JP3858072B2 - Drill pipe and manufacturing method thereof - Google Patents

Drill pipe and manufacturing method thereof Download PDF

Info

Publication number
JP3858072B2
JP3858072B2 JP2001362878A JP2001362878A JP3858072B2 JP 3858072 B2 JP3858072 B2 JP 3858072B2 JP 2001362878 A JP2001362878 A JP 2001362878A JP 2001362878 A JP2001362878 A JP 2001362878A JP 3858072 B2 JP3858072 B2 JP 3858072B2
Authority
JP
Japan
Prior art keywords
less
drill pipe
tool joint
pipe
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001362878A
Other languages
Japanese (ja)
Other versions
JP2003166037A (en
Inventor
真一 高川
一育 和田
親泰 増田
廣光 山本
祐一郎 市川
次郎 山田
俊毅 安部
昇 渡部
正行 川崎
俊彦 福井
雄介 南
寿男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Drilling Co Ltd
Mitsubishi Heavy Industries Ltd
Japan Agency for Marine Earth Science and Technology
NKKTubes KK
Original Assignee
Japan Drilling Co Ltd
Mitsubishi Heavy Industries Ltd
Japan Agency for Marine Earth Science and Technology
NKKTubes KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Drilling Co Ltd, Mitsubishi Heavy Industries Ltd, Japan Agency for Marine Earth Science and Technology, NKKTubes KK filed Critical Japan Drilling Co Ltd
Priority to JP2001362878A priority Critical patent/JP3858072B2/en
Publication of JP2003166037A publication Critical patent/JP2003166037A/en
Application granted granted Critical
Publication of JP3858072B2 publication Critical patent/JP3858072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ツールジョイントを備えたドリルパイプ及びその製造方法に関し、特に、大深度掘削による石油・ガス採掘や、海洋掘削による地球探査に適したものに関する。
【0002】
【従来の技術】
大深度の掘削を行うためには、少なくとも耐力965MPa以上のドリルパイプの必要性が予測されているが、現在、石油生産の分野ではAPIS135(耐力931MPa以上)が最も強度が高く、科学探査を目的とした探査ではS140(耐力965MPa以上)がODP(国際深海掘削計画)で用いられ、U160(耐力1103MPa以上)がKTB(国際陸上掘削計画)で検討されたに過ぎない。
【0003】
ドリルパイプを高強度化すると、破壊に対する抵抗力(靭性)が低下し、特に使用環境中にH2Sが含まれる場合、硫化物応力腐食割れ(SSC)が懸念され、またH2Sが環境物質として存在しない場合であっても湿潤環境で遅れ破壊を生じやすいとされている。
【0004】
特開平11−61254号公報は耐SSC性に優れた降伏応力140〜155ksi(985〜1068MPa)級の高強度高耐食性継目無鋼管の製造方法に関するものであるが、制御圧延と直接焼入れー焼戻しを特徴とするため、製管後、両管端をアップセット加工するドリルパイプには適用し難い。
【0005】
特開平6−320348号公報はチタン製ドリルパイプに関し、高価格のため、特殊な用途に限定される。
【0006】
【発明が解決しようとする課題】
ドリルパイプは、管体と継手部品のツールジョイントで構成され、継目無管の両端部を増肉加工した管体の両端に、厚肉鋼管にネジ加工を施して製造されるツールジョイントを摩擦圧接して製造される。管体とツールジョイントはそれぞれ摩擦圧接前に熱処理され、圧接後に圧接部を高周波加熱により部分的に熱処理する。
【0007】
ツールジョイントはドリルパイプの管体の両端部に摩擦圧接によって接合され、ドリルパイプのねじ継手用として厚肉のものを製造するためには、管体と同様に焼入れ焼戻しによる製造方法が適している。ただし、管体よりも厚肉で、ねじ形状を有する複雑な形状に加工するため水焼入れでは大きな歪を生じ、油焼入れが必要とされている。また、摩擦圧接部は高周波加熱炉を用いた焼入れ焼戻しを行い強度の調節を行うが、熱処理特性に管体との整合性が要求される。
【0008】
本発明は、上述した特徴を有する管体とツールジョイントについて成分組成の観点から検討を行い、高強度(耐力965MPa以上)で且つSSC性や遅れ破壊など環境に起因する欠陥発生に優れた抵抗力を有し、大深度での掘削や地球深部探査に適したドリルパイプ及びその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者等は、耐力965MPa以上の高強度で耐SSC,耐遅れ破壊特性に優れたドリルパイプ管体及びツールジョイントに適した鋼成分について鋭意検討を行い、成分組成をCr−Mo−V−Nb複合添加系とし、均一マルテンサイト組織(APIに規定するマルテンサイト分率90%以上)を高温焼戻しして得られるミクロ組織とした場合、所望の特性が得られることを見出した。
【0010】
また、本発明に係るドリルパイプを地球深部探査船等の大深度掘削用ドリルパイプとして用いる場合、ツールジョイントとしてダブルショルダーツールジョイントが必要なことを新たに見出した。
【0011】
本発明は以上の知見を基に更に検討を加えてなされたもので、すなわち本発明は、
1.質量%で、C:0.20〜0.28%、Si:0.5%以下、Mn:0.7%以下、P:0.010%以下、S:0.002%以下、Cr:0.8〜1.2%,Mo:0.5〜0.8%、V:0.06〜0.09%、Nb:0.02〜0.04%、残部Fe及び不可避的不純物よりなる焼入れ焼戻し型継目無鋼管と質量%で、C:0.30%を超え0.40%以下、Si:0.5%以下、Mn:0.6〜1.2%、P:0.010%以下、S:0.002%以下、Cr:0.8〜1.2%、Mo:0.15〜0.35%V:0.05%未満、Nb:0.04%以下、残部Fe及び不可避的不純物よりなる焼入れ焼戻し型ツールジョイントを備えたドリルパイプ。
【0012】
2. 1記載のドリルパイプにおいて、ツールジョイントがダブルショルダーツールジョイントであることを特徴とする大深度掘削用ドリルパイプ。
【0013】
3.焼入れ焼戻し型継目無鋼管の両端に、焼入れ焼戻し型ツールジョイントを摩擦圧接し、その後該摩擦圧接部を焼入れ焼戻しするドリルパイプの製造において、前記ドリルパイプの鋼成分を質量%で、C:0.20〜0.28%、Si:0.5%以下、Mn:0.7%以下、P:0.010%以下、S:0.002%以下、Cr:0.8〜1.2%,Mo:0.5〜0.8%、V:0.06〜0.09%、Nb:0.02〜0.04%、残部Fe及び不可避的不純物とし、前記ツールジョイントの鋼成分を質量%で、C:0.30%を超え0.40%以下、Si:0.5%以下、Mn:0.6〜1.2%、P:0.010%以下、S:0.002%以下、Cr:0.8〜1.2%、Mo:0.15〜0.35%V:0.05%未満、Nb:0.04%以下、残部Fe及び不可避的不純物とすることを特徴とするドリルパイプの製造方法。
【0014】
【発明の実施の形態】
ドリルパイプの管体及びツールジョイントの成分組成、製造条件について以下に詳細に説明する。
【0015】
1.管体

Cは強度、耐SSC及び耐遅れ破壊特性を確保するため、0.20%以上添加する。一方、ツールジョイントとの摩擦圧接部で焼戻し後適正な硬度が得られるように0.28%以下とし、0.20〜0.28%を添加する。
【0016】
Si
Siは脱酸のため、添加する。0.5%を超えると靭性が劣化するため0.5%以下とする。
【0017】
Mn
Mnは焼入れ性を高めるために添加するが0.7%を超えると耐SSC性が劣化するため0.7%以下とする。
【0018】

Pは鋼の靭性を低下させ、また粒界に偏析して耐SSC性、耐遅れ破壊特性を劣化させるため0.010%以下とする。
【0019】

Sは鋼の靭性、特に圧接部の靭性を劣化させるため0.002%以下とする。
【0020】
Cr
Crは鋼の焼入れ性を高め、焼入れにより均一なマルテンサイト組織とするため添加するが、均一マルテンサイト組織を高温で焼戻した場合に優れた耐SSC性、耐遅れ破壊特性が得られるように0.8%以上添加する。
【0021】
一方、1.2%を超えると製造コストが増大し、靭性が劣化するため0.8〜1.2%(0.8%以上、1.2%以下)とする。
【0022】
Mo
Moは鋼の焼入れ性とともに、マルテンサイト組織の焼戻し軟化抵抗を高め、高温での焼戻しを可能とするため添加する。均一マルテンサイト組織を高温で焼戻した場合に優れた耐SSC性、耐遅れ破壊特性が得られるように0.5%以上添加する。一方、0.8%を超えると強度が過剰となるため、0.5〜0.8%とする。
【0023】

Vは焼戻し処理において炭化物を微細析出し鋼の軟化抵抗を高めるため添加する。高温焼戻しで適正な強度が得られるように0.06〜0.09%を添加する。
【0024】
Nb
Nbは鋼の強度を高めると同時に結晶粒の成長抑制により組織を微細化し靭性と耐SSC性、耐遅れ破壊特性を向上させるため0.02%以上添加する。一方、0.04%を超えるとその効果が飽和し、熱間加工疵を生じ易くなるため、0.02〜0.04%とする。
【0025】
2.ツールジョイント

Cは強度を高めるため添加し、油焼入れでも所望の強度が得られるように0.30%を超えて添加する。一方、C量が0.400%を超えると、靭性が低下し、短時間加熱の焼戻し処理では圧接部の硬度制御が困難となるため、0.40%以下とする。
【0026】
Si
Siは脱酸のため添加する。一方、0.5%を超えて添加すると靭性が劣化するため0.5%以下とする。
【0027】
Mn
Mnは焼入れ性を高めるため添加する。厚肉材の油焼入れで所望する強度が得られるように0.6%以上とする。一方、1.2%を超えて添加すると靭性が劣化するため1.2%以下とする。
【0028】

Pは、靭性を劣化させるため0.010%以下とする。
【0029】

Sは靭性、特に圧接部の靭性を劣化させるため0.002%以下とする。
【0030】
Cr
Crは鋼の焼入れ性を高め、所望の強度を得るため0.8%以上添加する。一方、1.2%を超えると靭性が劣化するため0.8〜1.2%とする。
【0031】
Mo
Moは鋼の焼入れ性を高め、焼戻し後の強度を確保するため0.15%以上添加する。一方、0.35%を超えて添加すると、靭性が低下し、短時間加熱の焼戻し処理では圧接部の硬度制御が困難となるため、0.35%以下とする。
【0032】

Vは焼戻し処理において炭化物を微細析出し鋼の軟化抵抗を高めるため添加する。高温焼戻しで適正な強度が得られるように0.05%未満を添加する。
【0033】
Nb
Nbは鋼の強度を高めると同時に結晶粒の成長抑制により組織を微細化し、靭性と耐SSC性、耐遅れ破壊特性を向上させるため添加するが、0.04%を超えるとその効果が飽和し、熱間加工疵を生じ易くなるため、0.04%以下とする。
【0034】
製造条件
管体は焼入れ焼戻し型継目無鋼管を用いるが継目無鋼管の鋼管成形方法は特に規定しない。管体及びツールジョイントの熱処理は焼入れ焼戻しとする。
【0035】
焼入れは均一なマルテンサイト組織が得られるように熱処理条件を規定し、焼戻しは所望の強度が得られるように適宜条件を設定する。なお、焼入れ温度はAc1変態点以上でかつ結晶粒が粗大化しない950℃以下が好ましい。
【0036】
本発明によるドリルパイプは、ツールジョイントのねじ継手の形状によらず、優れた耐SSC性、耐遅れ破壊特性が得られ、特にねじ継手の形状は規定しないが、最大ドリルストリング長10、000mでの地層掘削と孔底からのコア採取を目的とする地球深部探査用途またはこういった石油ガス深部掘削用途には図1に示すダブルショルダージョイントの必要なことが見出された。
【0037】
【実施例】
[実施例1]
本実施例ではドリルパイプ管体の耐遅れ破壊特性、耐SSC性、靭性及び圧接部の硬さについて説明する。表1に管体とした供試鋼の化学成分および上記諸特性を示す。
【0038】
供試鋼PB1〜10は、真空溶解炉にて溶製後、熱間圧延により板厚20mmの鋼板とした後、2回焼入れ焼戻し(焼入れ温度940℃)により、耐力を1000〜1100MPaとした。
【0039】
PB11、PB12は外径127mm,肉厚9mmの鋼管とした後、焼入れ焼戻し処理を行ったものである。
【0040】
得られた鋼材について引張試験、シャルピー衝撃試験(PB11,12は幅7.5mmその他は幅10mmの2mmVノッチ試験片)、遅れ破壊試験、SSC試験及び圧接部の硬さ試験を実施した。
【0041】
遅れ破壊試験は3.5%NaCl溶液中で疲労予き裂付き試験片(10×15×150mm)に曲げモーメントを加えて静置し、破断までの時間で評価した。曲げモーメントとき裂長さによって応力拡大係数(KIssc)を求めた。
【0042】
耐SSC性は、NACETM0177−96による定荷重タイプの試験で試験環境のみを変更して評価した。ASTM D1141にしたがって作成した人工海水に7%H2S−N2balの混合ガスを試験中連続的に通気し、試験環境とした。
【0043】
試験は負荷応力を変え、720時間以内で破断しない最大の応力を求め、その応力と耐力との比(σth)を求めた。
【0044】
圧接部の硬さ試験は、各鋼材よりΦ14mm×100mmLの丸棒を切り出し、摩擦圧接後、圧接部を高周波熱処理により940℃×2分で加熱後急冷の後、660℃×3分で加熱後急冷して断面において硬さ試験を行った。
【0045】
硬さは圧接線より10mmの位置での値を表示した。
【0046】
表より明らかなように本発明例(PB1〜PB5)はいずれの特性でも優れた値を示している。一方、比較例(PB6〜PB12)では比較例PB12を除いて−20℃のシャルピー吸収エネルギーは100J以下で、100J以上となるものもKIsscが100MPa√m以上およびσthが50%以上となるものはない。
【0047】
【表1】

Figure 0003858072
【0048】
【表2】
Figure 0003858072
【0049】
[実施例2]
本実施例ではツールジョイントの強度、靭性及び圧接部の硬さについて説明する。表2に管体とした供試鋼の化学成分および上記諸特性を示す。
【0050】
供試鋼は、真空溶解炉で溶製後、熱間圧延により板厚20mmの鋼板とした。その後、焼入れ焼戻し(焼入れ温度920℃)により耐力1000〜1500MPaとなるように調整した。
【0051】
圧接部の硬さ試験は、各鋼材よりΦ14mm×100mmLの丸棒を切り出し、摩擦圧接後、圧接部を高周波熱処理により940℃×2分で加熱後急冷の後、660℃×3分で加熱後急冷して断面で硬さ試験を行った。
【0052】
硬さは圧接線より10mmの位置での値を表示した。
【0053】
表2より、比較例TJ2,3では、−20℃での吸収エネルギーは100J以下と低く、100J以上のもの(比較例TJ4)でも、圧接部硬さは40以上と高硬度であった。
【0054】
一方、本発明例(TJ1)では、高強度、高靭性且つ低硬度なことが確認された。
【0055】
【表3】
Figure 0003858072
【0056】
【表4】
Figure 0003858072
【0057】
[実施例3]
本実施例では、表3に示す管体(外径140mm,肉厚13mm)とツールジョイントを組み合わせ、ドリルパイプとした。管体,ツールジョイントはいずれも本発明の実施例で、それらの組み合わせは、管体DPB1とツールジョイントDPT1,管体DPB2とツールジョイントDPT2とした
ドリルパイプの管体とツールジョイント圧接部の硬さ試験結果を図2、3に示す。圧接部に硬化は認められず、高強度ドリルパイプとして優れた特性が確認された。
【0058】
尚、表3中に示す強度、靭性などは、管体、ツールジョイント個々の特性を示すもので、各試験方法は実施例1に準拠して行った。いずれも優れた特性が得られている。
【0059】
【表5】
Figure 0003858072
【0060】
【表6】
Figure 0003858072
【0061】
【発明の効果】
本発明によれば、高強度(耐力965MPa以上)で且つ耐SSC性、耐H2S性に優れたドリルパイプが得られ、大深度での石油・ガスの掘削が安定して行えるとともに、そのツールジョイントをダブルショルダーツールジョイントとした場合、地球深部探査船等の大深度掘削用途に適用することが可能となり、産業上極めて有用である。
【図面の簡単な説明】
【図1】ダブルショルダーツールジョイントの接続部構成の一例を示す部分断面図。
【図2】本発明の一実施例のドリルパイプの圧接部硬さ分布を示す図。
【図3】本発明の一実施例のドリルパイプの圧接部硬さ分布を示す図。
【符号の説明】
1 管部体
2 管部体
3 雄螺条
4 雌螺条
5 外面肩部
6 管部体の端部
7 管部体先端部
8 管部体内面肩部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drill pipe having a tool joint and a method for manufacturing the drill pipe, and more particularly to a drill pipe suitable for oil and gas mining by deep drilling and earth exploration by ocean drilling.
[0002]
[Prior art]
The need for drill pipes with a yield strength of 965 MPa or more is predicted for deep drilling. Currently, in the field of oil production, APIS135 (withstand strength of 931 MPa or more) has the highest strength and is intended for scientific exploration. In the exploration described above, S140 (withstand strength of 965 MPa or more) was used in ODP (international deep sea drilling plan), and U160 (withstand strength of 1103 MPa or more) was only studied in KTB (international land drilling plan).
[0003]
When drill pipes are strengthened, the resistance to fracture (toughness) decreases, especially when H2S is included in the environment of use, there is concern about sulfide stress corrosion cracking (SSC), and H2S does not exist as an environmental substance. Even in this case, it is said that delayed fracture is likely to occur in a humid environment.
[0004]
Japanese Patent Application Laid-Open No. 11-61254 relates to a method for producing a high strength and high corrosion resistance seamless steel pipe having a yield stress of 140 to 155 ksi (985 to 1068 MPa) excellent in SSC resistance. However, controlled rolling and direct quenching and tempering are performed. Because of its characteristics, it is difficult to apply to drill pipes that upset both pipe ends after pipe making.
[0005]
Japanese Laid-Open Patent Publication No. 6-320348 relates to a titanium drill pipe and is limited to special applications due to its high price.
[0006]
[Problems to be solved by the invention]
A drill pipe is composed of a pipe and a tool joint of joint parts. A tool joint manufactured by threading a thick-walled steel pipe is friction welded to both ends of a pipe that has been thickened at both ends of a seamless pipe. Manufactured. The tube body and the tool joint are each heat-treated before friction welding, and after the pressure welding, the pressure-welded part is partially heat-treated by high-frequency heating.
[0007]
The tool joint is joined to both ends of the pipe body of the drill pipe by friction welding, and in order to manufacture a thick wall for the threaded joint of the drill pipe, the manufacturing method by quenching and tempering is suitable as with the pipe body. . However, since it is thicker than the tube and is processed into a complicated shape having a screw shape, water quenching causes large distortion, and oil quenching is required. In addition, the friction welding part is quenched and tempered using an induction heating furnace to adjust the strength, but the heat treatment characteristics are required to be consistent with the tube.
[0008]
In the present invention, the tube and the tool joint having the above-mentioned characteristics are examined from the viewpoint of the composition of the components, and have high strength (yield strength of 965 MPa or more) and excellent resistance to occurrence of defects due to the environment such as SSC property and delayed fracture. An object of the present invention is to provide a drill pipe suitable for excavation at a deep depth and deep earth exploration and a method for manufacturing the drill pipe.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies on steel components suitable for drill pipes and tool joints having high strength of 965 MPa or more, excellent SSC resistance, and delayed fracture resistance, and the composition of the components is Cr—Mo—V—. It has been found that when a Nb composite addition system is used and a uniform martensite structure (martensite fraction specified in API of 90% or more) is a microstructure obtained by high-temperature tempering, desired characteristics can be obtained.
[0010]
Moreover, when using the drill pipe which concerns on this invention as a drill pipe for deep drilling, such as a deep-sea exploration ship, it discovered newly that a double shoulder tool joint was required as a tool joint.
[0011]
The present invention was made by further study based on the above knowledge, that is, the present invention is
1. In mass%, C: 0.20 to 0.28%, Si: 0.5% or less, Mn: 0.7% or less, P: 0.010% or less, S: 0.002% or less, Cr: 0 Quenching consisting of 0.8-1.2%, Mo: 0.5-0.8%, V: 0.06-0.09%, Nb: 0.02-0.04%, balance Fe and inevitable impurities Tempering type seamless steel pipe, in mass%, C: more than 0.30% and 0.40% or less , Si: 0.5% or less, Mn: 0.6-1.2%, P: 0.010% S: 0.002% or less, Cr: 0.8 to 1.2%, Mo: 0.15 to 0.35% , V: less than 0.05% , Nb: 0.04% or less, balance Fe And a drill pipe with a hardened and tempered tool joint made of inevitable impurities.
[0012]
2. The drill pipe for deep drilling according to 1, wherein the tool joint is a double shoulder tool joint.
[0013]
3. In the manufacture of a drill pipe in which a quenched and tempered type tool joint is friction welded to both ends of a quenched and tempered seamless steel pipe, and then the friction welded part is quenched and tempered, the steel component of the drill pipe is expressed by mass%, C: 0. 20 to 0.28%, Si: 0.5% or less, Mn: 0.7% or less, P: 0.010% or less, S: 0.002% or less, Cr: 0.8 to 1.2%, Mo: 0.5 to 0.8%, V: 0.06 to 0.09%, Nb: 0.02 to 0.04%, balance Fe and inevitable impurities, and steel component of the tool joint is mass%. C: more than 0.30% and 0.40% or less , Si: 0.5% or less, Mn: 0.6 to 1.2%, P: 0.010% or less, S: 0.002% or less , Cr: 0.8~1.2%, Mo: 0.15~0.35%, V: less than 0.05%, Nb: A manufacturing method of a drill pipe, characterized by using 0.04% or less, the balance Fe and inevitable impurities.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The component composition and manufacturing conditions of the pipe body and tool joint of the drill pipe will be described in detail below.
[0015]
1. Tube C
C is added in an amount of 0.20% or more in order to ensure strength, SSC resistance and delayed fracture resistance. On the other hand, 0.28% or less is added and 0.20 to 0.28% is added so that an appropriate hardness can be obtained after tempering at the friction welding portion with the tool joint.
[0016]
Si
Si is added for deoxidation. If it exceeds 0.5%, the toughness deteriorates, so the content is made 0.5% or less.
[0017]
Mn
Mn is added to improve the hardenability, but if it exceeds 0.7%, the SSC resistance deteriorates, so the content is made 0.7% or less.
[0018]
P
P lowers the toughness of the steel and also segregates at the grain boundaries to degrade the SSC resistance and delayed fracture resistance.
[0019]
S
S is made 0.002% or less in order to deteriorate the toughness of steel, particularly the toughness of the press-contact part.
[0020]
Cr
Cr is added to improve the hardenability of the steel and form a uniform martensite structure by quenching. However, when the uniform martensite structure is tempered at a high temperature, 0 is added so that excellent SSC resistance and delayed fracture resistance can be obtained. Add 8% or more.
[0021]
On the other hand, if it exceeds 1.2%, the production cost increases and the toughness deteriorates, so 0.8 to 1.2% (0.8% or more, 1.2% or less).
[0022]
Mo
Mo is added in order to enhance the temper softening resistance of the martensite structure together with the hardenability of the steel and to enable tempering at a high temperature. 0.5% or more is added so that excellent SSC resistance and delayed fracture resistance can be obtained when a uniform martensite structure is tempered at a high temperature. On the other hand, if it exceeds 0.8%, the strength becomes excessive, so 0.5 to 0.8%.
[0023]
V
V is added in order to increase the softening resistance of the steel by fine precipitation of carbides in the tempering treatment. 0.06 to 0.09% is added so that appropriate strength can be obtained by high temperature tempering.
[0024]
Nb
Nb is added in an amount of 0.02% or more in order to increase the strength of the steel and at the same time refine the structure by suppressing the growth of crystal grains and improve the toughness, SSC resistance and delayed fracture resistance. On the other hand, if it exceeds 0.04%, the effect is saturated, and hot working defects are likely to occur, so 0.02 to 0.04%.
[0025]
2. Tool joint C
C is added to increase the strength, and is added in excess of 0.30% so that the desired strength can be obtained even by oil quenching. On the other hand, if the amount of C exceeds 0.400%, the toughness is lowered, and the hardness control of the press-contact part is difficult in the tempering process with short-time heating.
[0026]
Si
Si is added for deoxidation. On the other hand, if added over 0.5%, the toughness deteriorates, so the content is made 0.5% or less.
[0027]
Mn
Mn is added to improve hardenability. It is set to 0.6% or more so that the desired strength can be obtained by oil quenching of a thick material. On the other hand, if added over 1.2%, the toughness deteriorates, so the content is made 1.2% or less.
[0028]
P
P is made 0.010% or less in order to deteriorate toughness.
[0029]
S
S is made 0.002% or less in order to deteriorate the toughness, particularly the toughness of the pressure contact portion.
[0030]
Cr
Cr is added in an amount of 0.8% or more in order to improve the hardenability of the steel and obtain a desired strength. On the other hand, if it exceeds 1.2%, the toughness deteriorates, so the content is made 0.8 to 1.2%.
[0031]
Mo
Mo is added in an amount of 0.15% or more in order to improve the hardenability of the steel and ensure the strength after tempering. On the other hand, if added over 0.35%, the toughness decreases, and it becomes difficult to control the hardness of the press-contact part in the tempering treatment for a short time, so the content is made 0.35% or less.
[0032]
V
V is added in order to increase the softening resistance of the steel by fine precipitation of carbides in the tempering treatment. Add less than 0.05% so that proper strength can be obtained by high-temperature tempering.
[0033]
Nb
Nb is added to increase the strength of the steel and to refine the structure by suppressing the growth of crystal grains and to improve toughness, SSC resistance, and delayed fracture resistance. However, when Nb exceeds 0.04%, the effect is saturated. In order to easily cause hot working flaws, the content is set to 0.04% or less.
[0034]
For the production condition pipe, a tempered seamless steel pipe is used, but the steel pipe forming method of the seamless steel pipe is not particularly specified. The heat treatment of the pipe body and tool joint shall be quenching and tempering.
[0035]
The heat treatment conditions are defined so that a uniform martensite structure can be obtained for quenching, and the conditions are appropriately set for tempering so that a desired strength can be obtained. The quenching temperature is preferably 950 ° C. or lower which is not lower than the Ac1 transformation point and does not coarsen the crystal grains.
[0036]
The drill pipe according to the present invention has excellent SSC resistance and delayed fracture resistance regardless of the shape of the threaded joint of the tool joint. The shape of the threaded joint is not particularly defined, but the maximum drill string length is 10,000 m. It has been found that the double shoulder joint shown in FIG. 1 is necessary for deep earth exploration for the purpose of core drilling and core extraction from the hole bottom or for such oil gas deep drilling.
[0037]
【Example】
[Example 1]
In the present embodiment, the delayed fracture resistance, SSC resistance, toughness and hardness of the pressure contact portion of the drill pipe body will be described. Table 1 shows the chemical composition of the test steel used as a tube and the above characteristics.
[0038]
The test steels PB1 to PB10 were melted in a vacuum melting furnace, made into a steel plate having a thickness of 20 mm by hot rolling, and then proof stress was set to 1000 to 1100 MPa by twice quenching and tempering (quenching temperature 940 ° C.).
[0039]
PB11 and PB12 are steel pipes having an outer diameter of 127 mm and a wall thickness of 9 mm, followed by quenching and tempering.
[0040]
The obtained steel material was subjected to a tensile test, Charpy impact test (PB11 and 12 are 2 mm V notch test pieces having a width of 7.5 mm and other widths of 10 mm), a delayed fracture test, an SSC test, and a hardness test of the pressure contact portion.
[0041]
The delayed fracture test was performed by applying a bending moment to a specimen with fatigue pre-cracking (10 × 15 × 150 mm) in a 3.5% NaCl solution and allowing it to stand, and evaluating the time until fracture. The stress intensity factor (KIssc) was determined from the bending moment and the crack length.
[0042]
The SSC resistance was evaluated by changing only the test environment in a constant load type test according to NACETM 0177-96. A 7% H2S-N2bal mixed gas was continuously ventilated during the test to artificial seawater prepared according to ASTM D1141 to provide a test environment.
[0043]
The test changed load stress, calculated | required the maximum stress which does not fracture within 720 hours, and calculated | required the ratio ((sigma) th) of the stress and proof stress.
[0044]
For the hardness test of the pressure welded part, a Φ14 mm × 100 mmL round bar was cut out from each steel material, and after friction welding, the pressure welded part was heated at 940 ° C. × 2 minutes by high-frequency heat treatment, rapidly cooled, and then heated at 660 ° C. × 3 minutes. After quenching, a hardness test was performed on the cross section.
[0045]
For the hardness, a value at a position of 10 mm from the pressure tangent line was displayed.
[0046]
As is apparent from the table, the present invention examples (PB1 to PB5) show excellent values in any characteristics. On the other hand, in Comparative Examples (PB6 to PB12), except for Comparative Example PB12, Charpy absorbed energy at −20 ° C. is 100 J or less, and those with 100 J or more also have KIssc of 100 MPa√m or more and σth of 50% or more. Absent.
[0047]
[Table 1]
Figure 0003858072
[0048]
[Table 2]
Figure 0003858072
[0049]
[Example 2]
In this embodiment, the strength and toughness of the tool joint and the hardness of the press contact portion will be described. Table 2 shows the chemical composition and the above characteristics of the test steel used as the tube.
[0050]
The test steel was made into a steel plate having a thickness of 20 mm by hot rolling after melting in a vacuum melting furnace. Thereafter, the yield strength was adjusted to 1000 to 1500 MPa by quenching and tempering (quenching temperature 920 ° C.).
[0051]
For the hardness test of the pressure welded part, a Φ14 mm × 100 mmL round bar was cut out from each steel material, and after friction welding, the pressure welded part was heated at 940 ° C. × 2 minutes by high-frequency heat treatment, rapidly cooled, and then heated at 660 ° C. × 3 minutes. After quenching, a hardness test was performed on the cross section.
[0052]
For the hardness, a value at a position of 10 mm from the pressure tangent line was displayed.
[0053]
From Table 2, in Comparative Examples TJ2 and 3, the absorbed energy at −20 ° C. was as low as 100 J or less, and even in the case of 100 J or more (Comparative Example TJ4), the pressure contact portion hardness was as high as 40 or more.
[0054]
On the other hand, it was confirmed that the present invention example (TJ1) has high strength, high toughness and low hardness.
[0055]
[Table 3]
Figure 0003858072
[0056]
[Table 4]
Figure 0003858072
[0057]
[Example 3]
In this example, the pipe body (outer diameter 140 mm, wall thickness 13 mm) shown in Table 3 and a tool joint were combined to form a drill pipe. Both the pipe body and the tool joint are embodiments of the present invention, and the combination of them is the hardness of the drill pipe body and the tool joint pressure contact portion, which are the pipe body DPB1, the tool joint DPT1, the pipe body DPB2, and the tool joint DPT2. The test results are shown in FIGS. Curing was not observed in the pressure contact area, and excellent characteristics as a high-strength drill pipe were confirmed.
[0058]
In addition, the strength, toughness, etc. shown in Table 3 show the characteristics of the tube body and the tool joint, and each test method was performed according to Example 1. In any case, excellent characteristics are obtained.
[0059]
[Table 5]
Figure 0003858072
[0060]
[Table 6]
Figure 0003858072
[0061]
【The invention's effect】
According to the present invention, a drill pipe having high strength (proof strength of 965 MPa or more) and excellent SSC resistance and H2S resistance can be obtained, and oil and gas drilling can be stably performed at a large depth, and its tool joint. Is a double shoulder tool joint, it can be applied to deep drilling applications such as deep earth exploration vessels, and is extremely useful in industry.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing an example of a connection portion configuration of a double shoulder tool joint.
FIG. 2 is a diagram showing a hardness distribution of a pressure contact portion of a drill pipe according to an embodiment of the present invention.
FIG. 3 is a diagram showing a hardness distribution of a pressure contact portion of a drill pipe according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pipe part body 2 Pipe part body 3 Male thread 4 Female thread 5 Outer surface shoulder part 6 End part of a pipe part body 7 Pipe part body front-end | tip part 8 Tube part inner surface shoulder part

Claims (3)

質量%で、C:0.20〜0.28%、Si:0.5%以下、Mn:0.7%以下、P:0.010%以下、S:0.002%以下、Cr:0.8〜1.2%,Mo:0.5〜0.8%、V:0.06〜0.09%、Nb:0.02〜0.04%、残部Fe及び不可避的不純物よりなる焼入れ焼戻し型継目無鋼管と質量%で、C:0.30%を超え0.40%以下、Si:0.5%以下、Mn:0.6〜1.2%、P:0.010%以下、S:0.002%以下、Cr:0.8〜1.2%、Mo:0.15〜0.35%V:0.05%未満、Nb:0.04%以下、残部Fe及び不可避的不純物よりなる焼入れ焼戻し型ツールジョイントを備えたドリルパイプ。In mass%, C: 0.20 to 0.28%, Si: 0.5% or less, Mn: 0.7% or less, P: 0.010% or less, S: 0.002% or less, Cr: 0 Quenching consisting of 0.8-1.2%, Mo: 0.5-0.8%, V: 0.06-0.09%, Nb: 0.02-0.04%, balance Fe and inevitable impurities Tempering type seamless steel pipe, in mass%, C: more than 0.30% and 0.40% or less , Si: 0.5% or less, Mn: 0.6-1.2%, P: 0.010% S: 0.002% or less, Cr: 0.8 to 1.2%, Mo: 0.15 to 0.35% , V: less than 0.05% , Nb: 0.04% or less, balance Fe A drill pipe with a hardened and tempered tool joint made of inevitable impurities. 請求項1記載のドリルパイプにおいて、ツールジョイントがダブルショルダーツールジョイントであることを特徴とする大深度掘削用ドリルパイプ。  The drill pipe according to claim 1, wherein the tool joint is a double shoulder tool joint. 焼入れ焼戻し型継目無鋼管の両端に、焼入れ焼戻し型ツールジョイントを摩擦圧接し、その後該摩擦圧接部を焼入れ焼戻しするドリルパイプの製造において、前記ドリルパイプの鋼成分を質量%で、C:0.20〜0.28%、Si:0.5%以下、Mn:0.7%以下、P:0.010%以下、S:0.002%以下、Cr:0.8〜1.2%,Mo:0.5〜0.8%、V:0.06〜0.09%、Nb:0.02〜0.04%、残部Fe及び不可避的不純物とし、前記ツールジョイントの鋼成分を質量%で、C:0.30%を超え0.40%以下、Si:0.5%以下、Mn:0.6〜1.2%、P:0.010%以下、S:0.002%以下、Cr:0.8〜1.2%、Mo:0.15〜0.35%V:0.05%未満、Nb:0.04%以下、残部Fe及び不可避的不純物とすることを特徴とするドリルパイプの製造方法。In manufacturing a drill pipe in which a quenching and tempering type tool joint is friction welded to both ends of a quenching and tempering type seamless steel pipe, and then the friction welding part is quenched and tempered, the steel component of the drill pipe is expressed by mass%, C: 0.00. 20 to 0.28%, Si: 0.5% or less, Mn: 0.7% or less, P: 0.010% or less, S: 0.002% or less, Cr: 0.8 to 1.2%, Mo: 0.5 to 0.8%, V: 0.06 to 0.09%, Nb: 0.02 to 0.04%, balance Fe and inevitable impurities, and steel component of the tool joint is mass%. C: more than 0.30% and 0.40% or less , Si: 0.5% or less, Mn: 0.6 to 1.2%, P: 0.010% or less, S: 0.002% or less Cr: 0.8 to 1.2%, Mo: 0.15 to 0.35% , V: less than 0.05% , Nb: A manufacturing method of a drill pipe, characterized by using 0.04% or less, the balance Fe and inevitable impurities.
JP2001362878A 2001-11-28 2001-11-28 Drill pipe and manufacturing method thereof Expired - Fee Related JP3858072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001362878A JP3858072B2 (en) 2001-11-28 2001-11-28 Drill pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001362878A JP3858072B2 (en) 2001-11-28 2001-11-28 Drill pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003166037A JP2003166037A (en) 2003-06-13
JP3858072B2 true JP3858072B2 (en) 2006-12-13

Family

ID=19173311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001362878A Expired - Fee Related JP3858072B2 (en) 2001-11-28 2001-11-28 Drill pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3858072B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1977357B1 (en) * 2006-01-20 2010-11-03 ExxonMobil Upstream Research Company Method and system for evaluating groups of threaded connections
CA2650208A1 (en) * 2007-03-30 2008-10-16 Sumitomo Metal Industries, Ltd. Low alloy steel, seamless steel oil country tubular goods, and method for producing seamless steel pipe
CN101781702B (en) * 2010-03-16 2012-05-02 中国石油集团渤海石油装备制造有限公司 Process for heat treatment of tube body of drill rod
JP5523373B2 (en) * 2011-02-18 2014-06-18 三菱マテリアル株式会社 Hollow steel rod for excavation and manufacturing method thereof
CN102839922A (en) * 2012-09-21 2012-12-26 中国石油集团长城钻探工程有限公司工程服务公司 Novel light drilling tool
CN103882210B (en) * 2014-03-31 2017-02-08 江苏和信石油机械有限公司 Thermal treatment process of prospecting tool joint
CN104625669A (en) * 2015-01-07 2015-05-20 哈尔滨飞机工业集团有限责任公司 Lengthening method of auger bit drill rod
CN104975235A (en) * 2015-07-20 2015-10-14 江阴兴澄特种钢铁有限公司 High-toughness medium-carbon quenched and tempered round steel of grade 120 KSI and manufacturing method thereof
JP6410756B2 (en) 2016-05-17 2018-10-24 本田技研工業株式会社 Metal composite and metal joining method
KR102372616B1 (en) * 2016-05-30 2022-03-11 주식회사 포스코 Joint for metal pipe
CN106435362A (en) * 2016-10-27 2017-02-22 马钢(集团)控股有限公司 Structural alloy steel for petroleum drilling tool and application thereof
CN106498305A (en) * 2016-10-27 2017-03-15 马钢(集团)控股有限公司 A kind of structural alloy steel for manufacturing big specification oil drilling tools
CN106282785A (en) * 2016-10-27 2017-01-04 马钢(集团)控股有限公司 A kind of niobium-titanium-boron microalloy fossil oil drill string crossover coupling steel
EP3984683A4 (en) * 2019-06-17 2022-11-02 Nippon Steel Corporation Bonded joint, and method for manufacturing bonded joint
CN115229433A (en) * 2022-06-16 2022-10-25 长沙天和钻具机械有限公司 Machining process of concentric casing drilling tool reaming sleeve assembly

Also Published As

Publication number Publication date
JP2003166037A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
CA2620049C (en) Seamless steel pipe for line pipe and a method for its manufacture
JP3858072B2 (en) Drill pipe and manufacturing method thereof
CN105874093B (en) Low-alloy Oil Well Pipe
MX2013004025A (en) Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same.
JP2004176172A (en) High strength seamless steel pipe with excellent hic (hydrogen-induced cracking) resistance, and its manufacturing method
KR20100032490A (en) Weldable ultra-high strength steel with excellent low-temperature toughness, and manufacturing method thereof
KR20160127752A (en) Method for producing hot-rolled seamless pipes from transformable steel, in particular for pipelines for deep-water applications, and corresponding pipes
RU2679499C1 (en) Sheet steel for construction pipes or tubes, method of manufacture of sheet steel for construction pipes or tubes and construction pipes and tubes
CN111996449A (en) Pipeline thick plate with excellent plastic toughness and production method thereof
WO2017150251A1 (en) Steel material and steel pipe for use in oil well
EP3636787B1 (en) Bent steel pipe and method for producing same
JP4250851B2 (en) Martensitic stainless steel and manufacturing method
JP2002327212A (en) Method for manufacturing sour resistant steel sheet for line pipe
CA2980252A1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
JP2016506451A (en) Bainite steel for rock drilling components
CN107151761A (en) A kind of high toughness petroleum drilling rod and its manufacture method
JP2002256380A (en) Thick high tensile strength steel plate having excellent brittle crack propagation arrest property and weld zone property and production method therefor
JP3879723B2 (en) High-strength seamless steel pipe excellent in hydrogen-induced crack resistance and method for producing the same
JP2009167476A (en) Stainless steel pipe for oil well having excellent pipe expandability, and its manufacturing method
CN107841681B (en) Perforating gun barrel material and preparation method thereof
JPH11158551A (en) Production of martensitic stainless steel pipe
CN105088082B (en) A kind of alitizing is modified P110 grades of oil annular tube steels and its tubing manufacture method
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
CN104894432A (en) 110 ksi-level titanium alloy oil pipe and preparation method thereof
JP3921809B2 (en) Method for producing martensitic stainless steel pipe with excellent low temperature toughness

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R150 Certificate of patent or registration of utility model

Ref document number: 3858072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees