JP3853971B2 - Aerobic digestion method of excess sludge - Google Patents

Aerobic digestion method of excess sludge Download PDF

Info

Publication number
JP3853971B2
JP3853971B2 JP10730598A JP10730598A JP3853971B2 JP 3853971 B2 JP3853971 B2 JP 3853971B2 JP 10730598 A JP10730598 A JP 10730598A JP 10730598 A JP10730598 A JP 10730598A JP 3853971 B2 JP3853971 B2 JP 3853971B2
Authority
JP
Japan
Prior art keywords
sludge
treatment
aerobic
aerobic digestion
mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10730598A
Other languages
Japanese (ja)
Other versions
JPH11300393A (en
Inventor
慶東 名和
幹夫 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP10730598A priority Critical patent/JP3853971B2/en
Publication of JPH11300393A publication Critical patent/JPH11300393A/en
Application granted granted Critical
Publication of JP3853971B2 publication Critical patent/JP3853971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機性廃水の活性汚泥処理施設から排出される余剰汚泥を減量化する方法に関するものであり、さらに詳しくは、余剰汚泥を好気性消化処理することによって減量化する方法に関するものである。
【0002】
【従来の技術】
従来、下水処理施設などの活性汚泥処理施設から大量に発生する余剰汚泥は脱水後、産業廃棄物として埋め立て処分したり、焼却処分している。しかし、近年、埋め立て地の確保が困難になるとともに、大量の余剰汚泥を焼却処分すると設備費、維持管理費が高くなるため、余剰汚泥の減量化が求められている。
【0003】
余剰汚泥の生物的な減量化法としては、好気性消化法や嫌気性消化法によって処理する方法や、余剰汚泥を機械的手段によって破砕した後、廃水の生物処理槽へ返送して分解する方法などが知られている。しかしながら、好気性消化法や嫌気性消化法は、10日間以上という長時間の滞留時間を必要とする割に、減量化率が低いという問題点があり、近年はほとんど用いられていない。好気性消化法による汚泥の減量化率を向上させる方法として、特公昭57−19719号公報では、余剰汚泥を分解槽において、ホモジナイザーによる摩砕、ミキサーによる摩砕などにより可溶化した後、好気性消化する方法が提案されているが、この方法では、汚泥を可溶化して生成したBOD成分から、新たな汚泥が好気性消化槽において多量に発生し、この新たに発生した汚泥については可溶化されないために、好気性消化は進行しにくく、汚泥の減量効果があまり向上しないという問題がある。また、特公昭57−24697号公報には、余剰汚泥を機械的手段により破砕して可溶化した後、廃水の生物処理槽へ返送して分解し、余剰汚泥の発生量を減量する方法が提案されているが、この方法では、汚泥を可溶化して生成したCOD成分は生物処理槽で十分に分解されないため、廃水処理した水質が悪化するとともに、既存の施設に用いる場合には、生物処理槽の曝気装置改造が必要であるなどの問題がある。
【0004】
【発明が解決しようとする課題】
本発明は、有機性廃水の活性汚泥処理水質を悪化させずに、排出される余剰汚泥を経済的に好気性消化法により大幅に減量化する余剰汚泥の好気性消化方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明者等は、このような問題を解決するために鋭意検討した結果、廃水処理施設から発生した余剰汚泥を好気性消化法により処理した後、好気性消化した汚泥の一部又は全部を湿式媒体攪拌式ミルで破砕して、前記好気性消化槽へ返送することによって、余剰汚泥を大幅に減量化することができるということを見出し、本発明に到達した。
すなわち、本発明は、有機性廃水の活性汚泥処理施設から排出される余剰汚泥を好気性消化槽に導入して好気性消化した後、好気性消化した汚泥の一部又は全部を前記好気性消化槽に返送して汚泥を減量化するに際し、返送する汚泥の一部又は全部を湿式媒体攪拌式ミルで処理した後に前記好気性消化槽に返送するものであって、前記湿式媒体攪拌式ミルで処理する汚泥量が前記好気性消化槽に導入される余剰汚泥に対して1〜4倍の固形物量であることを特徴とする余剰汚泥の好気性消化方法を要旨とするものである。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
なお、以下、活性汚泥処理施設から余剰に発生する汚泥を「余剰汚泥」、好気性消化した汚泥を「生物処理汚泥」、湿式媒体撹拌式ミル処理した汚泥を「可溶化汚泥」という。
【0007】
本発明においては、まず、下水、食品工場廃水、化学工場廃水などの有機性廃水を活性汚泥処理して発生した余剰汚泥を好気性消化槽に導入して好気性消化する。
導入する余剰汚泥の量としては、通常の好気性消化処理の条件が採用でき、例えば、好気性消化槽1m3 に対して一日当たり0.1〜10kgの汚泥を投入すればよい。
導入する余剰汚泥は、予め破砕しておいてもよく、破砕は、湿式媒体撹拌式ミル、超音波、ホモジナイザー、ミキサー等による機械処理の他、オゾン処理、アルカリ処理、熱処理等によって行うことができる。
【0008】
好気性消化処理の処理条件としては、特に限定されず、通常の好気性消化処理と同様の条件が採用でき、例えば、好気性処理槽内の汚泥濃度としては、4〜50g/lが好ましく、処理温度としては、5〜65℃が好ましく、処理槽内の酸素濃度としては、1〜5mg/lが好ましい。
【0009】
次に、このようにして好気性消化処理した生物処理汚泥を、固液分離槽で処理水を分離した後、前記好気性消化槽に返送する。
返送する生物処理汚泥の量としては、特に限定されるものではないが、導入する余剰汚泥の0.5〜20倍量が好ましい。
【0010】
本発明においては、この好気性消化槽に返送する生物処理汚泥の一部又は全部を湿式媒体撹拌式ミルで破砕してから好気性消化槽に返送する。
本発明でいう湿式媒体攪拌式ミル処理とは、破砕媒体(ビーズ)を充填したミル室に汚泥を導入し、ディスクやピンを備えた撹拌軸を回転させることによりビーズを撹拌し、撹拌されたビーズ間に生じる剪断摩擦力により汚泥を破砕することを指し、破砕された汚泥とビーズはミル内のスリットやスクリーンによって分離され、破砕された汚泥は系外に排出させる。
【0011】
湿式媒体撹拌式ミル処理する生物処理汚泥の量としては、好気性消化槽に導入される余剰汚泥に対して1〜4倍の固形物量が好ましく、特に1〜3倍の固形物量が好ましい。湿式媒体撹拌式ミル処理する生物処理汚泥の量が余剰汚泥に対して1倍の固形物量より少ないと汚泥減量の効果が少なくなり、また、4倍の固形物量より多くしても消費電力が増大するだけで、汚泥減量の効果はさほど向上しない。
【0012】
ミル室に導入する生物処理汚泥としては、好気性消化処理後の生物処理汚泥やこれを固液分離した分離汚泥をそのまま用いてもよいが、通常、好気性消化処理後の生物処理汚泥の汚泥濃度は0.5〜1重量%程度であり、固液分離後の分離汚泥の汚泥濃度は1〜2重量%程度と低いため、これらの汚泥を汚泥濃縮装置を用いて濃縮しておくことが望ましい。汚泥を濃縮して汚泥濃度を高くしてから湿式媒体撹拌式ミル処理を行うことにより、生物処理汚泥を直接導入する場合と比べて、処理量が減り、処理時間を大幅に短縮することができるので運転費を大幅に低減することができる。濃縮装置としては、特に限定されるものではなく、遠心分離機、浮上濃縮機などが挙げられる。濃縮後の汚泥濃度としては、流動性を示す濃度であれば特に限定されるものではないが、7重量%以下であることが好ましく、特に2〜7重量%が好ましい。汚泥濃度が7重量%より高くなると流動性がほとんどなくなるため湿式媒体撹拌式ミル処理によって破砕することが困難となる。
【0013】
湿式媒体撹拌式ミル処理に使用される破砕のための媒体としては、ガラス、ジルコニアなどのビーズが挙げられ、真比重2.0〜7.0のビーズであることが好ましい。真比重が7.0より大きいとビーズを撹拌するためのコストが高くなり、2.0より小さいと微生物の破砕が十分にできなくなる。また、ミル室に導入する汚泥濃度が高くなると真比重が小さい場合には十分に汚泥を破砕できないので、汚泥濃度が高い場合には真比重が5.0〜7.0のビーズを使用することが望ましい。
【0014】
破砕のためのビーズの粒径としては、0.05〜2.0mmφが好ましく、特に0.05〜1.0mmφが好ましい。ビーズの粒径が2.0mmφより大きいと、ビーズ間の空隙が大きくなるため汚泥を構成する数μm〜数十μmのバクテリアなどの微生物を破砕しにくくなり、0.05mmφより小さいと、ビーズ分離部で分離することが困難になる。
【0015】
湿式媒体撹拌式ミル処理の条件のうち、ビーズ充填率としては、破砕効果及び消費電力から50〜100%、特に70〜90%が好ましく、ディスク(ピン)先端周速としては、3〜30m/秒、特に5〜20m/秒が好ましい。また、ミル室の向きとしては、縦型、横型のいずれでもよく、破砕媒体を撹拌するための撹拌装置としては、ディスク型、ピン型、ピンディスク型などが挙げられる。
【0016】
湿式媒体撹拌式ミル処理における汚泥の滞留時間は、導入する汚泥濃度や用いる破砕媒体などによって適宜設定するものであり、特に限定されるものではないが、通常20秒〜20分が好ましく、特に30秒〜10分が好ましい。滞留時間が20秒よりも短いと汚泥が十分に破砕されていない可能性があり、また、20分より長くしても消費電力が増大するだけで、破砕効果はさほど向上しない。
【0017】
また、処理温度は60℃以下が好ましく、特に4〜40℃が好ましい。処理温度が60℃より高いと、汚泥成分の一部が熱変性して難分解性物質となり、処理水の水質が悪化する可能性があるために好ましくない。通常、ミル処理により破砕された汚泥の温度は、処理前の汚泥に比べて10〜30℃程度上昇するため、夏場のように温度が高い場合は冷却水を用いて冷却することが好ましい。冷却は湿式媒体攪拌式ミルのミル室は、通常、二重ジャケット構造になっているので、この間に冷却水を通すことにより容易に行うことができる。
【0018】
以上のような本発明の余剰汚泥の好気性消化方法の工程の概略の例を示すと図1、図2、図3にようになる。
図1において、下水、食品工場廃水、化学工場廃水などの有機性廃水の活性汚泥処理施設から排出された余剰汚泥1は好気性消化槽2に導入され好気性消化される。好気性消化槽2においては、効率的に好気性消化処理を行うために汚泥濃度はほぼ一定に維持され、汚泥濃度が高くなると引抜汚泥3として引き抜かれる。好気性消化後の生物処理汚泥4の一部は湿式媒体撹拌式ミル5に送られ、残りは固液分離槽6で分離水7と分離汚泥8に分離される。湿式媒体撹拌式ミル5に送られた生物処理汚泥4は湿式媒体撹拌式ミル5によって処理され、可溶化汚泥9となり、分離汚泥8の大部分と共に好気性消化槽2に返送する。図2においては、生物処理汚泥4は全て固液分離槽6に送られており、分離汚泥8の一部を湿式媒体撹拌式ミル5に移送している。また、図3においては、分離汚泥8の一部を汚泥濃縮装置10において濃縮した後、湿式媒体撹拌式ミル5に移送している。
【0019】
本発明においては、廃水処理施設から発生した余剰汚泥を好気性消化法により処理した後、好気性消化槽で新たに発生した汚泥を湿式媒体撹拌式ミルで破砕して可溶化し、さらに前記好気性消化槽で好気性消化することにより、余剰汚泥は炭酸ガスと水に分解され、余剰汚泥の大幅な減量化が実現する。その結果、汚泥の埋め立て地の延命が可能となり、汚泥の焼却施設を大幅に小さい規模とすることが可能となる。また、廃水処理と汚泥処理を分離することにより廃水処理施設の水質悪化を招かず、既存の施設に用いる場合には、生物処理槽の曝気装置改造などが不必要であり、比較的小型の設備で余剰汚泥を減量化できるため経済的である。
【0020】
【実施例】
次に、本発明を実施例により具体的に説明する。
実施例1〜3、比較例1
図1に示した処理フローに従って、下水処理施設で発生した余剰汚泥1(固形物濃度5g/L)の好気性消化処理を行った。
すなわち、10Lの好気性消化槽2に、下水処理施設の余剰汚泥1(固形物濃度5g/L)を、1日当たり1L供給した。好気性消化槽2の水温は25℃、曝気空気量は0.7〜0.8L/分とし、汚泥濃度は4〜5g/Lになるように適宜汚泥を引き抜いた(引抜汚泥3)。好気性消化槽2で消化された生物処理汚泥4の一部は湿式媒体攪拌式ミル5へ送り、湿式媒体攪拌式ミル処理して可溶化し、好気性消化槽2へ返送した。また、残りの生物活性汚泥4は、沈殿槽(固液分離槽6)で固液分離し、分離水7は系外に排出し、分離汚泥8は好気性消化槽2に返送した。湿式媒体撹拌式ミル処理する生物処理汚泥4の量は、(余剰)汚泥処理量の1倍の固形物量(5g/日:実施例1)、3倍の固形物量(15g/日:実施例2)、4倍の固形物量(20g/日、実施例3)とし、すべての生物処理汚泥4を湿式媒体撹拌式ミル処理しないで返送した系(比較例1)と比較した。湿式媒体撹拌式ミル処理は、湿式媒体撹拌式ミルとしてDYNO-MILL KDL (スイスBachofen社製)を用い、破砕媒体として0.6mmφのガラスビーズ(Silibeads 社製、真比重 2.5)を用い、ビーズ充填率85%、ディスク先端周速8.5m/秒、滞留時間2分、処理温度10±2℃で処理を行った。
その結果を図4に示す。
【0021】
図4は湿式媒体撹拌式ミル処理の好気性消化処理による汚泥減量化に対する影響を示す図であり、縦軸は供給余剰汚泥総重量に対する系外への汚泥排出量の割合を示している。
図4から、生物処理汚泥を湿式媒体撹拌式ミル処理せずに返送した場合(比較例1)には、汚泥の28%しか減量化していないのに対して、生物処理汚泥の一部を湿式媒体撹拌式ミル処理することにより、それぞれ49%(実施例1)、65%(実施例2)、64%(実施例3)減量化しており、生物処理汚泥の一部を湿式媒体撹拌式ミル処理して可溶化した後に好気性消化槽へ返送することにより、系外へ排出する汚泥量を大幅に減量することができることがわかる。
【0022】
【発明の効果】
本発明によれば、有機性廃水の活性汚泥処理水質を悪化させずに、排出される余剰汚泥を経済的に好気性消化法により大幅に減量化することができる。
【図面の簡単な説明】
【図1】本発明の余剰汚泥の好気性消化方法の工程の概略の一例を示す図である。
【図2】本発明の余剰汚泥の好気性消化方法の工程の概略の他の例を示す図である。
【図3】本発明の余剰汚泥の好気性消化方法の工程の概略の他の例を示す図である。
【図4】湿式媒体撹拌式ミル処理の好気性消化処理による汚泥減量化に対する影響を示す図である。
【符号の説明】
1 余剰汚泥
2 好気性消化槽
3 引抜汚泥
4 生物処理汚泥
5 湿式媒体撹拌式ミル
6 固液分離槽
7 分離水
8 分離汚泥
9 可溶化汚泥
10 汚泥濃縮装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reducing excess sludge discharged from an activated sludge treatment facility for organic wastewater, and more particularly to a method for reducing excess sludge by subjecting it to aerobic digestion. .
[0002]
[Prior art]
Conventionally, surplus sludge generated in large quantities from an activated sludge treatment facility such as a sewage treatment facility has been dehydrated and then disposed of as landfill or incinerated as industrial waste. However, in recent years, it has become difficult to secure landfills, and incineration of a large amount of excess sludge increases equipment costs and maintenance costs, so there is a need to reduce excess sludge.
[0003]
Biological reduction methods for surplus sludge include aerobic digestion and anaerobic digestion, and surplus sludge is crushed by mechanical means and then returned to the biological treatment tank for decomposition. Etc. are known. However, the aerobic digestion method and the anaerobic digestion method have a problem that the weight reduction rate is low while requiring a long residence time of 10 days or more, and have not been used in recent years. As a method for improving the rate of sludge reduction by the aerobic digestion method, Japanese Patent Publication No. 57-19719 discloses that excess sludge is solubilized in a decomposition tank by homogenizer grinding, mixer grinding, etc. A digestion method has been proposed, but in this method, a large amount of new sludge is generated in the aerobic digester from the BOD component generated by solubilizing the sludge, and the newly generated sludge is solubilized. Therefore, aerobic digestion is difficult to proceed and there is a problem that the effect of reducing sludge is not improved so much. Japanese Patent Publication No. 57-24697 proposes a method in which excess sludge is crushed and solubilized by mechanical means, and then returned to a biological treatment tank for wastewater for decomposition to reduce the amount of surplus sludge generated. However, in this method, since the COD component produced by solubilizing sludge is not sufficiently decomposed in the biological treatment tank, the quality of the wastewater-treated water is deteriorated. There are problems such as the need to modify the tank aeration equipment.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for aerobic digestion of surplus sludge that can significantly reduce the amount of surplus discharged sludge economically by an aerobic digestion method without deteriorating the activated sludge treatment water quality of organic wastewater. It is what.
[0005]
[Means for Solving the Problems]
As a result of diligent studies to solve such problems, the present inventors have treated excess sludge generated from a wastewater treatment facility by an aerobic digestion method, and then wet a part or all of the aerobically digested sludge. The present inventors have found that surplus sludge can be greatly reduced by crushing with a medium agitating mill and returning to the aerobic digester.
That is, the present invention introduces surplus sludge discharged from an activated sludge treatment facility of organic wastewater into an aerobic digestion tank and performs aerobic digestion, and then a part or all of the aerobic digested sludge is aerobic digestion. upon lose weight the sludge was returned to the bath, the it is one that returned to aerobic digestion tank part or all of the sludge to be returned after treatment with wet medium stirring mill, in the wet medium stirring mill The gist of the method of aerobic digestion of surplus sludge is characterized in that the amount of sludge to be treated is 1 to 4 times the amount of solids with respect to surplus sludge introduced into the aerobic digester.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Hereinafter, the sludge generated excessively from the activated sludge treatment facility is referred to as “surplus sludge”, the aerobically digested sludge is referred to as “biologically treated sludge”, and the sludge that has been subjected to the wet medium stirring mill treatment is referred to as “solubilized sludge”.
[0007]
In the present invention, surplus sludge generated by treating activated sludge from organic wastewater such as sewage, food factory wastewater, and chemical factory wastewater is first introduced into an aerobic digestion tank for aerobic digestion.
As the amount of surplus sludge to be introduced, normal conditions for aerobic digestion treatment can be employed. For example, 0.1 to 10 kg of sludge per day may be introduced into 1 m 3 of the aerobic digester.
The surplus sludge to be introduced may be crushed in advance, and the pulverization can be performed by ozone treatment, alkali treatment, heat treatment, etc. in addition to mechanical treatment by a wet medium stirring mill, ultrasonic wave, homogenizer, mixer, etc. .
[0008]
The treatment conditions for the aerobic digestion treatment are not particularly limited, and the same conditions as those for a normal aerobic digestion treatment can be adopted. For example, the sludge concentration in the aerobic treatment tank is preferably 4 to 50 g / l, The treatment temperature is preferably 5 to 65 ° C., and the oxygen concentration in the treatment tank is preferably 1 to 5 mg / l.
[0009]
Next, the biologically treated sludge thus subjected to the aerobic digestion treatment is separated into the treated water in a solid-liquid separation tank, and then returned to the aerobic digestion tank.
The amount of biologically treated sludge to be returned is not particularly limited, but is preferably 0.5 to 20 times the surplus sludge to be introduced.
[0010]
In the present invention, part or all of the biologically treated sludge to be returned to the aerobic digester is crushed by a wet medium stirring mill and then returned to the aerobic digester.
The wet medium agitation mill processing referred to in the present invention is a method in which sludge is introduced into a mill chamber filled with a crushing medium (beads), and the beads are agitated and agitated by rotating an agitation shaft equipped with a disk and a pin. This refers to crushing sludge by shear friction generated between the beads. The crushed sludge and beads are separated by a slit or screen in the mill, and the crushed sludge is discharged out of the system.
[0011]
The amount of biologically treated sludge to be subjected to wet medium stirring mill treatment is preferably 1 to 4 times the amount of solid matter, particularly 1 to 3 times the amount of solid matter with respect to the excess sludge introduced into the aerobic digester. If the amount of biologically treated sludge to be processed with a wet-medium agitating mill is less than 1 times the amount of solids compared to the excess sludge, the effect of sludge reduction will be reduced. Just doing this will not significantly improve the sludge reduction effect.
[0012]
As biologically treated sludge to be introduced into the mill room, biologically treated sludge after aerobic digestion treatment or separated sludge obtained by solid-liquid separation may be used as it is, but usually the sludge of biologically treated sludge after aerobic digestion treatment is used. Since the concentration is about 0.5 to 1% by weight and the sludge concentration of the separated sludge after solid-liquid separation is as low as about 1 to 2% by weight, it is possible to concentrate these sludges using a sludge concentrator. desirable. Concentrating sludge to increase the sludge concentration and then performing wet media agitation mill treatment reduces the amount of treatment and significantly shortens the treatment time compared to direct introduction of biological treatment sludge. Therefore, the operating cost can be greatly reduced. The concentrating device is not particularly limited, and examples thereof include a centrifugal separator and a flotation concentrator. Although it will not specifically limit if it is the density | concentration which shows fluidity | liquidity as a sludge density | concentration after concentration, It is preferable that it is 7 weight% or less, and 2 to 7 weight% is especially preferable. When the sludge concentration is higher than 7% by weight, the fluidity is almost lost, so that it becomes difficult to crush by the wet medium stirring mill treatment.
[0013]
Examples of the medium for crushing used in the wet medium stirring mill process include beads such as glass and zirconia, and beads having a true specific gravity of 2.0 to 7.0 are preferable. If the true specific gravity is greater than 7.0, the cost for stirring the beads increases, and if it is less than 2.0, the microorganisms cannot be sufficiently disrupted. In addition, if the sludge concentration introduced into the mill chamber is high, the sludge cannot be sufficiently crushed if the true specific gravity is low. If the sludge concentration is high, beads having a true specific gravity of 5.0 to 7.0 should be used. Is desirable.
[0014]
The particle size of the beads for crushing is preferably 0.05 to 2.0 mmφ, particularly preferably 0.05 to 1.0 mmφ. If the particle size of the beads is larger than 2.0 mmφ, the space between the beads will be larger, and it will be difficult to crush microorganisms such as bacteria of several μm to several tens of μm that make up the sludge. It becomes difficult to separate the parts.
[0015]
Among the conditions of the wet medium stirring mill treatment, the bead filling rate is preferably 50 to 100%, particularly 70 to 90% from the crushing effect and power consumption, and the disk (pin) tip peripheral speed is preferably 3 to 30 m / Seconds, in particular 5 to 20 m / second, are preferred. The direction of the mill chamber may be either a vertical type or a horizontal type, and examples of the stirring device for stirring the crushing medium include a disk type, a pin type, and a pin disk type.
[0016]
The sludge residence time in the wet medium agitation mill treatment is appropriately set depending on the sludge concentration to be introduced, the crushing medium to be used, etc., and is not particularly limited, but is usually preferably 20 seconds to 20 minutes, particularly 30. Second to 10 minutes are preferred. If the residence time is shorter than 20 seconds, there is a possibility that the sludge is not sufficiently crushed, and even if it is longer than 20 minutes, only the power consumption increases and the crushing effect is not improved so much.
[0017]
The treatment temperature is preferably 60 ° C. or less, and particularly preferably 4 to 40 ° C. When the treatment temperature is higher than 60 ° C., a part of the sludge component is thermally denatured to become a hardly decomposable substance, which is not preferable because the quality of the treated water may be deteriorated. Usually, since the temperature of the sludge crushed by the mill treatment rises by about 10 to 30 ° C. compared to the sludge before the treatment, it is preferable to cool with cooling water when the temperature is high as in summer. Cooling can be easily performed by passing cooling water between the mill chambers of the wet-medium agitating mill, since it normally has a double jacket structure.
[0018]
The example of the outline of the process of the aerobic digestion method of the excess sludge of the present invention as described above is as shown in FIG. 1, FIG. 2, and FIG.
In FIG. 1, surplus sludge 1 discharged from an activated sludge treatment facility for organic wastewater such as sewage, food factory wastewater, and chemical factory wastewater is introduced into an aerobic digester 2 and subjected to aerobic digestion. In the aerobic digestion tank 2, the sludge concentration is maintained almost constant in order to efficiently perform the aerobic digestion treatment, and when the sludge concentration becomes high, it is extracted as the extracted sludge 3. Part of the biologically treated sludge 4 after aerobic digestion is sent to a wet medium stirring mill 5, and the rest is separated into separated water 7 and separated sludge 8 in a solid-liquid separation tank 6. The biologically treated sludge 4 sent to the wet medium agitating mill 5 is treated by the wet medium agitating mill 5 to become a solubilized sludge 9, which is returned to the aerobic digester 2 together with most of the separated sludge 8. In FIG. 2, the biological treatment sludge 4 is all sent to the solid-liquid separation tank 6, and a part of the separated sludge 8 is transferred to the wet medium stirring mill 5. In FIG. 3, a part of the separated sludge 8 is concentrated in the sludge concentrating device 10 and then transferred to the wet medium stirring mill 5.
[0019]
In the present invention, surplus sludge generated from a wastewater treatment facility is treated by an aerobic digestion method, and sludge newly generated in an aerobic digester is crushed and solubilized by a wet medium agitation mill, and further By aerobic digestion in the aerobic digester, surplus sludge is decomposed into carbon dioxide and water, and a significant reduction in surplus sludge is realized. As a result, the life of the sludge landfill can be extended, and the sludge incineration facility can be significantly reduced in scale. In addition, separation of wastewater treatment and sludge treatment does not cause water quality deterioration of wastewater treatment facilities, and when used in existing facilities, it is not necessary to modify aeration equipment for biological treatment tanks. It is economical because excess sludge can be reduced.
[0020]
【Example】
Next, the present invention will be specifically described with reference to examples.
Examples 1-3, Comparative Example 1
According to the treatment flow shown in FIG. 1, the aerobic digestion process of the excess sludge 1 (solid substance concentration 5g / L) generated in the sewage treatment facility was performed.
That is, 1 L of surplus sludge 1 (solid matter concentration 5 g / L) of a sewage treatment facility was supplied to a 10 L aerobic digester 2 per day. The water temperature of the aerobic digester 2 was 25 ° C., the amount of aerated air was 0.7 to 0.8 L / min, and the sludge was appropriately extracted so that the sludge concentration was 4 to 5 g / L (extracted sludge 3). A part of the biologically treated sludge 4 digested in the aerobic digestion tank 2 was sent to the wet medium agitation mill 5, solubilized by the wet medium agitation mill, and returned to the aerobic digester 2. The remaining bioactive sludge 4 was subjected to solid-liquid separation in a sedimentation tank (solid-liquid separation tank 6), the separated water 7 was discharged out of the system, and the separated sludge 8 was returned to the aerobic digestion tank 2. The amount of biologically treated sludge 4 to be treated with a wet medium agitating mill is the amount of solid matter (5 g / day: Example 1) that is 1 times the amount of (surplus) sludge treated amount (15 g / day: Example 2). ) 4 times the amount of solids (20 g / day, Example 3), and compared with a system (Comparative Example 1) in which all biologically treated sludge 4 was returned without wet media stirring milling. Wet medium stirring mill treatment uses DYNO-MILL KDL (manufactured by Bachofen, Switzerland) as a wet medium stirring mill, and 0.6 mmφ glass beads (manufactured by Silibeads, true specific gravity 2.5) as a crushing medium. Processing was performed at a bead filling rate of 85%, a disk tip peripheral speed of 8.5 m / sec, a residence time of 2 minutes, and a processing temperature of 10 ± 2 ° C.
The result is shown in FIG.
[0021]
FIG. 4 is a diagram showing the influence of sludge reduction by aerobic digestion treatment of wet medium stirring mill treatment, and the vertical axis shows the ratio of sludge discharge outside the system to the total surplus supply sludge weight.
From FIG. 4, when the biologically treated sludge is returned without being subjected to the wet-medium agitating mill treatment (Comparative Example 1), only 28% of the sludge is reduced, whereas part of the biologically treated sludge is wet. 49% (Example 1), 65% (Example 2) and 64% (Example 3) are reduced by media stirring mill treatment, respectively, and a part of biologically treated sludge is wet media stirring mill It turns out that the amount of sludge discharged | emitted out of the system can be reduced significantly by returning to an aerobic digester after processing and solubilizing.
[0022]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the excess sludge discharged | emitted can be reduced significantly by an aerobic digestion method economically, without deteriorating the activated sludge process water quality of organic wastewater.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing an example of an outline of steps of an aerobic digestion method of excess sludge according to the present invention.
FIG. 2 is a diagram showing another example of the outline of the process of the aerobic digestion method of excess sludge according to the present invention.
FIG. 3 is a diagram showing another example of the outline of the process of the aerobic digestion method of excess sludge according to the present invention.
FIG. 4 is a diagram showing the influence of wet medium stirring mill treatment on sludge reduction by aerobic digestion treatment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Surplus sludge 2 Aerobic digestion tank 3 Pull-out sludge 4 Biological treatment sludge 5 Wet medium stirring mill 6 Solid-liquid separation tank 7 Separation water 8 Separation sludge 9 Solubilization sludge 10 Sludge concentrator

Claims (1)

有機性廃水の活性汚泥処理施設から排出される余剰汚泥を好気性消化槽に導入して好気性消化した後、好気性消化した汚泥の一部又は全部を前記好気性消化槽に返送して汚泥を減量化するに際し、返送する汚泥の一部又は全部を湿式媒体攪拌式ミルで処理した後に前記好気性消化槽に返送するものであって、前記湿式媒体攪拌式ミルで処理する汚泥量が前記好気性消化槽に導入される余剰汚泥に対して1〜4倍の固形物量であることを特徴とする余剰汚泥の好気性消化方法。After surplus sludge discharged from the activated sludge treatment facility of organic wastewater is introduced into the aerobic digestion tank and subjected to aerobic digestion, a part or all of the aerobic digested sludge is returned to the aerobic digestion tank and sludge is recovered. When the amount of sludge to be returned is treated with a wet medium stirring mill after part or all of the returned sludge is returned to the aerobic digester, the amount of sludge to be treated with the wet medium stirring mill is A method for aerobic digestion of surplus sludge, wherein the amount of solids is 1 to 4 times the amount of surplus sludge introduced into the aerobic digester.
JP10730598A 1998-04-17 1998-04-17 Aerobic digestion method of excess sludge Expired - Fee Related JP3853971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10730598A JP3853971B2 (en) 1998-04-17 1998-04-17 Aerobic digestion method of excess sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10730598A JP3853971B2 (en) 1998-04-17 1998-04-17 Aerobic digestion method of excess sludge

Publications (2)

Publication Number Publication Date
JPH11300393A JPH11300393A (en) 1999-11-02
JP3853971B2 true JP3853971B2 (en) 2006-12-06

Family

ID=14455728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10730598A Expired - Fee Related JP3853971B2 (en) 1998-04-17 1998-04-17 Aerobic digestion method of excess sludge

Country Status (1)

Country Link
JP (1) JP3853971B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002248498A (en) * 2001-02-26 2002-09-03 Katayama Chem Works Co Ltd Excess sludge treatment method
JP2003305491A (en) * 2002-04-18 2003-10-28 Purio:Kk Method for boiling treatment of sewage
EP1550638B1 (en) * 2002-09-02 2012-10-17 Koga, Takeshi Method of reducing volume of sludge and apparatus therefor
EP2189422B1 (en) 2007-08-28 2015-06-03 Diamond Engineering Co., Ltd. Activated sludge material, reduction method of excess sludge amount in bioreactor, and maintenance method of bioreactor
JP2009214073A (en) * 2008-03-12 2009-09-24 Unitika Ltd Treatment method for nitrogen-containing organic wastewater and treatment apparatus therfor
CN102303944B (en) 2011-08-22 2014-08-27 广州新致晟环保科技机械设备有限公司 Method for re-treating dewatered sludge

Also Published As

Publication number Publication date
JPH11300393A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
EP1310461A1 (en) Method for treating organic waste water
JP3853971B2 (en) Aerobic digestion method of excess sludge
JP2003033780A (en) Method for wastewater treatment
JP4907123B2 (en) Organic waste processing method and processing system
JP4409928B2 (en) Organic waste treatment methods
JP3738699B2 (en) Sludge treatment method and treatment apparatus, and sewage treatment method and treatment equipment using the same
JP2004290866A (en) Treatment method and apparatus for organic waste
JP2004008843A (en) Method for treating organic waste water
JPH11290827A (en) Method for heating organic waste in fermentation tank
JP3488371B2 (en) Sludge crushing method
JP2000354887A (en) Treatment method of organic wastewater
JP2009248041A (en) Method and system for methane fermentation treatment of wood waste
JP3474125B2 (en) Organic wastewater treatment method and treatment apparatus
JP2004181349A (en) Apparatus and method for sludge treatment
JPH07112198A (en) Method for reducing weight of sludge by digestion and device therefor
JPH115096A (en) Treatment of waste water containing hydrogen peroxide
JP4665693B2 (en) Method and apparatus for treating organic waste
JP4018952B2 (en) Jellyfish processing method
JP2007117867A (en) Method and equipment for treating organic solid
JP2008155075A (en) Sewage treatment method and apparatus
JP3853922B2 (en) Method for removing phosphorus from organic sludge
JP2000167597A (en) Anaerobic digestion of organic sludge
JP3969144B2 (en) Biological treatment method and biological treatment apparatus
JP2006326438A (en) Apparatus and method for treating sludge
JP3906323B2 (en) Treatment method for highly concentrated waste liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees