JP3858515B2 - Method for producing polyester mixed yarn - Google Patents
Method for producing polyester mixed yarn Download PDFInfo
- Publication number
- JP3858515B2 JP3858515B2 JP12880099A JP12880099A JP3858515B2 JP 3858515 B2 JP3858515 B2 JP 3858515B2 JP 12880099 A JP12880099 A JP 12880099A JP 12880099 A JP12880099 A JP 12880099A JP 3858515 B2 JP3858515 B2 JP 3858515B2
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- shrinkage
- orientation
- polyester
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000728 polyester Polymers 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000004744 fabric Substances 0.000 claims description 39
- 238000009987 spinning Methods 0.000 claims description 28
- 238000004043 dyeing Methods 0.000 claims description 15
- 206010016322 Feeling abnormal Diseases 0.000 claims description 14
- 229920000642 polymer Polymers 0.000 claims description 13
- 238000009998 heat setting Methods 0.000 claims description 12
- 229920001223 polyethylene glycol Polymers 0.000 claims description 8
- 239000004793 Polystyrene Substances 0.000 claims description 7
- 238000009835 boiling Methods 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000002202 Polyethylene glycol Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229920002223 polystyrene Polymers 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- 239000011780 sodium chloride Substances 0.000 claims description 5
- LSNNMFCWUKXFEE-UHFFFAOYSA-N sulfonic acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 5
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 claims description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 53
- 239000005020 polyethylene terephthalate Substances 0.000 description 53
- 239000000835 fiber Substances 0.000 description 29
- 230000002522 swelling Effects 0.000 description 18
- 230000000704 physical effect Effects 0.000 description 15
- 238000002156 mixing Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 8
- XZRULFCZVOUHQJ-UHFFFAOYSA-N BHPP Chemical compound N1C(=O)C(NC(=O)C(C)NC(=O)C2CC(O)CN2C2=O)CC(C3=CC=CC=C3N3)=C3SCC2NC(=O)C(C(O)C)NC(=O)C(C)NC(=O)C1CC1(C)SC(CNC(=O)CCC(=O)NCCCCCCNC(=O)CCCCC2C3NC(=O)NC3CS2)CS1 XZRULFCZVOUHQJ-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000007334 copolymerization reaction Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- -1 polyethylene terephthalate Polymers 0.000 description 6
- 238000011068 load Methods 0.000 description 5
- 241001080026 Thessia Species 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000005712 crystallization Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N TiO Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 229910001929 titanium oxide Inorganic materials 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- REQPQFUJGGOFQL-UHFFFAOYSA-N dimethylcarbamothioyl N,N-dimethylcarbamodithioate Chemical compound CN(C)C(=S)SC(=S)N(C)C REQPQFUJGGOFQL-UHFFFAOYSA-N 0.000 description 2
- 238000010036 direct spinning Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 230000002093 peripheral Effects 0.000 description 2
- 229920000470 poly(p-phenylene terephthalate) polymer Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- YIFFAEJYCUTZAO-UHFFFAOYSA-N 2-(4-propylphenoxy)ethanol Chemical compound CCCC1=CC=C(OCCO)C=C1 YIFFAEJYCUTZAO-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-Chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N Caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- QQVIHTHCMHWDBS-UHFFFAOYSA-N Isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene (PE) Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000003287 optical Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 230000001953 sensory Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Description
【0001】
【発明の属する技術分野】
本発明はふくらみ、ソフト、反発感に優れたポリエステル混繊糸の製造方法および織編物に関するものである。
【0002】
【従来の技術】
ポリエステルは機械的特性をはじめ様々な優れた特性を有しているため衣料用途をはじめ各種分野に利用されている。衣料用途では天然繊維をターゲットとして品質の改良が行われてきているが、特にふくらみ、ソフト感のある風合いの実現のための手段として、熱による収縮特性の異なる繊維を混繊する、いわゆる収縮差混繊糸が広く用いられている。
【0003】
収縮差混繊糸の製造方法としては低収縮糸を別途製造した高収縮糸と後で混繊する後混繊法が一般的であった。しかしながら、後混繊法では低収縮糸と高収縮糸、すなわち少なくとも2種類の糸を別工程で製造するため、それだけでコストアップとなってしまう。さらに、後混繊のための設備の設置や、異なる糸を準備するための人件費等の費用もかさむため、高コストとなることが大きな問題であった。
【0004】
一方、特開平2-19528号公報には、低収縮糸としてホモポリエチレンテレフタレート、高収縮糸としてイソフタル酸(以下IPAと略す)と2・2 ビス{4-(2-ヒドロキシエトキシ)フェニル}プロパン(以下BHPPと略す)を共重合したポリエステルを同一の口金から吐出する混繊紡糸を行い、未延伸糸を一旦巻き取った後延伸し、収縮差混繊糸とする方法が開示されている。該方法では紡糸工程で混繊できるため、後混繊法に比べて大幅なコストダウンができるのである。このように、収縮特性の異なるポリマーを同時に紡糸した後延伸を施す紡糸混繊法を採用すれば、低コストで収縮差混繊糸を得ることができるというメリットがあった。
【0005】
しかしながら、該公報記載の紡糸混繊法では、低収縮糸も高収縮糸と同程度まで高倍率延伸(延伸糸の伸度で30〜40%)されるため、低収縮糸側の収縮率の低下が不充分でありそのままではふくらみ感、ソフト感が不足であった。実際、該公報で混繊糸の“沸騰水収縮率(BWS)+1%”を高収縮糸の収縮率と見なし、沸騰水収縮率差(DFL)から低収縮糸のBWSを計算すると7〜15%であった。このように低収縮糸の低収縮化が不充分であるため、高収縮糸側の収縮率を過大にして収縮率差による糸長差を確保する必要があり、ふくらみ感は向上しても、織物の収縮工程で過大な収縮が発生するため粗硬感の強い布帛しか得られなかった。
【0006】
【発明が解決しようとする課題】
本発明は、紡糸混繊を利用した収縮差混繊糸の製造に関して、未延伸糸として配向度差紡糸混繊糸を採用することにより、コストダウンを図るのみならず、ふくらみ感、ソフト感に優れた布帛とすることのできる収縮差混繊糸の製造方法を提供するものである。
【0007】
【課題を解決するための手段】
上記目的は、配向度差を有する2種類以上の糸条を同時に紡糸し、紡糸での熱履歴を同じとし、未延伸配向度差混繊糸とした後、最も低配向である糸条の切断延伸倍率の0.35〜0.55倍の延伸倍率、85〜110℃以下の延伸温度、かつ110〜150℃の熱セット温度で該未延伸配向度差混繊糸を延伸することを特徴とするポリエステル混繊糸の製造方法により達成される。
【0008】
【発明の実施の形態】
本発明でいうポリエステルとはポリエチレンテレフタレート(以下PETと略す)、ポリプロピレンテレフタレート(以下PPTと略す)、ポリブチレンテレフタレート(以下PBTと略す)等が挙げられるが、PETが最も汎用的であり好ましい。また、ジオール成分および酸成分の一部が各々15mol%以下の範囲で他の共重合可能な成分で置換されたものであってもよい。共重合成分がポリエチレングリコールの場合は、共重合比は10重量%以下であることが好ましい。また、これらは他ポリマー、艶消剤、難燃剤、帯電防止剤、顔料などの添加物を含有していてもよい。
【0009】
以下、ポリエチレンテレフタレート(以下PETと略す)を例として説明する。
【0010】
本発明では、まず紡糸混繊法により未延伸配向度差混繊糸を得ることが必須であるが、本発明で配向度差混繊糸とは、繊維の複屈折度および/または伸度が異なる2種類以上の糸条群からなる混繊糸である。例えば、複屈折度(以下Δnと略す)0.034、伸度175%の糸条と複屈折度0.007、伸度420%の糸条とからなる混繊糸である。前者が高配向側、後者が低配向側である。本発明では、配向度差混繊糸は2群あるいはそれ以上多数の糸条群からなる混繊糸であるが、2群でも充分な効果を奏するので2群で以下説明する。3群以上の場合は、最も配向度の高い糸条と最も配向度の低い糸条で置き換えて考えればよい。
【0011】
本発明では未延伸配向度差混繊糸において、高配向側糸条の配向度と低配向側糸条の配向度差が大きい方が、延伸後に低収縮糸と高収縮糸の収縮率差が大きくなり好ましい。高配向側糸条の複屈折度(以下、高配向側Δnと略す)と低配向側糸条(以下、低配向側Δnと略す)の複屈折度の差は0.015以上、好ましくは0.025以上、より好ましくは0.030以上である。または高配向度側糸条と低配向度側糸条の伸度の差は80%以上、好ましくは100%以上、より好ましくは150%以上である。
【0012】
紡糸混繊法により未延伸配向度差混繊糸を得る方法に特に制限は無いが、例えば以下の方法が挙げられる。高配向側糸条としてホモPETを採用した場合、低配向側糸条としてスルホン酸金属塩を含む成分を共重合したポリエステルやポリエチレングリコール等結晶化速度の速い成分を共重合したポリエステル、トリメリット酸トリメチル等分岐成分を共重合したポリエステルを同時に紡糸することにより配向度差混繊糸を得ることができる。スルホン酸金属塩としては5−ナトリウムスルホイソフタル酸(以下、SSIAと略す)が最も汎用的であり好ましいが、それの類似体でも差し支えない。また、低配向側糸条としてホモPETとスルホン酸金属塩を含む成分を共重合したポリエステルの複合糸またはブレンド物を同時に紡糸することにより配向度差混繊糸を得ることもできる。また、低配向側糸条としてホモPETとポリスチレン等伸長粘度の温度依存性がPETより高いポリマーとの複合糸を同時に紡糸することにより配向度差混繊糸を得ることができる。さらに、高配向側糸条としてホモPETとポリエチレンやポリプロピレン等伸長粘度の温度依存性がPETより低いポリマーからなるブレンド物を採用した場合、低配向側糸条としてホモPETを同時に紡糸することによっても配向度差混繊糸を得ることができる。なお、伸長粘度の温度依存性の相対的な大小については、特開平9-176920号公報に記載の方法で判定することができる。
【0013】
また、高配向側糸条として、IPAやBHPP等をPETに共重合した高収縮性のポリマーを使用すると延伸後の収縮率差が一層大きくなり好ましい。
【0015】
また、上記方法に以下の方法を付加することにより、さらに配向度差を助長することができる。高配向側糸条では、繊維断面の高異形化または細繊度化による表面積増加による冷却効率、空気抵抗のアップ、高重合度化による伸長粘度のアップ、口金吐出孔面積増大によるドラフト比のアップ等が高配向化に有効である。また、低配向糸条側では太繊度化による冷却効率、空気抵抗のダウン、低重合度化による伸長粘度のダウン、口金吐出孔面積減少によるドラフト比のダウン等が低配向化に有効である。ただし、これらの方法単独では本発明で好ましいだけ大きな配向度差を付与することは困難なので、補助手段として使用することが好ましい。
【0016】
上記方法により得た未延伸配向度差混繊糸を延伸することにより、低収縮糸と高収縮糸の収縮率差を大きくし、布帛のふくらみ感、ソフト感を向上させた収縮差混繊糸を得るためには以下のことが重要である。すなわち、低配向側糸条の実効延伸倍率(切断延伸倍率を基準)を低下させ、さらに延伸後の熱セット条件を調整することにより、低収縮糸(低配向側糸条)の収縮率を充分低下させることが重要である。
【0017】
本発明において、低収縮糸の収縮率を充分低下させ、高配向側糸条(高収縮糸)の収縮応力、強伸度特性等も満足するには延伸倍率を低配向側糸条の切断延伸倍率の0.35〜0.55倍とすることが必須である。この時、高配向側糸条から見ると、延伸倍率は高配向側糸条の切断延伸倍率の0.60倍以上とすることができる。このように、混繊糸を同一延伸倍率で延伸しても、糸条の配向度により切断延伸倍率を基準とした実効延伸倍率が異なり、低収縮糸の収縮率を充分低下させることと高収縮糸の強伸度特性を同時に満足することが可能となるのである。延伸倍率が低配向側糸条の切断延伸倍率の0.35倍より小さいと、低収縮糸の低収縮化には有利であっても得られた混繊糸の糸斑が過大となり、布帛にしたとき染色斑となってしまう。一方、延伸倍率が低配向側糸条の切断延伸倍率の0.55倍より高くなると、低収縮糸側の収縮率低下が不充分となり、布帛にしたときふくらみ感が不足してしまう。延伸倍率は、好ましくは低配向側糸条の切断延伸倍率の0.40〜0.50倍である。ここで切断延伸倍率とは“1+DE%/100%”を意味するものである。ただし、DE%とは未延伸糸の残留伸度である。例えば未延伸糸のDE%が180%であれば切断延伸倍率は2.80となる。なお、延伸は一段延伸でも、多段延伸でも良い。
【0018】
本発明において、低収縮糸の収縮率を充分低くするためには、熱セット温度を110℃以上とすることが必須である。本発明では熱セット温度は延伸後の糸条の熱処理温度を意味し、ホットローラー延伸機の場合、延伸後の第2ホットローラー温度を指すものである。熱セット温度が110℃より低くなると延伸糸の結晶化が進まないため配向非晶分子鎖の固定が不十分となり、低収縮化するには不利となる。逆に、150℃より熱セット温度が高くなると、糸斑が大きくなる。熱セット温度は好ましくは120〜140℃である。
【0019】
また、延伸した収縮差混繊糸の糸斑を抑制するために、延伸の際の温度を85〜110℃とすることが必須である。本発明では延伸温度は延伸直前の糸条の予熱温度を意味し、ホットローラー延伸機の場合、延伸直前の第1ホットローラー温度を指すものである。延伸温度が85℃より低くなると、延伸前の予熱が不足し分子鎖に不均一な歪みがかかるため糸斑が過大となる。また、延伸温度が 110℃より高くなると延伸前に繊維の結晶化が過度に進むため、やはり糸斑が大きくなり不利となる。
【0020】
また、本発明では、低収縮糸と高収縮糸の糸長差を充分確保し織物のふくらみ感を満足するためには、布帛中の糸長差を大きくし、布帛のふくらみ感を向上させるため低収縮糸と高収縮糸の乾熱収縮率差(ΔDS)は10% 以上とすることが好ましい。ΔDSは、より好ましくは15% 以上、さらに好ましくは20% 以上である。ただし、糸長差が大きすぎるとふかつき、しわ等の原因となるので、低収縮糸と高収縮糸のΔDSは30%以下とすることが好ましい。また、収縮差混繊糸の乾熱収縮率(DS)が過度に高いと、織物拘束を強め布帛が粗硬化するため、布帛のソフト感を向上させるためには収縮差混繊糸のDSは35%以下であることが好ましい。収縮差混繊糸のDSは、より好ましくは30%以下である。
【0021】
このため、低収縮糸の収縮率はBWSで−1.5〜5%とすることが好ましい。低収縮糸のBWSは、より好ましくは2%以下、さらに好ましくは1%以下である。また、低収縮糸がBWS≧乾熱収縮率(DS)であると、織物の加工工程にしたがって低収縮糸の収縮率が低下、すなわち低収縮糸側が伸びるため糸長差を発現しやすくなり好ましい。また、高収縮糸のBWSは7〜17.2%であることが好ましい。高収縮糸のBWSは13%以上であれば、さらにふくらみ感が優れているため好ましい。ここで、高配向側糸条を構成するポリマーが低配向側糸条を構成するポリマーよりも高収縮性ポリマーであれば、高収縮糸の乾熱収縮率の向上のために有利である。IPAを共重合したポリエステルからなる高収縮糸を用いると、収縮率がホモポリマーの場合に比べ向上し好ましい。IPAの共重合率は3〜12mol%であれば充分高収縮性の繊維を得ることができる。より好ましくは共重合率は5〜10mol%である。また、前記特開平2−19528号公報記載のように、IPA共重合ポリエステルにさらにBHPP等を共重合し、より高収縮化することも可能である。ただし、高率共重合ポリエステルとした場合、融点が下がりDSが高くなりがちであるため、紡糸速度4000m/分以上の高速紡糸により結晶化を進めDSを下げることが好ましい。
【0022】
また、ポリエステル高収縮糸としてPPTやPBT等のストレッチ性に優れる繊維を使用すると、PETとはまた異なったソフトで反発感のある風合いとなり好ましい。
【0023】
本発明では繊維断面形状は特に限定されるものではないが、収縮差混繊糸の鞘糸となる低収縮糸、すなわち未延伸配向度差混繊糸において低配向側の繊維を三角断面や四角断面、または多葉断面形状等の異形断面形状とするとドライタッチとすることができる。
【0024】
本発明の収縮差混繊糸の低収縮糸と高収縮糸の混繊割合は特に限定されるものではないが、布帛中での収縮挙動のバランスを考慮すると繊度比率で10/90〜90/10とすることが好ましい。より好ましくは30/70〜70/30である。
【0025】
単繊維繊度範囲についても特に限定はないが、延伸後の低収縮糸は0.5〜3.0dtex、高収縮糸は2.0〜6.0dtexとすればパウダータッチでしかも張り腰のある布帛が得られる。一方、延伸後の低収縮糸は3.0〜6.0dtex、高収縮糸は2.0〜3.0dtexとすればソフトでしかも弾発性に富む布帛が得られる。
【0026】
また、本発明の収縮差混繊糸は集束性の点からエア交絡や撚糸が施されていることが好ましい。特に、エア交絡は紡糸過程で巻き取りまでの間で施すと工程省略となり好ましい。ただし、高度の交絡や撚糸を施す場合は延伸後行うことが好ましい。
【0027】
延伸装置としては公知のものが使用できる。少なくとも1対のホットローラーを有する延伸機を使用すれば、さらに工程が安定化する。ここでいう1対のホットローラーとは、延伸前の予熱のための第1ホットローラーと延伸後の熱セットのための第2ホットローラーのことをいうものとする。これに、コールドドローローラー、多段延伸のためのホットローラーが付属していても差し支えない。なお、予熱および/または熱セットに熱板を使用することも可能であるが、熱板/糸条の擦過により糸切れが発生したり、熱板と糸条のスティックスリップにより糸斑が発生しやすくなるのであるため、ホットローラーを使用することが好ましい。
【0028】
なお、熱セットのためのホットローラーは梨地表面であると、延伸時の糸揺れが小さくなり、糸斑がさらに抑制され、また延伸時の糸切れも減少し好ましい。
【0029】
また、通常の紡糸−延伸2工程法の代わりに、紡糸された未延伸配向度差紡糸混繊糸を一旦巻き取ることなくそのまま延伸する紡糸直接延伸法を採用すると、さらに生産性が向上し好ましい。
【0030】
本発明の繊維はブラウス等の薄地用途、スーツ、ジャケット、パンツ、コート等の中厚地用途に好適に用いることができる。
【0031】
【実施例】
以下、本発明を実施例を用いて詳細に説明する。なお、実施例中の測定方法は以下の方法を用いた。
A.極限粘度[η]
オルソクロロフェノール中25℃で測定した。
B.沸騰水収縮率(BWS)および乾熱収縮率(DS)
BWS(%)=[(L0−L1)/L0)]×100
DS(%)=[(L0−L2)/L0)]×100
L0:延伸糸をかせ取りし初荷重0.09cN/dtex(0.10gf/d)下で測定したかせの原
長
L1:L0を測定したかせを実質的に荷重フリーの状態で沸騰水中で15分間処理し、 風乾後初荷重0.09cN/dtex(0.10gf/d)下でのかせ長
L2:L1を測定したかせを、さらに乾熱180℃で1.8×10-3cN/dtex(2.0mgf/d)荷 重下で 15分間熱処理し、初荷重0.09cN/dtex(0.10gf/d)下でのかせ長
C.強度および伸度
初期試料長=50mm、引っ張り速度=50mm/分とし、JIS L1013に示される条件で荷重−伸長曲線を求めた。次に荷重値を初期の繊度で割り、それを強度とし、伸びを初期試料長で割り伸度とした。
D.複屈折度(Δn)
OLIMPUS BH-2偏光顕微鏡により単糸のレターデーションと光路長を測定し、Δnを求めた。芯鞘複合糸の鞘PET部分のΔnは特開平9-176920号公報記載の方法で測定した。
E.布帛評価
得られた収縮差混繊糸に撚り係数2600のS撚りを施し、経糸および緯糸に用い平織りを製織し、98℃で精練を施した。その後180℃で中間セットを行い、常法により10%のアルカリ減量を施した後染色、最終セットを行った。得られた布帛のふくらみ感、ソフト感、および染色斑を4段階法で官能評価した。
実施例1
高配向側として極限粘度0.66の IPA8.0mol%およびBHPP3.5mol%共重合PET(酸化チタン含有せず、以下(IPA+BHPP)共重合PETと略す)、低配向側として極限粘度0.63のホモPET(酸化チタンを含有せず)とポリスチレン(旭化成社製“スタイロン”685)を用い、該(IPA+BHPP)共重合PETは285℃、該ホモPETが285℃、該ポリスチレンは210℃で溶融し、絶対濾過径15μのステンレス製不織布フィルターを用い別々に濾過を行った後、丸孔の口金から吐出した。この時、低配向側は芯/鞘=ポリスチレン(5.0重量%)/ホモPET(95重量%)の芯鞘複合糸とした(以下PS/PET複合糸と略す)。そして、紡糸温度285℃、紡糸速度3500m/分で100dtex−36フィラメントの未延伸配向度差混繊糸を巻き取った。この時、高配向側、低配向側とも同一繊度、同一フィラメント数(50dtex-18フィラメントずつ)とした。高配向側はΔn=0.031、伸度=125%、低配向側はΔn=0.022、伸度=210%と伸度差は85%であった。
【0032】
上記未延伸配向度差混繊糸を図1の1対のホットローラーを有する延伸機を用い、第1ホットローラー(1HR)3の温度92℃、延伸速度(第2ホットローラー4の周速度)800/m分、延伸倍率1.50(低配向側糸条の切断延伸倍率×0.48)とし、第2ホットローラー(2HR)4の温度を130℃として延伸を行った(実験No.1)。なお、2HRは梨地表面とした。
【0033】
得られた混繊糸の物性を表1に示す。低収縮糸のBWSが0.7%と充分低収縮であり、高収縮糸のBWSも15.2%と充分高収縮であった。また、得られた混繊糸のDSは26.0%、ΔDSは26.8%であった。また、延伸時の糸揺れ、糸切れ等も無く問題なく製糸できた。またドッフ後の再スタート成功率も良好であった。また、この混繊糸を用いた布帛はふくらみ感があり、かつソフト感にも優れ、さらに染色斑もほとんど発生しなかった。
実施例2
紡糸温度を290℃、紡糸速度を5000m/分、巻き取り糸の繊度を80dtexとした以外は実施例1と同様にして未延伸配向度差混繊糸を巻き取った。高配向側はΔn=0.040、伸度=90%、低配向側はΔn=0.037、伸度=176%と伸度差は86%であった。これを延伸倍率を1.20倍(低配向側糸条の切断延伸倍率×0.43)とした以外は実施例1と同様に延伸した。
【0034】
得られた混繊糸の物性を表1に示す。低収縮糸のBWSが0.8%と充分低収縮であり、高収縮糸のBWSも13.7%と充分高収縮であった。また、得られた混繊糸のDSは19.3%、ΔDSは20.0%であった。また、延伸時の糸揺れ、糸切れ等も無く問題なく製糸できた。またドッフ後の再スタート成功率も良好であった。また、この異収縮混繊糸を用いた布帛はふくらみ感があり、かつソフト感にも優れ、さらに染色斑もほとんど発生しなかった。
比較例1
単成分紡糸機で実施例1で用いたホモPETを紡糸速度を1500m/分で紡糸した以外は実施例1と同様に紡糸を行い177dtex−36フィラメントの未延伸糸を得た。得られた未延伸糸のΔn=0.013、伸度=303%であった。これを延伸倍率2.66(切断延伸倍率×0.66)倍とした以外は実施例1と同様に延伸を行い延伸糸を得た。得られた繊維の物性を表1に示す。この延伸糸を用いた布帛はふくらみ感に欠けるものとなった。
比較例2
実施例1で低配向側に用いたPS/PET複合繊維を実施例1で用いたホモPETに変更し、紡糸速度を1500m/分とした以外は実施例1と同様に紡糸を行い177dtex−36フィラメントの未延伸糸を得た。(IPA+BHPP)共重合PETはΔn=0.012、伸度=300%、ホモPET側はΔn=0.013、伸度=303%であった。これを延伸倍率2.66(ホモPETの切断延伸倍率×0.66)倍とした以外は実施例1と同様に延伸を行い混繊糸を得た。得られた混繊糸の物性を表1に示す。低収縮糸(ホモPET)のBWSが8.2%と収縮率が実施例1に比べ高く、混繊糸のDSも40.1%と高くなった。この混繊糸を用いた布帛はふくらみ感は満足できるものの、粗硬感の強いものとなった。
【0035】
【表1】
実施例3
高配向側として極限粘度0.63のホモPET(酸化チタン含有せず)とした以外は実施例1と同様に紡糸を行い、未延伸糸を巻き取った。高配向側はΔn=0.05、伸度=125%、低配向側はΔn=0.022、伸度=210%であった。
【0036】
この未延伸糸を2HR温度を変更した以外は実施例1と同様に延伸を行った(実験No.5、6)。得られた混繊糸の物性を表2に示すが、2HR温度が115〜145℃とすることで良好な収縮特性を有し、ふくらみ、ソフト感に優れ、しかも染色斑の少ない布帛が得られた。
比較例3
2HR温度を155℃または105℃とした以外は実施例3と同様の条件で延伸を行った(実験No.7、8)。得られた混繊糸の物性値を表2に示す。2HR温度が過度に高い場合は収縮率差が小さく、ふくらみ感、ソフト感に乏しく、また染色斑のある布帛しか得られなかった。2HR温度が過度に低い場合は低配向糸の方が収縮率が高くなり、収縮率差が小さく、ふくらみ感、ソフト感に乏しく、また染色斑のある布帛しか得られなかった。
【0037】
【表2】
実施例4
2HR温度130℃とし、1HR温度を105℃とした以外は実施例3と同様に延伸を行った(実験No.9)。得られた混繊糸の物性を表3に示すが、2HR温度が105℃であれば良好な収縮特性を有し、ふくらみ、ソフト感に優れ、しかも染色斑の少ない布帛が得られた。
比較例4
1HR温度を115℃または80℃とした以外は実施例4と同様の条件で延伸を行った(実験No.10、11)。得られた混繊糸の物性値を表3に示す。1HR温度が過度に高い場合は収縮率差が小さく、ふくらみ感、ソフト感に乏しく、また染色斑のある布帛しか得られなかった。1HR温度が過度に低い場合は低配向糸の方が収縮率が高くなり、収縮率差が小さく、ふくらみ感、ソフト感に乏しく、また染色斑のある布帛しか得られなかった。
【0038】
【表3】
実施例5
2HR温度130℃とし、延伸倍率を1.18(低配向側糸条の切断延伸倍率×0.38)または1.65(低配向側糸条の切断延伸倍率×0.53)とした以外は実施例3と同様に延伸を行った(実験No.12、13)。得られた混繊糸の物性を表4に示すが、延伸倍率が低配向側糸条の切断延伸倍率×0.38〜0.53とすることで良好な収縮特性を有し、ふくらみ、ソフト感に優れ、しかも染色斑の少ない布帛が得られた。
比較例5
延伸倍率を1.05(低配向側糸条の切断延伸倍率×0.34)または1.79(低配向側糸条の切断延伸倍率×0.58)とした以外は実施例5と同様の条件で延伸を行った(実験No.14、15)。得られた混繊糸の物性値を表4に示す。延伸倍率が過度に低い場合は、ソフト感には優れるが収縮率差が小さくなりふくらみ感が不足した。また、布帛の染色斑が大きくなった。延伸倍率が過度に高い場合は、収縮率差が小さくなりふくらみ感、ソフト感が不足した。
【0039】
【表4】
実施例6
高配向側として極限粘度0.65のIPA8.0mol%共重合PET(酸化チタン含有せず、以下IPA共重合PETと略す)を、低配向側として5−ナトリウムスルホイソフタル酸を 6.5mol%共重合したPET(以下SSIA共重合PETと略す)を用い、紡糸速度を3000m/分とした以外は実施例1と同様の条件で紡糸を行い、未延伸糸を巻き取った。ただし、IPA共重合PETを45dtex−12フィラメント、SSIA共重合PETを68dtex−9フィラメントとした。IPA共重合PET側はΔn=0.032、伸度=160%、SSIA共重合PET側ではΔn=0.015、伸度=210%であった。これを延伸倍率を1.25(低配向側糸条の切断延伸倍率×0.40)とした以外は実施例1と同様に延伸した。得られた混繊糸の物性を表5に示すが、良好な収縮特性を有し、ふくらみ、ソフト感に優れ、しかも染色斑の少ない布帛が得られた。しかも、5−ナトリウムスルホイソフタル酸共重合によりカチオン染料での染色が可能となり発色性が向上したばかりか、SSIA共重合PET側が太繊度のため弾発性に富んだタッチとなった。
実施例7
低配向側としてポリエチレングリコールを8.0重量%共重合したPET(以下PEG共重合PETと略す)を用い、58dtex−54フィラメントとした以外は実施例6と同様に紡糸を行い、未延伸糸を巻き取った。IPA共重合PET側はΔn=0.032、伸度=160%、PEG共重合PET側ではΔn=0.018、伸度=210%であった。これを延伸倍率を1.16(低配向側糸条の切断延伸倍率×0.37)とした以外は実施例1と同様に延伸した。得られた混繊糸の物性を表5に示すが、良好な収縮特性を有し、ふくらみ、ソフト感に優れ、しかも染色斑の少ない布帛が得られた。しかも、ポリエチレングリコール共重合により常圧可染が可能となり天然繊維とも混用できるメリットが得られた。さらに、PEG共重合PET側が極細糸となるため非常にソフトなタッチが得られた。
実施例8
低配向側としてトリメリット酸トリメチルを0.10mol%共重合したPET(以下TMTM共重合PETと略す)を用い、丸中空断面糸(中空率15%)で58dtex−24フィラメントとした以外は実施例6と同様に紡糸を行い、未延伸糸を巻き取った。IPA共重合PET側はΔn=0.032、伸度=160%、TMTM共重合PET側は=伸度220%であった。これを延伸倍率を1.15(低配向側糸条の切断延伸倍率×0.36)とした以外は実施例1と同様に延伸した。得られた混繊糸の物性を表5に示すが、良好な収縮特性を有し、ふくらみ、ソフト感に優れ、しかも染色斑の少ない布帛が得られた。しかも、中空断面糸を用いているため布帛の軽量感が優れていた。
実施例9
低配向側として実施例6で使用したSSIA共重合PETを15重量%比較例2で使用したホモPETにチップブレンドしたポリマー(以下SSIA共重合PETブレンドと略す)を用い、三葉断面で58dtex−24フィラメントとした以外は実施例6と同様の条件で紡糸し、未延伸糸を巻き取ったIPA重合PET側はΔn=0.032、伸度=160%、SSIA共重合PETブレンド側はΔn=0.028、伸度=220%であった。これを延伸倍率を1.15(低配向側糸条の切断延伸倍率×0.36)とした以外は実施例1と同様に延伸した。得られた混繊糸の物性を表5に示すが、良好な収縮特性を有し、ふくらみ、ソフト感に優れ、しかも染色斑の少ない布帛が得られた。しかも、SSIA共重合PETブレンド側が三葉断面であること、アルカリ減量によりSSIA共重合PETが溶けだすことにより形成された繊維表面の多数の微細溝により、ドライでしかも絹様のきしみ感、しゃり感に優れた布帛が得られた。
【0040】
【表5】
実施例10
実施例1のポリマーの組み合わせで、3000m/分で紡糸した繊維を一旦巻き取ることなく紡糸直接延伸法によりそのまま1.90倍(低配向側糸条の切断延伸倍率×0.48)の延伸を行い66dtex、36フィラメントの収縮差混繊糸を5700m/分で巻き取った。この時、紡糸直接延伸法の装置としては図2に示すように2個のネルソン型ホットローラーを用い、各ホットローラーには糸を6回巻き付けた。第1ホットローラー14の温度は 100℃、第2ホットローラー15の温度は150℃とした。なお、ここでいう未延伸糸とは第1ホットローラー14直前の繊維をいうものである。未延伸糸Δnは第1ホットローラー14と第2ホットローラー15を同一周速度、室温とし、実施例1と同様にして求めたものである。
【0041】
得られた混繊糸の物性値を表6に示すが、良好な収縮特性を有し、ふくらみ、ソフト感に優れ、しかも染色斑の少ない布帛が得られた。
【0042】
【表6】
【0043】
【発明の効果】
本発明のポリエステル混繊糸の製造方法を採用することにより、収縮差混繊糸を簡単な工程で操業性良く得ることができ、かつ風合いの優れた織編物を低コストで提供できるものである。
【図面の簡単な説明】
【図1】延伸装置を表す図である
【図2】紡糸直接延伸装置を表す図である
【符号の説明】
1:未延伸糸 9:口金
2:フィードローラー 10:チムニー
3:第1ホットローラー 11:糸条
4:第2ホットローラー 12:給油ガイド
5:コールドローラー 13:エア交絡ガイド
6:延伸糸 14:第1ホットローラー
7:スピンブロック 15:第2ホットローラー
8:不織布フィルター 16:巻き取り機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a polyester mixed yarn excellent in swelling, softness and rebound, and a woven or knitted fabric.
[0002]
[Prior art]
Polyester has various excellent properties including mechanical properties, so it is used in various fields including clothing. In clothing applications, quality has been improved with natural fibers as the target. In particular, as a means to achieve a swell and soft texture, so-called shrinkage differences, in which fibers with different shrinkage properties due to heat are mixed, are used. Mixed yarn is widely used.
[0003]
As a method for producing a shrinkage-diffused mixed yarn, a high-shrinkage yarn obtained by separately producing a low-shrinkage yarn and a post-mixing method in which fiber mixing is performed later are generally used. However, in the post-mixing method, a low shrinkage yarn and a high shrinkage yarn, that is, at least two types of yarns are produced in separate processes, which increases the cost. Furthermore, the installation of equipment for post-mixing and the labor costs for preparing different yarns are also high, so the high cost is a big problem.
[0004]
On the other hand, Japanese Patent Laid-Open No. 2-19528 discloses homopolyethylene terephthalate as a low shrinkage yarn, isophthalic acid (hereinafter abbreviated as IPA) and 2.2 bis {4- (2-hydroxyethoxy) phenyl} propane (as a high shrinkage yarn). In the following, there is disclosed a method in which a mixed fiber spun by discharging a polyester copolymerized with BHPP (hereinafter referred to as BHPP) from the same die, winding the unstretched yarn once and then stretching it to obtain a shrinkage difference mixed fiber. In this method, fiber mixing can be performed in the spinning process, so that the cost can be greatly reduced as compared with the post-mixing method. As described above, there is an advantage that a shrinkage-diffused mixed yarn can be obtained at low cost by adopting a spinning blending method in which polymers having different shrinkage properties are spun simultaneously and then drawn.
[0005]
However, in the spinning blending method described in the publication, the low shrinkage yarn is stretched at a high magnification to the same extent as the high shrinkage yarn (30 to 40% in the elongation of the drawn yarn). The drop was inadequate, and as it was, the feeling of swelling and softness were insufficient. Actually, in this publication, “boiling water shrinkage (BWS) + 1%” of the blended yarn is regarded as the shrinkage of the high shrinkage yarn, and the BWS of the low shrinkage yarn is calculated from the difference in boiling water shrinkage (DFL). %Met. Thus, since the low shrinkage of the low shrinkage yarn is insufficient, it is necessary to secure the yarn length difference due to the shrinkage rate difference by excessively reducing the shrinkage rate on the high shrinkage yarn side. Since excessive shrinkage occurred during the shrinking process of the fabric, only a fabric with a strong rough feeling was obtained.
[0006]
[Problems to be solved by the invention]
The present invention relates to the production of shrinkage-diffused mixed yarn using spun blended fibers, by adopting orientation-difference spun blended yarns as undrawn yarns, not only reducing costs, but also providing a feeling of bulging and softness. It is an object of the present invention to provide a method for producing a shrinkage-diffused mixed yarn that can be used as an excellent fabric.
[0007]
[Means for Solving the Problems]
The above purpose is to simultaneously spin two or more types of yarns having different orientation degrees. , The same heat history in spinning, After the unstretched orientation-difference mixed yarn, the lowest orientation of the yarn with the lowest orientation is 0.35 to 0.55 times the draw ratio, the draw temperature is 85 to 110 ° C., and 110 to 150 ° C. The unstretched orientation degree at a heat setting temperature of Mixed This is achieved by a method for producing a polyester mixed yarn characterized by drawing a yarn.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the polyester used in the present invention include polyethylene terephthalate (hereinafter abbreviated as PET), polypropylene terephthalate (hereinafter abbreviated as PPT), polybutylene terephthalate (hereinafter abbreviated as PBT), and the like. Further, a part of the diol component and the acid component may be substituted with other copolymerizable components within a range of 15 mol% or less. When the copolymerization component is polyethylene glycol, the copolymerization ratio is preferably 10% by weight or less. These may also contain other polymers, matting agents, flame retardants, antistatic agents, pigments and other additives.
[0009]
Hereinafter, polyethylene terephthalate (hereinafter abbreviated as PET) will be described as an example.
[0010]
In the present invention, it is essential to obtain an unstretched orientation-difference mixed yarn first by a spinning blending method. In the present invention, the orientation-difference blended yarn is a fiber having a birefringence and / or elongation. It is a mixed yarn composed of two or more different yarn groups. For example, it is a mixed yarn comprising a yarn having a birefringence (hereinafter abbreviated as Δn) 0.034 and an elongation of 175% and a yarn having a birefringence of 0.007 and an elongation of 420%. The former is the high orientation side and the latter is the low orientation side. In the present invention, the orientation-difference blended yarn is a blended yarn composed of two or more groups of yarns. However, since two groups exhibit a sufficient effect, the two groups will be described below. In the case of three or more groups, the yarn with the highest degree of orientation may be replaced with the yarn with the lowest degree of orientation.
[0011]
In the present invention, in the unstretched orientation-difference mixed yarn, the difference in the shrinkage ratio between the low-shrinkage yarn and the high-shrinkage yarn after drawing is greater when the orientation degree of the high-orientation side yarn and the orientation degree of the low-orientation-side yarn are larger. Larger and preferable. The difference in birefringence between the high orientation side yarn (hereinafter abbreviated as high orientation side Δn) and the low orientation side yarn (hereinafter abbreviated as low orientation side Δn) is 0.015 or more, preferably 0.025 or more, More preferably, it is 0.030 or more. Alternatively, the difference in elongation between the high orientation side yarns and the low orientation side yarns is 80% or more, preferably 100% or more, more preferably 150% or more.
[0012]
Although there is no restriction | limiting in particular in the method of obtaining an unstretched orientation degree difference mixed fiber by a spinning fiber mixing method, For example, the following method is mentioned. When homo-PET is used as the highly oriented side yarn, polyester with a component containing a sulfonic acid metal salt copolymerized as a low oriented side yarn, polyester with a component having a high crystallization speed such as polyethylene glycol, trimellitic acid By simultaneously spinning polyesters copolymerized with a branched component such as trimethyl, a mixed fiber having different degrees of orientation can be obtained. As the sulfonic acid metal salt, 5-sodium sulfoisophthalic acid (hereinafter abbreviated as SSIA) is the most versatile and preferable, but an analog thereof may be used. Alternatively, a mixed yarn or blend of polyesters obtained by copolymerizing a component containing homo-PET and a sulfonic acid metal salt as a low-orientation side yarn can be simultaneously spun to obtain an orientation-difference mixed yarn. In addition, a blend fiber of homo-PET and a polymer such as polystyrene having a higher temperature dependence of elongation viscosity than PET can be simultaneously spun as a low-orientation side yarn to obtain an orientation-difference mixed yarn. Furthermore, when a blend made of homo-PET and a polymer such as polyethylene or polypropylene whose temperature dependence of elongational viscosity is lower than that of PET is adopted as the highly oriented side yarn, it is also possible to simultaneously spin homo PET as the low orientation side yarn. An orientation degree mixed fiber can be obtained. The relative magnitude of the temperature dependence of the extensional viscosity can be determined by the method described in JP-A-9-76920.
[0013]
Further, it is preferable to use a highly shrinkable polymer obtained by copolymerizing IPA, BHPP or the like with PET as the highly oriented side yarn because the difference in shrinkage after stretching is further increased.
[0015]
Further, by adding the following method to the above method, the orientation degree difference can be further promoted. For highly oriented side yarns, cooling efficiency by increasing surface area due to high profile or fineness of fiber cross section, increasing air resistance, increasing elongational viscosity by increasing polymerization degree, increasing draft ratio by increasing die discharge hole area, etc. Is effective for high orientation. On the low-oriented yarn side, cooling efficiency by increasing the fineness, lowering of air resistance, lowering of elongational viscosity by lowering the degree of polymerization, reduction of draft ratio by reducing the nozzle discharge hole area, etc. are effective for lowering the orientation. However, these methods alone are preferably used as auxiliary means because it is difficult to provide a large degree of orientation difference as preferable in the present invention.
[0016]
By stretching the unstretched orientation-difference mixed yarn obtained by the above method, the shrinkage difference between the low shrinkage yarn and the high shrinkage yarn is increased, and the shrinkage difference blended yarn has improved the feeling of swell and softness of the fabric. In order to obtain That is, the shrinkage rate of the low shrinkage yarn (low orientation side yarn) is sufficiently reduced by reducing the effective draw ratio (cutting draw ratio) of the low orientation side yarn and further adjusting the heat setting condition after drawing. It is important to lower.
[0017]
In the present invention, in order to sufficiently reduce the shrinkage rate of the low shrinkage yarn and satisfy the shrinkage stress, high elongation property, etc. of the high orientation side yarn (high shrinkage yarn), the draw ratio of the low orientation side yarn is cut and stretched. It is essential that the magnification is 0.35 to 0.55 times. At this time, when viewed from the high orientation side yarn, the draw ratio can be 0.60 times or more of the cutting orientation ratio of the high orientation side yarn. In this way, even if the blended yarn is drawn at the same draw ratio, the effective draw ratio based on the cut draw ratio differs depending on the orientation of the yarn, and the shrinkage rate of the low shrinkage yarn is sufficiently reduced and the high shrinkage It is possible to satisfy the high elongation characteristics of the yarn at the same time. If the draw ratio is less than 0.35 times the cut draw ratio of the low-orientation side yarn, even if it is advantageous for lowering the shrinkage of the low shrinkage yarn, the resulting mixed yarn will have an excessively large yarn unevenness, and dyeing will be performed when it is made into a fabric. It becomes spots. On the other hand, if the draw ratio is higher than 0.55 times the cut draw ratio of the low-orientation side yarn, the shrinkage rate on the low shrinkage yarn side is insufficiently lowered, and the feeling of swell when the fabric is made becomes insufficient. The draw ratio is preferably 0.40 to 0.50 times the cut draw ratio of the low orientation side yarn. Here, the cutting draw ratio means “1 + DE% / 100%”. However, DE% is the residual elongation of the undrawn yarn. For example, if the DE% of the undrawn yarn is 180%, the cutting draw ratio is 2.80. The stretching may be single-stage stretching or multi-stage stretching.
[0018]
In the present invention, in order to sufficiently reduce the shrinkage rate of the low shrinkage yarn, it is essential that the heat setting temperature is 110 ° C. or higher. In the present invention, the heat setting temperature means the heat treatment temperature of the yarn after drawing, and in the case of a hot roller drawing machine, it indicates the second hot roller temperature after drawing. When the heat setting temperature is lower than 110 ° C., crystallization of the drawn yarn does not proceed, so that the oriented amorphous molecular chain is not sufficiently fixed, which is disadvantageous for low shrinkage. On the other hand, when the heat setting temperature is higher than 150 ° C., the yarn unevenness increases. The heat setting temperature is preferably 120 to 140 ° C.
[0019]
Moreover, in order to suppress the yarn unevenness of the stretched shrinkage difference mixed yarn, it is essential to set the temperature during stretching to 85 to 110 ° C. In the present invention, the stretching temperature means the preheating temperature of the yarn immediately before stretching, and in the case of a hot roller stretching machine, it refers to the first hot roller temperature just before stretching. When the drawing temperature is lower than 85 ° C., preheating before drawing is insufficient, and the molecular chains are unevenly strained, resulting in excessive yarn spots. On the other hand, if the drawing temperature is higher than 110 ° C., crystallization of the fiber proceeds excessively before drawing, which is also disadvantageous because the yarn spot becomes large.
[0020]
Further, in the present invention, in order to ensure a sufficient yarn length difference between the low shrinkage yarn and the high shrinkage yarn and satisfy the feeling of swelling of the fabric, the yarn length difference in the fabric is increased and the feeling of swelling of the fabric is improved. The difference in dry heat shrinkage (ΔDS) between the low shrinkage yarn and the high shrinkage yarn is preferably 10% or more. ΔDS is more preferably 15% or more, and further preferably 20% or more. However, if the yarn length difference is too large, it may cause wiping, wrinkles, etc., and therefore, ΔDS of the low shrinkage yarn and the high shrinkage yarn is preferably 30% or less. Also, if the dry heat shrinkage (DS) of the shrinkage difference mixed yarn is excessively high, the fabric restraint is strengthened and the fabric is coarsely cured. In order to improve the softness of the fabric, the DS of the shrinkage difference mixed yarn is It is preferably 35% or less. The DS of the shrinkage difference mixed yarn is more preferably 30% or less.
[0021]
For this reason, the shrinkage rate of the low shrinkage yarn is BWS. -1.5 ~ 5 %When It is preferable to do. The BWS of the low shrinkage yarn is more preferably 2% or less, and further preferably 1% or less. Further, when the low shrinkage yarn satisfies BWS ≧ dry heat shrinkage (DS), the shrinkage rate of the low shrinkage yarn is lowered according to the fabric processing step, that is, the low shrinkage yarn side is stretched, so that it is easy to express a yarn length difference. . Moreover, the BWS of the high shrinkage yarn is 7 ~ 17.2% Preferably there is. If the BWS of the high shrinkage yarn is 13% or more, it is preferable because the bulging feeling is further excellent. Here, if the polymer constituting the highly oriented side yarn is a highly shrinkable polymer than the polymer constituting the low oriented side yarn, it is advantageous for improving the dry heat shrinkage of the highly shrinkable yarn. Use of a high shrinkage yarn made of polyester copolymerized with IPA is preferable because the shrinkage rate is improved as compared with a homopolymer. If the copolymerization ratio of IPA is 3 to 12 mol%, sufficiently high shrinkable fibers can be obtained. More preferably, the copolymerization rate is 5 to 10 mol%. Further, as described in JP-A-2-19528, it is also possible to further copolymerize BHPP or the like to the IPA copolymerized polyester to further increase the shrinkage. However, when a high rate copolyester is used, the melting point tends to decrease and the DS tends to increase, so it is preferable to promote crystallization and lower the DS by high speed spinning at a spinning speed of 4000 m / min or more.
[0022]
In addition, it is preferable to use a fiber having excellent stretch properties, such as PPT and PBT, as the polyester high-shrinkage yarn because it has a soft and repulsive texture different from PET.
[0023]
In the present invention, the fiber cross-sectional shape is not particularly limited, but the low-shrinkage yarn that becomes the sheath yarn of the shrinkage-differential blended yarn, that is, the low-orientation-oriented fiber of the unstretched orientation-difference blended fiber is represented by a triangular cross-section or square. A dry touch can be achieved by using a cross-sectional shape or an irregular cross-sectional shape such as a multileaf cross-sectional shape.
[0024]
The blend ratio of the low shrinkage yarn and the high shrinkage yarn of the shrinkage difference blended yarn of the present invention is not particularly limited, but considering the balance of shrinkage behavior in the fabric, the fineness ratio is 10/90 to 90 / 10 is preferable. More preferably, it is 30/70 to 70/30.
[0025]
There is no particular limitation on the single fiber fineness range, but if the low-shrinkage yarn after stretching is 0.5 to 3.0 dtex and the high-shrinkage yarn is 2.0 to 6.0 dtex, a fabric with a powder touch and tension can be obtained. On the other hand, if the low shrinkage yarn after stretching is 3.0 to 6.0 dtex and the high shrinkage yarn is 2.0 to 3.0 dtex, a soft and elastic fabric can be obtained.
[0026]
Moreover, it is preferable that air entanglement or twisted yarn is applied to the shrinkage difference mixed yarn of the present invention from the viewpoint of convergence. In particular, air entanglement is preferably performed during the spinning process up to winding. However, when highly entangled or twisted yarn is applied, it is preferably performed after stretching.
[0027]
A well-known thing can be used as an extending | stretching apparatus. If a stretching machine having at least one pair of hot rollers is used, the process is further stabilized. Here, the pair of hot rollers refers to a first hot roller for preheating before stretching and a second hot roller for heat setting after stretching. There may be a cold draw roller and a hot roller for multi-stage stretching. Although it is possible to use a hot plate for preheating and / or heat setting, thread breakage may occur due to scrubbing of the hot plate / yarn, and yarn spots may easily occur due to stick slip between the hot plate and the yarn. Therefore, it is preferable to use a hot roller.
[0028]
In addition, it is preferable that the hot roller for heat setting has a satin surface, since the yarn swaying during stretching is reduced, yarn unevenness is further suppressed, and yarn breakage during stretching is reduced.
[0029]
Also, instead of the usual spinning-drawing two-step method, it is preferable to employ a spinning direct drawing method in which a spun unstretched orientation-difference mixed yarn is drawn as it is without being wound once, which further improves productivity. .
[0030]
The fiber of the present invention can be suitably used for thin ground applications such as blouses and medium thick ground applications such as suits, jackets, pants and coats.
[0031]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. In addition, the measuring method in an Example used the following method.
A. Intrinsic viscosity [η]
Measured in orthochlorophenol at 25 ° C.
B. Boiling water shrinkage (BWS) and dry heat shrinkage (DS)
BWS (%) = [(L 0 -L 1 ) / L 0 )] X 100
DS (%) = [(L 0 -L 2 ) / L 0 )] X 100
L 0 : Kakenohara measured under an initial load of 0.09cN / dtex (0.10gf / d) after scraping the drawn yarn
Long
L 1 : L 0 The skein was measured by treating the skein measured in boiling water for 15 minutes in a substantially load-free state, and after air drying, the skein length under an initial load of 0.09 cN / dtex (0.10 gf / d)
L 2 : L 1 Skeins measured at 1.8 x 10 at 180 ° C dry heat -3 Heat treatment for 15 minutes under cN / dtex (2.0mgf / d) load and skein length under initial load of 0.09cN / dtex (0.10gf / d)
C. Strength and elongation
The load-elongation curve was obtained under the conditions shown in JIS L1013 with an initial sample length = 50 mm and a pulling speed = 50 mm / min. Next, the load value was divided by the initial fineness, which was taken as the strength, and the elongation was divided by the initial sample length.
D. Birefringence (Δn)
The retardation and optical path length of the single yarn were measured with an OLIMPUS BH-2 polarizing microscope to determine Δn. Δn of the sheath PET portion of the core-sheath composite yarn was measured by the method described in JP-A-9-76920.
E. Fabric evaluation
The obtained shrinkage difference mixed yarn was subjected to S twist with a twisting factor of 2600, a plain weave was woven for warp and weft and scoured at 98 ° C. Thereafter, intermediate setting was performed at 180 ° C., and after 10% alkali weight reduction was performed by a conventional method, dyeing and final setting were performed. The swelled feeling, soft feeling, and dyed spots of the obtained fabric were subjected to sensory evaluation by a four-step method.
Example 1
IPA 8.0mol% and BHPP3.5mol% copolymerized PET (not containing titanium oxide, hereinafter abbreviated as (IPA + BHPP) copolymerized PET) with intrinsic viscosity 0.66 on the high orientation side, and homo-PET (oxidized) with intrinsic viscosity 0.63 on the low orientation side Titanium-free and polystyrene (“Stylon” 685 manufactured by Asahi Kasei Co., Ltd.), the (IPA + BHPP) copolymerized PET was melted at 285 ° C., the homo-PET was 285 ° C., and the polystyrene was melted at 210 ° C. After separately filtering using a 15 μm stainless steel nonwoven fabric filter, the filter was discharged from a round hole cap. At this time, a core / sheath = polystyrene (5.0 wt%) / homo PET (95 wt%) core-sheath composite yarn was used on the low orientation side (hereinafter abbreviated as PS / PET composite yarn). Then, a 100 dtex-36 filament unstretched orientation difference mixed yarn was wound at a spinning temperature of 285 ° C. and a spinning speed of 3500 m / min. At this time, the high orientation side and the low orientation side had the same fineness and the same number of filaments (50 dtex-18 filaments each). On the high orientation side, Δn = 0.031, elongation = 125%, on the low orientation side, Δn = 0.022, elongation = 210%, and the difference in elongation was 85%.
[0032]
The above-mentioned unstretched orientation-difference mixed yarn is drawn using a drawing machine having a pair of hot rollers shown in FIG. 1, and the first hot roller (1HR) 3 has a temperature of 92 ° C. and the drawing speed (the peripheral speed of the second hot roller 4). Stretching was performed at 800 / m, a draw ratio of 1.50 (low orientation side yarn cut draw ratio × 0.48), and the temperature of the second hot roller (2HR) 4 was 130 ° C. (Experiment No. 1). 2HR was the satin surface.
[0033]
Table 1 shows the physical properties of the obtained blended yarn. The BWS of the low shrinkage yarn was 0.7% and the shrinkage was sufficiently low, and the BWS of the high shrinkage yarn was 15.2% and the shrinkage was sufficiently high. The obtained blended yarn had a DS of 26.0% and a ΔDS of 26.8%. In addition, the yarn could be produced without any problem with no yarn shaking or yarn breakage during drawing. The success rate after restarting after the dough was also good. Moreover, the fabric using this mixed yarn had a swelled feeling and an excellent soft feeling, and dyed spots were hardly generated.
Example 2
An unstretched orientation-difference mixed yarn was wound in the same manner as in Example 1 except that the spinning temperature was 290 ° C., the spinning speed was 5000 m / min, and the fineness of the wound yarn was 80 dtex. On the high orientation side, Δn = 0.040, elongation = 90%, on the low orientation side, Δn = 0.037, elongation = 176%, and the difference in elongation was 86%. This was stretched in the same manner as in Example 1 except that the draw ratio was 1.20 times (cut orientation draw ratio of low orientation side yarn × 0.43).
[0034]
Table 1 shows the physical properties of the obtained blended yarn. The BWS of the low shrinkage yarn was 0.8% and the shrinkage was sufficiently low, and the BWS of the high shrinkage yarn was 13.7% and the shrinkage was sufficiently high. Further, the obtained blended yarn had a DS of 19.3% and a ΔDS of 20.0%. In addition, the yarn could be produced without any problem with no yarn shaking or yarn breakage during drawing. The success rate after restarting after the dough was also good. In addition, the fabric using this different shrinkage mixed yarn had a swelled feeling and an excellent soft feeling, and there was almost no staining spots.
Comparative Example 1
Spinning was performed in the same manner as in Example 1 except that the homo-PET used in Example 1 was spun at a spinning speed of 1500 m / min with a single component spinning machine to obtain an undrawn yarn of 177 dtex-36 filament. The obtained undrawn yarn had Δn = 0.133 and elongation = 303%. A drawn yarn was obtained by drawing in the same manner as in Example 1 except that the draw ratio was 2.66 (cutting draw ratio × 0.66). Table 1 shows the physical properties of the obtained fiber. The fabric using this drawn yarn lacked a feeling of swelling.
Comparative Example 2
The PS / PET composite fiber used in the low orientation side in Example 1 was changed to the homo-PET used in Example 1, and spinning was performed in the same manner as in Example 1 except that the spinning speed was 1500 m / min. A filament undrawn yarn was obtained. The (IPA + BHPP) copolymerized PET had Δn = 0.012, elongation = 300%, and the homo-PET side had Δn = 0.013, elongation = 303%. A blended yarn was obtained by drawing in the same manner as in Example 1 except that the draw ratio was 2.66 (cutting draw ratio of homo-PET × 0.66). Table 1 shows the physical properties of the obtained blended yarn. The BWS of the low shrinkage yarn (homo PET) was 8.2%, the shrinkage rate was higher than that of Example 1, and the DS of the blended yarn was also high at 40.1%. Although the fabric using this mixed fiber was satisfactory in the swelled feeling, it had a strong rough feeling.
[0035]
[Table 1]
Example 3
Spinning was performed in the same manner as in Example 1 except that homo-PET (without titanium oxide) having an intrinsic viscosity of 0.63 was used as the high orientation side, and the undrawn yarn was wound up. On the high orientation side, Δn = 0.05 and elongation = 125%, and on the low orientation side, Δn = 0.022 and elongation = 210%.
[0036]
The undrawn yarn was drawn in the same manner as in Example 1 except that the 2HR temperature was changed (Experiment Nos. 5 and 6). The physical properties of the obtained blended yarn are shown in Table 2. By setting the 2HR temperature to 115 to 145 ° C, a fabric having good shrinkage characteristics, excellent in swelling and soft feeling, and having little dyeing spots can be obtained. It was.
Comparative Example 3
2HR temperature 155 Stretching was performed under the same conditions as in Example 3 except that the temperature was set to 150 ° C. or 105 ° C. (Experiment Nos. 7 and 8). Table 2 shows the physical property values of the obtained blended yarn. When the 2HR temperature was excessively high, the difference in shrinkage ratio was small, the swelling feeling and soft feeling were poor, and only a fabric with dyed spots was obtained. When the 2HR temperature was excessively low, the shrinkage rate of the low orientation yarn was higher, the difference in shrinkage rate was smaller, the feeling of swelling and softness was poor, and only fabrics with dyeing spots were obtained.
[0037]
[Table 2]
Example 4
Stretching was performed in the same manner as in Example 3 except that the 2HR temperature was 130 ° C. and the 1HR temperature was 105 ° C. (Experiment No. 9). The physical properties of the obtained blended yarn are shown in Table 3. As long as the 2HR temperature was 105 ° C., a fabric having good shrinkage characteristics, excellent in swelling and soft feeling, and having little dyeing spots was obtained.
Comparative Example 4
Stretching was performed under the same conditions as in Example 4 except that the 1HR temperature was 115 ° C. or 80 ° C. (Experiment Nos. 10 and 11). Table 3 shows the physical property values of the obtained blended yarn. When the 1HR temperature was excessively high, the difference in shrinkage ratio was small, the swell and softness were poor, and only a fabric with dyed spots was obtained. When the 1HR temperature is excessively low, the shrinkage rate of the low orientation yarn is higher, the difference in shrinkage rate is smaller, the feeling of swelling and softness is poor, and only a fabric with dyed spots is obtained.
[0038]
[Table 3]
Example 5
Stretching was performed in the same manner as in Example 3 except that the 2HR temperature was 130 ° C., and the draw ratio was 1.18 (cut draw ratio of low orientation side yarn × 0.38) or 1.65 (cut orientation draw ratio of low orientation side yarn × 0.53). (Experiment No. 12, 13). The physical properties of the obtained blended yarn are shown in Table 4. When the draw ratio is set to the cut draw ratio of the low orientation side yarn x 0.38 to 0.53, it has good shrinkage characteristics, and it has excellent swelling and soft feeling. In addition, a fabric with less dyeing spots was obtained.
Comparative Example 5
Stretching was performed under the same conditions as in Example 5 except that the draw ratio was 1.05 (cut orientation ratio of low orientation side yarn × 0.34) or 1.79 (cut orientation ratio of low orientation side yarn × 0.58) (experiment) No. 14, 15). Table 4 shows the physical property values of the obtained blended yarn. When the draw ratio was too low, the soft feeling was excellent, but the difference in shrinkage ratio was small and the feeling of swelling was insufficient. Moreover, the dyeing spot of the fabric became large. When the stretch ratio was excessively high, the difference in shrinkage ratio was small and the feeling of swelling and softness was insufficient.
[0039]
[Table 4]
Example 6
IPA 8.0mol% copolymerized PET (not containing titanium oxide, hereinafter abbreviated as IPA copolymerized PET) with intrinsic viscosity 0.65 on the high orientation side and PET with 6.5mol% 5-sodium sulfoisophthalic acid copolymerized on the low orientation side (Hereinafter abbreviated as SSIA copolymerized PET), spinning was performed under the same conditions as in Example 1 except that the spinning speed was 3000 m / min, and the undrawn yarn was wound up. However, IPA copolymerized PET was 45 dtex-12 filament, and SSIA copolymerized PET was 68 dtex-9 filament. On the IPA copolymerized PET side, Δn = 0.932, elongation = 160%, and on the SSIA copolymerized PET side, Δn = 0.015, and elongation = 210%. This was stretched in the same manner as in Example 1 except that the draw ratio was 1.25 (cut orientation draw ratio of low orientation side yarn × 0.40). The physical properties of the obtained blended yarn are shown in Table 5, and a fabric having good shrinkage characteristics, excellent in swelling and soft feeling, and having little dyeing spots was obtained. In addition, the copolymerization with 5-sodium sulfoisophthalic acid enabled dyeing with a cationic dye and improved color development, and the SSIA copolymer PET side was thick and fine, so the touch was rich.
Example 7
Spinning was performed in the same manner as in Example 6 except that PET with 8.0% by weight of polyethylene glycol (hereinafter abbreviated as PEG copolymerized PET) was used as the low orientation side, and 58 dtex-54 filament was used. It was. On the IPA copolymerized PET side, Δn = 0.032, elongation = 160%, and on the PEG copolymerized PET side, Δn = 0.018, and elongation = 210%. This was stretched in the same manner as in Example 1 except that the draw ratio was 1.16 (cut orientation draw ratio of low orientation side yarn × 0.37). The physical properties of the obtained blended yarn are shown in Table 5, and a fabric having good shrinkage characteristics, excellent in swelling and soft feeling, and having little dyeing spots was obtained. In addition, polyethylene glycol copolymerization enables normal pressure dyeing, and the merit that it can be mixed with natural fibers is obtained. Furthermore, a very soft touch was obtained because the PEG copolymerized PET side became ultrafine yarn.
Example 8
Example 6 except that 0.10 mol% of trimethyl trimellitic acid copolymerized on the low orientation side (hereinafter abbreviated as TMTM copolymerized PET) was used, and 58dtex-24 filament was formed with a round hollow cross-section yarn (
Example 9
Using a polymer obtained by chip blending 15% by weight of the SSIA copolymerized PET used in Example 6 with the homo-PET used in Comparative Example 2 (hereinafter abbreviated as SSIA copolymerized PET blend) as the low-orientation side, 58 dtex- Spinning was performed under the same conditions as in Example 6 except that 24 filaments were used, and the IPA polymerized PET side on which the undrawn yarn was wound was Δn = 0.032, elongation = 160%, SSIA copolymerized PET blend side was Δn = 0.028, The elongation = 220%. This was stretched in the same manner as in Example 1 except that the draw ratio was 1.15 (cut orientation draw ratio of low orientation side yarn × 0.36). The physical properties of the obtained blended yarn are shown in Table 5, and a fabric having good shrinkage characteristics, excellent in swelling and soft feeling, and having little dyeing spots was obtained. In addition, the SSIA copolymer PET blend side has a trilobal cross-section, and numerous fine grooves on the fiber surface formed by the dissolution of SSIA copolymer PET due to alkali weight loss make it dry and silky squeaky and crisp. A fabric excellent in feeling was obtained.
[0040]
[Table 5]
Example 10
With the combination of the polymer of Example 1, the fiber spun at 3000 m / min was stretched by 1.90 times (cut-drawing magnification ratio of low orientation side yarn × 0.48) as it was without winding up, and 66 dtex, 36 Filament shrinkage mixed yarn was wound up at 5700 m / min. At this time, as the apparatus of the direct spinning method, as shown in FIG. 2, two Nelson type hot rollers were used, and the yarn was wound around each hot roller six times. The temperature of the 1st
[0041]
The physical properties of the obtained mixed yarn are shown in Table 6. A fabric having good shrinkage characteristics, excellent in swelling and soft feeling, and having little dyeing spots was obtained.
[0042]
[Table 6]
[0043]
【The invention's effect】
By adopting the method for producing a polyester blended yarn of the present invention, a shrinkage-diffused blended yarn can be obtained with good operability by a simple process, and a woven or knitted fabric with excellent texture can be provided at low cost. .
[Brief description of the drawings]
FIG. 1 is a diagram showing a stretching apparatus.
FIG. 2 is a view showing a direct spinning apparatus for spinning.
[Explanation of symbols]
1: Undrawn yarn 9: Base
2: Feed roller 10: Chimney
3: First hot roller 11: Yarn
4: Second hot roller 12: Refueling guide
5: Cold roller 13: Air entanglement guide
6: drawn yarn 14: first hot roller
7: Spin block 15: Second hot roller
8: Nonwoven fabric filter 16: Winder
Claims (8)
A.スルホン酸金属塩を含む成分を共重合したポリエステルA. Polyesters copolymerized with sulfonic acid metal salt components
B.ポリエチレングリコールを共重合したポリエステルB. Polyester copolymerized with polyethylene glycol
C.分岐成分を共重合したポリエステルC. Polyester copolymerized with branched components
D.ホモポリエチレンテレフタレートとスルホン酸金属塩を含む成分を共重合したポリエステルとのブレンド糸または複合糸D. Blend yarn or composite yarn of homopolyethylene terephthalate and polyester copolymerized with sulfonic acid metal salt component
E.ホモポリエチレンテレフタレートとポリスチレンとの複合糸E. Composite yarn of homopolyethylene terephthalate and polystyrene
a.低収縮糸と高収縮糸の乾熱収縮率差(ΔDS)=10〜30%
b.ポリエステル混繊糸の乾熱収縮率(DS)=7.1〜35%
c.低収縮糸の沸騰水収縮率(BWS)=−1.5〜5%
d.高収縮糸の沸騰水収縮率(BWS)=7〜17.2% A polyester woven or knitted fabric excellent in soft feeling and having little dyeing spots using the polyester blended yarn having the following characteristics a to d obtained by the production method according to any one of claims 1 to 7 .
a. Difference in dry heat shrinkage between low and high shrinkage yarns (ΔDS) = 10-30%
b. Dry heat shrinkage (DS) of polyester blended yarn = 7.1-35%
c. Boiling water shrinkage (BWS) of low shrinkage yarn = -1.5 to 5%
d. Boiling water shrinkage (BWS) of high shrinkage yarn = 7 to 17.2%
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12880099A JP3858515B2 (en) | 1999-05-10 | 1999-05-10 | Method for producing polyester mixed yarn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12880099A JP3858515B2 (en) | 1999-05-10 | 1999-05-10 | Method for producing polyester mixed yarn |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000328359A JP2000328359A (en) | 2000-11-28 |
JP3858515B2 true JP3858515B2 (en) | 2006-12-13 |
Family
ID=14993756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12880099A Expired - Lifetime JP3858515B2 (en) | 1999-05-10 | 1999-05-10 | Method for producing polyester mixed yarn |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3858515B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008231598A (en) * | 2007-03-19 | 2008-10-02 | Teijin Fibers Ltd | Cation-dyeable polyester modified cross section fiber and its use |
JP2008231599A (en) * | 2007-03-19 | 2008-10-02 | Teijin Fibers Ltd | Cation-dyeable hollow cross section polyester fiber and its use |
JP2010168695A (en) * | 2009-01-23 | 2010-08-05 | Teijin Fibers Ltd | Method for manufacturing copolymeric polyester textile fabric and copolymeric polyester textile fabric, and textile product |
CN102383209A (en) * | 2011-06-15 | 2012-03-21 | 大连合成纤维研究设计院股份有限公司 | One-step process for producing high-tenacity untwisted polyester monofilaments |
WO2022107671A1 (en) * | 2020-11-20 | 2022-05-27 | 東レ株式会社 | Sea-island composite polyester fiber |
-
1999
- 1999-05-10 JP JP12880099A patent/JP3858515B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000328359A (en) | 2000-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100629813B1 (en) | Soft Stretch Yarns and Process for the Preparation Thereof | |
JP4122582B2 (en) | Spun yarn and fabric using the same | |
JP3858515B2 (en) | Method for producing polyester mixed yarn | |
JP3736298B2 (en) | Blended yarn | |
JP4562907B2 (en) | Polyester composite fiber for stretch woven and knitted fabric and method for producing the same | |
JP4380519B2 (en) | Method for producing soft stretch yarn | |
JP4123646B2 (en) | Polyester fiber yarn and fabric | |
JP2000248425A (en) | Highly shrinkable polyester fiber and its production | |
KR20060087684A (en) | Latent crimping typed polyester two component conjugated yarn with melange effect | |
JP4395948B2 (en) | Low shrinkage polyester yarn and polyester blended yarn comprising the same | |
JP3598027B2 (en) | Special composite crimped yarn | |
JP4687091B2 (en) | Soft stretch yarn and fabric | |
JP2000248430A (en) | Latent crimp-expressing polyester fiber and production | |
JP4985358B2 (en) | Shrinkage difference mixed yarn | |
JP4271535B2 (en) | Different fineness Different elongation mixed yarn | |
JP2001214335A (en) | Low-shrinkage polyester slub yarn and combined polyester filament yarn composed thereof | |
JP3719258B2 (en) | Soft stretch yarn, production method and fabric | |
JP2820589B2 (en) | Latent bulky mixed yarn | |
JP3541790B2 (en) | Soft stretch yarn, manufacturing method and fabric | |
JP3501041B2 (en) | Hollow structure yarn and woven / knitted fabric | |
JP3541790B6 (en) | Soft stretch mixed yarn and fabric | |
JP2001200442A (en) | Method for producing polyester combined filament yarn with different shrinkage | |
JP3757710B2 (en) | Latent crimped polyester fiber and production method | |
JP2019123970A (en) | Woven fabric | |
JP2001123358A (en) | Woven or knitted fabrics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041013 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060516 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060911 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090929 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110929 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |