JP3837834B2 - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JP3837834B2
JP3837834B2 JP14814197A JP14814197A JP3837834B2 JP 3837834 B2 JP3837834 B2 JP 3837834B2 JP 14814197 A JP14814197 A JP 14814197A JP 14814197 A JP14814197 A JP 14814197A JP 3837834 B2 JP3837834 B2 JP 3837834B2
Authority
JP
Japan
Prior art keywords
secondary coil
power feeding
line
primary
feeding device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14814197A
Other languages
Japanese (ja)
Other versions
JPH10341545A (en
Inventor
光義 黒田
正徳 津田
Original Assignee
神鋼電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼電機株式会社 filed Critical 神鋼電機株式会社
Priority to JP14814197A priority Critical patent/JP3837834B2/en
Publication of JPH10341545A publication Critical patent/JPH10341545A/en
Application granted granted Critical
Publication of JP3837834B2 publication Critical patent/JP3837834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,非接触給電装置に係り,例えば工程間搬送装置等に非接触で電力を給電するための非接触給電装置において,従来より電力伝送効率を向上させることのできる非接触給電装置に関するものである。
【0002】
【従来の技術】
に示すように,非接触給電装置P0は,例えば,所定経路に敷設されたレール51上を移動する工程間搬送装置の移動体52に,高周波電源53により交流電流が流される給電線54から,受電部55を介して電力を給電する装置である。ここで,図は上記受電部55の詳細な構造を示す図である。
に示すように,受電部55には,レール51の側壁51aに固定された往復平行線路である給電線54の周りに生じた磁束と鎖交し,給電線54から電力を受電する受電コイル56と,受電コイル56が巻き付けられる中心コア57とその外側に設けられた周辺コア58とを有する断面E型状の磁性体コアが設けられている。
【0003】
上記受電部55を具備する非接触給電装置P0において,高周波電源53(図参照)により給電線54に交流電流が流されると,該給電線54の周りに磁界が生じて,上記受電コイル56両端に起電力が誘導される。この起電力は,例えば定電圧回路等により一定の直流電圧に変換され,移動体52に設けられたインバータ(図示せず)等に供給されて,移動体52の移動が可能となる。
また,上記給電線54と受電コイル56との磁気的結合は,受電部55に設けられた中心コア57及び周辺コア58により強められている。ここで,図は給電線54の周りに生じた磁束の分布を示す図である。
【0004】
に示すように,中心コア57は,受電コイル56の内側に形成された磁束の漏れを低減させる例えば鉄等の磁性体である。また,周辺コア58は,中心コア57と一体に設けられており,中心コア57と共に,給電線54の周りに磁性体による磁路を形成し,受電コイル56に給電線54の周りに生じた磁束をできるだけ有効に鎖交させている。当然ながら,受電コイル56に有効に鎖交する磁束が増えれば,受電コイル56両端に生じる誘導起電力も増大するから,電力の伝送効率が向上する。尚,給電線54の矢印M方向の移動を妨げないように,即ち,給電線54が受電コイル56と周辺コア58との間の開口Kから出入りできるように,周辺コア58の他端は中心コア57と接続されない構造となっている。
このように,上記非接触給電装置では,受電コイル56の周りに磁性体のコアを設けることにより磁束漏れを低減させて,電力の伝送効率を向上させている。
【0005】
【発明が解決しようとする課題】
ところで,給電線54における電流損失が多い場合にも,上記装置の効率は低下してしまう。給電線54の長さは移動体52の移動範囲により定められてしまうから,上記電流損失を低減するためには,導電性の良い金属材を給電線54に用いるか,給電線54の断面積を大きくする必要がある。但し,導電性の良い金属材は一般的に高価である。
一方,中心コア57と周辺コア58との間の開口Kには,給電線54の自由な出入りを考慮して,給電線54の太さよりも大きな幅Wを必要とする。従って,上記電流損失を低減するために,給電線54の断面積を大きくすれば,上記幅Wを大きくする必要が生じ,空気中にある磁路が長くなる。空気中にある磁路が長くなると,図に示すように,開口Kにある磁束が乱れ受電コイル56に有効に鎖交する磁束が減少し,結局,装置全体における電力の伝送効率は向上されない。即ち,従来の非接触給電装置では,給電線54と受電コイル56との磁気的結合力と,給電線54の太さとがトレードオフの関係にあり,電力伝送効率を向上させるのが困難であった。
本発明は,このような従来の技術における課題を解決するために,非接触給電装置を改良し,給電線を中心コア及び周辺コアの外側に配して,従来より電力伝送効率を向上させることのできる非接触給電装置を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記目的を達成するために,本発明は,交流電流が流れる往復線路である1次給電線に沿って非接触で移動する負荷に上記1次給電線から電力を給電する非接触給電装置であって,上記負荷側に設けられ,上記1次給電線の周りに生じた磁束と鎖交する2次コイルと,上記2次コイルがその中央脚に巻き付けられる断面E型状の磁性体コアとを具備してなる非接触給電装置において,上記磁性体コアの凹部が偏平に形成されると共に該凹部に上記2次コイルが嵌挿され,上記1次給電線上記磁性体コアの凹部外側に上記2次コイルと対向して配置された断面E形状の第二の磁性体コアに形成された偏平の凹部と同一形状に形成されて該凹部に密着するように配置されると共に,上記1次給電線の幅と上記2次コイルの巻幅とが略同一であることを特徴とする非接触給電装置として構成されている。上記非接触給電装置では,偏平に形成された磁性体コア凹部に2次コイルが嵌挿され,1次給電線と対向して配置されるため,1次給電線の磁束が2次コイルに有効に鎖交させ,伝送電力効率を向上させることができる。さらに,2次コイルの巻幅が偏平な1次給電線と略同一であるため,1次給電線と2次コイルとのギャップに較べ2次コイルの巻幅を大きく設定することが可能となり,1次給電線の位置変化による伝送電力効率の変化を抑制することができる。また,上記1次給電線を上記磁性体コアの外側に配置されるため,1次給電線の断面積を増加させて1次給電線における電流損失を低減することができる
【0007】
【発明の実施の形態】
以下,添付図面を参照して,本発明の一実施の形態につき説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。ここで,図1は本発明の一実施の形態に係る非接触給電装置の概略構成を示す図,図2は上記非接触給電装置における磁束の分布を示す図である。
図1に示すように,本実施の形態に係る非接触給電装置0は,例えばレール側壁51aに固定された往復平行線路である1次給電線1の周りに生じた磁束と鎖交し,1次給電線1から電力を受電する2次コイル2と,2次コイル2が巻き付けられる中心コア(中央脚に相当)3とその外側に設けられた周辺コア4とを有する断面E型状の磁性体コアと具備する点で従来の技術と同様である。
【0008】
一方,上記非接触給電装置0では,従来の技術と異なり,上記磁性体コアの凹部が偏平に形成されると共に該凹部に2次コイル2が嵌挿され,1次給電線1は上記磁性体コアの中心コア3と周辺コア4とからなる凹部外側に2次コイル2と対向して配置されると共に,1次給電線1の幅と2次コイル2の巻幅とが略同一に設定される。
そして,上記のような非接触給電装置0では,1次給電線1と対向する所定平面F0上,又は該平面と近接し,該平面と略平行な平面上に中心コア3の端面3a及びコア4の端面4aが配置されており,従来装置のようなコアへの給電線の出入りが不要であり,磁性体コアとの間の空隙を小さくすることができる。ここで,中心コア3の端面3aと周辺コア4の端面4aとの間にある2次コイル2のコイル幅aは,1次給電線1と上記所定平面Fとの間の空隙bよりも長く設定されている。即ち,2次コイル2,中心コア3及び周辺コア4からなる上記磁性体コアの凹部は偏平に設けられている。
また,上記非接触給電装置0は,図1及び図2に示すように1次給電線1の間に形成された上記磁束を収束させるための給電線側コア5,6を具備し,中心コア3及び周辺コア4と対向する所定平面F1上,又は平面F1と近接し,平面F1と略平行な平面上に給電線側コア5の端面5a及び給電線側コア6の端面6aが配置されている点でも従来の技術と異なる。なお,図1及び図2に示すように,上記給電線側コア5,6は断面E型状に形成されており,上記1次給電線1は上記給電線側コア5,6に形成された凹部と同一形状に形成されている。そして,上記1次給電線1は,上記給電線側コア5,6の凹部に密着するように配置されている。ここに,上記給電線側コア5,6が第二の磁性体コアに相当する。
【0009】
以下,図2を参照して,上記非接触給電装置0の詳細について説明する。ここで,図2は上記非接触給電装置0の磁束分布を示す図である。
上記非接触給電装置0では,1次給電線1と2次コイル2との磁気的結合をより強めるために,中心コア3の平面F0方向の長さ及び周辺コア4の平面F0方向の長さと,給電線側コア5の平面F1方向の長さ及び給電線側コア6の平面F1方向の長さとが,それぞれ略同じ長さc及びeに設けられている。また,1次給電線1の平面F1方向の長さも,2次コイル2の平面F0方向の長さと略同じ長さaに設けられている。
さらに,上記非接触給電装置0では,磁性体コア幅aよりも磁性体コアの歯の高さhが小さく設定されている即ち上記磁性体コアの凹部が偏平に設けられているため,図2(a)に示すような磁束分布を取りうる。この磁束分布にも示されている通り,磁性体コアを通る磁路の長さcw(図2(b)参照)に対して,空気中を通る磁路の長さawは小さく,磁性体コア幅aを大きく取れば取るだけ,磁性体コアを通る磁路の長さcwと空気中を通る磁路の長さawとの比aw/cwは小さくなる。これは,2次コイル2側が矢印M方向に多少移動したとしても,2次コイル2に有効に鎖交する磁束がほとんど変わらないことを意味する。従って,移動体52の揺れに対して,電力伝送効率は影響を受けにくくなる。
【0010】
また,この構成により1次給電線1の断面積を増大させることも可能となる。これは,1次給電線1は,2次コイル2と対向する面に配置されているため,従来のように1次給電線1の断面積を増やすことで空気中を通る磁路も増えてしまうというトレードオフの関係がなくなるからである。従って,2次コイル2と対向する関係を維持しつつ,1次給電線1の断面積を増大させれば,1次給電線1における電流損失が低減され,装置の効率が向上する。
このように,本実施の形態に係る非接触給電装置0では,従来装置のような給電線の出入りが不要であるから,1次給電線1と磁性体コアとの空隙を従来より狭くすることができる。また,1次給電線1の断面積を増加させて装置の効率を向上させることもできる
【001
【発明の効果】
上記のように本発明は,交流電流が流れる往復線路である1次給電線に沿って非接触で移動する負荷に上記1次給電線から電力を給電する非接触給電装置であって,上記負荷側に設けられ,上記1次給電線の周りに生じた磁束と鎖交する2次コイルと,上記2次コイルがその中央脚に巻き付けられる断面E型状の磁性体コアとを具備してなる非接触給電装置において,上記磁性体コアの凹部が偏平に形成されると共に該凹部に上記2次コイルが嵌挿され,上記1次給電線上記磁性体コアの凹部外側に上記2次コイルと対向して配置された断面E形状の第二の磁性体コアに形成された偏平の凹部と同一形状に形成されて該凹部に密着するように配置されると共に,上記1次給電線の幅と上記2次コイルの巻幅とが略同一であることを特徴とする非接触給電装置として構成されている。上記非接触給電装置では,偏平に形成された磁性体コア凹部に2次コイルが嵌挿され,1次給電線と対向して配置されるため,1次給電線の磁束が2次コイルに有効に鎖交させ,伝送電力効率を向上させることができる。さらに,2次コイルの巻幅が偏平な1次給電線と略同一であるため,1次給電線と2次コイルとのギャップに較べ2次コイルの巻幅を大きく設定することが可能となり,1次給電線の位置変化による伝送電力効率の変化を抑制することができる。また,上記1次給電線を上記磁性体コアの外側に配置されるため,1次給電線の断面積を増加させて1次給電線における電流損失を低減することができる
【図面の簡単な説明】
【図1】 本発明の一実施の形態に係る非接触給電装置0の概略構成を示す図。
【図2】 上記非接触給電装置0の磁束分布を示す図。
【図】 従来の非接触給電装置と移動体との様子を説明するための図。
【図】 従来の非接触給電装置の概略構成を示す図。
【図】 従来の非接触給電装置の磁束分布を説明するための図。
【符号の説明】
1…1次給電線
2…2次コイル
3…中心コア
4…周辺コア
5,6…給電線側コア
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-contact power feeding device, and more particularly to a non-contact power feeding device that can improve power transmission efficiency in a non-contact power feeding device for feeding power in a non-contact manner to an inter-process transfer device or the like. It is.
[0002]
[Prior art]
As shown in FIG. 3 , the non-contact power supply device P0 includes, for example, a power supply line 54 in which an alternating current is supplied from a high-frequency power source 53 to a moving body 52 of an interprocess transfer device that moves on a rail 51 laid on a predetermined path. From the power receiving unit 55, the power is supplied. Here, FIG. 4 is a diagram showing a detailed structure of the power receiving unit 55 .
As shown in FIG. 4 , the power receiving unit 55 receives power from the power supply line 54 by interlinking with the magnetic flux generated around the power supply line 54 that is a reciprocating parallel line fixed to the side wall 51 a of the rail 51. An E-shaped magnetic core having a coil 56, a central core 57 around which the power receiving coil 56 is wound, and a peripheral core 58 provided outside the central core 57 is provided.
[0003]
In the non-contact power feeding device P0 including the power receiving unit 55, when an alternating current is passed through the power supply line 54 from the high frequency power supply 53 (see FIG. 3 ), a magnetic field is generated around the power supply line 54, and the power receiving coil 56 An electromotive force is induced at both ends. This electromotive force is converted into a constant DC voltage by a constant voltage circuit, for example, and supplied to an inverter (not shown) or the like provided in the moving body 52 so that the moving body 52 can move.
Further, the magnetic coupling between the power supply line 54 and the power receiving coil 56 is strengthened by the central core 57 and the peripheral core 58 provided in the power receiving unit 55. Here, FIG. 5 is a diagram showing the distribution of magnetic flux generated around the feeder line 54.
[0004]
As shown in FIG. 5 , the central core 57 is a magnetic body such as iron that reduces leakage of magnetic flux formed inside the power receiving coil 56. Further, the peripheral core 58 is provided integrally with the central core 57, and together with the central core 57, a magnetic path is formed around the power supply line 54 by a magnetic material, and is generated in the power receiving coil 56 around the power supply line 54. The magnetic flux is interlinked as effectively as possible. Naturally, if the magnetic flux effectively linked to the power receiving coil 56 is increased, the induced electromotive force generated at both ends of the power receiving coil 56 is also increased, so that the power transmission efficiency is improved. The other end of the peripheral core 58 is the center so that the movement of the power supply line 54 in the direction of the arrow M is not hindered, that is, the power supply line 54 can enter and exit from the opening K between the power receiving coil 56 and the peripheral core 58. The structure is not connected to the core 57.
As described above, in the non-contact power feeding device, magnetic flux leakage is reduced by providing a magnetic core around the power receiving coil 56, thereby improving power transmission efficiency.
[0005]
[Problems to be solved by the invention]
By the way, the efficiency of the above-mentioned device is lowered even when the current loss in the feeder line 54 is large. Since the length of the feeder line 54 is determined by the moving range of the moving body 52, in order to reduce the current loss, a metal material having good conductivity is used for the feeder line 54, or the sectional area of the feeder line 54 is used. Need to be larger. However, a metal material with good conductivity is generally expensive.
On the other hand, the opening K between the central core 57 and the peripheral core 58 requires a width W larger than the thickness of the feeder line 54 in consideration of free entry and exit of the feeder line 54. Therefore, if the cross-sectional area of the feeder line 54 is increased in order to reduce the current loss, the width W needs to be increased, and the magnetic path in the air becomes longer. When the magnetic path in the air becomes longer, as shown in FIG. 5 , the magnetic flux in the opening K is disturbed, and the magnetic flux effectively linked to the power receiving coil 56 is reduced. Consequently, the power transmission efficiency in the entire apparatus is not improved. . That is, in the conventional non-contact power supply device, the magnetic coupling force between the power supply line 54 and the power receiving coil 56 and the thickness of the power supply line 54 are in a trade-off relationship, and it is difficult to improve the power transmission efficiency. It was.
In order to solve the problems in the conventional technology, the present invention improves the non-contact power feeding device and arranges feeding lines outside the central core and the peripheral core to improve the power transmission efficiency compared with the conventional technology. An object of the present invention is to provide a non-contact power feeding device that can perform the above.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is a non-contact power supply apparatus that supplies power from a primary power supply line to a load that moves in a non-contact manner along a primary power supply line that is a round-trip line through which an alternating current flows. A secondary coil that is provided on the load side and interlinks with the magnetic flux generated around the primary power supply line, and a magnetic core having an E-shaped cross section around which the secondary coil is wound around the center leg. In the non-contact power feeding device provided, the concave portion of the magnetic core is formed flat and the secondary coil is inserted into the concave portion, and the primary feeding line is disposed outside the concave portion of the magnetic core. secondary coil opposite to the arrangement cross-section E shape second formed magnetic core is formed in a flat recess having the same shape are disposed so as to be in close contact with the recess Rutotomoni, the primary paper The width of the electric wire and the winding width of the secondary coil are substantially the same. And it is configured as a non-contact power feeding device, wherein the door. In the non-contact power feeding device, since the secondary coil is inserted into the flat magnetic core recess and disposed opposite the primary power feeding line, the magnetic flux of the primary power feeding line is effective for the secondary coil. The transmission power efficiency can be improved. Furthermore, since the winding width of the secondary coil is substantially the same as the flat primary feeding line, the winding width of the secondary coil can be set larger than the gap between the primary feeding line and the secondary coil. A change in transmission power efficiency due to a change in the position of the primary feeder can be suppressed. In addition, since the primary feed line is disposed outside the magnetic core, the cross-sectional area of the primary feed line can be increased and current loss in the primary feed line can be reduced .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention. Here, FIG. 1 is a diagram showing a schematic configuration of a non-contact power feeding device according to an embodiment of the present invention, and FIG. 2 is a diagram showing a magnetic flux distribution in the non-contact power feeding device.
As shown in FIG. 1, the non-contact power feeding device 0 according to the present embodiment interlinks with a magnetic flux generated around a primary power feeding line 1 which is a reciprocating parallel line fixed to a rail side wall 51a, for example. A magnetic material having an E-shaped cross section having a secondary coil 2 that receives power from the secondary feeder 1, a central core (corresponding to a central leg) 3 around which the secondary coil 2 is wound, and a peripheral core 4 provided outside the central core 3 It is the same as the prior art in that it has a body core.
[0008]
On the other hand, in the non-contact power feeding device 0, unlike the prior art, the concave portion of the magnetic core is formed flat and the secondary coil 2 is inserted into the concave portion, and the primary feeder 1 is connected to the magnetic body. The core is arranged outside the concave portion formed by the central core 3 and the peripheral core 4 so as to face the secondary coil 2, and the width of the primary feeder 1 and the winding width of the secondary coil 2 are set to be substantially the same. The
In the non-contact power feeding device 0 as described above, the end surface 3a of the central core 3 and the core are placed on a predetermined plane F0 facing the primary feeding line 1 or on a plane close to the plane and substantially parallel to the plane. 4 end face 4a is arranged, and it is not necessary to enter and exit the power supply line to / from the core as in the conventional device, and the gap between the magnetic core and the magnetic core can be reduced. The coil width a of the secondary coil 2 located between the end face 4a of the end surface 3a and the peripheral core 4 of the center core 3, than the gap b between the primary feed line 1 and the predetermined plane F 0 It is set long. That is, the concave portion of the magnetic core composed of the secondary coil 2, the central core 3, and the peripheral core 4 is provided flat.
Further, the non-contact power feeding device 0 includes feeding line side cores 5 and 6 for converging the magnetic flux formed between the primary feeding lines 1 as shown in FIG. 1 and FIG. 3 and the end face 5a of the feeder line side core 5 and the end face 6a of the feeder line side core 6 are disposed on a plane F1 facing the peripheral core 4 or close to the plane F1 and substantially parallel to the plane F1. This is different from the conventional technology. As shown in FIGS. 1 and 2, the feeder line side cores 5 and 6 are formed in an E-shaped cross section, and the primary feeder line 1 is formed on the feeder line side cores 5 and 6. It is formed in the same shape as the recess. The primary power supply line 1 is arranged so as to be in close contact with the recesses of the power supply line side cores 5 and 6. Here, the feeder line side cores 5 and 6 correspond to a second magnetic core.
[0009]
Hereinafter, the details of the non-contact power feeding device 0 will be described with reference to FIG. Here, FIG. 2 is a diagram showing the magnetic flux distribution of the non-contact power feeding device 0. In FIG.
In the non-contact power feeding device 0, in order to further strengthen the magnetic coupling between the primary power feeding line 1 and the secondary coil 2, the length of the central core 3 in the plane F0 direction and the length of the peripheral core 4 in the plane F0 direction The length in the plane F1 direction of the feeder line side core 5 and the length in the plane F1 direction of the feeder line side core 6 are provided at substantially the same lengths c and e, respectively. In addition, the length of the primary feeder 1 in the plane F1 direction is also set to a length a that is substantially the same as the length of the secondary coil 2 in the plane F0 direction.
Furthermore, in the non-contact power feeding device 0, the tooth height h of the magnetic core is set smaller than the magnetic core width a . That is , since the concave portion of the magnetic core is provided flat, a magnetic flux distribution as shown in FIG. As shown in this magnetic flux distribution, the length cw of the magnetic path passing through the air is smaller than the length cw of the magnetic path passing through the magnetic core (see FIG. 2B). The larger the width a, the smaller the ratio aw / cw between the length cw of the magnetic path passing through the magnetic core and the length aw of the magnetic path passing through the air. This means that even if the secondary coil 2 side moves slightly in the direction of the arrow M, the magnetic flux effectively linked to the secondary coil 2 hardly changes. Therefore, the power transmission efficiency is less affected by the shaking of the moving body 52.
[0010]
In addition, the cross-sectional area of the primary feeder 1 can be increased by this configuration. This is the primary feed line 1, because they are located in the secondary coil 2 and opposed faces, also a magnetic path passing through the air by increasing the conventional primary cross-sectional area of the feed line 1 as increasing This is because there is no trade-off relationship. Therefore, if the cross-sectional area of the primary feed line 1 is increased while maintaining the relationship facing the secondary coil 2, the current loss in the primary feed line 1 is reduced and the efficiency of the apparatus is improved.
Thus, in the non-contact power feeding device 0 according to the present embodiment, it is not necessary to enter and exit the power feeding line as in the conventional device, so that the gap between the primary power feeding line 1 and the magnetic core is made narrower than before. Can do. Further, the efficiency of the apparatus can be improved by increasing the cross-sectional area of the primary feeder 1 .
[001 1 ]
【The invention's effect】
As described above, the present invention is a contactless power feeding device that feeds power from the primary power feed line to a load that moves in a non-contact manner along a primary power feed line that is a round trip line through which an alternating current flows. A secondary coil interlinked with the magnetic flux generated around the primary power supply line, and a magnetic core having an E-shaped cross section around which the secondary coil is wound around the central leg. In the non-contact power feeding device, the concave portion of the magnetic core is formed flat and the secondary coil is inserted into the concave portion, and the primary feeding line is connected to the secondary coil outside the concave portion of the magnetic core. opposite of the deployed section E shape second magnetic core to be formed into a flat recess of the same shape formed is disposed so as to be in close contact with the recess Rutotomoni, the width of the primary feed line The winding width of the secondary coil is substantially the same. And it is configured as a non-contact power feeding device. In the non-contact power feeding device, since the secondary coil is inserted into the flat magnetic core recess and disposed opposite the primary power feeding line, the magnetic flux of the primary power feeding line is effective for the secondary coil. The transmission power efficiency can be improved. Further, since the winding width of the secondary coil is substantially the same as the flat primary feeding line, it is possible to set the winding width of the secondary coil larger than the gap between the primary feeding line and the secondary coil. A change in transmission power efficiency due to a change in the position of the primary feeder can be suppressed. In addition, since the primary feed line is disposed outside the magnetic core, the cross-sectional area of the primary feed line can be increased and current loss in the primary feed line can be reduced .
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a non-contact power feeding device 0 according to an embodiment of the present invention.
FIG. 2 is a view showing a magnetic flux distribution of the non-contact power feeding device 0.
FIG. 3 is a diagram for explaining a state of a conventional non-contact power feeding device and a moving body.
FIG. 4 is a diagram showing a schematic configuration of a conventional non-contact power feeding device.
FIG. 5 is a diagram for explaining magnetic flux distribution of a conventional non-contact power feeding device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Primary feed line 2 ... Secondary coil 3 ... Central core 4 ... Peripheral core 5,6 ... Feed line side core

Claims (1)

交流電流が流れる往復線路である1次給電線に沿って非接触で移動する負荷に上記1次給電線から電力を給電する非接触給電装置であって,
上記負荷側に設けられ,上記1次給電線の周りに生じた磁束と鎖交する2次コイルと,
上記2次コイルがその中央脚に巻き付けられる断面E型状の磁性体コアとを具備してなる非接触給電装置において,
上記磁性体コアの凹部が偏平に形成されると共に該凹部に上記2次コイルが嵌挿され,
上記1次給電線上記磁性体コアの凹部外側に上記2次コイルと対向して配置された断面E形状の第二の磁性体コアに形成された偏平の凹部と同一形状に形成されて該凹部に密着するように配置されると共に,上記1次給電線の幅と上記2次コイルの巻幅とが略同一であることを特徴とする非接触給電装置。
A non-contact power feeding device that feeds power from the primary power feeding line to a load that moves in a non-contact manner along a primary power feeding line that is a round-trip line through which an alternating current flows,
A secondary coil provided on the load side and interlinked with the magnetic flux generated around the primary power supply line;
In the non-contact power feeding device, wherein the secondary coil includes a magnetic core having an E-shaped cross section wound around the center leg thereof.
A concave portion of the magnetic core is formed flat, and the secondary coil is inserted into the concave portion;
The primary power supply line is formed in the same shape as a flat concave portion formed in a second magnetic core having an E-shaped cross section disposed opposite to the secondary coil on the outer side of the concave portion of the magnetic core. non-contact power feeding device, wherein the Rutotomoni is disposed so as to be in close contact with the recess, and the winding width of the aforementioned secondary coil of the primary feed line is substantially the same.
JP14814197A 1997-06-05 1997-06-05 Non-contact power feeding device Expired - Fee Related JP3837834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14814197A JP3837834B2 (en) 1997-06-05 1997-06-05 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14814197A JP3837834B2 (en) 1997-06-05 1997-06-05 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JPH10341545A JPH10341545A (en) 1998-12-22
JP3837834B2 true JP3837834B2 (en) 2006-10-25

Family

ID=15446196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14814197A Expired - Fee Related JP3837834B2 (en) 1997-06-05 1997-06-05 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP3837834B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5646470B2 (en) * 2009-05-26 2014-12-24 株式会社ヘッズ Non-contact power supply device
KR101271322B1 (en) * 2011-09-29 2013-06-04 한국전력공사 Contactless power transfer device
US20130314188A1 (en) * 2012-05-04 2013-11-28 Ionel Jitaru Magnetic Structure for Large Air Gap
CN108599401B (en) * 2018-07-10 2024-06-11 中惠创智(深圳)无线供电技术有限公司 Wireless power supply device for track

Also Published As

Publication number Publication date
JPH10341545A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
US6407470B1 (en) Electric power transmission device
JP3295938B2 (en) Direct-acting contactless power supply
JP2008539584A (en) Inductively coupled power transfer system
JPH08175233A (en) Noncontact power feeding system
JP3837834B2 (en) Non-contact power feeding device
JP2024103559A (en) Conductor arrangement for inductive power transfer, inductive power transfer device, and method for forming a conductor arrangement for inductive power transfer
JPH07322535A (en) Noncontact power supply for direct motion mechanism
JPH06225482A (en) Power feeding apparatus
KR101479947B1 (en) Transformer
JP5857204B2 (en) Non-contact power feeding device
JP4051878B2 (en) Non-contact power feeding device
JP4165523B2 (en) Contactless power supply
JP5276393B2 (en) Non-contact power feeding device
KR102455726B1 (en) Gap variable type transformer structure using E-type iron core and using method thereof
JP3770047B2 (en) Pickup coil and manufacturing method thereof
JP3789528B2 (en) Non-contact power supply device for ground mobile
JP2000358301A (en) Noncontact load-dispatching equipment
JPH08126107A (en) Power feeder deevice without contact
JP2002184633A (en) Non-contact power supply device
JP4045995B2 (en) Contactless power supply system
JP3598715B2 (en) Non-contact power supply
JPH1154349A (en) Non-contact feeding device
JP2717017B2 (en) Trance
JPH0678517A (en) Magnetic rail brake
JP3380886B2 (en) Contactless power supply system for mobile objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees