JP3833761B2 - EXHAUST GAS PURIFYING CATALYST CONVERTER, PROCESS FOR PRODUCING THE SAME, AND HEAT-RESISTANT INORGANIC FIBER MAT FOR USE IN EXHAUST GAS PURIFYING CATALYST CONVERTER - Google Patents

EXHAUST GAS PURIFYING CATALYST CONVERTER, PROCESS FOR PRODUCING THE SAME, AND HEAT-RESISTANT INORGANIC FIBER MAT FOR USE IN EXHAUST GAS PURIFYING CATALYST CONVERTER Download PDF

Info

Publication number
JP3833761B2
JP3833761B2 JP00428797A JP428797A JP3833761B2 JP 3833761 B2 JP3833761 B2 JP 3833761B2 JP 00428797 A JP00428797 A JP 00428797A JP 428797 A JP428797 A JP 428797A JP 3833761 B2 JP3833761 B2 JP 3833761B2
Authority
JP
Japan
Prior art keywords
heat
exhaust gas
resistant inorganic
fiber mat
inorganic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00428797A
Other languages
Japanese (ja)
Other versions
JPH10196355A (en
Inventor
敬一 阪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Toyota Motor Corp
Original Assignee
Ibiden Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd, Toyota Motor Corp filed Critical Ibiden Co Ltd
Priority to JP00428797A priority Critical patent/JP3833761B2/en
Publication of JPH10196355A publication Critical patent/JPH10196355A/en
Application granted granted Critical
Publication of JP3833761B2 publication Critical patent/JP3833761B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/02Fitting monolithic blocks into the housing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Gasket Seals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、主として車両の排気系において、エキゾーストパイプの途中やエキゾーストマニホールドに設けて排気ガスの浄化をはかる、排気ガス浄化用コンバータ、特に触媒保持体と分割型シェルとの間に結晶質アルミナファイバの耐熱無機繊維マットによる保持シール層を介在させた排気ガス浄化用触媒コンバータおよびその製造方法に関する。
【0002】
【従来の技術】
従来、排気ガス浄化用触媒コンバータとしては、白金等の触媒が保持された触媒保持体とこの触媒保持体の外側を覆う筒状の金属シェルとの間に、保持シール層を設けた構造のものが知られている。なお、触媒保持体には、断面がハニカム状のコージェライト担体が一般に用いられている。
【0003】
また、保持シール層は、未膨張バーミキュライトとセラミックファイバ等との混合物で主として構成されてきたが、近年のエンジンの高性能化に伴って排気ガスの温度が高くなって、保持シール層に対する耐熱性の強化が求められているのに反して、バーミキュライトの耐熱温度がそれほど高くないことから、結晶質アルミナファイバ等の耐熱無機繊維のみからなる保持シール層の適用が試みられている。
【0004】
そして、この種の排気ガス浄化用触媒コンバータは、触媒保持体に、保持シール層となる耐熱無機繊維マットを巻き付けてから、この触媒保持体を2分割された分割型シェルで挟んで組み付ける、いわゆるクラムシェル方式にて製造するのが、一般的である。
【0005】
しかしながら、耐熱無機繊維による耐熱無機繊維マットを触媒保持体に巻き付けて、分割型シェルで挟み込んで組み立てる際、耐熱無機繊維マットが分割型シェルの合わせ目に噛み込まれたり、分割型シェルと耐熱無機繊維マットとの滑りが悪いために、耐熱無機繊維マットが破損する、等の問題が発生していた。
【0006】
これら問題を解決するために、密封したフィルムで耐熱無機繊維マットを、いわゆる真空パックする方法が、例えば特開昭57−146954号公報に、提案されている。ここで、耐熱無機繊維マットは真空パックによって減厚されるが、この減厚は真空パック内外の差圧を利用して行われることから、大気圧以上の圧縮力を与えることはできない。そのために、真空パックされて分割型シェル内に組み込まれた耐熱無機繊維マットの嵩密度は、真空パック前の耐熱無機繊維マットに比較してそれほど高くはならない。
【0007】
【発明が解決しようとする課題】
ところで、排気ガス浄化用触媒コンバータの保持シール層は、触媒保持体を分割型シェル内に保持し、自動車の走行中の振動等により触媒保持体が、その外側の分割型シェルに当たって破損するのを防ぎ、さらに分割型シェルと触媒保持体との間から排気ガスがリークするのを防ぐために用いられている。
【0008】
すなわち、分割型シェルに耐熱無機繊維マットを組み込んで得られる保持シール層は、例えば0.2g/cm3 以上、好ましくは0.3g/cm3 以上の嵩密度が必要とされるが、上記の真空パックによる手法では、圧縮力が小さいために、ここまでの嵩密度を得ることが難しい。なお、真空パック前の耐熱無機繊維マットの嵩密度を高くすることも考えられるが、嵩密度を高くすると、真空パックによって所定の減厚が達成されずに、耐熱無機繊維マットが分割型シェルの合わせ目に噛み込み易くなるため、採用できない。
【0009】
そこで、この発明は、保持シール層として機能するに十分の嵩密度を保持シール層に付与した排気ガス浄化用触媒コンバーターを、上記した不利をまねくことなしに、提供しようとするものである。
【0010】
【課題を解決するための手段】
この発明は、触媒保持体と、この触媒保持体の外側を覆う金属製の分割型シェルとの間に、主に耐熱無機繊維から構成された保持シール層を設けた排気ガス浄化用触媒コンバータにおいて、上記保持シール層は、分割型シェルの合わせ目近傍部分における嵩密度に比して、それ以外の部分の嵩密度を大きくしたことを特徴とする排気ガス浄化用触媒コンバータである。
【0011】
ここで、保持シール層の分割型シェルの合わせ目近傍部分における嵩密度が0.16〜0.30g/cm3 であること、保持シール層の分割型シェルの合わせ目近傍以外の部分における嵩密度が0.25〜0.50g/cm3 であること、そして保持シール層を構成する結晶質アルミナファイバは、平均繊維径が2〜6μm およびアルミナ含有率が60wt%以上であること、が実施に当たり有利である。
【0012】
また、この発明の排気ガス浄化用触媒コンバータは、触媒保持体の外周部に、薄肉部および厚肉部を有する耐熱無機繊維マットを、その薄肉部が分割型シェルの合わせ目部分に合致する配置の下に巻き付けた後、耐熱無機繊維マットで覆われた触媒保持体を分割型シェルにて挟んで耐熱無機繊維マットを圧縮して組み付けることによって、有利に製造することができる。
【0013】
ここで、耐熱無機繊維マットの薄肉部の厚さが、触媒保持体と分割型シェルとのクリアランスの1.1〜1.5倍であること、そして耐熱無機繊維マットの厚肉部の厚さが、触媒保持体と分割型シェルとのクリアランスの1.1〜2.1倍であること、が好ましい。
【0014】
さらに、上記製造方法と同様に、触媒保持体の外周部に耐熱無機繊維マットを巻き付けたのち、触媒保持体と分割型シェルとのクリアランスが分割型シェルの合わせ目部分で大きく、それ以外の部分で小さく設定された、分割型シェルにて、耐熱無機繊維マットで覆われた触媒保持体を挟んで組み付けることによっても、この発明の排気ガス浄化用触媒コンバータを製造し得る。この場合は、均一な厚みの耐熱無機繊維マットを使用することができる。
【0015】
【発明の実施の形態】
さて、この発明に従う排気ガス浄化用触媒コンバータは、図1に径方向に展開させた状態を示すように、白金などの触媒が保持された触媒保持体1、この触媒保持体1の外側を覆う結晶質セラミックファイバやシリカファイバ等の耐熱無機繊維による保持シール層2および保持シール層2の外側を覆う金属製の分割型シェル3,4から成る。とくに、保持シール層2について図2に示すように、分割型シェル3のフランジ3aおよび3bと同シェル4のフランジ4aおよび4bとが合わさる、合わせ目の近傍部分(以下、合わせ目部分という)2aおよび2bにおける嵩密度に比して、それ以外の部分(以下、保持部分という)2cおよび2dにおける嵩密度を大きくしたことを特徴とするものである。
【0016】
すなわち、保持シール層2における、保持部分2cおよび2dの嵩密度を合わせ目部分2aおよび2bより大きくして、保持部分2cおよび2dにて触媒保持体1のシェル内での保持および振動に対する保護をはかることによって、合わせ目部分2aおよび2bでは排気ガスをシールするに足る程度の嵩密度を付与したところに特徴がある。
【0017】
ここに、合わせ目部分2aおよび2bの嵩密度は、後述する排気ガスシール性および組立性の観点から、0.16g/cm3 〜0.30g/cm3 であることが好ましい。なぜなら、触媒保持体と分割型シェルとの間で排気ガスをシールするには、組立て後の保持シール層の嵩密度が0.16g/cm3 以上は必要である。すなわち、保持シール層は、触媒保持体の保持、さらに触媒保持体と分割型シェルとの間をシールして排気ガスが漏洩するのを防止するために用いられる。とくに、エンジン運転時と停止時において、セラミックス製の触媒保持体と金属製の分割型シェルとの熱膨張率が異なるために、両者間のクリアランスが変動し、また振動等の影響を受けるため、この過酷な条件下で触媒保持体と分割型シェルとの間で排気ガスの漏洩を防止するためには、組立て後の保持シール層の合わせ目部分2aおよび2bの嵩密度が0.16g/cm3 以上であること、触媒保持体の外径寸法および分割型シェルの内径寸法がばらつくことを考慮すると0.20g/cm3 以上にすることがより好ましい。
【0018】
一方、合わせ目部分2aおよび2bの嵩密度が0.30g/cm3 をこえると、組立て時の耐熱無機繊維マットの圧縮率を極めて大きくしなければならず、組立て時に分割型シェルを合わせた際に、耐熱無機繊維マットが分割型シェルのフランジ部分からはみ出して噛み込まれる結果、分割型シェルの端部で耐熱無機繊維マットが削れたり、組立て後のフランジ部分の溶接が困難になる場合がある。
【0019】
さらに、保持部分2cおよび2dの嵩密度は、0.25〜0.50g/cm3 であることが好ましい。すなわち、保持部分2cおよび2dは、シール機能に加えて触媒保持体をシェル内に保持する役目をも担うために、0.25g/cm3 以上の嵩密度を有することが好ましい。一方、0.50g/cm3 をこえると、保持シール層を構成する耐熱無機繊維マットが徐々に圧壊して、組立て後の厚み方向の復元率が低下し、触媒保持体がシェル内でずれてしまう等の不利をまねき、さらに嵩密度が高くなると、触媒保持体自体が圧壊してしまう。
【0020】
この保持シール層の合わせ目部分2aおよび2bと保持部分2cおよび2dとの面積比は、触媒保持体および分割型シェルの形状などによって、適宜設定する必要があるが、耐久性の面からは、組立て可能な範囲で保持部分2cおよび2dの面積を多くすることが望ましい。具体的には、断面が円形の触媒保持体の場合、合わせ目部分2aおよび2bが占める比率を、その円周の30%前後とし、残りを保持部分2cおよび2dとすることが推奨される。
【0021】
なお、保持シール層は、平均繊維径が2〜6μm 、アルミナ含有率が60wt%以上の結晶質アルミナファイバーにて構成することが好ましい。同様に、触媒保持体には、例えばコージェライトによるセラミックスハニカム状のもの、あるいは金属箔をコルゲート加工したものを用いることができる。さらに、分割型シェルには、例えばSUS409に代表されるフェライト系ステンレス鋼製で円や長円断面形状の筒を2分割したものを用いることができる。
【0022】
次に、上記した触媒コンバータの製造手順について、図面を参照して説明する。この発明に従う製造方法は、基本的に在来のクラムシェル方式と同様に、触媒保持体1に結晶質セラミックファイバ等の耐熱無機繊維マットを巻き付けてから、この触媒保持体1を分割型シェル3および4で挟み、該シェルのフランジ3aと4a、3bと4bをそれぞれ溶接にて接合して、シェルと触媒保持体との間に耐熱無機繊維マットを組み付けて保持シール層を設ける、一連の工程からなる。
【0023】
上記の製造工程において、触媒保持体1に巻き付ける耐熱無機繊維マットとして、図3に示すような耐熱無機繊維マット20を用いる。すなわち、耐熱無機繊維マット20は、薄肉部20aおよび20bと、厚肉部20cおよび20dとからなり、具体的には、1枚のベースマット上にさらに所定寸法に裁断した2枚のパッチを離間して貼り合わせて、薄い部分と厚い部分を作成して用いる。なお、耐熱無機繊維マットとしては、厚肉部をパッチの貼り合わせで作成するのではなく、一体成形にて厚みを変化させたものを用いることも可能である。また、耐熱無機繊維マットは、例えば結晶質セラミックファイバのマットをポリエチレンフィルム等で真空パックしたもの、あるいはマットの表面を摩擦係数の小さいシート材で被覆したものを、使用することが好ましい。
【0024】
そして、触媒保持体1に耐熱無機繊維マット20を巻き付けたのち、図4に示すように、耐熱無機繊維マット20の薄肉部20aおよび20bに、分割型シェル3および4の合わせ目部分を合致させ、次いで図5に示すように、分割型シェルのフランジ3aと4a、3bと4bをそれぞれ溶接にて接合すれば、耐熱無機繊維マット20で覆われた触媒保持体1は分割型シェルに挟まれて組み付けが完了し、触媒保持体1と分割型シェル3および4との間に、保持シール層2が形成される。
【0025】
かくして得られた保持シール層2は、耐熱無機繊維マット20の薄肉部20aおよび20bが合わせ目部分2aおよび2bとなり、一方厚肉部20cおよび20dが保持部分2cおよび2dとなる。従って、薄肉部と厚肉部とが組み付け後は同じ厚みになるため、薄肉部での嵩密度は小さくなる一方、厚肉部での嵩密度は大きくなるのである。また、分割型シェル3および4の合わせ目に位置させる、耐熱無機繊維マットの薄肉部は、分割型シェル3および4を合わせる際の圧縮率が小さいため、シェルの合わせ目に向かってはみ出すことはなく、従って合わせ目に耐熱無機繊維マットが噛み込まれることはない。
【0026】
ここで、組立て前の耐熱無機繊維マット20の薄肉部20aおよび20bの厚さが、触媒保持体1と分割型シェル3および4とのクリアランスの1.1〜1.5倍であることが、好ましい。なぜなら、薄肉部の厚さがクリアランスの1.1倍未満では、組立て時に触媒保持体の保持力が得られない結果、触媒保持体が前後にずれる可能性があり、一方クリアランスの1.5倍をこえる厚さでは、分割型シェルのフランジ部にマットが噛み込まれて組立て不能になる、おそれがある。
【0027】
同様に、耐熱無機繊維マット20の厚肉部20cおよび20dの厚さが、触媒保持体1と分割型シェル3および4とのクリアランスの1.1〜2.1倍であることが好ましい。なぜなら、厚肉部の厚さがクリアランスの1.1倍未満では、組立て時に触媒保持体の保持力が得られない結果、触媒保持体が前後にずれる可能性があり、一方クリアランスの2.1倍をこえる厚さでは、組立て時にマットあるいは触媒保持体自体が圧壊する、おそれがある。
【0028】
また、組立て前の耐熱無機繊維マットの嵩密度は、0.17〜0.27g/cm3 であることが好ましい。なぜなら、嵩密度が0.17g/cm3 未満では、組立て後に所望の嵩密度にすることが難しく、排気ガスのリークが心配され、一方嵩密度が0.27g/cm3 をこえると、分割型シェル内へ組付けるために、例えば有機バインダーを多量に添加する等、組立て作業性が著しく阻害される。
【0029】
さらに、耐熱無機繊維マットにおける薄肉部および厚肉部の面積比は、触媒保持体および分割型シェルの形状などによって、適宜設定する必要があるが、耐久性の面からは、組立て可能な範囲で厚肉部の面積を多くすることが望ましい。具体的には、断面が円形の触媒保持体の場合、薄肉部が占める比率を、その円周の30%前後とし、残りを厚肉部とすることが推奨される。
【0030】
なお、耐熱無機繊維マットには、図3に示したように、予め薄肉部および厚肉部を設けたものを使用したが、触媒保持体に1枚のシート材を巻き付けたのち、厚肉部に相当する部分にシート材を部分的に追加してから、組立てを行うことも可能である。とくに、耐熱無機繊維マットの薄肉部と厚肉部との厚みに極端な差を設けて、保持シール層における嵩密度の差を大きくしたい場合には、追加する耐熱無機繊維マットを斜めにカットしたり、追加する耐熱無機繊維マットを複層とすればよい。
【0031】
また、耐熱無機繊維マットの厚みや嵩密度を一定にしておき、分割型シェルの形状で対応することも可能である。すなわち、図6に示すように、予め分割型シェル3および4と触媒保持体1とのクリアランスをシェルの合わせ目部分近傍では大きく、その他の部分を小さくしておけばよい。その他にも、分割型シェルの合わせ目部分近傍以外の部分のシェル内側にビードを設けてもよい。
【0032】
なお、分割型シェル内への耐熱無機繊維マットの組付けが容易に行われるためには、真空パックフィルム等の摩擦係数の低い材料で耐熱無機繊維マットを覆って、耐熱無機繊維マットの表面に潤滑性を付与することが好ましい。
ちなみに、前記排ガス浄化用コンバーターは、自動車製造工場において、エンジンの排気ガスパイプに接続され、その試運転の際には、高温度の排ガスによって、接着剤、真空パックフィルム等が焼却されるのが通例である。但し、加熱分解時発生するガスが有害でない成分のものを選択する必要はある。
【0033】
【実施例】
実施例1
図1に示した構造に従って、外径100mmのコーディエライトの触媒保持体1と、この触媒保持体1の外側を覆う内径108mmのSUS409製の分割型シェル3および4との間に、保持シール層2を設けた排気ガス浄化用触媒コンバータを、図3〜5に示したところに従って製造した。
【0034】
すなわち、耐熱無機繊維マット20には、結晶質アルミナファイバーのマット(デンカアルセン電気化学工業(株)製)を使用し、図3に示したように、厚み12mm、嵩密度0.08g/cm3 のベースマットに、厚み6mm、嵩密度0.08g/cm3 の2枚のパッチを貼り当てて、薄肉部20aおよび20bと、厚肉部20cおよび20dとを形成し、その後真空パックにより保護した。真空パック後の厚みおよび嵩密度は、薄肉部が4.4mmおよび0.22g/cm3 、そして厚肉部が6.5mmおよび0.22g/cm3 であった。
【0035】
次いで、耐熱無機繊維マット20を触媒保持体1に巻付けて粘着テープ等で仮止めした後、図4に示したように、分割型シェル3および4を配置してから分割型シェル3および4で触媒保持体1を挟み込んだ後、シェルのフランジ3aと4a、3bと4bをそれぞれ溶接して、図5に示す触媒コンバータを得た。
【0036】
ここで、触媒保持体1の外周に巻付けた耐熱無機繊維マット20を分割型シェル3および4で挟み込む際に、該シェルのフランジ3aと4aあるいは3bと4bの間に、耐熱無機繊維マット20を噛み込むことなく組立てが完了した。
【0037】
かくして得られた触媒コンバータの保持シール層2における、合わせ目部分の嵩密度は0.24g/cm3 および保持部分の嵩密度は0.36g/cm3 であった。なお、触媒保持体1と分割型シェル3および4とのクリアランスは、4mmである。
【0038】
次に、組立てた触媒コンバータを、3リットルのガソリンエンジンに接続し、エンジン回転数をアイドリングから5500rpmまで10分間で上昇させ、その後5分間でアイドリングに戻す試験を、連続で500時間行った後、分割型シェルを開封して内部を観察したが、触媒保持体および保持シール層に損傷は見られず、また排気ガスが漏れた痕跡も見られなかった。
【0039】
実施例2
実施例1と同様の触媒保持体1を用いて、分割型シェルと触媒保持体とのクリアランスを、図6に示すように、分割型シェルの合わせ目で6mmとし、この合わせ目からシェルの頂点へクリアランスを漸減して頂点のクリアランスを4mmとした。耐熱無機繊維マット20には、厚み18mmおよび嵩密度0.08g/cm3 の結晶質アルミナファイバーのマットを真空パックにより厚み6.5mmおよび嵩密度0.22g/cm3 としたものを用いた。以上の条件に従って、触媒保持体1の外周に耐熱無機繊維マット20を巻付けたのち、分割型シェル3および4で挟み込み、図6に示す触媒コンバータを得た。
【0040】
かくして得られた触媒コンバータの保持シール層2における、合わせ目部分の嵩密度は0.24g/cm3 および保持部分の嵩密度は0.36g/cm3 であった。
【0041】
ここで、触媒保持体1の外周に巻付けた耐熱無機繊維マット20を分割型シェル3および4で挟み込む際に、該シェルのフランジ3aと4aあるいは3bと4bの間に、耐熱無機繊維マット20を噛み込むことなく組立てが完了した。また、組立て後の触媒コンバータを、実施例1と同様に、エンジン評価を行ったところ、問題は見られなかった。
【0042】
比較例
実施例1と同様の製造工程において、触媒保持体1に巻き付ける耐熱無機繊維マットとして、図7に示す均一な厚さのものを用いた。すなわち、厚み18mmおよび嵩密度0.08g/cm3 の耐熱無機繊維マット30を真空パックして用いた。真空パック後の厚みおよび嵩密度は、それぞれ6.5mmおよび0.22g/cm3 であった。
【0043】
そして、この耐熱無機繊維マット30を触媒保持体1に巻付け、粘着テープ等で仮止めした後分割型シェル3および4で挟み込んでところ、図8に示すように、フランジ3aと4a、さらに3bと4b間に耐熱無機繊維マット30が噛み込んで、フランジの溶接が行えず、組立ては実現しなかった。
【0044】
【発明の効果】
この発明によれば、組立て時に耐熱無機繊維マットが分割型シェルに噛み込むことなしに、所望の嵩密度を有する保持シール層を設けることができるため、触媒保持体と分割型シェルとの間のシール機能に優れる排気ガス浄化用触媒コンバータを提供し得る。
【図面の簡単な説明】
【図1】排気ガス浄化用触媒コンバーターの構造を示す斜視図である。
【図2】保持シール層の構造を示す図である。
【図3】耐熱無機繊維マットを示す図である。
【図4】排気ガス浄化用触媒コンバーターの製造手順を説明する図である。
【図5】排気ガス浄化用コンバーターの断面図である。
【図6】別の手法によって製造した排気ガス浄化用コンバーターの断面図である。
【図7】従来の製造方法で用いていた耐熱無機繊維マットを示す図である。
【図8】従来の製造手順を説明する図である。
【符号の説明】
1 触媒保持体
2 保持シール層
2a,2b 合わせ目部分
2c,2d 保持部分
3,4 分割型シェル
3a,3b,4a,4b フランジ
20 耐熱無機繊維マット
20a,20b 薄肉部
20c,20d 厚肉部
[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to an exhaust gas purifying converter that is provided in the exhaust pipe or in an exhaust manifold to purify exhaust gas in an exhaust system of a vehicle, particularly a crystalline alumina fiber between a catalyst holding body and a split shell. The present invention relates to a catalytic converter for purifying exhaust gas with a holding seal layer made of a heat-resistant inorganic fiber mat and a method for producing the same.
[0002]
[Prior art]
Conventionally, an exhaust gas purification catalytic converter has a structure in which a holding seal layer is provided between a catalyst holding body holding a catalyst such as platinum and a cylindrical metal shell covering the outside of the catalyst holding body. It has been known. Note that a cordierite carrier having a honeycomb cross section is generally used for the catalyst holder.
[0003]
In addition, the holding seal layer has been mainly composed of a mixture of unexpanded vermiculite and ceramic fibers. However, as the performance of the engine in recent years has increased, the temperature of the exhaust gas has increased and the heat resistance to the holding seal layer has been increased. However, since the heat resistance temperature of vermiculite is not so high, application of a holding seal layer made of heat resistant inorganic fibers such as crystalline alumina fibers has been attempted.
[0004]
In this type of exhaust gas purifying catalytic converter, a heat-resistant inorganic fiber mat serving as a holding seal layer is wound around a catalyst holding body, and then the catalyst holding body is sandwiched between two divided shells and assembled. It is common to produce the clamshell method.
[0005]
However, when a heat-resistant inorganic fiber mat made of heat-resistant inorganic fibers is wrapped around the catalyst holder and sandwiched between the split-type shells and assembled, the heat-resistant inorganic fiber mat is caught in the joints of the split-type shells, Since the sliding with the fiber mat is poor, the heat-resistant inorganic fiber mat is damaged.
[0006]
In order to solve these problems, a so-called vacuum packing method for heat-resistant inorganic fiber mats with a sealed film has been proposed in, for example, Japanese Patent Application Laid-Open No. 57-146554. Here, the heat-resistant inorganic fiber mat is reduced in thickness by a vacuum pack, but since this thickness reduction is performed using a differential pressure inside and outside the vacuum pack, a compressive force exceeding atmospheric pressure cannot be applied. Therefore, the bulk density of the heat-resistant inorganic fiber mat that has been vacuum-packed and incorporated in the split-type shell is not so high as compared with the heat-resistant inorganic fiber mat before the vacuum packing.
[0007]
[Problems to be solved by the invention]
By the way, the holding seal layer of the exhaust gas purifying catalytic converter holds the catalyst holding body in the split shell, and the catalyst holding body is damaged by hitting the outer split shell due to vibration or the like while the automobile is running. This is used to prevent exhaust gas from leaking between the split shell and the catalyst holder.
[0008]
That is, the holding seal layer obtained by incorporating the heat-resistant inorganic fiber mat into the split-type shell requires, for example, a bulk density of 0.2 g / cm 3 or more, preferably 0.3 g / cm 3 or more. In the method using the vacuum pack, since the compressive force is small, it is difficult to obtain the bulk density so far. Although it is conceivable to increase the bulk density of the heat-resistant inorganic fiber mat before the vacuum packing, if the bulk density is increased, a predetermined thickness reduction is not achieved by the vacuum pack, and the heat-resistant inorganic fiber mat is separated from the split shell. Since it becomes easy to bite into the joint, it cannot be adopted.
[0009]
Accordingly, the present invention intends to provide an exhaust gas purifying catalytic converter having a bulk density sufficient to function as a holding seal layer without causing the above-mentioned disadvantages.
[0010]
[Means for Solving the Problems]
The present invention relates to an exhaust gas purifying catalytic converter in which a holding seal layer mainly composed of heat-resistant inorganic fibers is provided between a catalyst holding body and a metal divided shell covering the outside of the catalyst holding body. The holding seal layer is an exhaust gas purifying catalytic converter characterized in that the bulk density of the other portion is made larger than the bulk density in the vicinity of the joint of the split shell.
[0011]
Here, the bulk density in the vicinity of the joint of the split shell of the holding seal layer is 0.16 to 0.30 g / cm 3 , and the bulk density in the portion other than the vicinity of the joint of the split shell of the holding seal layer it There is 0.25~0.50g / cm 3, and crystalline alumina fibers constituting the holding sealing layer, the average fiber diameter of 2~6μm and alumina content is not less than 60 wt%, the in implementing It is advantageous.
[0012]
Further, in the exhaust gas purifying catalytic converter of the present invention, a heat-resistant inorganic fiber mat having a thin portion and a thick portion is disposed on the outer peripheral portion of the catalyst holding body, and the thin portion matches the joint portion of the split shell. After being wound around, the catalyst holder covered with the heat-resistant inorganic fiber mat is sandwiched between the split-type shells, and the heat-resistant inorganic fiber mat is compressed and assembled.
[0013]
Here, the thickness of the thin part of the heat resistant inorganic fiber mat is 1.1 to 1.5 times the clearance between the catalyst holder and the split shell, and the thickness of the thick part of the heat resistant inorganic fiber mat. Is preferably 1.1 to 2.1 times the clearance between the catalyst support and the split shell.
[0014]
Furthermore, after the heat-resistant inorganic fiber mat is wound around the outer periphery of the catalyst holder, the clearance between the catalyst holder and the split-type shell is large at the joint portion of the split-type shell, as in the above manufacturing method. The exhaust gas purifying catalytic converter of the present invention can also be manufactured by assembling a catalyst holding body covered with a heat-resistant inorganic fiber mat with a split shell set to a small size. In this case, a heat-resistant inorganic fiber mat having a uniform thickness can be used.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Now, the exhaust gas purifying catalytic converter according to the present invention covers a catalyst holding body 1 holding a catalyst such as platinum and the outside of the catalyst holding body 1 as shown in FIG. The holding seal layer 2 is made of a heat-resistant inorganic fiber such as a crystalline ceramic fiber or a silica fiber, and the metal divided shells 3 and 4 that cover the outside of the holding seal layer 2 are formed. In particular, as shown in FIG. 2 for the holding seal layer 2, a portion near the joint (hereinafter referred to as a joint portion) 2 a where the flanges 3 a and 3 b of the split shell 3 and the flanges 4 a and 4 b of the shell 4 are combined. In comparison with the bulk density in 2b and 2b, the bulk density in the other parts (hereinafter referred to as holding parts) 2c and 2d is increased.
[0016]
That is, the bulk density of the holding portions 2c and 2d in the holding seal layer 2 is made larger than that of the joint portions 2a and 2b so that the holding portions 2c and 2d can be held in the shell of the catalyst holder 1 and protected against vibration. By measuring, the joint portions 2a and 2b are characterized in that a bulk density sufficient to seal the exhaust gas is given.
[0017]
Here, the bulk density of the joint portion 2a and 2b, from the viewpoint of the exhaust gas sealing property and assembling property to be described later, is preferably 0.16g / cm 3 ~0.30g / cm 3 . This is because, in order to seal the exhaust gas between the catalyst holder and the split shell, the bulk density of the holding seal layer after assembly is required to be 0.16 g / cm 3 or more. That is, the holding seal layer is used for holding the catalyst holding body, and further sealing the space between the catalyst holding body and the divided shell to prevent the exhaust gas from leaking. In particular, because the coefficient of thermal expansion of the ceramic catalyst holder and the metal split-type shell differs during engine operation and when the engine is stopped, the clearance between the two fluctuates and is affected by vibrations, etc. In order to prevent the exhaust gas from leaking between the catalyst holder and the split shell under this severe condition, the bulk density of the joint portions 2a and 2b of the holding seal layer after assembly is 0.16 g / cm. 3 or more that it is, it is more preferable that the 0.20 g / cm 3 or more considering that the inner diameter of the outer diameter and divided shell of the catalyst retainer varies.
[0018]
On the other hand, if the bulk density of the joint portions 2a and 2b exceeds 0.30 g / cm 3 , the compressibility of the heat-resistant inorganic fiber mat at the time of assembly must be extremely large. In addition, as a result of the heat-resistant inorganic fiber mat protruding from the flange portion of the split-type shell and being bitten, the heat-resistant inorganic fiber mat may be scraped off at the end of the split-type shell or it may be difficult to weld the flange portion after assembly. .
[0019]
Furthermore, the bulk density of the holding portions 2c and 2d is preferably 0.25 to 0.50 g / cm 3 . That is, the holding portions 2c and 2d preferably have a bulk density of 0.25 g / cm 3 or more in order to play a role of holding the catalyst holding body in the shell in addition to the sealing function. On the other hand, if it exceeds 0.50 g / cm 3 , the heat-resistant inorganic fiber mat constituting the holding seal layer is gradually crushed, the restoration rate in the thickness direction after assembly is lowered, and the catalyst holder is displaced in the shell. If the bulk density is further increased, the catalyst holder itself is crushed.
[0020]
The area ratio between the joint portions 2a and 2b and the holding portions 2c and 2d of the holding seal layer needs to be set as appropriate depending on the shape of the catalyst holding body and the split-type shell, but from the viewpoint of durability, It is desirable to increase the area of the holding portions 2c and 2d within a range that can be assembled. Specifically, in the case of a catalyst holding body having a circular cross section, it is recommended that the ratio occupied by the joint portions 2a and 2b be around 30% of the circumference and the remaining portions be holding portions 2c and 2d.
[0021]
The holding seal layer is preferably composed of crystalline alumina fibers having an average fiber diameter of 2 to 6 μm and an alumina content of 60 wt% or more. Similarly, as the catalyst holding body, for example, a ceramic honeycomb shape made of cordierite or a corrugated metal foil can be used. Furthermore, as the split-type shell, for example, a ferritic stainless steel typified by SUS409, which is a cylinder having a circular or oval cross-sectional shape divided into two, can be used.
[0022]
Next, the manufacturing procedure of the catalytic converter described above will be described with reference to the drawings. In the manufacturing method according to the present invention, basically, a heat-resistant inorganic fiber mat such as a crystalline ceramic fiber is wound around the catalyst holding body 1 in the same manner as in the conventional clamshell method, and then the catalyst holding body 1 is divided into the split shell 3. A series of steps in which the flanges 3a and 4a, 3b and 4b of the shell are joined by welding and a heat-resistant inorganic fiber mat is assembled between the shell and the catalyst holding body to provide a holding seal layer. Consists of.
[0023]
In the manufacturing process described above, a heat resistant inorganic fiber mat 20 as shown in FIG. 3 is used as the heat resistant inorganic fiber mat wound around the catalyst holder 1. That is, the heat-resistant inorganic fiber mat 20 includes thin portions 20a and 20b and thick portions 20c and 20d. Specifically, two patches cut into a predetermined size on one base mat are separated from each other. Then, a thin part and a thick part are created and used. In addition, as a heat-resistant inorganic fiber mat, it is also possible to use a thick-walled part whose thickness is changed by integral molding, instead of creating a thick part by bonding patches. In addition, it is preferable to use a heat-resistant inorganic fiber mat, for example, a crystalline ceramic fiber mat vacuum-packed with a polyethylene film or the like, or a mat surface coated with a sheet material having a small friction coefficient.
[0024]
Then, after the heat-resistant inorganic fiber mat 20 is wound around the catalyst holder 1, as shown in FIG. 4, the joint portions of the split-type shells 3 and 4 are matched with the thin portions 20a and 20b of the heat-resistant inorganic fiber mat 20. Then, as shown in FIG. 5, if the flanges 3a and 4a, 3b and 4b of the split-type shell are joined by welding, the catalyst holder 1 covered with the heat-resistant inorganic fiber mat 20 is sandwiched between the split-type shells. Thus, the assembly is completed, and the holding seal layer 2 is formed between the catalyst holding body 1 and the divided shells 3 and 4.
[0025]
In the holding seal layer 2 thus obtained, the thin portions 20a and 20b of the heat-resistant inorganic fiber mat 20 become seam portions 2a and 2b, while the thick portions 20c and 20d become holding portions 2c and 2d. Therefore, since the thin wall portion and the thick wall portion have the same thickness after assembly, the bulk density in the thin wall portion is reduced, while the bulk density in the thick wall portion is increased. In addition, the thin portion of the heat-resistant inorganic fiber mat located at the joint between the split-type shells 3 and 4 has a small compression rate when the split-type shells 3 and 4 are put together, and therefore does not protrude toward the joint between the shells. Therefore, the heat-resistant inorganic fiber mat is not caught in the joint.
[0026]
Here, the thickness of the thin portions 20a and 20b of the heat-resistant inorganic fiber mat 20 before assembly is 1.1 to 1.5 times the clearance between the catalyst holding body 1 and the split-type shells 3 and 4. preferable. This is because if the thickness of the thin wall portion is less than 1.1 times the clearance, the catalyst holding body may not have a holding force during assembly, and as a result, the catalyst holding body may shift back and forth, while the clearance is 1.5 times the clearance. If the thickness exceeds 50 mm, the mat may be caught in the flange portion of the split-type shell, making it impossible to assemble.
[0027]
Similarly, the thickness of the thick portions 20c and 20d of the heat-resistant inorganic fiber mat 20 is preferably 1.1 to 2.1 times the clearance between the catalyst holder 1 and the split-type shells 3 and 4. This is because if the thickness of the thick portion is less than 1.1 times the clearance, the holding force of the catalyst holding body cannot be obtained at the time of assembling, and as a result, the catalyst holding body may shift back and forth, while the clearance of 2.1. If the thickness exceeds twice, the mat or the catalyst holder itself may be crushed during assembly.
[0028]
The bulk density of the heat-resistant inorganic fiber mat before assembly is preferably 0.17 to 0.27 g / cm 3 . This is because if the bulk density is less than 0.17 g / cm 3 , it is difficult to achieve a desired bulk density after assembly, and there is a concern about exhaust gas leakage, while if the bulk density exceeds 0.27 g / cm 3 , For assembling into the shell, for example, a large amount of an organic binder is added, so that the assembly workability is significantly hindered.
[0029]
Furthermore, the area ratio of the thin-walled portion and the thick-walled portion in the heat-resistant inorganic fiber mat needs to be appropriately set depending on the shape of the catalyst holder and the split-type shell, but from the viewpoint of durability, it can be assembled within the range that can be assembled. It is desirable to increase the area of the thick part. Specifically, in the case of a catalyst holding body having a circular cross section, it is recommended that the ratio occupied by the thin portion is about 30% of the circumference and the remaining portion is the thick portion.
[0030]
In addition, as shown in FIG. 3, the heat-resistant inorganic fiber mat used in advance was provided with a thin portion and a thick portion. However, after the sheet material was wound around the catalyst holder, the thick portion It is also possible to assemble after partially adding a sheet material to the portion corresponding to. In particular, if you want to increase the difference in bulk density in the holding seal layer by providing an extreme difference in the thickness between the thin and thick parts of the heat-resistant inorganic fiber mat, cut the heat-resistant inorganic fiber mat to be added diagonally. Or the heat-resistant inorganic fiber mat to be added may be a multilayer.
[0031]
It is also possible to keep the thickness and bulk density of the heat-resistant inorganic fiber mat constant and cope with the shape of the split shell. That is, as shown in FIG. 6, the clearance between the split-type shells 3 and 4 and the catalyst holding body 1 may be increased in the vicinity of the joint portion of the shell and the other portions may be reduced in advance. In addition, a bead may be provided inside the shell other than the vicinity of the joint portion of the split shell.
[0032]
For easy assembly of the heat resistant inorganic fiber mat in the split shell, the heat resistant inorganic fiber mat is covered with a material having a low coefficient of friction such as a vacuum pack film, and the surface of the heat resistant inorganic fiber mat is covered. It is preferable to impart lubricity.
Incidentally, the exhaust gas purification converter is connected to the exhaust gas pipe of an engine in an automobile manufacturing factory, and the adhesive, the vacuum pack film, etc. are usually incinerated by high temperature exhaust gas during the trial operation. is there. However, it is necessary to select a component in which the gas generated during the thermal decomposition is not harmful.
[0033]
【Example】
Example 1
In accordance with the structure shown in FIG. 1, a holding seal is provided between a cordierite catalyst holder 1 with an outer diameter of 100 mm and split type shells 3 and 4 made of SUS409 with an inner diameter of 108 mm covering the outside of the catalyst holder 1. An exhaust gas purifying catalytic converter provided with the layer 2 was produced according to the manner shown in FIGS.
[0034]
That is, as the heat resistant inorganic fiber mat 20, a crystalline alumina fiber mat (manufactured by Denka Alsen Denki Kagaku Kogyo Co., Ltd.) is used. As shown in FIG. 3, the thickness is 12 mm and the bulk density is 0.08 g / cm 3. Two patches having a thickness of 6 mm and a bulk density of 0.08 g / cm 3 were applied to the base mat to form the thin portions 20a and 20b and the thick portions 20c and 20d, which were then protected by a vacuum pack. . Thickness and bulk density after the vacuum pack, the thin portion is 4.4mm and 0.22 g / cm 3, and the thick portion was 6.5mm and 0.22 g / cm 3.
[0035]
Next, the heat-resistant inorganic fiber mat 20 is wound around the catalyst holding body 1 and temporarily fixed with an adhesive tape or the like, and then the split-type shells 3 and 4 are arranged as shown in FIG. Then, after sandwiching the catalyst holder 1, the flanges 3a and 4a, 3b and 4b of the shell were welded to obtain the catalytic converter shown in FIG.
[0036]
Here, when the heat-resistant inorganic fiber mat 20 wound around the outer periphery of the catalyst holder 1 is sandwiched between the split-type shells 3 and 4, the heat-resistant inorganic fiber mat 20 is sandwiched between the flanges 3a and 4a or 3b and 4b of the shell. The assembly was completed without biting.
[0037]
In the thus obtained holding seal layer 2 of the catalytic converter, the bulk density of the joint portion was 0.24 g / cm 3 and the bulk density of the holding portion was 0.36 g / cm 3 . The clearance between the catalyst holder 1 and the split shells 3 and 4 is 4 mm.
[0038]
Next, after the assembled catalytic converter was connected to a 3 liter gasoline engine, the engine speed was increased from idling to 5500 rpm in 10 minutes and then returned to idling in 5 minutes, after 500 hours of continuous testing. The split shell was opened and the inside was observed, but no damage was observed on the catalyst holder and the holding seal layer, and no trace of exhaust gas leakage was found.
[0039]
Example 2
Using the same catalyst holder 1 as in Example 1, the clearance between the split shell and the catalyst holder is 6 mm at the joint of the split shell, as shown in FIG. The clearance at the top was gradually reduced to 4 mm. The heat inorganic fiber mat 20, was used as the thickness 6.5mm and a bulk density of 0.22 g / cm 3 crystalline alumina fiber mat having a thickness of 18mm and a bulk density of 0.08 g / cm 3 by vacuum packing. In accordance with the above conditions, the heat-resistant inorganic fiber mat 20 was wound around the outer periphery of the catalyst holder 1, and then sandwiched between the split-type shells 3 and 4 to obtain the catalytic converter shown in FIG.
[0040]
In the thus obtained holding seal layer 2 of the catalytic converter, the bulk density of the joint portion was 0.24 g / cm 3 and the bulk density of the holding portion was 0.36 g / cm 3 .
[0041]
Here, when the heat-resistant inorganic fiber mat 20 wound around the outer periphery of the catalyst holder 1 is sandwiched between the split-type shells 3 and 4, the heat-resistant inorganic fiber mat 20 is sandwiched between the flanges 3a and 4a or 3b and 4b of the shell. The assembly was completed without biting. Further, when the assembled catalytic converter was evaluated for the engine in the same manner as in Example 1, no problem was found.
[0042]
Comparative Example In the same manufacturing process as in Example 1, a heat-resistant inorganic fiber mat wound around the catalyst support 1 was used with a uniform thickness shown in FIG. That is, a heat-resistant inorganic fiber mat 30 having a thickness of 18 mm and a bulk density of 0.08 g / cm 3 was vacuum packed and used. The thickness and bulk density after vacuum packing were 6.5 mm and 0.22 g / cm 3 , respectively.
[0043]
Then, when the heat-resistant inorganic fiber mat 30 is wound around the catalyst holder 1 and temporarily fixed with an adhesive tape or the like and sandwiched between the split-type shells 3 and 4, as shown in FIG. 8, the flanges 3a and 4a, and further 3b 4b, the heat-resistant inorganic fiber mat 30 was caught, and the flange could not be welded, and assembly was not realized.
[0044]
【The invention's effect】
According to this invention, since the heat-resistant inorganic fiber mat can be provided with a desired bulk density without being bitten into the split shell at the time of assembly, it can be provided between the catalyst holder and the split shell. An exhaust gas purifying catalytic converter having an excellent sealing function can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the structure of an exhaust gas purifying catalytic converter.
FIG. 2 is a view showing a structure of a holding seal layer.
FIG. 3 is a view showing a heat-resistant inorganic fiber mat.
FIG. 4 is a diagram for explaining a manufacturing procedure of an exhaust gas purifying catalytic converter.
FIG. 5 is a cross-sectional view of an exhaust gas purifying converter.
FIG. 6 is a cross-sectional view of an exhaust gas purification converter manufactured by another method.
FIG. 7 is a view showing a heat-resistant inorganic fiber mat used in a conventional manufacturing method.
FIG. 8 is a diagram for explaining a conventional manufacturing procedure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Catalyst holding body 2 Holding seal layer 2a, 2b Joint part 2c, 2d Holding part 3, 4 Split type | mold shell 3a, 3b, 4a, 4b Flange 20 Heat resistant inorganic fiber mat 20a, 20b Thin part 20c, 20d Thick part

Claims (12)

触媒保持体と、この触媒保持体の外側を覆う金属製の分割型シェルとの間に、主に耐熱無機繊維から構成された保持シール層を設けた排気ガス浄化用触媒コンバータにおいて、
上記保持シール層は、分割型シェルの合わせ目近傍部分における嵩密度に比して、それ以外の部分の嵩密度を大きくしたことを特徴とする排気ガス浄化用触媒コンバータ。
In an exhaust gas purifying catalytic converter provided with a holding seal layer mainly composed of heat-resistant inorganic fibers, between a catalyst holder and a metal divided shell covering the outside of the catalyst holder,
The holding seal layer is an exhaust gas purifying catalytic converter characterized in that the bulk density of the other part is larger than the bulk density in the vicinity of the joint of the split shell.
保持シール層の分割型シェルの合わせ目近傍部分における嵩密度が0.16〜0.30g/cm3 である請求項1記載の排気ガス浄化用触媒コンバータ。2. The exhaust gas purifying catalytic converter according to claim 1, wherein the bulk density of the holding seal layer in the vicinity of the joint of the split shell is 0.16 to 0.30 g / cm < 3 >. 保持シール層の分割型シェルの合わせ目近傍以外の部分における嵩密度が0.25〜0.50g/cm3 である請求項1または2記載の排気ガス浄化用触媒コンバータ。 3. The exhaust gas purifying catalytic converter according to claim 1, wherein a bulk density in a portion of the holding seal layer other than the vicinity of the joint of the split-type shell is 0.25 to 0.50 g / cm 3 . 保持シール層が、平均繊維径が2〜6μm およびアルミナ含有率が60wt%以上の結晶質アルミナファイバからなる請求項1、2または3記載の排気ガス浄化用触媒コンバータ。The exhaust gas purifying catalytic converter according to claim 1, 2 or 3, wherein the holding seal layer is made of crystalline alumina fiber having an average fiber diameter of 2 to 6 µm and an alumina content of 60 wt% or more. 触媒保持体と、この触媒保持体の外側を覆う金属製の分割型シェルとの間に、主に耐熱無機繊維から構成された保持シール層を設けた排気ガス浄化用触媒コンバータを製造するに当たり、
上記触媒保持体の外周部に、薄肉部および厚肉部を有する耐熱無機繊維マットを、その薄肉部が分割型シェルの合わせ目部分に合致する配置の下に巻き付けた後、耐熱無機繊維マットで覆われた触媒保持体を分割型シェルにて挟んで耐熱無機繊維マットを圧縮して組み付けることを特徴とする排気ガス浄化用触媒コンバータの製造方法。
In producing an exhaust gas purifying catalytic converter provided with a holding seal layer mainly composed of heat-resistant inorganic fibers between a catalyst holding body and a metal divided shell covering the outside of the catalyst holding body,
A heat-resistant inorganic fiber mat having a thin-walled portion and a thick-walled portion is wound around the outer periphery of the catalyst holder under an arrangement in which the thin-walled portion matches the joint portion of the split-type shell, and then the heat-resistant inorganic fiber mat is used. A method for producing a catalytic converter for purifying exhaust gas, wherein the heat-resistant inorganic fiber mat is compressed and assembled by sandwiching a covered catalyst holder between split shells.
耐熱無機繊維マットの薄肉部の厚さが、触媒保持体と分割型シェルとのクリアランスの1.1〜1.5倍である請求項5記載の排気ガス浄化用触媒コンバータの製造方法。6. The method for producing an exhaust gas purifying catalytic converter according to claim 5, wherein the thickness of the thin portion of the heat-resistant inorganic fiber mat is 1.1 to 1.5 times the clearance between the catalyst holder and the split shell. 耐熱無機繊維マットの厚肉部の厚さが、触媒保持体と分割型シェルとのクリアランスの1.1〜2.1倍である請求項5または6記載の排気ガス浄化用触媒コンバータの製造方法。The method for producing a catalytic converter for exhaust gas purification according to claim 5 or 6, wherein the thickness of the thick portion of the heat-resistant inorganic fiber mat is 1.1 to 2.1 times the clearance between the catalyst holder and the split shell. . 触媒保持体と、この触媒保持体の外側を覆う金属製の分割型シェルとの間に、主に耐熱無機繊維から構成された保持シール層を設けた排気ガス浄化用触媒コンバータを製造するに当たり、
上記触媒保持体の外周部に耐熱無機繊維マットを巻き付けたのち、触媒保持体と分割型シェルとのクリアランスが分割型シェルの合わせ目部分で大きく、それ以外の部分で小さく設定された、分割型シェルにて、耐熱無機繊維マットで覆われた触媒保持体を挟んで組み付けることを特徴とする排気ガス浄化用触媒コンバータの製造方法。
In producing an exhaust gas purifying catalytic converter provided with a holding seal layer mainly composed of heat-resistant inorganic fibers between a catalyst holding body and a metal divided shell covering the outside of the catalyst holding body,
After the heat-resistant inorganic fiber mat is wound around the outer periphery of the catalyst holder, the clearance between the catalyst holder and the split-type shell is set large at the joint portion of the split-type shell, and is set small at the other portions. A method for producing a catalytic converter for purifying exhaust gas, comprising assembling a catalyst holding body covered with a heat-resistant inorganic fiber mat with a shell.
触媒保持体と、この触媒保持体の外側を覆う金属製の分割型シェルとの間に、保持シール層を設けた排気ガス浄化用触媒コンバータにおける、該保持シール層に供する耐熱無機繊維マットであって、2つの厚肉部を離間して設けて成ることを特徴とする排気ガス浄化用触媒コンバータに供する耐熱無機繊維マット。A heat-resistant inorganic fiber mat to be used for a holding seal layer in an exhaust gas purification catalytic converter in which a holding seal layer is provided between a catalyst holder and a metal divided shell covering the outside of the catalyst holder. A heat-resistant inorganic fiber mat for use in an exhaust gas purifying catalytic converter, characterized in that two thick parts are provided apart from each other. 1枚のベースマット上に、2枚のパッチを離間して貼り合わせて厚肉部としたことを特徴とする請求項9記載の排気ガス浄化用触媒コンバータに供する耐熱無機繊維マット。10. The heat resistant inorganic fiber mat for use in an exhaust gas purifying catalytic converter according to claim 9, wherein two patches are separated and bonded to form a thick portion on one base mat. 請求項9または10において、フィルムによる真空パックを施して成ることを特徴とする排気ガス浄化用触媒コンバータに供する耐熱無機繊維マット。11. The heat-resistant inorganic fiber mat for use in an exhaust gas purifying catalytic converter according to claim 9 or 10, wherein the heat-resistant inorganic fiber mat is used for an exhaust gas purifying catalytic converter. 請求項9または10において、表面を低摩擦係数シート材で被覆して成ることを特徴とする排気ガス浄化用触媒コンバータに供する耐熱無機繊維マット。11. The heat-resistant inorganic fiber mat for use in an exhaust gas purifying catalytic converter according to claim 9 or 10, wherein the surface is coated with a low friction coefficient sheet material.
JP00428797A 1997-01-14 1997-01-14 EXHAUST GAS PURIFYING CATALYST CONVERTER, PROCESS FOR PRODUCING THE SAME, AND HEAT-RESISTANT INORGANIC FIBER MAT FOR USE IN EXHAUST GAS PURIFYING CATALYST CONVERTER Expired - Lifetime JP3833761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00428797A JP3833761B2 (en) 1997-01-14 1997-01-14 EXHAUST GAS PURIFYING CATALYST CONVERTER, PROCESS FOR PRODUCING THE SAME, AND HEAT-RESISTANT INORGANIC FIBER MAT FOR USE IN EXHAUST GAS PURIFYING CATALYST CONVERTER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00428797A JP3833761B2 (en) 1997-01-14 1997-01-14 EXHAUST GAS PURIFYING CATALYST CONVERTER, PROCESS FOR PRODUCING THE SAME, AND HEAT-RESISTANT INORGANIC FIBER MAT FOR USE IN EXHAUST GAS PURIFYING CATALYST CONVERTER

Publications (2)

Publication Number Publication Date
JPH10196355A JPH10196355A (en) 1998-07-28
JP3833761B2 true JP3833761B2 (en) 2006-10-18

Family

ID=11580319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00428797A Expired - Lifetime JP3833761B2 (en) 1997-01-14 1997-01-14 EXHAUST GAS PURIFYING CATALYST CONVERTER, PROCESS FOR PRODUCING THE SAME, AND HEAT-RESISTANT INORGANIC FIBER MAT FOR USE IN EXHAUST GAS PURIFYING CATALYST CONVERTER

Country Status (1)

Country Link
JP (1) JP3833761B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190091921A (en) * 2018-01-30 2019-08-07 현대자동차주식회사 Device for covering catalytic converter of vehicle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165357A (en) * 2005-12-09 2007-06-28 Kyoto Univ Wiring board
JP5288115B2 (en) * 2008-12-10 2013-09-11 ニチアス株式会社 Catalytic converter and method for producing catalytic converter holding material
CN102762832A (en) * 2010-02-09 2012-10-31 霓佳斯株式会社 Retaining material for catalyst converter and manufacturing method of same
JP2011208519A (en) * 2010-03-29 2011-10-20 Nichias Corp Holding material for catalytic converter, and method of manufacturing the same
JP6228727B2 (en) * 2012-02-22 2017-11-08 日立造船株式会社 Processing apparatus including catalyst-supporting honeycomb structure and method for manufacturing the same
JP6717280B2 (en) * 2017-10-17 2020-07-01 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2019113041A (en) * 2017-12-26 2019-07-11 イビデン株式会社 Holding seal material and exhaust emission control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190091921A (en) * 2018-01-30 2019-08-07 현대자동차주식회사 Device for covering catalytic converter of vehicle
KR102463474B1 (en) 2018-01-30 2022-11-03 현대자동차주식회사 Device for covering catalytic converter of vehicle

Also Published As

Publication number Publication date
JPH10196355A (en) 1998-07-28

Similar Documents

Publication Publication Date Title
JP3318822B2 (en) Mounting method of heat-insulating sealing material for converter for purifying exhaust gas and mounting jig
KR20020089402A (en) Catalyst converter and diesel particulate filter system
JP3833761B2 (en) EXHAUST GAS PURIFYING CATALYST CONVERTER, PROCESS FOR PRODUCING THE SAME, AND HEAT-RESISTANT INORGANIC FIBER MAT FOR USE IN EXHAUST GAS PURIFYING CATALYST CONVERTER
KR20020076250A (en) Catalytic converter and method for manufacture thereof
JP4652555B2 (en) Catalytic converter, holding sealing material for catalytic converter
JP3341022B2 (en) How to install a converter heat-insulating sealing material for automotive exhaust gas purification
JP4465783B2 (en) Exhaust gas purification catalytic converter and method of manufacturing the same
JP4138079B2 (en) Manufacturing method of exhaust gas purification catalyst converter
JP3751270B2 (en) Sealing material and exhaust gas purifying converter using the same
JPH0584811B2 (en)
JP4240625B2 (en) Method for manufacturing catalytic converter
JP3527966B2 (en) Method of assembling converter for exhaust gas purification
JPH11173140A (en) Manufacture of converter for exhaust emission control
JP4453151B2 (en) Exhaust gas purification catalytic converter
JP3755676B2 (en) Exhaust gas purification converter mounting method for heat insulation sealing material for exhaust gas purification converter, exhaust gas purification converter
JP4457457B2 (en) Exhaust gas purification catalytic converter and method of manufacturing the same
JP3370410B2 (en) How to install a converter heat-insulating sealing material for automotive exhaust gas purification
JP3461286B2 (en) Method for producing exhaust gas purifying catalyst converter
JP3996046B2 (en) EXHAUST GAS PURIFY CONVERTER AND METHOD OF Attaching Insulating Seal Material To The Converter
JP3370577B2 (en) Exhaust gas purification catalytic converter and manufacturing method
JP3359557B2 (en) Method for producing converter for purifying exhaust gas
JPH09208930A (en) Production of inorganic fiber cushion sealing material
JP3370583B2 (en) Method for producing sealing material for catalytic converter
JP3370590B2 (en) Method for producing sealing material for catalytic converter
JPH1176837A (en) Exhaust gas cleaning catalytic convertor and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term