発電制御装置において更に、前記制御部が、前照灯非作動時かつ車両減速時の前記発電電圧を前記バッテリの開放電圧よりも高い減速所定値へ徐増すること、前照灯非作動時かつ車両加速時の前記発電電圧を前記開放電圧より低い加速所定値に徐減すること、前照灯作動時かつ車両減速時の前記発電電圧を前記前照灯非作動時かつ車両減速時の前記発電電圧よりも低速で前記開放電圧より高い減速所定値に徐増すること、前照灯作動時かつ車両加速時の前記発電電圧を前照灯非作動時かつ車両加速時の前記発電電圧よりも低速で前記開放電圧より低い加速所定値に徐減すること、前記前照灯作動時における前記減速所定値と前記加速所定値との差を、前記前照灯非作動時における前記減速所定値と前記加速所定値との差よりも小さく設定することをそれぞれ指令する。
【0008】
すなわち、本構成では、前照灯作動時の発電電圧徐変量を前照灯非作動時よりも小さくするので、従来の徐変型発電制御装置よりも車両変速時の前照灯光量変動を低減することができる。更に、前照灯非作動時には発電電圧徐変量を小さくしないので、燃費向上効果の低下を減らすことができる。
【0009】
請求項3記載の構成は請求項2記載の車両用発電制御装置において更に、前記制御部が、前記前照灯作動時における前記減速所定値と前記加速所定値との差を1〜2.5Vに設定するので、通常の定格12Vバッテリ系を用いる車両用発電制御装置において前記前照灯光量変動抑止効果と燃費向上効果とをバランスよく実現することができる。
【0010】
請求項4記載の車両用発電制御装置は、エンジンにより駆動されて発電した電力を車両の前照灯を含む電気負荷およびバッテリに給電する発電機の発電電圧を所定値に制御する制御部と、前記前照灯の作動を検出する前照灯作動検出手段と、前記車両の走行状態を検出する走行状態検出手段とを備え、前記制御部は、車両加速時に前記発電電圧の徐減を、車両減速時に前記発電電圧の徐増を指令する車両用発電制御装置において、前記制御部が、前記電源電圧が前記前照灯の光量変動による視覚的違和感が小さい所定電圧範囲内かどうかを調べ、範囲内ならば前記発電電圧の増大速度及び減少速度を大きくし、範囲外ならば前記発電電圧の増大速度及び減少速度を小さくすることを特徴としている。
請求項5記載の構成は請求項4記載の車両用発電制御装置において更に、前記制御部が、前照灯非作動時かつ車両減速時の前記発電電圧を前記バッテリの開放電圧よりも高い減速所定値へ徐増すること、前照灯非作動時かつ車両加速時の前記発電電圧を前記開放電圧より低い加速所定値に徐減すること、前記発電電圧に応じて変化する徐増速度で前照灯作動時かつ車両減速時の前記発電電圧を前記開放電圧より高い減速所定値に徐増すること、前記発電電圧に応じて変化する徐減速度で前照灯作動時かつ車両加速時の前記発電電圧を前記開放電圧より低い加速所定値に徐減することをそれぞれ指令することを特徴としている。
【0011】
すなわち、この構成では、従来通り、前照灯非作動時には車両変速に際し発電電圧を徐変するので燃費向上効果を確保することができる。更に前照灯作動時には車両変速に際し、発電電圧徐変速度を発電電圧の変化に応じて変更するので、好適には発電電圧が大きい場合に徐変速度を低下し、発電電圧が小さい場合に徐変速度を増加しているので、発電電圧変化による前照灯光量変動が大きい発電電圧が大きい領域での前照灯光量変動を抑止し、発電電圧変化による前照灯光量変動が小さい発電電圧が小さい領域での燃費向上効果を一層良好に確保することができる。
【0012】
請求項記載の構成は請求項記載の車両用発電制御装置において更に、前記制御部が、前照灯作動時かつ車両変速時の前記発電電圧を前照灯非作動時かつ車両変速時の前記発電電圧より低速で変化させることを指令することを特徴としているので、前記した請求項1記載の効果も奏することができる。
【0013】
請求項記載の構成は請求項1乃至のいずれか記載の車両用発電制御装置において更に、前記制御部が、前記前照灯作動時で、かつ、アイドル時又は定速走行時に、前記発電電圧を所定の一定値に固定することを指令することを特徴としているので、アイドル時又は定速走行時における無駄な制御を減らすことができる
【0014】
【発明の実施の形態】
本発明の車両用発電制御装置の好適な実施態様を以下の実施例を参照して説明する。
【0015】
【実施例1】
実施例1の車両用発電制御装置を適用した車両用発電装置を図1に示す。
【0016】
車両用の発電機4は、不図示のエンジンにより駆動され、電気負荷を構成する前照灯8及びその他の電気負荷5とバッテリ6とに給電している。
【0017】
本発明で言う制御部をなすマイクロコンピュータ1は、バッテリ6の電流、電圧を検出する電流センサ2、電圧センサ(たとえば抵抗分圧回路)3からの発電機データと、エンジン制御コンピュータ(本発明で言う走行状態検出手段)10からの車速、エンジン回転数、スロットル開度など車両の走行状況を示す車両走行データとを受信し、これら受信データに応じて発電機4の発電電圧を制御する。この発電電圧制御は、通常は発電機4の界磁電流の制御により行われ、たとえば、周知のように所定の調整電圧とバッテリ電圧の比較結果により、上記界磁電流断続トランジスタのデューティ比を変更することによりなされる。
【0018】
マイクロコンピュータ1は更に、前照灯(ヘッドライト)の作動データを、本発明で言う前照灯作動検出手段をなすスイッチ7及び抵抗器9を通じて受信する。スイッチ7がオフの場合にはバッテリ6から前照灯8への給電が遮断されて前照灯8が非作動状態となり、バッテリ6から抵抗器9を通じて高電圧が印加されて、マイクロコンピュータ1は前照灯8の非作動を検出する。スイッチ7がオンの場合にはバッテリ6から前照灯8への給電なされて前照灯8が作動状態となり、同時に抵抗器9の出力端は接地されるので、マイクロコンピュータ1には接地電位が印加されて、マイクロコンピュータ1は前照灯8の作動を検出する。
【0019】
(発電電圧制御)
前照灯点灯用のスイッチ7の閉時すなわちヘッドライト8作動時に発電電圧を変化させるとヘッドライトの光量変動により運転手に違和感を与える。そこで、この実施例では、ヘッドライト8の作動状態及び車速(特に変速)状態に応じてマイクロコンピュータ1の調整電圧を変更する。マイクロコンピュータ1は発電電圧と調整電圧との比較結果に基づいて発電機4の界磁電流断続用の内蔵トランジスタの断続デューティ比を変更するので、発電機4の界磁電流が変更され、界磁電流量に略比例して発電機4の発電電圧が変更される。
【0020】
(発電電圧変更制御)
マイクロコンピュータ1の発電電圧変更制御を図2、図3に示すフローチャートを参照して以下に説明する。100〜128はステップ番号である。
【0021】
エンジン始動とともに制御が開始され、100の初期設定で各変数に初期値を代入し、101〜128のルーチンを0.1sec周期で実行する。
【0022】
101にて、車速、エンジン回転数、スロットル開度の信号をエンジン制御コンピュータから取り込み、102にて走行状況判定を行う。
【0023】
102の走行状況判定のためのサブルーチンを図4に示す。200〜208はステップ番号である。
【0024】
200にてエンジン回転数が0ならばエンジン停止と判定し、エンジン回転数が0でなければ、201以降の判定を行う。201にて車速が0ならばアイドルと判定し、車速が0でなく、かつ、202にてスロットル開度が0ならば減速と判定する。202にてスロットル開度が0でなく、かつ、204にて車速が増大していれば加速と判定し、204にて車速が増大していなければ、定速と判定する。但し、図4に示すフローチャートは、走行状況判定の一例を示すものであって、他の走行状況判定動作を採用しても良い。
【0025】
次に、103にてヘッドライトが作動してるかどうかを判定して、作動していれば116に進み、作動していなければ、104に進む。
【0026】
作動していない場合に104にて減速と判定すれば、105にてバッテリ6が発電電力をチャージするように発電電圧狙い値(調整電圧、目標電圧)をバッテリ6の開放電圧より高い値(15.0V)に設定する。
【0027】
次の106にて加速と判定すれば、107にて発電を抑えてバッテリ6から給電するべく発電電圧狙い値をバッテリの開放電圧より低い値(12.0V)に設定する。
【0028】
次の108にて定速と判定すれば、109にて発電電圧狙い値をバッテリのSOC(充電状態)を維持することができる電圧値に設定する。
【0029】
109におけるSOC維持制御のためのサブルーチンを図7に示す。400〜404はステップ番号である。
【0030】
400にてSOCが90%より大きいかどうかを判定し、401にてSOCが90%より大きい時はバッテリ6に十分な残存容量があるのでバッテリ6が放電するように、発電電圧狙い値をバッテリの起電圧より低い値(12V)に設定する。400にてSOCが90%以下であれば、402にてSOCが85%より小さいかどうかを判定し、SOCが85%より小さければ403にて発電電圧狙い値をバッテリ6の開放電圧より高い値(15V)に設定してバッテリ6を充電する。SOCが85〜90%であれば404にて発電電圧狙い値をバッテリ6の開放電圧とほぼ等しい値(12.8V)に設定する。
【0031】
110にてアイドル状態と判定すれば、111にて発電電圧狙い値を上記説明したバッテリのSOC(充電状態)を維持することができる電圧値に設定する。次に、112にて発電電圧狙い値と現在の発電電圧値の差が0.2Vより大きいかどうかを判定し、大きければ、113にて発電電圧狙い値を現在の発電電圧値に0.2を加えた値とする。すなわち、現在の発電電圧値からの増大量を0.2Vに制限する。ここで、0.2Vはこの処理が、0.1sec周期であるため、2V/secの電圧増大速度(発電電圧徐増速度)に相当する。
【0032】
同様に、114にて発電電圧狙い値と現在の発電電圧値の差が−0.2Vより小さいかどうかを判定し、小さければ、115にて発電電圧狙い値を現在の発電電圧値から0.2Vを減じた値とする。すなわち、現在の発電電圧値からの減少量を0.2Vに制限する。これは、上記と同じく2V/secの電圧減少速度(発電電圧徐減速度)に相当する。
【0033】
また、103にてヘッドライトが動作している場合は、上記と同様に116〜123により走行状況に応じて異なった動作をさせる。ヘッドライト8は非動作時と異って、減速時に117にて発電電圧狙い値を14.0Vに設定する点が異なっている。これにより、発電電圧の変化幅は3V(12〜15V)から2V(12〜14V)に制限されている。
【0034】
次の124〜127では、ヘッドライト8が非動作時と異なって、現在の発電電圧値からの増大量および減少量を0.05Vに制限する点にあり、これにより、発電電圧の増大速度(発電電圧徐増速度)および減少速度(発電電圧徐減速度)は0.5V/secに制限されている。
【0035】
次の128にて、発電電圧狙い値を実際の発電電圧値に代入し(調整電圧として用いて発電電圧制御を行い)、101にリターンする。
【0036】
【実施例2】
上述した実施例1では、ヘッドライト動作時に発電電圧の変化幅と変化速度を減らすことにより発電電圧の変化によるヘッドライトの明滅の違和感を防いでいた。その他、アイドル時や定速時は運転者の視野に変化が少ないと考えられるため、発電電圧を一定値に維持することにより、ヘッドライトの明滅の違和感を抑えることができる。
【0037】
この制御を行うマイクロコンピュータ1の発電電圧変更制御を図6に示すフローチャートを参照して以下に説明する。図5、図6に示すフローチャートは図2、図3に示す実施例1のフローチャートのステップ121、123の代わりにステップ121a、123aを実行するものである。
【0038】
120にて定速走行と判定した場合、及び、122にてアイドル時と判定した場合には、ステップ121a、123aにて発電電圧狙い値を13.8Vに固定する。
【0039】
これにより、運転者の視野に変化が少ないアイドル時や定速時に発電電圧を一定の値に制御することができる。
【0040】
【実施例3】
上述した実施例2では、ヘッドライト動作時に発電電圧の変化幅と変化速度を縮小し、かつ、アイドル時及び定速走行時に発電電圧を一定値に固定することにより、発電電圧の変化によるヘッドライトの明滅の違和感を防いでいた。ただし、発電電圧の変化幅と変化速度を縮小することは、燃費向上効果が減少する問題を生じさせる。そこで、この実施例では、発電電圧変化に起因するヘッドライト光量変動の違和感は、発電電圧の大きさにより異なることを利用して、違和感が大きい領域では発電電圧徐変速度を緩慢化し、違和感が小さい領域では発電電圧徐変速度を大きくすることにより、燃費向上効果の減少を抑止する。
【0041】
この制御を行うマイクロコンピュータ1の発電電圧変更制御を図8、図9に示すフローチャートを参照して以下に説明する。図8、図9に示すフローチャートは図4に示す実施例2のフローチャートのステップ124〜127を、ステップ524〜530に変更したものである。
【0042】
524にて発電電圧値(本明細書では単に発電電圧ともいう)が12.8〜13.5Vの範囲内かどうかを調べ、範囲内ならばヘッドライト光量変動による視覚的違和感が小さい領域なので電圧増減幅を0.2Vとし(525)、範囲外ならばヘッドライト光量変動による視覚的違和感が大きい領域なので電圧増減幅を0.05Vとする(526)。すなわち、ヘッドライトの違和感が小さい領域では発電電圧の増大速度および減少速度を2V/secとし、違和感が大きい領域では発電電圧の増大速度および減少速度を0.5V/secに規制する。
【0043】
すなわち、次の527にて発電電圧狙い値と発電電圧値との差が上記で設定されれた電圧増減幅を超えるかどうかを判定し、超えれば発電電圧狙い値を発電電圧値+電圧増減幅に飽和させる(528)。また、次の529にて発電電圧狙い値と発電電圧値との差が上記で設定されれた電圧増減幅の負値より小さいかどうかを判定し、小さければ発電電圧狙い値を発電電圧値ー電圧増減幅に飽和させる。
【0044】
これにより、発電電圧変化に起因するヘッドライト光量変動の違和感が大きい領域では発電電圧徐変速度を緩慢化し、違和感が小さい領域では発電電圧徐変速度を大きくすることにより、違和感の増大を抑止しつつ燃費向上効果の減少を抑止することができる。
【0045】
(変形態様)
上記各実施例では、燃費向上効果の低下を抑止しつつ電源電圧変動による前照灯光量変動の低減を行ったが、前照灯の代わりにブロワなどの車載送風機やワイパなど、電源電圧変動により動作性能が変動する車両用電気負荷に上記実施例で説明した制御を用いることにより、これら車両用電気負荷の動作性能変化による不具合の増大を抑止しつつ燃費向上効果を実現することができる。
【図面の簡単な説明】
【図1】本発明の車両用発電制御装置を適用した車両用発電装置を示す回路図である。
【図2】実施例1の車両用発電制御装置の制御動作を示すフローチャートである。
【図3】実施例1の車両用発電制御装置の制御動作を示すフローチャートである。
【図4】実施例1の車両用発電制御装置の走行状況判定動作を示すフローチャートである。
【図5】実施例2の車両用発電制御装置の制御動作を示すフローチャートである。
【図6】実施例2の車両用発電制御装置の制御動作を示すフローチャートである。
【図7】SOC制御動作を示すフローチャートである。
【図8】実施例3の制御動作を示すフローチャートである。
【図9】実施例3の制御動作を示すフローチャートである。
【符号の説明】
1 マイクロコンピュータ(制御部)
7 スイッチ(前照灯作動検出手段)
9 抵抗器(前照灯作動検出手段)
[0001]
[Technical field to which the invention belongs]
The present invention relates to a vehicle power generation control device.
[0002]
[Prior art]
JP-A-5-103433, filed by the present applicants, improves the fuel consumption by switching the adjustment voltage at which the battery voltage should converge to a low value when the vehicle is accelerated and a high value when the vehicle is decelerated. It has been proposed to prevent sudden changes in the amount of headlamp light during switching by gradually switching the voltage. Hereinafter, this technology will be referred to as a shift-time adjusting voltage gradual change type vehicle power generation control device or simply a gradual change type power generation control device.
[0003]
[Problems to be solved by the invention]
However, in the above-described gradual change type power generation control device, when the adjustment voltage change rate is reduced in order to reduce the light quantity change rate of the headlamp when the adjustment voltage is switched, the fuel consumption that is the original purpose of the gradual change type power generation control device is reduced. There was a problem that the improvement effect decreased. In addition, the same problem as in the case of the headlamp occurs with respect to the vehicle electrical load whose operation performance varies due to the variation of the applied voltage.
[0004]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a vehicular power generation control device capable of reducing fluctuations in operating performance of an electric load for a vehicle while suppressing a decrease in fuel efficiency improvement effect. It is said.
[0005]
[Means for Solving the Problems]
The power generation control device for a vehicle according to claim 1, wherein a control unit that controls a power generation voltage of a generator that feeds power generated by driving by an engine to an electric load including a headlight of the vehicle and a battery to a predetermined value; A headlight operation detecting means for detecting the operation of the headlight; and a traveling state detecting means for detecting a traveling state of the vehicle, wherein the control unit gradually reduces the generated voltage during vehicle acceleration. In the vehicular power generation control device that commands the gradual increase of the generated voltage during deceleration, the control unit determines the generated voltage when the headlamp is operated and the vehicle is shifted as the generated voltage when the headlamp is not operated and when the vehicle is shifted. Command to change at a lower speed than the voltage , and set the target value of the generated voltage when the headlamp is activated and the vehicle is decelerated to be lower than the target value of the generated voltage when the headlamp is not operated and the vehicle is decelerated It is characterized by.
[0006]
That is, in this configuration, in the gradual change type power generation control device that gradually changes the generated voltage at the time of the vehicle shift described above, the generated voltage gradual change speed at the time of operating the headlamp is slower than that at the time of non-operating of the headlamp. The variation in the amount of headlamp light at the time of vehicle shift can be reduced as compared with the conventional gradual change type power generation control device. Furthermore, since the generation voltage gradual change speed is not reduced when the headlamp is not operated, it is possible to reduce the reduction in fuel efficiency improvement effect.
[0007]
According to a second aspect of the present invention, in the vehicle power generation control device according to the first aspect, the control unit further reduces the power generation voltage when the headlamp is not operated and the vehicle decelerates to a predetermined deceleration higher than the open voltage of the battery. Gradual increase to the value, gradually reducing the generated voltage when the headlamp is not operated and the vehicle is accelerated to a predetermined acceleration value lower than the open voltage, and the generated voltage when the headlamp is operated and the vehicle is decelerated. When the headlamp is not operated and the vehicle is decelerating, the power generation voltage is gradually increased to a predetermined value that is lower than the open-circuit voltage and lower than the open-circuit voltage. Decreasing gradually to a predetermined acceleration value lower than the open circuit voltage at a lower speed than the generated voltage during non-operation and vehicle acceleration, the difference between the predetermined deceleration value and the predetermined acceleration value when the headlamp is activated, The predetermined deceleration value when the headlamp is not operated To set smaller than the difference between the serial acceleration predetermined value commanding respectively.
[0008]
That is, in this configuration, the amount of gradual change in the generated voltage when the headlamp is activated is smaller than that when the headlamp is not activated, so that the fluctuation in the amount of headlamp light during vehicle shift is reduced compared to the conventional gradual change type power generation control device. be able to. Further, since the generated voltage gradual change amount is not reduced when the headlamp is not operated, it is possible to reduce the decrease in the fuel efficiency improvement effect.
[0009]
According to a third aspect of the present invention, in the vehicle power generation control device according to the second aspect, the control unit further sets a difference between the predetermined deceleration value and the predetermined acceleration value when the headlamp is activated to 1 to 2.5V. Therefore, in the vehicle power generation control device using a normal rated 12V battery system, the headlamp light quantity fluctuation suppressing effect and the fuel efficiency improving effect can be realized in a balanced manner.
[0010]
The vehicle power generation control device according to claim 4, wherein a control unit that controls a power generation voltage of a generator that feeds power generated by driving by an engine to an electric load including a headlight of the vehicle and a battery to a predetermined value; A headlight operation detecting means for detecting the operation of the headlight; and a traveling state detecting means for detecting a traveling state of the vehicle, wherein the control unit gradually reduces the generated voltage during vehicle acceleration. In the vehicular power generation control device that commands the gradual increase of the generated voltage at the time of deceleration, the control unit checks whether the power supply voltage is within a predetermined voltage range where visual discomfort due to light amount fluctuation of the headlamp is small, If it is within, the increase rate and decrease rate of the generated voltage are increased, and if it is outside the range, the increase rate and decrease rate of the generated voltage are decreased.
According to a fifth aspect of the present invention, in the vehicle power generation control device according to the fourth aspect, the control unit further reduces the power generation voltage when the headlamp is not operated and the vehicle decelerates to a predetermined deceleration higher than the open voltage of the battery. Gradual increase to the value, gradual decrease of the generated voltage when the headlamp is not operated and the vehicle is accelerated to a predetermined acceleration value lower than the open circuit voltage, and the accelerating speed that changes according to the generated voltage. The power generation voltage at the time of lamp operation and vehicle deceleration is gradually increased to a predetermined deceleration value that is higher than the open circuit voltage, and the power generation at the time of headlight operation and vehicle acceleration at a gradual deceleration that changes according to the power generation voltage. It is characterized by each commanding the voltage to be gradually reduced to a predetermined acceleration value lower than the open circuit voltage.
[0011]
That is, in this configuration, as in the past, when the headlamp is not operated, the generated voltage is gradually changed when the vehicle is shifted, so that it is possible to ensure a fuel efficiency improvement effect. Furthermore , when the headlamp is activated , the gradual change speed of the generated voltage is changed in accordance with the change in the generated voltage when the vehicle is shifted. Preferably, when the generated voltage is large, the gradual change speed is reduced and when the generated voltage is small. Since the gradual change speed is increased, the headlamp light intensity fluctuation is suppressed in the area where the power generation voltage is large due to the large fluctuation of the headlamp light quantity due to the power generation voltage change, and the power generation voltage with small headlamp light quantity fluctuation due to the power generation voltage change is suppressed. The fuel efficiency improvement effect can be ensured even better in a small area.
[0012]
According to a sixth aspect of the present invention, in the vehicle power generation control device according to the fifth aspect, the control unit further sets the power generation voltage when the headlamp is activated and when the vehicle is shifted to when the headlamp is not activated and when the vehicle is shifted. Since it is characterized by instructing to change at a lower speed than the generated voltage, the effect of the first aspect can also be achieved.
[0013]
According to a seventh aspect of the present invention, in the vehicle power generation control device according to any one of the first to sixth aspects, the control unit is configured to generate the power generation when the headlamp is operated and when the vehicle is idling or traveling at a constant speed. Since it is characterized by instructing to fix the voltage to a predetermined constant value, wasteful control during idling or constant speed traveling can be reduced .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the vehicle power generation control device of the present invention will be described with reference to the following examples.
[0015]
[Example 1]
FIG. 1 shows a vehicular power generation apparatus to which the vehicular power generation control apparatus of the first embodiment is applied.
[0016]
The vehicular generator 4 is driven by an engine (not shown) and supplies power to the headlamp 8 and other electric loads 5 and the battery 6 constituting an electric load.
[0017]
The microcomputer 1 that constitutes a control unit according to the present invention includes a current sensor 2 that detects the current and voltage of the battery 6, a generator data from a voltage sensor (for example, a resistance voltage dividing circuit) 3, an engine control computer (in the present invention). The vehicle traveling data indicating the traveling state of the vehicle such as the vehicle speed, the engine speed, and the throttle opening from the traveling state detecting means) 10 is received, and the generated voltage of the generator 4 is controlled according to the received data. This power generation voltage control is normally performed by controlling the field current of the generator 4. For example, as is well known, the duty ratio of the field current interrupting transistor is changed based on a comparison result between a predetermined adjustment voltage and the battery voltage. It is done by doing.
[0018]
Further, the microcomputer 1 receives headlight operation data through a switch 7 and a resistor 9 which constitute the headlight operation detection means referred to in the present invention. When the switch 7 is off, the power supply from the battery 6 to the headlamp 8 is cut off, the headlamp 8 is deactivated, a high voltage is applied from the battery 6 through the resistor 9, and the microcomputer 1 The non-operation of the headlamp 8 is detected. When the switch 7 is on, power is supplied from the battery 6 to the headlamp 8 so that the headlamp 8 is in an operating state. At the same time, the output terminal of the resistor 9 is grounded. When applied, the microcomputer 1 detects the operation of the headlamp 8.
[0019]
(Generation voltage control)
If the power generation voltage is changed when the headlight lighting switch 7 is closed, that is, when the headlight 8 is operated, the driver feels uncomfortable due to fluctuations in the light quantity of the headlight. Therefore, in this embodiment, the adjustment voltage of the microcomputer 1 is changed in accordance with the operating state of the headlight 8 and the vehicle speed (particularly speed change) state. Since the microcomputer 1 changes the intermittent duty ratio of the built-in transistor for interrupting the field current of the generator 4 based on the comparison result between the generated voltage and the adjusted voltage, the field current of the generator 4 is changed and the field current is changed. The generated voltage of the generator 4 is changed approximately in proportion to the flow rate.
[0020]
(Generation voltage change control)
The power generation voltage change control of the microcomputer 1 will be described below with reference to the flowcharts shown in FIGS. 100 to 128 are step numbers.
[0021]
Control is started as the engine is started, and initial values are substituted for each variable at an initial setting of 100, and routines 101 to 128 are executed at a cycle of 0.1 sec.
[0022]
At 101, signals of vehicle speed, engine speed, and throttle opening are taken from the engine control computer, and at 102, the running condition is determined.
[0023]
FIG. 4 shows a subroutine for determining the running state 102. 200 to 208 are step numbers.
[0024]
If the engine speed is 0 at 200, it is determined that the engine is stopped. If the engine speed is not 0, the determination after 201 is performed. If the vehicle speed is 201 at 201, it is determined to be idle, and if the vehicle speed is not 0 and the throttle opening is 0 at 202, it is determined to be deceleration. If the throttle opening is not 0 at 202 and the vehicle speed is increased at 204, it is determined to be acceleration, and if the vehicle speed is not increased at 204, it is determined to be a constant speed. However, the flowchart shown in FIG. 4 shows an example of the traveling state determination, and other traveling state determination operations may be adopted.
[0025]
Next, it is determined at 103 whether or not the headlight is operating. If it is operating, the process proceeds to 116, and if it is not operating, the process proceeds to 104.
[0026]
If it is determined that the vehicle is decelerating at 104 when it is not in operation, the target value (adjusted voltage, target voltage) of the generated voltage is higher than the open voltage of the battery 6 so that the battery 6 charges the generated power at 105 (15 .0V).
[0027]
If it is determined in the next 106 that acceleration is performed, the power generation voltage target value is set to a value (12.0 V) lower than the open circuit voltage of the battery so as to suppress power generation and supply power from the battery 6 in 107.
[0028]
If it is determined at the next 108 that the speed is constant, the target value of the generated voltage is set to a voltage value at which the SOC (charged state) of the battery can be maintained at 109.
[0029]
A subroutine for the SOC maintenance control at 109 is shown in FIG. 400 to 404 are step numbers.
[0030]
At 400, it is determined whether the SOC is greater than 90%. When the SOC is greater than 90% at 401, the battery 6 has a sufficient remaining capacity, and the target value of the generated voltage is set so that the battery 6 is discharged. Is set to a value (12 V) lower than the electromotive voltage. If the SOC is 90% or less at 400, it is determined whether the SOC is less than 85% at 402. If the SOC is less than 85%, the target value of the generated voltage is higher than the open voltage of the battery 6 at 403. The battery 6 is charged by setting to (15V). If the SOC is 85 to 90%, the target value of the generated voltage is set to a value (12.8 V) substantially equal to the open circuit voltage of the battery 6 at 404.
[0031]
If it is determined at 110 that the engine is in the idle state, the target value of the generated voltage is set at 111 at a voltage value that can maintain the above-described battery SOC (charged state). Next, at 112, it is determined whether or not the difference between the target power generation voltage value and the current power generation voltage value is greater than 0.2V. The value is added. That is, the amount of increase from the current power generation voltage value is limited to 0.2V. Here, 0.2 V corresponds to a voltage increase rate (power generation voltage gradual increase rate) of 2 V / sec because this process is a cycle of 0.1 sec.
[0032]
Similarly, it is determined at 114 whether or not the difference between the generated power voltage target value and the current generated voltage value is smaller than −0.2 V. If the difference is smaller, the generated power voltage target value is set to 0.1 from the current generated voltage value at 115. The value obtained by subtracting 2V. That is, the amount of decrease from the current generated voltage value is limited to 0.2V. This corresponds to a voltage decrease rate (power generation voltage gradual decrease rate) of 2 V / sec as described above.
[0033]
Further, when the headlight is operating at 103, different operations are performed in accordance with the driving conditions by 116 to 123 as described above. The headlight 8 is different from the non-operating state in that the target value of the generated voltage is set to 14.0 V at 117 during deceleration. Thereby, the change width of the generated voltage is limited to 3 V (12 to 15 V) to 2 V (12 to 14 V).
[0034]
In the next 124 to 127, the headlight 8 is different from the non-operating state in that the increase amount and the decrease amount from the current power generation voltage value are limited to 0.05V. The generation voltage gradual increase rate and the decrease rate (generation voltage gradual decrease rate) are limited to 0.5 V / sec.
[0035]
At the next 128, the target value of the generated voltage is substituted into the actual generated voltage value (the generated voltage is controlled using the adjustment voltage), and the process returns to 101.
[0036]
[Example 2]
In the first embodiment described above, it is possible to prevent the uncomfortable feeling of blinking of the headlight due to the change in the generated voltage by reducing the change width and change rate of the generated voltage during the headlight operation. In addition, since it is considered that there is little change in the driver's field of view at the time of idling or constant speed, it is possible to suppress the uncomfortable feeling of flickering of the headlights by maintaining the generated voltage at a constant value.
[0037]
The generated voltage change control of the microcomputer 1 that performs this control will be described below with reference to the flowchart shown in FIG. The flowcharts shown in FIGS. 5 and 6 execute steps 121a and 123a instead of steps 121 and 123 in the flowcharts of the first embodiment shown in FIGS.
[0038]
When it is determined that the vehicle travels at a constant speed at 120, and when it is determined that the vehicle is idling at 122, the target value of the generated voltage is fixed at 13.8V at steps 121a and 123a.
[0039]
As a result, the generated voltage can be controlled to a constant value during idling or constant speed with little change in the driver's field of view.
[0040]
[Example 3]
In the above-described second embodiment, the headlight caused by the change in the generated voltage is reduced by reducing the change width and change speed of the generated voltage during the headlight operation and fixing the generated voltage to a constant value during idling and constant speed running. The discomfort of flickering was prevented. However, reducing the change width and change speed of the generated voltage causes a problem that the fuel efficiency improvement effect is reduced. Therefore, in this embodiment, by utilizing the fact that the uncomfortable feeling of the headlight light amount fluctuation caused by the change in the generated voltage varies depending on the magnitude of the generated voltage, the generated voltage gradually changing speed is slowed down in a region where the uncomfortable feeling is large, and the uncomfortable feeling is felt. In a small region, the reduction in fuel consumption improvement effect is suppressed by increasing the power generation voltage gradual change rate.
[0041]
The generated voltage change control of the microcomputer 1 that performs this control will be described below with reference to the flowcharts shown in FIGS. The flowcharts shown in FIGS. 8 and 9 are obtained by changing steps 124 to 127 in the flowchart of the second embodiment shown in FIG. 4 to steps 524 to 530.
[0042]
In 524, it is checked whether the generated voltage value (also simply referred to as the generated voltage in this specification) is within the range of 12.8 to 13.5V. The increase / decrease width is set to 0.2V (525), and if it is out of the range, the visual increase / decrease width due to fluctuations in the light quantity of the headlight is large, so the voltage increase / decrease width is set to 0.05V (526). That is, in the region where the uncomfortable feeling of the headlight is small, the increase rate and the decrease rate of the generated voltage are set to 2 V / sec, and in the region where the uncomfortable feeling is large, the increase rate and the decrease rate of the generated voltage are regulated to 0.5 V / sec.
[0043]
That is, in the next step 527, it is determined whether or not the difference between the generated voltage target value and the generated voltage value exceeds the voltage increase / decrease range set above, and if it exceeds, the generated voltage target value is set to the generated voltage value + voltage increase / decrease range. To saturate (528). Next, in 529, it is determined whether or not the difference between the generated voltage target value and the generated voltage value is smaller than the negative value of the voltage increase / decrease width set above. Saturate to increase / decrease voltage.
[0044]
As a result, the generation voltage gradual change speed is slowed down in areas where the uncomfortable feeling of headlight light intensity fluctuations caused by changes in the generated voltage is large, and the generation voltage gradual change speed is increased in areas where there is little discomfort. However, it is possible to suppress a decrease in fuel efficiency improvement effect.
[0045]
(Modification)
In each of the above-described embodiments, the headlamp light quantity fluctuation due to the power supply voltage fluctuation was reduced while suppressing the decrease in the fuel efficiency improvement effect, but instead of the headlamp, the on-board fan such as a blower or a wiper caused a fluctuation in the power supply voltage. By using the control described in the above-described embodiment for the electric load for a vehicle whose operating performance fluctuates, it is possible to realize an improvement in fuel consumption while suppressing an increase in defects due to a change in the operating performance of these electric loads for the vehicle.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a vehicular power generation apparatus to which a vehicular power generation control apparatus of the present invention is applied.
FIG. 2 is a flowchart illustrating a control operation of the vehicle power generation control device according to the first embodiment.
FIG. 3 is a flowchart illustrating a control operation of the vehicle power generation control device according to the first embodiment.
FIG. 4 is a flowchart showing a traveling state determination operation of the vehicle power generation control device according to the first embodiment.
FIG. 5 is a flowchart illustrating a control operation of the vehicle power generation control device according to the second embodiment.
FIG. 6 is a flowchart showing a control operation of the vehicle power generation control device according to the second embodiment.
FIG. 7 is a flowchart showing an SOC control operation.
FIG. 8 is a flowchart illustrating a control operation according to the third embodiment.
FIG. 9 is a flowchart illustrating a control operation according to the third embodiment.
[Explanation of symbols]
1 Microcomputer (control unit)
7 switch (headlamp operation detection means)
9 Resistor (headlamp operation detection means)

Claims (7)

エンジンにより駆動されて発電した電力を車両の前照灯を含む電気負荷およびバッテリに給電する発電機の発電電圧を所定の発電電圧狙い値に制御する制御部と、
前記前照灯の作動を検出する前照灯作動検出手段と、
前記車両の走行状態を検出する走行状態検出手段と、
を備え、
前記制御部は、車両加速時に前記発電電圧の徐減を、車両減速時に前記発電電圧の徐増を指令する車両用発電制御装置において、
前記制御部は、
前照灯作動時かつ車両変速時の前記発電電圧を前照灯非作動時かつ車両変速時の前記発電電圧より低速で変化させることを指令し、かつ、前照灯作動時かつ車両減速時の前記発電電圧狙い値を前照灯非作動時かつ車両減速時の前記発電電圧狙い値より低く設定することを特徴とする車両用発電制御装置。
A control unit for controlling the generated voltage of the generator that feeds power generated by driving the engine to the electric load including the vehicle headlamp and the battery to a predetermined generated voltage target value;
Headlamp operation detecting means for detecting the operation of the headlamp;
Traveling state detecting means for detecting the traveling state of the vehicle;
With
In the vehicle power generation control device that commands the gradual decrease of the generated voltage during vehicle acceleration and the gradual increase of the generated voltage during vehicle deceleration,
The controller is
Commands the headlamp to change the generated voltage at the time of shifting the vehicle at a lower speed than the generated voltage at the time of headlamp not operating and at the time of shifting the vehicle. The power generation control device for a vehicle , wherein the power generation voltage target value is set lower than the power generation voltage target value when the headlamp is not operated and the vehicle is decelerated .
請求項1記載の車両用発電制御装置において、
前記制御部は、
前照灯非作動時かつ車両減速時の前記発電電圧を前記バッテリの開放電圧よりも高い減速所定値へ徐増すること、
前照灯非作動時かつ車両加速時の前記発電電圧を前記開放電圧より低い加速所定値に徐減すること、
前照灯作動時かつ車両減速時の前記発電電圧を前記前照灯非作動時かつ車両減速時の前記発電電圧よりも低速で前記開放電圧より高い減速所定値に徐増すること、
前照灯作動時かつ車両加速時の前記発電電圧を前照灯非作動時かつ車両加速時の前記発電電圧よりも低速で前記開放電圧より低い加速所定値に徐減すること、
前記前照灯作動時における前記減速所定値と前記加速所定値との差を、前記前照灯非作動時における前記減速所定値と前記加速所定値との差よりも小さく設定すること、
をそれぞれ指令することを特徴とする車両用発電制御装置。
The vehicle power generation control device according to claim 1,
The controller is
Gradually increasing the generated voltage at the time of headlight non-operation and vehicle deceleration to a predetermined deceleration value higher than the open circuit voltage of the battery;
Gradually reducing the generated voltage when the headlamp is not operated and the vehicle is accelerated to a predetermined acceleration value lower than the open voltage;
Gradually increasing the generated voltage when the headlamp is activated and the vehicle is decelerated to a predetermined deceleration value that is lower than the generated voltage when the headlamp is not activated and the vehicle is decelerated and higher than the open voltage;
Gradually reducing the generated voltage during headlight operation and vehicle acceleration to a predetermined acceleration value lower than the open voltage at a lower speed than the generated voltage during headlight non-operation and vehicle acceleration;
Setting the difference between the predetermined deceleration value and the predetermined acceleration value when the headlamp is operated to be smaller than the difference between the predetermined deceleration value and the predetermined acceleration value when the headlamp is not operated;
Each of which is commanded.
請求項2記載の車両用発電制御装置において、
前記制御部は、
前記前照灯作動時における前記減速所定値と前記加速所定値との差を1〜2.5Vに設定することを特徴とする車両用発電制御装置。
The vehicle power generation control device according to claim 2,
The controller is
The vehicle power generation control device, wherein a difference between the predetermined deceleration value and the predetermined acceleration value when the headlamp is operated is set to 1 to 2.5V.
エンジンにより駆動されて発電した電力を車両の前照灯を含む電気負荷およびバッテリに給電する発電機の発電電圧を所定値に制御する制御部と、
前記前照灯の作動を検出する前照灯作動検出手段と、
前記車両の走行状態を検出する走行状態検出手段と、
を備え、
前記制御部は、車両加速時に前記発電電圧の徐減を、車両減速時に前記発電電圧の徐増を指令する車両用発電制御装置において、
前記制御部は、
前記電源電圧が前記前照灯の光量変動による視覚的違和感が小さい所定電圧範囲内かどうかを調べ、範囲内ならば前記発電電圧の増大速度及び減少速度を大きくし、範囲外ならば前記発電電圧の増大速度及び減少速度を小さくする車両用発電制御装置。
A control unit for controlling the generated voltage of a generator that feeds power generated by driving the engine to an electric load including a vehicle headlamp and a battery to a predetermined value;
Headlamp operation detecting means for detecting the operation of the headlamp;
Traveling state detecting means for detecting the traveling state of the vehicle;
With
In the vehicle power generation control device that commands the gradual decrease of the generated voltage during vehicle acceleration and the gradual increase of the generated voltage during vehicle deceleration,
The controller is
It is checked whether the power supply voltage is within a predetermined voltage range in which visual discomfort due to fluctuations in the amount of light of the headlamp is small. If it is within the range, the increase rate and decrease rate of the generation voltage are increased. Power generation control device for reducing the increase speed and decrease speed of the vehicle.
請求項4記載の車両用発電制御装置において、  The vehicle power generation control device according to claim 4,
前記制御部は、  The controller is
前照灯非作動時かつ車両減速時の前記発電電圧を前記バッテリの開放電圧よりも高い減速所定値へ徐増すること、  Gradually increasing the generated voltage when the headlamp is not operated and the vehicle is decelerated to a predetermined deceleration value that is higher than the open-circuit voltage of the battery;
前照灯非作動時かつ車両加速時の前記発電電圧を前記開放電圧より低い加速所定値に徐減すること、  Gradually reducing the generated voltage when the headlamp is not operated and accelerating the vehicle to a predetermined acceleration value lower than the open voltage;
前記発電電圧に応じて変化する徐増速度で前照灯作動時かつ車両減速時の前記発電電圧を前記開放電圧より高い減速所定値に徐増すること、  Gradually increasing the power generation voltage at the time of headlamp operation and vehicle deceleration at a gradually increasing speed that changes according to the power generation voltage to a predetermined deceleration value that is higher than the open-circuit voltage;
前記発電電圧に応じて変化する徐減速度で前照灯作動時かつ車両加速時の前記発電電圧を前記開放電圧より低い加速所定値に徐減すること、  Gradually reducing the generated voltage at the time of headlight operation and vehicle acceleration at a gradually decreasing speed that changes according to the generated voltage to a predetermined acceleration value lower than the open voltage;
をそれぞれ指令することを特徴とする車両用発電制御装置。  Each of which is commanded.
請求項記載の車両用発電制御装置において、
前記制御部は、
前照灯作動時かつ車両変速時の前記発電電圧を前照灯非作動時かつ車両変速時の前記発電電圧より低速で変化させることを指令することを特徴とする車両用発電制御装置。
The vehicle power generation control device according to claim 5 ,
The controller is
A power generation control device for a vehicle characterized by instructing to change the power generation voltage at the time of headlamp operation and vehicle shift at a lower speed than the power generation voltage at the time of headlight non-operation and vehicle shift.
請求項1乃至のいずれか記載の車両用発電制御装置において、
前記制御部は、
前記前照灯作動時で、かつ、アイドル時又は定速走行時に、前記発電電圧を所定の一定値に固定することを指令することを特徴とする発電制御装置。
The vehicle power generation control device according to any one of claims 1 to 6 ,
The controller is
A power generation control device that commands to fix the power generation voltage to a predetermined constant value when the headlamp is operated and when the vehicle is idling or traveling at a constant speed.
JP2001175879A 2001-06-11 2001-06-11 Vehicle power generation control device Expired - Fee Related JP3869227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175879A JP3869227B2 (en) 2001-06-11 2001-06-11 Vehicle power generation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175879A JP3869227B2 (en) 2001-06-11 2001-06-11 Vehicle power generation control device

Publications (2)

Publication Number Publication Date
JP2002369403A JP2002369403A (en) 2002-12-20
JP3869227B2 true JP3869227B2 (en) 2007-01-17

Family

ID=19016942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175879A Expired - Fee Related JP3869227B2 (en) 2001-06-11 2001-06-11 Vehicle power generation control device

Country Status (1)

Country Link
JP (1) JP3869227B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692412B2 (en) 2006-02-20 2010-04-06 Fujitsu Ten Limited Charging control apparatus, charging control method
JP4737030B2 (en) * 2006-10-24 2011-07-27 株式会社デンソー Vehicle power generation control device
JP5217739B2 (en) * 2008-07-30 2013-06-19 マツダ株式会社 Vehicle control device
JP5434050B2 (en) * 2008-11-06 2014-03-05 マツダ株式会社 Voltage generator for vehicle generator
JP5338372B2 (en) * 2009-02-24 2013-11-13 株式会社デンソー Vehicle power generation control device
US10322708B2 (en) * 2011-07-27 2019-06-18 Ford Global Technologies, Llc System and method for controlling alternator or integrated starter generator output voltage
KR101305607B1 (en) * 2011-08-05 2013-09-09 현대자동차주식회사 Vehicle power generating system for battery durability, and control method thereof
CN104813579A (en) * 2012-11-30 2015-07-29 丰田自动车株式会社 Device and method for controlling power generation in power generator

Also Published As

Publication number Publication date
JP2002369403A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
US4661760A (en) Control system for engine-driven generator
JP3749143B2 (en) Vehicle power supply
JP5024626B2 (en) Control device for vehicle generator
EP1286445B1 (en) Control system and method for a vehicle generator
JP3869227B2 (en) Vehicle power generation control device
KR100208420B1 (en) Ac generator control apparatus for a motor vehicle
JP2006335179A (en) Load control system
JP3870903B2 (en) Vehicle power supply control device
US9197150B2 (en) Vehicular charging system
JP3932632B2 (en) Vehicle power supply
JP3972762B2 (en) Vehicle power generation control device
WO2014083596A1 (en) Device and method for controlling power generation in power generator
JP2000125483A (en) Controller of vehicle generator
JP3384349B2 (en) Vehicle control device
JP5597083B2 (en) Vehicle power generation control device
JP3266383B2 (en) Automotive generator control
CN113924238A (en) Electric device control method and electric device
JP2009033794A (en) Power supply for vehicle
JP5338372B2 (en) Vehicle power generation control device
JP2004112917A (en) Alternator controller
JPH0310018B2 (en)
JP2010116080A (en) Power supply device for vehicle
JP2017135947A (en) Vehicular control device
JP2006081331A (en) Controller for vehicular alternator
JP4501604B2 (en) Electrical system control equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3869227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees