JP3833627B2 - Joint structure of precast concrete slab - Google Patents

Joint structure of precast concrete slab Download PDF

Info

Publication number
JP3833627B2
JP3833627B2 JP2003119872A JP2003119872A JP3833627B2 JP 3833627 B2 JP3833627 B2 JP 3833627B2 JP 2003119872 A JP2003119872 A JP 2003119872A JP 2003119872 A JP2003119872 A JP 2003119872A JP 3833627 B2 JP3833627 B2 JP 3833627B2
Authority
JP
Japan
Prior art keywords
joint structure
floor slab
precast concrete
reinforcing bars
compression plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003119872A
Other languages
Japanese (ja)
Other versions
JP2004324211A (en
Inventor
榮一 鈴木
素 浅沼
聖一 柳田
Original Assignee
常磐興産ピーシー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常磐興産ピーシー株式会社 filed Critical 常磐興産ピーシー株式会社
Priority to JP2003119872A priority Critical patent/JP3833627B2/en
Publication of JP2004324211A publication Critical patent/JP2004324211A/en
Application granted granted Critical
Publication of JP3833627B2 publication Critical patent/JP3833627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Joining Of Building Structures In Genera (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、橋梁路床等の構築に用いるプレキャストコンクリート製床版の継手構造に関し、特に、継手部の耐力を高めたプレキャストコンクリート製床版の継手構造に関する。
【0002】
【従来の技術】
橋梁の路床を構成する床版は、走行する自動車等の荷重を直接支持するものであり、かかる路床の構築においては、強度の均質化、設計精度の確保、そして工期の短縮化などの要請から、工場製造によりブロック化されたプレキャストコンクリート製の床版(以下、「PC床版」と略称する。)が広く使用されてきている。これらを橋梁の施工延長に合わせて複数枚を隣接配置し、その継手部となる隣接端面間は端面からそれぞれ突出させた鉄筋を連繋させた後、間詰めコンクリートを充填して一体化させる工法が採られている。
【0003】
これら継手部の構造は、図8に示すように、端面から所定長さ延出した後に湾曲又は屈曲して元の端面に戻るいわゆるループ状に連続した鉄筋a1(以下、「ループ筋」と略称する。)を、互いに接近させたPC床版Aの端面から突出させて交互に対向進入させ、かつ側面視で重畳するように配置したループ筋a1どうしを締結した後に、その継手部となる端面間に間詰めコンクリートa2を打設して一体化させる構造を採っている。このような鉄筋の配置は、荷重により継手部の断面には中立軸Cを境に引張応力と圧縮応力が作用するコンクリート構造の引張耐力の脆弱さを補うためのものである。
【0004】
また、図9に示すように、PC床版Bのループ筋b1を矩形状に形成すると共に、ループ筋b1のそれぞれの内側位置の長手方向に鋼板b3を対向させて配置した後に、間詰めコンクリートb4を打設し、ループ筋b1に作用する引張力を間詰めコンクリートへの圧縮力に変えて力の伝達を向上させて継手の強度を向上させるものもあった(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開平8−326197号公報(第3−5頁、第1図)
【0006】
【発明が解決しようとする課題】
しかしながら、図8に示すPC床版Aの継手構造は、鉄筋自体とコンクリートの付着力が元来低いため、十分な継手強度を確保するにはループ筋a1の突出長を長くせざるを得なかった。これに伴って継手部の端面間距離が増大して多量の間詰めコンクリートa2が必要となり、経済的及び養生時間に不利であるほか、フランジd1の幅が小さい主桁Dで構成された橋梁には適用できないという課題があった。
【0007】
また、図9に示すPC床版Bの継手構造では、ループ筋b1の突出長のバラツキが大きいため、鋼板b3が継手部の長手方向に長い場合にはループ筋b1と鋼板b3の間に隙間が発生することから鉄筋と鋼板の密着性に問題があり、ループ筋b1から鋼板b3へ力の伝達が悪かった。また、密着性を確保するため鋼板b3に突起やジベルを設置するなどの措置をしているが、かかる仕様の鋼板b3では力の伝達が不十分であるばかりかコストが嵩む課題があった。
【0008】
さらに、荷重により曲げモーメントがループ筋b1に作用した場合に、引張力が作用する鉄筋b2(以下、「引張筋」と称する。)が鋼板b3に対して偏心しているため、引張筋b2から鋼板b3への力の伝達効率が悪いという課題もあった。
【0009】
【目的】
そこで、本願発明は上記各課題に鑑みて為されたものであり、プレキャストコンクリート製床版の継手構造において、継手部の端面間距離を短くすると共に、鉄筋と介在させる鋼板に新規構成を採ることにより、コンクリートの継手部断面に作用する鉄筋への引張力をコンクリートへの圧縮力に変換する力の伝達を可能とするプレキャストコンクリート製床版の継手構造を提供する。
【0010】
【課題を解決するための手段】
上記問題を解決するために、本願発明にかかるプレキャストコンクリート製床版の継手構造は以下のように構成している。
【0011】
すなわち、プレキャストコンクリート製床版(1)を隣接させて連続配置し、対向した端面(11)からそれぞれ略水平対向方向に鉄筋(3)を突出させて連繋させた端面間(11)に、間詰めコンクリート(5)を充填して一体化させる床版の継手構造において、突出させた各水平対向鉄筋(3)を、交互に又は適宜の間隔で進入させた状態で配置すると共に、該鉄筋(3)から上記継手構造として機能する継手部(2)の中立軸(C)程度までの高さ寸法を有し、かつ該鉄筋(3)と垂直な面をもった圧縮板(4)を各鉄筋(3)の先端部(31a、32a)に取り付けたことを特徴としている。
【0012】
また、圧縮板(4)の取り付けにおいて、端面(11)の上下部からそれぞれ突出させた鉄筋(3)の先端部(31a、32a)に圧縮板(4)を立設状に取り付けると共に、該圧縮板(4)と該鉄筋(3)の軸方向背面とを連結するリブ板(41)を取り付けたことを特徴としている。なお、このリブ板(41)を取り付ける場合においては、圧縮板(4)の高さ寸法を、上記した継手部(2)の中立軸(C)程度までの高さ寸法と限定してなくても良い。
【0013】
さらに、突出させた鉄筋(3)どうしと圧縮板(4)どうし、のいずれか又は両方を、端面(11)幅方向に配置する通し筋(33)をもって連繋させたことを特徴としている。
【0014】
なお、上記の特許請求の範囲及び課題を解決するための手段の欄で記載した括弧付き符号は、発明の構成の理解を容易にするため参考として図面符号を付記したもので、この図面上の形態に限定するものでないことはもちろんである。
【0015】
【発明の実施の形態】
以下に、本願発明に係るPC床版の継手構造(以下、「継手構造」と略称する。)の具体的な実施形態例について、図面に基づき詳細に説明する。
【0016】
図1は本実施形態例の継手構造で構築する床版全体とPC床版を示す外観斜視図であり、図2は本実施形態例のPC床版の連結状態を示す一部拡大斜視図であり、図3は本実施形態例の継手構造を示す図1のAA線断面図あり、図4は本実施形態例の継手構造を示す図1のBB線断面図あり、図5は本実施形態例のPC床版の鉄筋と圧縮板の配設状態を示す一部拡大斜視図である。
【0017】
本実施形態例の対象となるPC床版1は、次のようにして連結されて一連一体の路床を構築し、自動車等の荷重Gを支持している。
【0018】
すなわち、図1に示すように、並列状に架設した主桁Dのフランジd1上にPC床版1の複数個を互いの端面11を近接対向させて配置し、図2に示すように、各端面11の上下の2箇所から突出状に取り付けられた上筋31及び下筋32から成る水平対向鉄筋3(以下、「鉄筋」と略称する。)及びこの鉄筋3に固着した圧縮板4どうしを、交互に対向進入させかつ側面視で重畳するように近接配置して継手部2を構成する。
【0019】
次に、継手部2で重畳した各PC床版1において、橋梁の幅員方向側(図1のAA線断面)では、図3に示すように、下側配置の各下筋32の先端部32aに垂直な面を持って、かつ継手部2の幅員方向に広がった矩形状の圧縮板4を立設配置している。また、圧縮板4には側面視が略直角三角形のリブ板41を下筋32の上周面長さ方向に沿って一体的に固着して設け、リブ板41の側面には継手部2の長手方向に配置する鉄筋又はPC鋼線から成る通し筋33用の貫通孔42を形成している。
【0020】
最後に、継手部2に間詰めコンクリート5を打設充填して隣接するPC床版1どうしを連結一体化して路床を形成している。なお、継手部2の橋梁の橋長方向側(図1のBB線断面)では、図4に示すように、圧縮板4とリブ板41の配置が幅員方向側(図1のAA線断面)とは逆になり、圧縮板4は上筋31の先端部31aから下向きに固着して配置されている。
【0021】
上記したPC床版1の継手構造として機能する継手部2は、PC床版1から突出した鉄筋3、該鉄筋3の先端に取り付けた圧縮板4、及び打設充填された間詰めコンクリート5から主に構成されている。
【0022】
先ず、PC床版1は、予め工場で製造されるものであって、図5に示すように、主桁Dのフランジd1に載置する両側の断面積を若干厚くして台形状の形状を成し、PC床版1の主桁Dと直交する両側(橋梁の幅員方向側)の下端縁部からは棚板状に突出させたハンチ12を一体形成している。このハンチ12は、PC床版1の敷設時に隣接するPC床版1どうしの対向端面間で目地材21を介して突き当てて、継手部2の下面側を覆う底型枠として機能する。これにより継手部2に打設した間詰めコンクリート5の保持を確実なものとしている。
【0023】
また、PC床版1の各端面11には、複数個の上筋31と下筋32から成る鉄筋3を等間隔で上下方向の2箇所から突出状(又は植設状)に配列形成し、圧縮板4及びリブ板41を鉄筋3の先端部31a、32aに配設している。そして、リブ板41には継手部2の長手方向に横断させた通し筋33を配置させるため、貫通孔42を形成している。
【0024】
圧縮板4は所定の肉厚をもった矩形板状の鋼材からなり、リブ板41は略直角三角形板状の鋼材である。そして、図2、図3に示すように、幅員方向側(図1のAA線断面)においては、圧縮板4はその継手部2の中立軸C程度の高さ寸法を有して下筋32の先端部32aに立設状に固着し、かつ下筋32の上周面の長さ方向にそって取り付けたリブ板41によって補強している。橋長方向側(図1のBB線断面)においては、幅員方向側(図1のAA線断面)側とは逆であって、その継手部2の中立軸C程度の高さ寸法を有した圧縮板4とリブ板41を上筋31の先端部31a及び上筋31の下周面に固着している。そして、これらの取り付けは、溶接(又はガス圧接)等により各上筋31又は下筋32と一体化させている。
【0025】
上述した圧縮板4の鉄筋3に対する配置位置は、別言すると、荷重Gによって生じる断面力のうち引張応力が作用する部分側となっている。すなわち、図3に示すように、下に凸曲となる曲げモーメントが作用する橋梁の幅員方向側(図1のAA線断面)の場合には中立軸Cより下側になり、図4に示すように、上に凸曲となる曲げモーメントが作用する橋梁の橋長方向側(図1のBB線断面)の場合には中立軸Cより上側となっている。
【0026】
また、リブ板41の側面には、上記通し筋33を貫通させる貫通孔42を形成しているが、この貫通孔42の位置は、対向するPC床版において、互いの鉄筋3同士が重畳する中心線位置、すなわち、継手部2の短手方向の中心線上に位置するようにしている。
【0027】
なお、各圧縮板4の幅は、その両側端辺から少なくとも45度に広がった範囲内に隣接して対向配置される他のPC床版1の圧縮板4が入るように各圧縮板4の板幅を設定している。
【0028】
この様に構成したPC床版1は、鉄筋3を幅員方向と橋長方向のそれぞれの側において等間隔(1ピッチ「P」)に配列形成している。そして、PC床版1を隣接配置した時には、対向進入した鉄筋3の間隔を1/2Pとなるようにしているため、PC床版1は端面11における鉄筋3の配列を幅員及び橋長のそれぞれの方向へ1/2Pずらして形成した2種類のタイプがある。
【0029】
【本実施形態の作用】
本実施形態例の継手構造は、路床に対する荷重Gの負荷により、次のように作用する。
【0030】
すなわち、幅員方向側(図1のAA線断面)の継手部2においては、中立軸の下側へ下方凸曲となる曲げモーメントMの作用により下筋32に引張力Tが作用し、従来構造はこの作用力を、鉄筋3の間詰めコンクリート5への付着力のみによって負担していた。
【0031】
しかし、本願発明の主眼である圧縮板4の配置により、下筋32に作用する引張力Tが、対向する圧縮板4どうしの間隔を狭めることによる間詰めコンクリート5への圧縮力に変換される。これにより圧縮板4の間の間詰めコンクリート5には、図6(A)に示すように継手部2の断面視において、三角分布状の圧縮応力σが作用することとなる。また、この箇所の上面視においては、対向してかつ千鳥状に配置されることになる圧縮板4の配置関係により、図6(B)に示すように、圧縮板4の両側に略45度の拡がり角αをもつ圧力分布となり、この範囲においては十分なコンクリートの圧縮状態を有して継手部2がより一体化してその連結強度が向上することとなる。
【0032】
橋長方向側(図1のBB線断面)の継手部2においては、上へ凸曲となる曲げモーメントMが作用し、この場合は、上記の場合と上下逆となり、上筋31に引張力Tが作用することになる。
【0033】
しかし、幅員方向側(図1のAA線断面)とは逆に上筋31に配置した圧縮板4により、上筋31に作用する引張力Tが、圧縮板4を介して対向する圧縮板4を狭める方向に作用し、これにより圧縮板4の間の間詰めコンクリート5には、図7(A)に示すように継手部2の断面視において、三角分布状の圧縮応力σが作用することとなる。また、この箇所の上面視においては、図7(B)に示すように、AA線断面側と同様に略45度の拡がり各αをもつ圧力分布となり、この範囲においては十分なコンクリートの圧縮状態を有して継手部2がより一体化してその連結強度が向上することとなる。
【0034】
【効果】
本願発明は上記のように構成しているため、以下のような効果を有する。
すなわち、鉄筋の対向側に当接状態で圧縮板を対向配置しているため、継手部に打設した間詰めコンクリートの凸曲外側に分布する引張応力を直接的にかつ効率的に間詰めコンクリートへの圧縮応力に変える鉄筋間の力の伝達が可能となり、強度がより向上した継手構造が提供できることになる。
【0035】
また、連結強度が向上することにより、従来に比べて継手部を短くすることが可能となるため、打設する間詰めコンクリート容積の減量による工期の短縮とコスト削減が図れると共に、フランジ幅が狭い橋梁にも適用可能となり、床版製作施工の柔軟性を向上させることが可能となる。
【図面の簡単な説明】
【図1】 本実施形態例の継手構造で構築する床版全体とPC床版を示す外観斜視図である。
【図2】 本実施形態例のPC床版の連結状態を示す一部拡大斜視図である。
【図3】 本実施形態例の継手構造を示す図1のAA線断面図ある。
【図4】 本実施形態例の継手構造を示す図1のBB線断面図ある。
【図5】 本実施形態例のPC床版の鉄筋と圧縮板の配設状態を示す一部拡大斜視図である。
【図6】 本実施形態例の継手構造における荷重による応力分布状態を示す説明図である。
【図7】 本実施形態例の継手構造における荷重による応力分布状態を示す説明図である。
【図8】 従来の床版PCの継手構造を示す断面図である。
【図9】 従来の床版PCの継手構造を示す断面図である。
【符号の説明】
1 PC床版
11 端面
12 ハンチ
2 継手部
21 目地材
3 鉄筋
31 上筋
31a 先端部
32 下筋
32a 先端部
33 通し筋
圧縮板
41 リブ板
42 貫通孔
5 間詰めコンクリート
A PC床版(従来例1)
a1 ループ筋
a2 間詰めコンクリート
B PC床版(従来例2)
b1 ループ筋
b2 引張筋
b3 鋼板
b4 間詰めコンクリート
C 中立軸(継手部断面の)
D 主桁
d1 フランジ
σ 圧縮応力
G 荷重
M 曲げモーメント
P ピッチ(鉄筋間隔)
T 引張力
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joint structure of a precast concrete floor slab used for construction of a bridge roadbed and the like, and particularly relates to a joint structure of a precast concrete floor slab having increased joint strength.
[0002]
[Prior art]
The slabs that make up the roadbed of the bridge directly support the load of a traveling car, etc. In constructing such a roadbed, such as homogenizing strength, ensuring design accuracy, and shortening the construction period, etc. In response to demands, precast concrete floor slabs (hereinafter abbreviated as “PC floor slabs”) that have been blocked by factory manufacture have been widely used. There is a construction method in which a plurality of these are arranged adjacent to each other according to the extension of the bridge construction, and the adjacent end faces that become the joints are connected to each other by reinforcing the reinforcing bars protruding from the end faces, and then filled with the interstitial concrete. It is taken.
[0003]
As shown in FIG. 8, the structure of these joint portions is a reinforcing bar a <b> 1 (hereinafter, abbreviated as “loop reinforcement”) that extends in a predetermined length from the end face and then curves or bends to return to the original end face. ) Are protruded from the end surfaces of the PC floor slabs A close to each other, alternately approaching each other, and the loop streaks a1 arranged so as to overlap in a side view are fastened to each other, and then an end surface serving as a joint portion thereof A structure is adopted in which the interstitial concrete a2 is placed between and integrated. Such a reinforcing bar arrangement is intended to compensate for the weakness of the tensile strength of the concrete structure in which tensile stress and compressive stress act on the cross section of the joint portion by the load with the neutral axis C as a boundary.
[0004]
Further, as shown in FIG. 9, the loop reinforcement b1 of the PC floor slab B is formed in a rectangular shape, and after placing the steel plate b3 facing each other in the longitudinal direction of each inner position of the loop reinforcement b1, There are some which place b4 and change the tensile force acting on the loop reinforcement b1 to the compressive force to the interstitial concrete to improve the force transmission and improve the joint strength (see, for example, Patent Document 1). ).
[0005]
[Patent Document 1]
JP-A-8-326197 (page 3-5, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, in the joint structure of the PC floor slab A shown in FIG. 8, the adhesion between the reinforcing bar itself and the concrete is originally low, so that the protrusion length of the loop reinforcement a1 must be increased in order to ensure sufficient joint strength. It was. Along with this, the distance between the end faces of the joint portion increases and a large amount of concrete a2 is required, which is disadvantageous in terms of economy and curing time, and in addition to the bridge constituted by the main girder D having a small flange d1 width. There was a problem that was not applicable.
[0007]
Further, in the joint structure of the PC floor slab B shown in FIG. 9, since the variation in the protruding length of the loop reinforcement b1 is large, there is a gap between the loop reinforcement b1 and the steel sheet b3 when the steel plate b3 is long in the longitudinal direction of the joint. Therefore, there is a problem in the adhesion between the reinforcing bar and the steel plate, and the force transmission from the loop reinforcement b1 to the steel plate b3 is poor. Further, in order to ensure adhesion, measures such as installing protrusions and dowels on the steel plate b3 are taken. However, the steel plate b3 having such specifications has not only insufficient force transmission but also a problem that costs increase.
[0008]
Furthermore, when a bending moment is applied to the loop reinforcement b1 due to the load, the reinforcing bar b2 (hereinafter referred to as “tensile reinforcement”) on which the tensile force acts is eccentric with respect to the steel sheet b3. There was also a problem that power transmission efficiency to b3 was poor.
[0009]
【the purpose】
Therefore, the present invention has been made in view of the above-mentioned problems, and in the joint structure of a precast concrete floor slab, the distance between the end faces of the joint portion is shortened, and a new structure is adopted for the steel sheet interposed between the reinforcing bars. Thus, a joint structure of a precast concrete floor slab that enables transmission of a force that converts a tensile force applied to a reinforcing bar acting on a cross section of a concrete joint to a compressive force applied to concrete is provided.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the joint structure of the precast concrete floor slab according to the present invention is configured as follows.
[0011]
That is, the precast concrete floor slabs (1) are continuously arranged adjacent to each other, and between the end faces (11) where the reinforcing bars (3) are protruded and connected in a substantially horizontal direction from the opposite end faces (11). In the joint structure of the floor slab that is filled and integrated with the stuffed concrete (5), the horizontally opposed reinforcing bars (3) protruded are arranged alternately or at an appropriate interval, and the reinforcing bars ( A compression plate (4) having a height dimension from 3) to the neutral axis (C) of the joint part (2) functioning as the joint structure and having a surface perpendicular to the reinforcing bar (3) It is characterized by being attached to the tip (31a, 32a) of the reinforcing bar (3).
[0012]
In addition, in attaching the compression plate (4), the compression plate (4) is attached in a standing manner to the tip portions (31a, 32a) of the reinforcing bars (3) respectively protruding from the upper and lower portions of the end surface (11), and A rib plate (41) for connecting the compression plate (4) and the rear surface in the axial direction of the reinforcing bar (3) is attached. In addition, when attaching this rib plate (41), the height dimension of the compression plate (4) is not limited to the height dimension up to the neutral axis (C) of the joint part (2) described above. Also good.
[0013]
Furthermore, it is characterized in that either or both of the protruded reinforcing bars (3) and the compression plates (4) are connected by a through bar (33) arranged in the width direction of the end surface (11).
[0014]
In addition, the reference numerals in parentheses described in the section of the claims and means for solving the problems are added with reference numerals for reference to facilitate understanding of the configuration of the invention. Of course, it is not limited to the form.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Specific embodiments of a joint structure of a PC floor slab according to the present invention (hereinafter abbreviated as “joint structure”) will be described below in detail with reference to the drawings.
[0016]
FIG. 1 is an external perspective view showing an entire floor slab constructed with the joint structure of this embodiment and a PC floor slab, and FIG. 2 is a partially enlarged perspective view showing a connected state of the PC floor slab of this embodiment. 3 is a cross-sectional view taken along line AA of FIG. 1 showing the joint structure of the present embodiment, FIG. 4 is a cross-sectional view taken along line BB of FIG. 1 showing the joint structure of the present embodiment, and FIG. It is a partially expanded perspective view which shows the arrangement | positioning state of the reinforcing bar and compression board of an example PC floor slab.
[0017]
The PC floor slab 1 which is the object of the present embodiment is connected as follows to construct a series of integrated road floors and supports a load G of an automobile or the like.
[0018]
That is, as shown in FIG. 1, a plurality of PC floor slabs 1 are arranged on the flange d1 of the main girder D laid in parallel with the end faces 11 facing each other, and as shown in FIG. A horizontally opposed reinforcing bar 3 (hereinafter abbreviated as “reinforcing bar”) composed of an upper bar 31 and a lower bar 32 attached in a protruding manner from two locations above and below the end surface 11 and the compression plates 4 fixed to the reinforcing bar 3. The joint portion 2 is configured by being arranged close to each other so as to alternately face each other and overlap in a side view.
[0019]
Next, in each PC floor slab 1 overlapped by the joint portion 2, on the width direction side of the bridge (cross section taken along line AA in FIG. 1), as shown in FIG. A rectangular compression plate 4 having a surface perpendicular to the width and extending in the width direction of the joint portion 2 is erected. Further, the compression plate 4 is provided with a rib plate 41 having a substantially right-angled triangle in a side view in an integrally fixed manner along the length direction of the upper peripheral surface of the lower bar 32. A through hole 42 for a through bar 33 made of a reinforcing bar or PC steel wire arranged in the longitudinal direction is formed.
[0020]
Finally, the interstitial concrete 5 is cast and filled in the joint portion 2 and the adjacent PC floor slabs 1 are connected and integrated to form a road bed. In addition, on the bridge length direction side of the bridge of the joint portion 2 (BB line cross section in FIG. 1), as shown in FIG. 4, the arrangement of the compression plate 4 and the rib plate 41 is in the width direction side (AA line cross section in FIG. 1). On the contrary, the compression plate 4 is arranged to be fixed downward from the distal end portion 31 a of the upper muscle 31.
[0021]
A joint portion 2 that functions as a joint structure of the above-described PC floor slab 1 includes a reinforcing bar 3 protruding from the PC floor slab 1, a compression plate 4 attached to the tip of the reinforcing bar 3, and a filling concrete 5 that is cast and filled. It is mainly composed.
[0022]
First, the PC floor slab 1 is manufactured in advance in a factory, and as shown in FIG. 5, the cross-sectional areas on both sides placed on the flange d1 of the main girder D are slightly thickened to form a trapezoidal shape. The haunch 12 is formed integrally from the lower edge of both sides (the width direction side of the bridge) orthogonal to the main girder D of the PC floor slab 1 so as to protrude like a shelf. The haunch 12 functions as a bottom mold that abuts between the opposing end surfaces of the adjacent PC floor slabs 1 via the joint material 21 when the PC floor slab 1 is laid and covers the lower surface side of the joint portion 2. This ensures the holding of the interstitial concrete 5 cast in the joint portion 2.
[0023]
Further, on each end face 11 of the PC floor slab 1, reinforcing bars 3 composed of a plurality of upper bars 31 and lower bars 32 are arranged at equal intervals so as to protrude from two places in the vertical direction (or planted), The compression plate 4 and the rib plate 41 are disposed at the tip portions 31 a and 32 a of the reinforcing bar 3. A through hole 42 is formed in the rib plate 41 in order to arrange a through bar 33 that is traversed in the longitudinal direction of the joint portion 2.
[0024]
The compression plate 4 is made of a rectangular plate-shaped steel material having a predetermined thickness, and the rib plate 41 is a substantially right-angled triangular plate-shaped steel material. As shown in FIGS. 2 and 3, the compression plate 4 has a height dimension of about the neutral axis C of the joint portion 2 on the width direction side (cross section taken along the line AA in FIG. 1) and has a lower bar 32. It is reinforced by a rib plate 41 that is fixed to the front end portion 32a in a standing manner and is attached along the length direction of the upper peripheral surface of the lower bar 32. On the bridge length direction side (BB line cross section in FIG. 1), it is opposite to the width direction side (AA line cross section in FIG. 1) side and has a height dimension of about the neutral axis C of the joint portion 2. The compression plate 4 and the rib plate 41 are fixed to the tip 31 a of the upper bar 31 and the lower peripheral surface of the upper bar 31. These attachments are integrated with each upper bar 31 or lower bar 32 by welding (or gas pressure welding) or the like.
[0025]
In other words, the above-described arrangement position of the compression plate 4 with respect to the reinforcing bar 3 is a portion on which a tensile stress acts on the cross-sectional force generated by the load G. That is, as shown in FIG. 3, in the case of the width direction side (cross section taken along line AA in FIG. 1) of the bridge on which a bending moment having a downward convex curve acts, it is below the neutral axis C and shown in FIG. Thus, in the case of the bridge length direction side (BB line cross section of FIG. 1) of the bridge on which the bending moment that becomes convex upward acts, it is above the neutral axis C.
[0026]
Further, a through hole 42 through which the through bar 33 is penetrated is formed on the side surface of the rib plate 41. The position of the through hole 42 overlaps with each other in the opposing PC floor slab. The center line is positioned on the center line in the short direction of the joint portion 2.
[0027]
Note that the width of each compression plate 4 is such that the compression plate 4 of another PC floor slab 1 that is disposed adjacent to each other within a range extending at least 45 degrees from the side edges of each compression plate 4 enters. The board width is set.
[0028]
The PC floor slab 1 configured as described above has the reinforcing bars 3 arranged at equal intervals (one pitch “P”) on each side in the width direction and the bridge length direction. When the PC floor slabs 1 are arranged adjacent to each other, the interval between the reinforcing bars 3 that have faced each other is set to ½ P. Therefore, the PC floor slab 1 has an arrangement of the reinforcing bars 3 on the end surface 11 in each of the width and the bridge length. There are two types formed by shifting by 1 / 2P in the direction of.
[0029]
[Operation of this embodiment]
The joint structure of the present embodiment acts as follows depending on the load G applied to the roadbed.
[0030]
That is, in the joint portion 2 on the width direction side (cross section along line AA in FIG. 1), the tensile force T acts on the lower muscle 32 by the action of the bending moment M that is downwardly curved downward on the neutral axis, and thus the conventional structure Has borne this acting force only by the adhesion force to the concrete 5 packed between the reinforcing bars 3.
[0031]
However, due to the arrangement of the compression plate 4 which is the main object of the present invention, the tensile force T acting on the lower muscle 32 is converted into a compression force to the interstitial concrete 5 by narrowing the interval between the compression plates 4 facing each other. . As a result, the compressive stress σ having a triangular distribution acts on the interstitial concrete 5 between the compression plates 4 in a sectional view of the joint portion 2 as shown in FIG. Further, in the top view of this portion, due to the arrangement relationship of the compression plates 4 that are opposed and arranged in a staggered manner, as shown in FIG. The pressure distribution has an expansion angle α, and in this range, the concrete portion is sufficiently compressed, and the joint portion 2 is more integrated and its connection strength is improved.
[0032]
In the joint portion 2 on the bridge length direction side (BB line cross section in FIG. 1), a bending moment M that is convex upward acts, and in this case, it is upside down from the above case, and the tensile force is applied to the upper bar 31. T will act.
[0033]
However, the compression plate 4 disposed on the upper muscle 31 opposite to the width direction side (cross section along line AA in FIG. 1) causes the tensile force T acting on the upper muscle 31 to be opposed to the compression plate 4 via the compression plate 4. As shown in FIG. 7A, the compressive stress σ having a triangular distribution acts on the interstitial concrete 5 between the compression plates 4 in the sectional view of the joint portion 2. It becomes. In addition, in a top view of this portion, as shown in FIG. 7B, the pressure distribution has a spread of approximately 45 degrees as in the cross section side of the line AA and each α has a sufficient compression state in this range. The joint portion 2 is more integrated and the connection strength is improved.
[0034]
【effect】
Since this invention is comprised as mentioned above, it has the following effects.
That is, because the compression plates are arranged opposite to each other on the opposite side of the reinforcing bar, the tensile stress distributed outside the convex curve of the interstitial concrete placed in the joint is directly and efficiently provided. Therefore, it is possible to transmit the force between the reinforcing bars, which is changed into the compressive stress, and to provide a joint structure with further improved strength.
[0035]
In addition, the improved joint strength makes it possible to shorten the joint compared to the conventional case. Therefore, the construction period can be shortened and the cost can be reduced by reducing the volume of the concrete to be placed, and the flange width is narrow. It can also be applied to bridges, and the flexibility of floor slab manufacturing construction can be improved.
[Brief description of the drawings]
FIG. 1 is an external perspective view showing an entire floor slab and a PC floor slab constructed with a joint structure according to an embodiment of the present invention.
FIG. 2 is a partially enlarged perspective view showing a connected state of the PC floor slab of the embodiment.
3 is a cross-sectional view taken along the line AA in FIG. 1 showing a joint structure according to this embodiment.
4 is a cross-sectional view taken along the line BB of FIG. 1 showing the joint structure of the embodiment.
FIG. 5 is a partially enlarged perspective view showing an arrangement state of reinforcing bars and compression plates of the PC floor slab of the embodiment.
FIG. 6 is an explanatory diagram showing a stress distribution state due to a load in the joint structure of the embodiment.
FIG. 7 is an explanatory view showing a stress distribution state due to a load in the joint structure of the embodiment.
FIG. 8 is a cross-sectional view showing a joint structure of a conventional floor slab PC.
FIG. 9 is a cross-sectional view showing a joint structure of a conventional floor slab PC.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 PC floor slab 11 End surface 12 Haunch 2 Joint part 21 Joint material 3 Reinforcing bar 31 Upper bar 31a Tip part 32 Lower bar 32a Tip part 33 Through bar 4 Compression board 41 Rib board 42 Through hole 5 Packing concrete A PC floor board (conventional) Example 1)
a1 Loop reinforcement a2 Filled concrete B PC floor slab (conventional example 2)
b1 Loop Reinforcement b2 Tensile Reinforcement b3 Steel Plate b4 Filled Concrete C Neutral Shaft (of Joint Section)
D Main girder d1 Flange σ Compression stress G Load M Bending moment P Pitch (rebar spacing)
T Tensile force

Claims (4)

プレキャストコンクリート製床版(1)を隣接させて連続配置し、対向した端面(11)からそれぞれ略水平対向方向に鉄筋(3)を突出させて連繋させた端面(11)間に、間詰めコンクリート(5)を充填して一体化させる床版の継手構造において、
突出させた各水平対向鉄筋(3)を、交互に又は適宜の間隔で進入させた状態で配置すると共に、該鉄筋(3)から上記継手構造として機能する継手部(2)の中立軸(C)程度までの高さ寸法を有し、かつ該鉄筋(3)と垂直な面をもった圧縮板(4)を、各鉄筋(3)の先端部(31a、32a)に取り付けたことを特徴とするプレキャストコンクリート製床版の継手構造。
Precast concrete floor slabs (1) are arranged adjacent to each other, and between the end faces (11) where the reinforcing bars (3) protrude from the opposing end faces (11) in a substantially horizontal facing direction and are connected to each other, the interstitial concrete In the joint structure of the floor slab filled with (5) and integrated,
The horizontally opposed reinforcing bars (3) that are projected are arranged alternately or at an appropriate interval, and the neutral shaft (C) of the joint portion (2) that functions as the joint structure from the reinforcing bars (3). ), And a compression plate (4) having a height dimension up to about and having a surface perpendicular to the reinforcing bar (3) is attached to the tip (31a, 32a) of each reinforcing bar (3). The joint structure of precast concrete floor slab.
プレキャストコンクリート製床版(1)を隣接させて連続配置し、対向した端面(11)からそれぞれ略水平対向方向に鉄筋(3)を突出させて連繋させた端面(11)間に、間詰めコンクリート(5)を充填して一体化させる床版の継手構造において、
突出させた各水平対向鉄筋(3)を、交互に又は適宜の間隔で進入させた状態で配置し、端面(11)の上下部からそれぞれ突出させた鉄筋(3)の先端部(31a、32a)に垂直な面をもった圧縮板(4)を立設状に取り付けると共に、該圧縮板(4)と該鉄筋(3)の軸方向背面とを連結するリブ板(41)を取り付けたことを特徴とするプレキャストコンクリート製床版の継手構造。
Precast concrete floor slabs (1) are continuously arranged adjacent to each other, and between the end faces (11) where the reinforcing bars (3) protrude from the opposed end faces (11) in a substantially horizontal facing direction and are connected to each other, the interstitial concrete is provided. In the joint structure of the floor slab filled with (5) and integrated,
The horizontally opposed reinforcing bars (3) that are protruded are arranged alternately or at an appropriate interval, and the tip ends (31a, 32a) of the reinforcing bars (3) that protrude from the upper and lower portions of the end surface (11), respectively. ) And a rib plate (41) for connecting the compression plate (4) and the axially rear surface of the reinforcing bar (3) is attached in a standing manner. Precast concrete floor slab joint structure characterized by
圧縮板(4)の取り付けにおいて、
端面(11)の上下部からそれぞれ突出させた鉄筋(3)の先端部(31a、32a)に圧縮板(4)を立設状に取り付けると共に、該圧縮板(4)と該鉄筋(3)の軸方向背面とを連結するリブ板(41)を取り付けたことを特徴とする請求項1記載のプレキャストコンクリート製床版の継手構造。
In attaching the compression plate (4),
A compression plate (4) is mounted upright on the tip (31a, 32a) of the reinforcing bar (3) protruding from the upper and lower portions of the end surface (11), and the compression plate (4) and the reinforcing bar (3). A joint structure for a precast concrete floor slab according to claim 1, wherein a rib plate (41) for connecting the rear surface in the axial direction is attached.
突出させた鉄筋(3)どうしと圧縮板(4)どうし、のいずれか又は両方を、端面(11)幅方向に配置する通し筋(33)をもって連繋させたことを特徴とする請求項1、又は3記載のプレキャストコンクリート製床版の継手構造。  One or both of the protruding reinforcing bars (3) and the compression plates (4) are connected with a through bar (33) arranged in the width direction of the end face (11). Or the joint structure of the flooring made from precast concrete of 3 description.
JP2003119872A 2003-04-24 2003-04-24 Joint structure of precast concrete slab Expired - Fee Related JP3833627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119872A JP3833627B2 (en) 2003-04-24 2003-04-24 Joint structure of precast concrete slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119872A JP3833627B2 (en) 2003-04-24 2003-04-24 Joint structure of precast concrete slab

Publications (2)

Publication Number Publication Date
JP2004324211A JP2004324211A (en) 2004-11-18
JP3833627B2 true JP3833627B2 (en) 2006-10-18

Family

ID=33498973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119872A Expired - Fee Related JP3833627B2 (en) 2003-04-24 2003-04-24 Joint structure of precast concrete slab

Country Status (1)

Country Link
JP (1) JP3833627B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834890B2 (en) * 2006-03-08 2011-12-14 株式会社ピーエス三菱 Prestressing method for filling part between precast concrete members
JP5667546B2 (en) * 2011-04-08 2015-02-12 横河工事株式会社 Precast floor slab and its joint structure and connection method
JP5700608B1 (en) * 2014-06-24 2015-04-15 株式会社Ihiインフラ建設 Reinforced joint structure of precast concrete slab
JP2018172893A (en) * 2017-03-31 2018-11-08 新日鉄住金エンジニアリング株式会社 Precast floor slab system and bridge structure
CN109594666B (en) * 2017-04-05 2020-08-04 江西省坤泽建筑工程有限公司 Building body insulation structure
JP6857083B2 (en) * 2017-05-31 2021-04-14 株式会社Ihiインフラシステム Precast floor slab joint structure
JP6857937B2 (en) * 2017-05-31 2021-04-14 株式会社Ihiインフラシステム Precast floor slab joint structure
JP2019002164A (en) * 2017-06-13 2019-01-10 株式会社Ihiインフラシステム Precast floor slab joint structure
JP2019023381A (en) * 2017-07-21 2019-02-14 大成建設株式会社 Precast concrete member, manufacturing method for the same, and road bridge
KR102180221B1 (en) * 2019-05-21 2020-11-18 에스오씨기술지주 주식회사 Connection Structure and Method of Concrete Members
CN110804940A (en) * 2019-11-18 2020-02-18 江苏韧强建筑科技有限公司 Continuous structure of ultrahigh molecular weight polyethylene fiber reinforced ultrahigh ductility concrete bridge floor

Also Published As

Publication number Publication date
JP2004324211A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
KR101136582B1 (en) Deck plate having rebar truss
US20100281808A1 (en) Expansion joint system of concrete slab arrangement
JP3833627B2 (en) Joint structure of precast concrete slab
JP2001081720A (en) Joint structure between concrete slab and steel web in composite box girder
JP4006481B2 (en) Joint structure of precast concrete slab
JP2005180005A (en) Precast prestressed concrete web for concrete box girder bridge, and the concrete box girder bridge using the same
JP2010007337A (en) Jointing structure of concrete member
JP2006316580A (en) Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
JP2003221808A (en) Corrugated steel-plate web girder
JP2008088634A (en) Steel concrete composite slab
JP4406879B2 (en) Bridge girder construction method
CN215483540U (en) Combined structure of precast beam and precast slab
JP2005061127A (en) Concrete prefabricated frame structure
JP4323494B2 (en) Road fittings
JP3748817B2 (en) Concrete assembly structure
JP6638885B2 (en) Concrete assembly structure
KR101693266B1 (en) Hybrid girder
KR100480471B1 (en) Connecting Structure and Connecting Method of Honeycomb Type Composite Beam Stiffened with Prestressed Concrete Panel
JP7417087B2 (en) Half precast structural version
KR101788079B1 (en) Blockout connecting apparatus for precast structure and construction method therefor
KR100638673B1 (en) Joint structure of shift and steel girder and its construction method in integral shift bridge
KR200395897Y1 (en) Connecting structure in corrugated steel plate for box-typed bridge
JP2001049616A (en) Precast pc web for use in concrete bridge and prestressed concrete bridge having the pc web
JP4040535B2 (en) Bridge
KR100704395B1 (en) Connection Structure of Corrugated Steel Plate for Box Bridge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees