JP3818320B2 - 相互に或るパターンに配された光学サブ素子を有する光学素子の製造に使用されるモールドを製造する方法、及び斯かる方法を実行するための装置 - Google Patents

相互に或るパターンに配された光学サブ素子を有する光学素子の製造に使用されるモールドを製造する方法、及び斯かる方法を実行するための装置 Download PDF

Info

Publication number
JP3818320B2
JP3818320B2 JP50935296A JP50935296A JP3818320B2 JP 3818320 B2 JP3818320 B2 JP 3818320B2 JP 50935296 A JP50935296 A JP 50935296A JP 50935296 A JP50935296 A JP 50935296A JP 3818320 B2 JP3818320 B2 JP 3818320B2
Authority
JP
Japan
Prior art keywords
mold
die
pattern
optical
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP50935296A
Other languages
English (en)
Other versions
JPH09505534A (ja
Inventor
ドーナ・マリヌス・ヨセフス・ヤコブス
スウィンクルス・ヨハネス・マーティヌス・マリア
Original Assignee
コーニンクレッカ フィリップス エレクトロニクス エヌ ヴイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コーニンクレッカ フィリップス エレクトロニクス エヌ ヴイ filed Critical コーニンクレッカ フィリップス エレクトロニクス エヌ ヴイ
Publication of JPH09505534A publication Critical patent/JPH09505534A/ja
Application granted granted Critical
Publication of JP3818320B2 publication Critical patent/JP3818320B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/808Lens mold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

技術分野
本発明は、互いに或るパターンに従って配された相互に隣接する光学サブ素子が設けられた光学素子の製造に使用されるモールドを製造する方法に関する。この方法によって、前記モールドに、前記光学サブ素子のパターンに対応するモールド形状が与えられる。
本発明は、互いに或るパターンに従って配された相互に隣接する光学サブ素子が設けられた光学素子を製造する方法にも関する。この方法によって、モールドに前記光学サブ素子のパターンに対応するモールド形状が与えられ、前記光学素子は、前記モールドを用いて複製技術により製造される。
本発明は、本発明による方法を実施する装置にも関する。
本発明は更に、本発明による方法を実施する装置での使用に適したダイスホルダに関する。
本発明は、本発明による方法により製造される光学素子が設けられる液晶表示パネルにも関する。
本発明は更に、本発明による方法により製造される光学素子が設けられる画像表示装置に関する。
本発明は、本発明による方法により製造される光学素子が設けられるフラットパネル表示装置にも関する。
本発明は、本発明による方法により製造される光学素子が設けられる固体画像センサ装置にも関する。
本発明は、本発明による方法により製造される光学素子が設けら得るカメラにも関する。
本発明は更に、カラー画像管用のフロントパネルを製造する方法に関する。この方法では、本発明による方法によって製造される光学素子が使用される。
本発明は、カラー画像管用のフロントパネルの製造のための装置にも関する。この装置は、本発明の方法によって製造された光学素子が設けられる。
背景技術
冒頭で述べたようなモールドを製造する方法及び光学素子を製造する方法は、日本国特許公開公報昭和58−171021号から既知である。この既知の方法で製造される光学素子は、いわゆるレンズアレイと呼ばれ、球面レンズの二次元アレイを有する。この既知の方法によれば、レンズアレイに対応するダイスは、各々がレンズアレイのレンズに対応する球状ダイス面を有し且つレンズアレイの多数のレンズに対応する多数のサブダイスが、レンズアレイのパターンで隣接するように製造される。ダイスは、プレス機によって、粘土質セラミック材料から作られるモールドに押され、この結果、モールドにはレンズアレイに対応するモールド形状が与えられ、そのモールドの粘土質セラミック材料は熱材処理より硬化する。次に、そのモールドに溶融した合成材料が流され、圧力がかけられ、冷却され、この結果、モールド形状に対応する合成樹脂レンズアレイが形成される。
この既知の方法の欠点は、ダイスの各サブダイスに、個別にレンズアレイのレンズに対応するダイス面を正確に設けなければならないため、この既知の方法で使用されるダイスの製造が複雑であり、時間がかかることである。この理由のため、この既知の方法は、1mm若しくは0.1mmの直径又はそれ以下の直径の多数のマイクロレンズを有するいわゆるマイクロレンズアレイの製造には特に適さない。加えて、ダイスがモールドに押されているときにその粘土質セラミック材料はサブダイスの間の隙間に十分に入り込むことができないため、モールドには、レンズアレイの個々のレンズに対応する隣接するサブモールド間に、はっきりとした境界が現れない。この結果、既知の方法によって製造されるレンズアレイの個々のレンズは互いになめらかに結合し、レンズアレイの光学的に有効な表面領域が、レンズアレイのレンズの間のなめらかな境界により制限を受ける。
発明の開示
本発明の目的は、冒頭で言及したような種類のモールドを製造する方法及び光学素子を製造する方法であって、上記の既知の不利な点をできるだけ避け、その結果、複雑でなく且つ消費時間が少ないやり方でモールド及び光学素子が製造され、この方法により製造される光学素子が広い光学的有効表面両面を有する方法を提供することである。
本発明によれば、この目的のため、モールドを製造する方法及び光学素子を製造する方法は、前記モールドが延性金属から製造され、前記光学サブ素子の形状に対応するダイス面が設けられ且つ前記パターンに従って連続的な位置に所定の力で前記モールドに押されるダイスにより、前記モールドに前記モールド形状が与えられることを特徴とする。このダイスは上記パターンに従ってモールドの連続する位置に(即ち、光学素子のサブ素子の数に対応する回数)押される。このことは、光学サブ素子に対応するダイス面が、ダイスの製造中に、正確なやり方で一度作られる必要があるだけであることを意味する。モールドでのダイスのレプリカを作るために要求される時間が光学サブ素子に対応するダイス面を作るために必要な時間と比較して非常に短いため、本発明による方法は、比較的短い時間で実施できる。要求されるダイスは比較的簡単な構造を持ち、そのダイスは、それ自体一般的且つ既知の位置決め装置によって、モールドに対して上記パターンに従う連続的な位置に位置決めすることができる。ダイスが毎時所定の力でモールドに押されるため、個々の光学サブ素子に対応するモールド形状の連続的なサブ形状は略同一形状を持つ。ダイスがモールドを押す力を適切に選択することによって、モールドの延性金属が専らモールドとダイスとの間の接触面の領域で可塑的に変形し、上記接触面の周りの変形は無視できるほど小さいということが達成され、この結果、モールドに既に設けられ且つ光学サブ素子に対応するサブ形状は、隣接するサブ形状を形成してもこれ以上変形しない。ダイスがパターンに従って連続的な位置でモールドに押されるため、ダイス面に隣接する延性金属は最適に変形し、そのため、サブ形状の間にはっきりとした境界が形成される。従って、このように製造されたモールドは特に高い寸法精度を持ち、このモールドにより形成される光学素子は、高い寸法精度及び広い光学的有効表面領域を持つ。
本発明による特別な実施例は、前記光学素子に要求される面の滑らかさが前記モールドに予め設けられた後、前記ダイスにより前記モールドに前記モールド形状が設けられることを特徴とする。延性金属はモールド形状の製造の間に可塑的に変形する。このため、ダイスは上記所定の力でモールドに押されるが、変形前の延性金属の面の滑らかさが実質的に維持される。先ず、光学素子に要求される面の滑らかさの光学品質がモールドに設けられ、次にダイスによってモールド形状が与えられた場合、モールド形状と、モールドによって製造される光学素子とは、所望の面の滑らかさを有する。
本発明による方法の他の実施例は、前記モールドが、前記ダイスにより前記モールド形状が施される間、液体槽に浸されることを特徴とする。モールドを液体槽に浸すことによって、空気中に存在する埃及び塵の粒子がダイスとモールドとの間に入り込んでダイスにより製造されるべきモールド形状に損傷を与えることが、簡単且つ効果的なやり方で防止される。
本発明による方法の更に他の実施例は、前記延性金属が、銅、アルミニウム又は亜鉛を有することを特徴とする。上記金属は、良好な変形性のため、本発明による方法で使用されることに際だって適している。
本発明による方法の特別な実施例は、前記ダイスは球状ダイス面が設けられ、前記ダイスは六角形パターンに従って前記モールドに押されることを特徴とする。この方法の実施例により製造される光学素子は、実質的に制限を受けない光学的有効表面領域を持つ球面レンズの二次元六角形マトリクスを有する。
本発明による方法の他の実施例は、前記ダイスが平坦なダイス面を持ち且つ直交パターンに従って前記モールドに押され、前記パターンの連続的な位置において、前記ダイスが、前記ダイス面の中心で互いに交差し且つ相互に垂直な2つのピボット軸を中心に所定の角度を回動することを特徴とする。この実施例の方法により製造される光学素子は、二次元直交マトリクスのファセットを有するいわゆるファセットレンズである。このファセットレンズの各ファセットは、ファセットレンズの基準面に対して、その基準面に平行に延在する相互に垂直な二つのピボット軸を中心に回動した平坦なレンズ面を有する。ダイスがパターンの連続位置で回動する角度は予め規定され、その結果、対応するファセットが異なるピボット角度を持つファセットレンズを、この実施例の方法によって製造できる。
本発明による方法を実施する装置は、前記装置に、前記モールドを固定するための加工品ホルダと、前記ダイスを固定するためのツールホルダと、位置決め装置とが設けられ、前記ツールホルダは、前記位置決め装置によって前記加工品ホルダに対して移動可能な直線ガイドと、前記直線ガイドに対して摺動可能に案内され且つ所定の弾性プリテンション力の作用の下で前記直線ガイドの止めに当たるダイスホルダとが設けられたことを特徴とする。ダイスは、位置決め装置によって、上記パターンに従ってモールドに対し連続的な位置に配され、モールドに押される。ダイスが位置決め装置により次の位置に移動するときダイスホルダは止めに当たっており、ダイスが位置決め装置によってモールドに押されるとき、ダイスホルダはその止めから離れ、ダイス及びモールドに、弾性プリテンション力に対応する力を及ぼす。弾性プリテンション力は、例えば機械的スプリングにより提供される。機械的スプリングの弾性率の適切な選択により、ダイスのモールドを押す力が、その押している方向に平行な方向に関してダイスホルダの占める位置に実質的に依存しないことが達成される。従って、上記力は正確に規定された値を有し、この結果、モールド形状が正確に実現される。
本発明による方法を実施する装置の特別な実施例では、ダイスは、上記パターンの連続する位置において、相互に垂直な2つのピボット軸を中心に所定の角度を回動し、前記ダイスホルダは、前記直線ガイドに対して摺動可能に案内される第1の担体と、前記第1の担体のピボットガイドに対して回動可能な第2の担体と、前記第2の担体のピボットガイドに対して回動可能な第3の担体とが備えられ、前記ダイスは前記第3の担体に固定され、前記相互に垂直な2つのピボット軸が、それぞれ、前記第1の担体のピボットガイドの仮想軸、及び前記第2の担体のピボットガイドの仮想軸を形成することを特徴とする。二つのピボットガイドを使用することによって、二つのピボット軸を中心にダイスが回動する角度を別個に設定することを可能とする。上記角度を設定するために、例えば、それ自体一般的且つ既知の二つのアクチュエータを使用することができる。
本発明による方法で製造される光学素子の特性が特に有効に用いられる液晶表示パネルは、前記光学素子がマイクロレンズアレイであり、前記液晶表示パネルは、画像表示素子のパターンを有し且つ光が入射する側において前記マイクロレンズアレイと隣接する液晶層が設けられ、前記マイクロレンズアレイの各光学サブ素子が、前記液晶層の前記画像表示素子のうちの一つに対応することを特徴とする。
本発明による方法で製造される光学素子の特性が特に有効に用いられる画像表示装置は、前記光学素子がマイクロレンズアレイであり、前記画像表示装置に、光放射源と、ビーム形成光学システムと、少なくとも一つの画像表示パネルを持つ画像表示システムと、投影レンズのシステムと、画像投影スクリーンとが設けられ、前記画像表示パネルは、前記光放射源に対向する側に前記マイクロレンズアレイが設けられることを特徴とする。
本発明による方法で製造される光学素子の特性が特に有効に用いられるフラットパネル表示装置は、前記光学素子がマイクロレンズアレイであり、前記フラットパネル表示装置は、照明ビームを供給するための照明システムと、表示されるべき画像情報を変調するための画像表示素子の規定されたパターンを伴う画像表示パネルと、前記マイクロレンズアレイが、前記照明システムと前記画像表示パネルとの間に配され且つ前記画像表示パネルの画像表示素子の前記パターンに対応する光学サブ素子のパターンが設けられることを特徴とする。それ自体既知のマイクロレンズアレイが備えられたこのようなフラットパネル表示装置(バックライト表示)は、例えば、1994年春のDisplay DiviceのNo9の14−17ページのSakae Araiによる記事“開発者はノートブックコンピュータ用のTFT LCDを開拓する”から既知である。
上述の画像表示装置及びフラットパネル表示装置で使用される画像表示パネルは、例えば、上記のような液晶ディスプレイ即ちLCDである。このような表示パネルは、二次元アレイに配され且つ個別に調整可能な多数の画像表示素子即ち画素を有する。個々の画素の各々は、画素の光学的に有効な表面領域を制限する電気調整素子を持つ。各光学サブ素子が表示パネルの画素の一つに対応するマイクロレンズアレイは、表示パネルに入射する光を、個別の各画素の光学的に有効な表面領域上に合焦する。本発明による方法で製造されるマイクロレンズアレイが比較的広い光学的有効表面領域を有するので、ビーム形成光学システムから到来する光ビームは、個々の画素の光学的に有効な部分にほぼ完全に合焦され、この結果、表示装置は、特に強い光を出力する。表示装置で使用される表示パネルは、例えば、それ自体既知のディジタルマイクロミラーデバイス即ちDMDであってもよいことに注意されたい。
本発明による方法で製造される光学素子の特性が特に有効に使用される固体画像センサは、前記光学素子がマイクロレンズアレイであり、前記固体画像センサ装置が、電荷結合素子と放射を電荷に変換する画像センサ素子のパターンとが表面に設けられ且つ放射の入射側において前記マイクロレンズアレイに隣接する半導体本体を有し、前記マイクロレンズアレイの各光学サブ素子が前記半導体本体の画像センサ素子に対応することを特徴とする。
本発明による方法で製造される光学素子の特性が特に有効に使用されるカメラは、前記光学素子がマイクロレンズアレイであり、前記カメラは、対物レンズシステムと、前記対物レンズシステムに対向する側に前記マイクロレンズアレイが設けられる少なくとも一つの固体画像センサ装置を持つ画像センサシステムとが設けられることを特徴とする。
カメラで使用される固体画像センサ装置は、二次元アレイに配された多数の画像センサ素子を有する。固体画像センサ装置の光学的に有効な表面領域は、画像センサ素子により発生される電荷が伝送される手段による電荷結合素子即ちCCDの存在によって制限を受ける。各光学サブ素子が画素像センサ装置の画像センサ素子の1つに対応するマイクロレンズアレイは、画像センサ装置に入射する光を、個々の画像センサ素子の光学的に有効な表面領域上に合焦する。本発明による方法で製造されるマイクロレンズアレイは比較的広い光学的有効表面領域を有するので、対物レンズシステムからの光が個々の画像センサ素子の光学的に有効な部分上にほぼ完全に合焦され、その結果、固体画像センサ装置は、特に高い感光性を持つ。
本発明による方法で製造される光学素子の特性が特に有効に使用されるカラー画像管用のフロントパネルを製造する方法は、前記フロントパネルの内側に感光性材料の層が設けられ、前記フロントパネルが、前記フロントパネルの内側に配されたシャドウマスクを介して点型光源によって照明され、前記光学素子が前記シャドウマスクと前記点型光源との間に配されることを特徴とする。
本発明による方法で製造される光学素子の特性が特に有効に使用されるカラー画像管用のフロントパネルを製造する装置は、前記装置が、点型光源と、前記光学素子用の第1のホルダと、前記フロントパネル及び前記フロントパネルの内側に配されるべきシャドウマスクのための第2のホルダとが設けられることを特徴とする。
シャドウマスクを介する点型光源によるフロントパネル上の感光性材料の照射及び次に行われるその照射された材料の現像により、フロントパネルの内側に、開口を有するいわゆる対称ブラックマトリクスが形成される。その開口には、画像管の次の製造工程の間の蛍光物質が堆積される。使用される光学素子は、ファセットの二次元直交アレイを有するファセットレンズである。ファセットレンズの使用により、シャドウマスクによりフロントパネル上に形成される光源の投影が、フロントパネル及びシャドウマスク用に設計されるカラー画像管において、フロントパネル上にシャドウマスクにより形成される電子ビームの合致点に一致するということが実現される。カラー画像管用のフロントパネルを製造するこのような方法は、例えば、ヨーロッパ特許出願公開第0294867号から既知である。使用されるファセットレンズが本発明による方法で製造されると、このレンズは個々のファセットの間に非常に小さな間隔を持ち、この結果、個々のファセットの間の境界により形成されるファセットの不連続性もとりわけ小さくなる。不連続性が比較的小さいので、フロントパネルの十分均一な照明が実現される。
【図面の簡単な説明】
第1図は、本発明による方法を実現するための装置の平面図である。
第2図は、図1のII−II線の断面図である。
第3図は、第2図の装置のダイスをモールドに押す工程を示す。
第4A図は、図1の装置により製造されたモールドの平面図である。
第4B図は、第4A図のIVb−IVb線の断面図である。
第4C図は、第4A図のIVc−IVc線の断面図である。
第5A図は、第4A図のモールドで製造されるレンズアレイの一部の平面図である。
第6図は、本発明による方法を実現する装置の他の実施例のツールホルダ及びダイスホルダを、一部を側面図、一部を断面図で示す。
第7図は、第6図のツールホルダ及びダイスホルダを、一部を正面図、一部を断面図で示す。
第8A図は、第6図に示したような装置の他の実施例により製造されたモールドの平面図である。
第8B図は、第8A図のVIIIb−VIIIb線の断面図である。
第8C図は、第8A図のVIIIc−VIIIc線分の断面図である。
第9A図は、第8A図のモールドで製造されるファセットレンズの一部の平面図である。
第9B図は、第9A図のIXb−IXb線の断面図である。
第9C図は、第9A図のIXc−IXc線の断面図である。
第10A図は、第1図の装置により製造されるモールドで作られるレンズアレイを持つ画像表示装置を概略的に示す。
第10B図は、第10A図の画像表示装置の多数の画素を概略的に示す。
第10C図は、第10A図の画像表示装置のマイクロレンズアレイの一部を示す。
第11A図は、固体画像センサ装置を備えたカメラを概略的に示す。
第11B図は、第11A図のカメラの固体画像センサ装置の一部を概略的に示す。
第12図は、カラー画像管用のフロントパネルの製造のための、ファセットレンズを有する装置を概略的に示す。
発明を実施するための最良の形態
第1図及び第2図に示したような本発明による方法を実現する装置1は支持面5を持つ加工品ホルダ3を有する。この支持面5は、X方向と、このX方向に垂直なY方向とに平行に延在し、この支持面5上には、製造されるべきモールド7を配置することができ、そのモールド7を第2図に概略的に示されたクランプ手段9により固定することができる。装置1は、第1および第2図に概略的に示された位置決め装置11を更に有する。この位置決め装置11は、X方向に平行に延在する直線ガイド13とXスライダ15とを有する。Xスライダ15は、伝達装置19を介して電気モータ21により駆動可能なスピンドル17により、直線ガイド13に沿って移動可能である。スピンドル17は、装置1のフレーム23に対して軸支され、電気モータ21はフレーム23に固定される。Xスライド15にはY方向に平行に延在する直線ガイド25が設けられており、Yスライド27は、伝達装置31を介して電気モータ33により駆動できるスピンドル29によって、Y方向に移動可能である。スピンドル29はXスライド15に対して軸支され、電気モータ33はXスライド15に固定される。第2図に示すように、Yスライド27には、X方向及びY方向に垂直なZ方向に延在する直線ガイド35が設けられている。Zスライダ37は、伝達装置41を介して電気モータ43により駆動可能なスピンドル39により、直線ガイド35に沿って移動可能である。スピンドル39はYスライド27に対して軸支され、電気モータ43はYスライダ27に固定される。第1図では、Zスライド37に関して伝達装置41及び電気モータ43のみが見えていることに注意されたい。
第2図に更に示すように、ツールホルダ45は、Zスライド37に固定され、このホルダには、Z方向に平行に延在する中心線49を持つ円柱状の段付きチャンバ47が設けられている。この段付きチャンバ47は、第1チャンバ部分51と、この第1チャンバ部分51よりも小さな直径の第2チャンバ部分53とを有する。第2チャンバ部分53は、第2チャンバ部分53を基準にしてZ方向に平行に摺動可能に案内され且つ円形端59が設けられたダイスホルダ57の円形シャフト55用の直線ガイドを構成する。この円形端59は、第1チャンバ部分51内に配された機械的なヘリカルスプリング61の所定のプリテンション力(pretension force)の影響の下、段付きチャンバ47の肩部により形成される止め63に当たる。第2図に示すように、ダイス65は、滑らかな球状ダイス面67を有する状態でダイスホルダ57に固定され、例えば、鋼鉄又はサファイアから製造される。ツールホルダ45及びダイスホルダ57は、位置決め装置11により、加工品ホルダ3に対してX方向、Y方向及びZ方向に平行な方向に、共に移動可能可能である。
モールド7は第4A,B,C図に詳細に示されており、以下にさらに詳細に記載される方法に従って、装置1により製造される。モールド7は、例えば、いわゆるレンズアレイ又はいわゆるファセットレンズ(facet lens)のような、互いに或るパターンに配された相互に隣接する光学サブ素子が設けられた光学素子の製造のために設計される。第5A,Bは、斯かるレンズアレイ69の一例を示す。レンズアレイ69の光学サブ素子は、二次元の六角形配列に従ってレンズアレイ69の一方の側73に設けられた球面レンズ71である。第5B図が示すように、レンズアレイ69は他方の側に平面75が設けられている。レンズアレイ69は、それ自体は既知である通常の複製技術(例えば、モールド7を紫外線の作用により硬化する液状合成樹脂で満たし、次に、図4B及びCに示される、そのモールド7の合成樹脂の屈折率に対応する屈折率を有する透明な合成材料から製造されたプレート77でそのモールド7を覆う)を用いて、モールド7により製造される。第4A図では、プレート77はその輪郭のみが破線で示されていることに注意されたい。モールド7の合成樹脂は、透明プレート77を介して紫外線が照射されて硬化し、上記透明プレート77及びモールド7により形成される光学サブ素子71のアレイから構成される第5A,B図に示されるレンズアレイ69が形成される。
モールド7は、例えば、銅、アルミニウム、亜鉛又はこれら材料を有する合金のような延性金属から製造される。第4A図に示すように、モールド7は、平坦な底81を持つモールドチャンバ79を有する。このチャンバの形状83は、製造されるべき光学素子69のサブ素子71のパターンに対応するように、上記方法に従って装置1により設けられる。第4A図は、簡略化のためにモールド形状83の数箇所の部分のみを示していることに注意されたい。この方法によれば、モールドチャンバ79の底81には、例えばダイヤモンドミリング工具によって、通常のそれ自体既知の方法で、光学素子69に望まれる光学品質の滑らかな面が最初に与えられる。
次に、モールド7は、モールドチャンバ79の底81がX及びY方向に平行に延在するように、装置1の部品ホルダ3に固定される。ダイス65の球状ダイス面67は、一つの光学サブ素子、即ち製造されるべき光学素子69の単一球面レンズ71に対応する。この方法によれば、モールドチャンバ79の底81のモールドの形状83は、製造されるべき光学素子69のサブ素子71の六角形パターンに従って、ダイス65が位置決め装置11により底81の連続する位置に配され、ダイス65が各位置において底81に跡がつくように押されることにより設けられる。ダイス65の押圧工程は第3図に詳細に示されている。ダイス65がXスライド15及び/又はYスライド27の移動によって次の位置に移動した後(この間、ダイスホルダ57はチャンバ47の止め63に当たっている)、ダイス65は、Zスライド37の移動によって底81に跡がつくように押される。第3図に示すように、ダイスホルダ57の円形端59は止め63から離れ、この結果、ダイス65は、機械的ヘリカルスプリング61の所定のプリテンション力に対応した力で底81に跡がつくように押される。ヘリカルスプリング61のプリテンション力及び弾性モジュールを適切に選択することによって、円形端59の隙間が存在するときのヘリカルスプリング61のプリテンション力の増加を無視できるほど小さくすることが達成され、この結果、底81に跡がつくように押されるダイス65の力は、押されている間、Z方向に平行なZスライダ37及びツールホルダ45により占められる位置に実質的に依存しない。それに応じて、Zスライド37の位置精度に厳密な条件を課す必要はない。
一方、ダイス65がモールド7の底81に跡がつくように押されると、ダイス面67の下に存在するモールド7の延性金属が可塑的に変形され、この結果、この金属は、ダイス面67、即ち光学素子69の光学サブ素子71に対応する形状を呈する。ダイス65は光学素子69のパターンに従って連続位置に跡がつくように繰り返し押され、底81に完全なモールド形状83が形成される。
ダイス65がモールド7に跡がつくように押される力を適切に選択することによって、モールド7の延性金属はダイス65と底81との間の接触面の専らすぐ近くにおいて可塑的に変形することが達成されることに注意されたい。上記接触面から幾分離れた距離における可塑的変形は無視できるほど小さく、この結果、上記接触面に隣接し且つモールド7に既に形成されたモールド形状83の部分は、サブ素子に対応する現在の形状を跡がつくように押しているときに変形されない。接触面から幾分離れた距離における無視できる小さな変形は、モールド7の延性金属が、個々の結晶の間に空洞(cavity)が存在した状態で、多結晶構造を有するという事実から説明できると考えられる。比較的小さな力が延性金属の面に作用すると、結晶と格子の内側との間のせん断は起きないが、専ら結晶の間に存在する空洞は、ダイス65の下に存在する延性金属の圧縮によって小さくなる。せん断が起きないので、モールド形状83の既に形成された部分の可塑変形は生じないであろう。より強い力の場合にせん断が結晶間且つ格子内に生じると、このため、可塑変形がダイス65から幾分離れた距離に存在する金属に生じ、球状ダイス面67の比較的浅い陥入深さを考慮すると移動する金属の量は比較的少ないため且つこの移動する金属は比較的大きな体積に渡って拡散するため、上記の変形は比較的小さいであろう。
第4A,B,C図に示され且つ第5A図のレンズアレイ69の製造に使用されるモールド7は、球面跡85の二次元六角形アレイを有する。第4B,C図に示された隣接する跡のピッチsは示した例では約0.15mmであり、一方、第4B,C図に示す陥入深さdは約6μmである。示した実施例によるこのようなアレイは、約0.5mmの半径及び約10Nのプリテンション力を持つ球状ダイス面67により形成される。ダイス面67は光学素子69の単一光学サブ素子71に対応するため、延性金属は、ダイス65で押されるときにダイス面67の周りで適切に変形し、この結果、特に鋭い境界87が、モールド形状83を形成する個々の跡85の間に形成される。第4B,C図に示すように、モールド7の跡85の間の境界87の各々は円の一部を形成する、即ち境界87の各々は球状ダイス面65の緯度に平行な部分に対応する。従って、モールド7は特に高い寸法精度を有する、即ち、実質的にモールド形状83の表面上の全ての点が、跡85の一つの球面の部分を形成する。モールド7により製造される光学素子69は、結果として、特に広い有用な光学面を有する、即ち、実質的に光学素子69の側73における全ての点が光学サブ素子71の一つの球面の一部を形成する。
第5A,B図に示され且つモールド7により製造されるレンズマトリクス69は、いわゆるマイクロレンズアレイである。このようなマイクロレンズアレイは、例えば1mmよりも小さな直径の多数のマイクロレンズを有する。使用されるダイス65のダイス面67は一つの光学サブ素子(即ち、レンズアレイ69の一つのマイクロレンズ71)にのみに対応するので、ダイス65は、簡単な方法で製造することができる。実際、モールド7の底81の表面の滑らかさは、モールド7の底81へのダイス65の押圧工程により影響されないことがわかった。底81は先ず本発明により所望の表面の滑らかさが設けられ、次にダイス65によりモールド形状83が与えられるので、所望の表面の滑らかさが比較的簡単な方法で達成される。
一方、モールド形状83を設けている間、モールド7の底81とダイス面67との間の埃及び塵の粒子の存在は、このような埃及び塵の粒子がモールド形状83に損傷を与えることがあるため、防止すべきである。従って、ダイス65によりモールド形状83を設けることは、例えば調整された空間のような実質的な無塵環境において実施されるべきである。装置1の特別な実施例において、ツールホルダ3は、第2図の破線で示され動作中に例えば水で満たされる液体槽89内に配される。この特別な実施例において、モールド7は、モールド形状83が設けられている間液体槽89に浸され、これによって、ダイス65とモールド7の底81との間の埃及び塵の存在は、簡単且つ効果的な方法で防止される。
第6図及び第7図は、本発明による方法を実施する装置95の他の実施例のツールホルダ91及びダイスホルダ93を概略的に示す。部品ホルダ91は、装置1のツールホルダ45と実質的に同一であり、ツールホルダ45及び91並びに装置1及び95の対応する部分は、以後同一番号が与えられる。ダイスホルダ57と同様、ダイスホルダ93は、ツールホルダ91の第2チャンバ部分53中を摺動可能に案内される円形シャフト97と、第1チャンバ部分51に配された機械的ヘリカルスプリング101の所定のプリテンション力の作用の下で段付チャンバ47の止め63に当たる円形端99とを有する。円形シャフト97及び円形端99は、ダイスホルダ93の第1のフォーク形状担体103に属する。第6図及び第7図に示すように、第1の担体103は、ピボットガイド105,107と協働する2つの円形スロット111,113が設けられたダイスホルダ93の第2の担体109用の2つの円形ピボットガイド105,107を有する。第2の担体109は、ピボットガイド105,107を使用して、X方向に平行なピボットガイド105,107の第1仮想ピボット軸115を中心に第1担体103に対して回動可能である。第6図及び第7図に更に示すように、第2担体109は、ピボットガイド117,119と協働する二つの円形スロット123,125が設けられるダイスホルダ93の第3の担体121用の二つの円形ピボットガイド117,119を有する。第3の担体121は、ピボットガイド117,119の使用によって、Y方向に平行且つ第1仮想ピボット軸115と交差するピボットガイド117,119の第2仮想ピボット軸127を中心に第2の担体109対して回動可能である。ダイス129は、第3担体121に固定され、平坦な長方形のダイス面131が設けられる。第1の担体103に対する第2の担体109と第2の担体109に対する第3の担体121とのニュートラル位置において、ダイス面131は、X方向及びY方向に平行に延在し、第1仮想ピボット軸115及び第2仮想ピボット軸127の交点が、ダイス面131の中心Mに位置する。
さらに第6図及び第7図に示すように、それ自体通例且つ既知である第1の線形電気的アクチュエータ133は第1の担体103に固定され、このアクチュエータの出力シャフト135は、第2の担体109に固定された結合ロッド137に結合される。第1のアクチュエータ133と同一の第2の線形電気的アクチュエータ139は第2の担体109に結合されており、第3の担体121に固定された結合ロッド143に結合された出力シャフト141を有する。第1の仮想ピボット軸115を中心とした第2の担体109のピボット角度αは、第1のアクチュエータ133により調整可能であり、一方、第2の仮想ピボット軸127を中心とした第3の担体121のピボット角度βは、第2のアクチュエータ139により調整可能である。第6図及び第7図に示すように、ダイスホルダ93の円形シャフト97は、弾性的に変形可能な薄膜145を通じて第1のチャンバ部分51に固定され、この結果、担体103,109及び121並びにダイス129はツールホルダ91の中心線49を中心に回転できない。
装置95は、第8A,B,C図に示すモールド147の製造に使用され、いわゆるファセットレンズの製造用に設計される。第9A,B,C図は、ファセットレンズ149の一例を示す。このファセットレンズ149は、一方の側に平坦面151を有し、他方の側153に矩形状の光学サブ素子155の二次元的に直交するアレイを有する。各サブ素子155は、例えば、ファセットレンズ149の基準面(例えば、平坦面151)に対して2つの相互に垂直なピボット軸を中心に回動した平坦なレンズ面157を有する。ファセットレンズ149は、例えば、レンズアレイ69を製造するための上記の複製技術のような複製技術により、モールド147によって製造される。
モールド7と同様に、モールド147は延性金属で作られ、モールド147の底159は、ファセットレンズ149に要求されるような光学品質の表面滑らかさが設けられる。モールド147は、モールド147の底159がX方向及びY方向に対し平行に位置するように、装置95の加工品ホルダ3に固定される。ダイス129の矩形状の平坦なダイス面131は、ファセットレンズ149の1つの光学サブ素子155に対応する。この方法によれば、モールド147の底159には、ファセットレンズ149に対応するモールド形状161が与えられ、ダイス129は、ファセットレンズ149のサブ素子155の直交パターンに従って、装置95の位置決め装置11により底159の連続する位置を移動し、この間、ダイス129は各位置において、アクチュエータ133,139によって仮想ピボット軸115,127を中心に予め規定された角度α及びβを回動し、次にダイスは、ヘリカルスプリング101の所定のプリテンション力に対応する力で底159に跡がつくように押される。角度α,βは、個別に調整可能である。加えて、角度α及びβは、連続して製造されるモールドに対して異なるように調整されてもよく、この結果、装置95で多数の異なるモールドを製造することができる。第8A図は、簡略化のため、モールド形状161の数箇所のみを示していることに注意されたい。
装置1に関しても先に記載したように、装置95は、比較的小さな寸法である多数の光学サブ素子を有する光学素子の製造に特に適する。第9B,C図に示すように、モールド147により製造されるファセットレンズ149は、個々のサブ素子155の間に、ファセットレンズ149に放射される光の望ましくない散乱を引き起こす不連続な境界163を有する。ファセットレンズ149が、例えば、点光源とフラットスクリーンとの間に置かれると、上記の散乱によりこのスクリーンの照明の不均一性が生じる。モールド147により製造されたファセットレンズ149は、各々が比較的小さな寸法(例えば、1mm又はそれ以下)である多数のサブ素子155を有するので、不連続な境界163は、上記不均一性が比較的小さく且つ上記スクリーンの均一照明が得られるような比較的小さい寸法を有する。
第10Aは、本発明による方法により製造されたマイクロレンズアレイ171を有する画像表示装置169を概略的に示す。それ自体は既知であるマイクロレンズアレイが設けられた斯かる画像表示装置は、例えば、ヨーロッパ特許公開公報EP−A−0574269号から既知である。画像表示装置169は。光放射源173及び反射体175を有する。放射源173により放射された光は、簡略化のため図10Aに単一コンデンサレンズ179として表される集束光システムによって平行光ビーム177の形になる。画像表示装置169は、例えば、第10A図に概略的に示された液晶表示パネル181のような画像表示システムを更に有する。この表示パネル181は、それ自体は通常の且つ既知であり画像表示素子即ち画素185の二次元直交アレイを有する液晶層183が設けられる。液晶層183は側端部のみが第10A図に示されていることに注意されたい。第10B図に示すように、画素185の各々は、概略的にしか示されていない電子スイッチング素子189によって囲まれる光学的に有効な部分187を有する。このスイッチング素子によって、画素185の光学的に有効な部分187は個別に光学的に調整可能である。第10B図が示すように、各画素185の光学的に有効な部分187は、スイッチング素子189の存在により、画素185の中心部分に限定される。第10A図に示すように、液晶表示パネル181は、液晶層183の光が入射する側191に、上述のマイクロレンズアレイ171が設けられる。第10C図に示すように、マイクロレンズアレイ171は、各マイクロレンズ193が液晶層183の画素185の一つに対応する球状マイクロレンズ193の二次元直交マトリクスを有する。マイクロレンズアレイ171は、液晶層183の個々の画素185の光学的に有効な面187上に平行光ビーム177を合焦する。第10A図に示すように、画像表示装置169は更にフィールドレンズ195及び投影スクリーン199を有し、このフィールドレンズにより、表示パネル181からの光が、簡略化のため単一プロジェクションレンズ197として表示される投影レンズシステムに向けて集光される。マイクロレンズアレイ171は本発明による方法によって製造されたため、このマイクロレンズアレイ171は比較的大きな有効光学面を持ち、この結果、平行光ビーム177は非常に限られた程度でしか散乱せず、液晶層183の個々の画素185の光学的に有効な面187上にほぼ完全に合焦される。従って、画像表示装置169は特に大きな出力を有する。
第11A図は、本発明による方法によって製造されたマイクロレンズアレイ203が設けられたカメラ201を概略的に示す。このカメラ201は、簡略化のため第11A図に単一対物レンズ205として示された対物レンズシステムを有する。カメラ201は、更に、第11A図に概略的に示された固体画像センサ装置207を持つ画像センサシステムを有し、対物レンズ205に対向する側マイクロレンズアレイ203が設けられる。マイクロレンズアレイ203及び固体画像センサ装置207は、その側端部のみが第11A図に示されていることに注意されたい。固体画像センサ装置207は、第11B図に示されている。それ自体は既知であるマイクロレンズアレイが備えられたこのようなIT型(Interline Type)の固体画像センサ装置は、例えば日本国特許公開公報平成1−257901号に開示されている。第11B図が示すように、固体画像センサ装置207は半導体本体209を有する。この半導体本体209の表面211には、光を電荷に変換する画像センサ素子即ちフォトダイオード213の2次元直交アレイが備えられている。この電荷は、いわゆる垂直電荷結合デバイス215と水平電荷結合デバイス217とのシステムを通じて電子読取ユニット218に送られる。電荷結合デバイス215,217は、例えばアルミニウムの保護層により、光からシールドされる。第11B図から明らかなように、固体画像センサ装置207の光学的に有効な面の領域は、ホトダイオード213の領域に限定される。明確化のために第11B図には示されていないマイクロレンズアレイ203は、第10C図に示されたマイクロレンズアレイ171に対応する球状マイクロレンズ219の二次元直交アレイを有する。各マイクロレンズ219は、固体画像センサ装置207のフォトダイオード213の1つに対応する。固体画像センサ装置207の光入射側のマイクロレンズアレイ203は、対物レンズ205を経由した固体画像センサ207上の入射光を、個々のフォトダイオード213の光学的に有効な面上に合焦する。マイクロレンズアレイ203は本発明による方法によって製造されたので、マイクロレンズアレイ203は光学的に有効な広い表面領域を持ち、この結果、固体画像センサ装置207上の入射光は非常に限られた程度でしか散乱せず、個々のフォトダイオード213の光学的に有効な表面領域にほぼ完全に合焦される。従って、ここで使用されるカメラ201及び固体画像センサ装置207は、特に高い感光性を有する。本発明による方法によって製造されたマイクロレンズアレイは、使用される電荷結合デバイスが必要な画像センサ素子を備えたFTタイプ(Frame Transfer type)の固体画像センサ装置、及び、例えば“静止画”画像センサ装置にも適応可能であることに注意されたい。
第12図は、カラー画像管用のフロントパネル223を製造する装置221を概略的に示す。装置221は、本発明による方法によって製造されるファセットレンズ225が設けられる。それ自体は既知であるファセットレンズが設けられたこのような装置は、例えばヨーロッパ特許公開公報EP−A−0294867号から既知である。第12図に示すように、装置221は、点型光源231が中心に配された底229を持つ筐体に27を有する。この筐体に27には、ファセットレンズ225用の第1のホルダ233、及び装置221により製造されるべきフロントパネル223用の第2のホルダ235が存在する。第12図に示すように、フロントパネル223に属するシャドウマスク239は、フロントパネル223の内側237において第2ホルダ235上に配される。シャドウマスク239は、フロントパネル223とシャドウマスク229を組み込むカラー画像管に、フロントパネル223に対してシャドウマスク239により占められる位置に対応する位置に存在する。
フロントパネル223の内側237には、装置221により、開口が設けられたいわゆる対称ブラックマトリクスが設けられる。フロントパネル223の製造時に、次の行程の間にブラックマトリクスの開口に蛍光物質が堆積され、この結果、必要な蛍光体ドットが設けられる。この目的のため、フロントパネル223の内側237には、最初に、例えば通常のそれ自体既知であるポジ型フォトレジストのような感光性材料の層が設けられる。次に、フロントパネル223上の感光性材料が装置221によりシャドウマスク239を介して露光され、その後、露光された材料は現像液で現像される。この方法で形成されるべきブラックマトリクスの開口は、シャドウマスク239により関連するカラー画像管内に形成される電子ビームの入射点に一致しなければならないため、及び関連するカラー画像管内の電子ビームは一般に湾曲経路を辿るため、光源231の光は、シャドウマスク239によりフロントパネル223上に形成される光源231の投影が電子ビームの上記入射点に一致するように、ファセットレンズ225によって偏向されなければならない。この目的のためのファセットレンズ223は、第9A図に示されたファセットレンズ配列149に対応する矩形状の平坦なファセット(facet)241の二次元直交配列を有する。このファセットは全てが、ファセットレンズ225の面151に平行に延在する相互に垂直な二つのピボット軸を中心に、電子ビームの上記経路からの値の角度で回動したものである。第9A,B,C図に示されたファセットレンズ149を基準にして上述したように、本発明により製造されたファセットレンズ225は、比較的小さな寸法の多数のサブ素子241を有し、この結果、ファセットレンズ225に入射する光源231からの光は非常に限られた程度しか散乱せず、ファセットレンズ225によるフロントパネル223のとりわけ均一な照明が実現される。
上述の光学素子69,149,171,203,225は全てが、光学サブ素子71,155,193,219,241の規則的なパターンを有し、光学素子69,171,203の光学サブ素子71,193,219は互いに同一である。本発明による方法により同一ではない光学サブ素子を持つ光学素子を製造することも可能であることに注意されたい。上述の例では、ファセットレンズ149,225のファセット155,241は相互に異なる角度を回動したものである。しかしながら、この方法によれば、相互に異なるレンズが備えられたレンズアレイを製造することもできる。しかしながら、これを実現するため、製造されるべきレンズアレイの異なるレンズの数に対応した数の異なるダイスを使用しなければならない。加えて、この方法は、光学サブ素子が異なるパターンで配され、光学サブ素子が不規則なパターンで配され、又は異なる型式のサブ素子が使用される光学素子の製造を考慮している。光学サブ素子が、レンズマトリクス69,171,203及びファセットレンズ149,225のような凸レンズ、凹レンズ又は平面レンズではなく、光学サブ素子が、例えば、平面鏡、凸面鏡又は凹面鏡である方法により光学素子を製造することも可能である。
上述のダイス65,129は、製造されるべき光学素子69,149,171,203,225の単一光学サブ素子71,155,193,219,241に対応するダイス面67,131を有する。本発明による方法において、製造されるべき光学素子の二つ以上の光学サブ素子に対応するダイス面が備えられたダイスを使用することも可能であることに注意されたい。このような単一片多重型のダイスの製造はより多くの時間を必要とするが、この多重ダイスによって、モールド形状の提供がより迅速に進む。加えて、このような多重ダイスは、X及びY方向において、モールドに対してより高精度に位置が特定されなければならず、さもないと、光学サブ素子間の間隔のずれが規則的な間隔で発生し、製造されるべき光学素子の光学的ずれとなる。単一ダイスが使用されると、光学サブ素子間の間隔のずれは、隣接するサブ素子のペアの間で生じ、その結果、規則的に繰り返されるずれは生じない。
光学素子が紫外線の作用で硬化する合成樹脂材料から製造される上記の複製技術の代わりに、他の複製技術(例えば、光学素子が熱硬化性合成樹脂から製造される複製技術)を使用しても良いことに更に注意されたい。
上述のモールド7,147は、ダイス65,129によって所望のモールド形状83,161が設けられる平坦な底81,159を有する。この代わりに、平坦ではない底を設けるのに適したダイス用の位置決め装置を備え、平坦ではないモールドの底が設けられてもよいことに注意されたい。平坦ではないモールドの底は、例えば、ピボット角度が大きな傾斜を有するファセットレンズの製造で使用することができる。モールドの底には、例えば、ピボット角度の平均傾斜に対応する湾曲が設けられても良い。このように製造されるモールドの底にファセットを設けると、ダイスを、このモールドの底に対して局所的にごく小さな角度に渡って回動させる必要があるだけであり、この結果、モールドの底は、ダイスの押圧の間に、ごくわずかな程度可塑的に変形し、既に形成された隣接するファセットの可塑変形が防止される。この方法により、例えば、球状又は非球状の基体上に配された球面レンズのパターンが設けられる光学素子を製造することも可能である。
位置決め装置11の代わりに、他の型式の位置決め装置が使用されても良いことに注意されたい。同様に、装置1,95に、例えば、ダイスの所定の圧力が油圧シリンダにより供給されるダイスホルダのような異なる型式のダイスホルダが設けられても良い。
図に単に概略的に示され且つ先に簡潔に記載された画像表示装置169及びカメラ201は、それぞれ単一の表示パネル181及び単一の固体画像センサ装置207を有する。最後に、このような画像表示装置及びカメラは、それぞれ一つ以上の表示パネル及び一つ以上の固体画像センサ装置を有しても良いことに注意されたい。この装置及びカメラの各々は、光ビームを多数の基本色に分割するための、一般的且つそれ自体既知の色分離プリズムのシステムが設けられ、さらに、画像表示装置及びカメラは、各色に対して、それぞれ別個の表示パネル及び別個の固体画像センサ装置が設けられる。

Claims (14)

  1. 互いに或るパターンに従って配された相互に隣接する光学サブ素子が設けられた光学素子の製造に使用されるモールドを製造する方法であって、前記モールドには、当該方法によって前記光学サブ素子のパターンに対応するモールド形状が与えられ、前記モールドは延性金属から製造され、前記光学サブ素子の形状に対応するダイス面が設けられ且つ前記パターンに従って連続的な位置に所定の力で前記モールドに押されるダイスにより前記モールド形状が与えられ、前記モールドが、前記ダイスにより前記モールド形状が施される間、液体槽に浸される方法。
  2. 互いに或るパターンに従って配された相互に隣接する光学サブ素子が設けられた光学素子を製造する方法であって、モールドには、当該方法によって前記光学サブ素子のパターンに対応するモールド形状が与えられ、前記光学素子は、前記モールドを用いて複製技術により製造され、前記モールドは延性金属から形成され、前記光学サブ素子の形状に対応するダイス面が設けられ且つ前記パターンに従って連続的な位置に所定の力で前記モールドに押されるダイスにより前記モールド形状が与えられ、前記モールドが、前記ダイスにより前記モールド形状が施される間、液体槽に浸される方法。
  3. 請求項1又は2に記載の方法であって、前記モールドは、前記光学素子に要求される面の滑らかさ前記モールドに予め施した後前記ダイスにより前記モールド形状が設けられる方法。
  4. 請求項1ないし3うちいずれか1つに記載の方法であって、前記延性金属、銅、アルミニウム又は亜鉛を有する方法。
  5. 請求項1ないし4うちいずれか1つに記載の方法であって、前記ダイスは球状ダイス面が設けられ、六角形パターンに従って前記モールドに押される方法。
  6. 請求項1ないし5のうちいずれか1つに記載の方法であって、前記ダイスは、平坦なダイス面を持ち且つ直交パターンに従って前記モールドに押されるとともに前記ダイスは、前記パターンの連続的な位置において前記ダイス面の中心で互いに交差し且つ相互に垂直な2つのピボット軸を中心に所定の角度回動させられ方法。
  7. 請求項1ないし6うちいずれか1つに記載の方法を実施する装置であって、前記モールドを固定するための加工品ホルダと、前記ダイスを固定するためのツールホルダと、位置決め装置とが設けられ、前記ツールホルダは、前記位置決め装置によって前記加工品ホルダに対して移動可能な直線ガイドと、前記直線ガイドに対して摺動可能に案内され且つ所定の弾性プリテンション力の作用の下で前記直線ガイドの止めに当たるダイスホルダとを具備する装置。
  8. 請求項に記載方法を実施する請求項に記載装置であって、前記ダイスホルダは、前記直線ガイドに対して摺動可能に案内される第1の担体と、前記第1の担体のピボットガイドに対して回動可能な第2の担体と、前記第2の担体のピボットガイドに対して回動可能な第3の担体とが備えられ、前記ダイスは前記第3の担体に固定され、前記相互に垂直な2つのピボット、それぞれ、前記第1の担体のピボットガイドの仮想軸及び前記第2の担体のピボットガイドの仮想軸を形成する装置。
  9. 晶表示パネルを製造する方法であって、前記液晶表示パネルは、マイクロレンズアレイと、画像表示素子のパターンを有し且つ光が入射する側において前記マイクロレンズアレイと隣接する液晶層とを具備し、前記マイクロレンズアレイの各光学サブ素子が、前記液晶層の前記画像表示素子の1つに対応し、前記マイクロレンズアレイは、請求項2ないし5のうちいずれか1つに記載の方法により製造される光学素子である、液晶表示パネル製造方法
  10. 像表示装置を製造する方法であって、前記画像表示装置は、光放射源と、ビーム形成光学システムと、少なくとも1つの画像表示パネルを持つ画像表示システムと、投影レンズのシステムと、画像投影スクリーンとをこの順に具備し、前記画像表示パネルは、前記光放射源に対向する側にマイクロレンズアレイが設けられ、前記マイクロレンズアレイは、請求項2ないし5のうちいずれか1つに記載の方法により製造される光学素子である、画像表示装置製造方法
  11. ラットパネル表示装置を製造する方法であって、前記フラットパネル表示装置は、証明ビームを供給するための照明システムと、表示されるべき画像情報を変調するための規定パターンの画像表示素子を持つ画像表示パネルとをこの順に備え、マイクロレンズアレイが、前記照明システムと前記画像表示パネルとの間に配され且つ前記画像表示パネルの前記パターンの画像表示素子に対応する光学サブ素子のパターンが設けられ、前記マイクロレンズアレイは、請求項2ないし5のうちいずれか1つに記載の方法により製造される光学素子である、フラットパネル表示装置製造方法
  12. 体画像センサ装置を製造する方法であって、前記固体画像センサ装置、電荷結合素子と放射を電荷に変換する画像センサ素子のパターンとが表面に設けられ且つ当該放射の入射側においてマイクロレンズアレイに隣接する半導体本体を有し、前記マイクロレンズアレイの各光学サブ素子が前記半導体本体の画像センサ素子に対応し、前記マイクロレンズアレイは、請求項2ないし5のうちいずれか1つに記載の方法により製造される光学素子である、固体画像センサ装置製造方法
  13. メラを製造する方法であって、前記カメラは、対物レンズシステムと、前記対物レンズシステムに対向する側にマイクロレンズアレイが設けられる少なくとも1つの固体画像センサ装置を持つ画像センサシステムとをこの順に具備し、前記マイクロレンズアレイは、請求項2ないし5のうちいずれか1つに記載の方法により製造される光学素子である、カメラ製造方法
  14. ラー画像管用のフロントパネルを製造する方法であって、前記フロントパネルの内側に感光性材料の層が設けられ、前記フロントパネルが、前記フロントパネルの内側に配されたシャドウマスクを介して点型光源によって照明され、光学素子が前記シャドウマスクと前記点型光源との間に配され、前記光学素子は、請求項6に記載の方法により製造される、フロントパネル製造方法。
JP50935296A 1994-09-09 1995-09-01 相互に或るパターンに配された光学サブ素子を有する光学素子の製造に使用されるモールドを製造する方法、及び斯かる方法を実行するための装置 Expired - Lifetime JP3818320B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL94202597.4 1994-09-09
EP94202597 1994-09-09
PCT/IB1995/000727 WO1996007523A1 (en) 1994-09-09 1995-09-01 Method of manufacturing a mould for use in the manufacture of an optical element comprising optical sub-elements mutually arranged in a pattern, and device for implementing such a method

Publications (2)

Publication Number Publication Date
JPH09505534A JPH09505534A (ja) 1997-06-03
JP3818320B2 true JP3818320B2 (ja) 2006-09-06

Family

ID=8217179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50935296A Expired - Lifetime JP3818320B2 (ja) 1994-09-09 1995-09-01 相互に或るパターンに配された光学サブ素子を有する光学素子の製造に使用されるモールドを製造する方法、及び斯かる方法を実行するための装置

Country Status (7)

Country Link
US (2) US7125505B1 (ja)
EP (1) EP0734314B1 (ja)
JP (1) JP3818320B2 (ja)
KR (1) KR100407874B1 (ja)
CN (1) CN1081976C (ja)
DE (1) DE69529334T2 (ja)
WO (1) WO1996007523A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2752949A1 (fr) * 1996-09-05 1998-03-06 Anizan Paul Procede de fabrication d'une matrice de micro-lentilles
DE10038213A1 (de) 2000-08-04 2002-03-07 Osram Opto Semiconductors Gmbh Strahlungsquelle und Verfahren zur Herstellung einer Linsensform
US6402996B1 (en) * 2000-10-31 2002-06-11 Eastman Kodak Company Method of manufacturing a microlens and a microlens array
US20050023433A1 (en) * 2003-07-31 2005-02-03 Alps Electric Co., Ltd. Resin optical component mold having minute concavo-convex portions and method of manufacturing resin optical component using the same
WO2005053940A1 (en) * 2003-12-05 2005-06-16 Anteryon B.V. Method of manufacturing a mould for use in the manufacture of a lens array
JP2008542026A (ja) * 2005-05-04 2008-11-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 高精度を有する大きい力の押込加工装置
JP2007024970A (ja) * 2005-07-12 2007-02-01 Miyakawa:Kk 液晶表示装置の開口効率を上昇させるための樹脂レンズ製造法及びその製造装置
CN100591506C (zh) * 2005-11-04 2010-02-24 鸿富锦精密工业(深圳)有限公司 模仁安装高度可调节的模具
US7486854B2 (en) 2006-01-24 2009-02-03 Uni-Pixel Displays, Inc. Optical microstructures for light extraction and control
US20070216049A1 (en) * 2006-03-20 2007-09-20 Heptagon Oy Method and tool for manufacturing optical elements
US7879249B2 (en) * 2007-08-03 2011-02-01 Aptina Imaging Corporation Methods of forming a lens master plate for wafer level lens replication
US7919230B2 (en) * 2008-06-25 2011-04-05 Aptina Imaging Corporation Thermal embossing of resist reflowed lenses to make aspheric lens master wafer
KR101076049B1 (ko) * 2009-07-07 2011-10-24 도레이첨단소재 주식회사 광학필름 제조용 롤의 렌즈 형상 제조방법 및 이로부터 렌즈 형상이 형성된 광학필름 제조용 롤
CN102520576B (zh) * 2011-11-18 2014-02-05 中国电子科技集团公司第五十五研究所 图形化衬底工艺用步进光刻掩膜版数据拼接方法和修正法
JP6422828B2 (ja) * 2015-06-19 2018-11-14 矢崎総業株式会社 レンズアレイ及び画像表示装置
CN111458773B (zh) * 2019-01-22 2021-05-18 北京理工大学 一种超硬材料的微透镜阵列制造方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2299488A (en) * 1938-12-21 1942-10-20 Samuel M Dover Means for forming lenses
US3288045A (en) * 1965-05-04 1966-11-29 Ibm Method and apparatus for producing articles having arrays of similar patterns
US3526949A (en) * 1967-10-09 1970-09-08 Ibm Fly's eye molding technique
US4375533A (en) 1981-07-08 1983-03-01 The Bf Goodrich Company Polymerization process for carboxyl containing polymers
JPS58171021A (ja) * 1982-03-31 1983-10-07 Fujitsu Ltd アレイ構造を有するレンズとその製造方法
JPS59199133A (ja) * 1983-04-28 1984-11-12 Oiles Ind Co Ltd 鍔付き巻きブツシユ軸受の製造方法ならびにその製造に使用される金型
GB8712458D0 (en) 1987-05-27 1987-07-01 Philips Nv Producing colour picture tube screen
JPS63315525A (ja) * 1987-06-16 1988-12-23 Canon Inc 光学素子製造方法
US5104590A (en) * 1988-10-26 1992-04-14 Wright Medical, Inc. Fabrication of an intraocular lens
JP2777371B2 (ja) 1988-04-08 1998-07-16 大日本印刷株式会社 固体撮像素子におけるマイクロ集光レンズ形成方法
US5185107A (en) * 1988-10-26 1993-02-09 Iovision, Inc. Fabrication of an intraocular lens
WO1990005061A1 (en) * 1988-11-09 1990-05-17 Elvin Merrill Bright Optical plastics and methods for making the same
JPH02163395A (ja) * 1988-12-15 1990-06-22 Toshiba Corp 光学素子の成形金型製造方法
US4960326A (en) * 1989-03-06 1990-10-02 Dauvergne Hector A Lenticular eyewear and method of fabrication
US4909969A (en) * 1989-08-23 1990-03-20 Wood Kenneth E Method and apparatus for removing a contact lens from a plastic mold
US5225935A (en) * 1989-10-30 1993-07-06 Sharp Kabushiki Kaisha Optical device having a microlens and a process for making microlenses
JP2504607B2 (ja) * 1990-06-14 1996-06-05 株式会社東芝 半導体製造装置及び製造方法
US5151790A (en) * 1990-07-23 1992-09-29 Fuji Photo Film Co., Ltd. Image pickup device for stabilizing optical aberrations
JP2680175B2 (ja) * 1990-09-28 1997-11-19 キヤノン株式会社 光学素子の製造方法
US5155144A (en) * 1990-10-29 1992-10-13 Manganaro James L Polysaccharide-based porous sheets
JP2702332B2 (ja) * 1991-09-30 1998-01-21 キヤノン株式会社 電動式縦型射出成形装置
JP3147481B2 (ja) 1992-04-21 2001-03-19 松下電器産業株式会社 ガラス製回折格子の成形用金型及びその製造方法及びガラス製回折格子の製造方法
JP3071947B2 (ja) 1992-06-12 2000-07-31 シャープ株式会社 投影型カラー画像表示装置
US5300263A (en) * 1992-10-28 1994-04-05 Minnesota Mining And Manufacturing Company Method of making a microlens array and mold
US5439621A (en) * 1993-04-12 1995-08-08 Minnesota Mining And Manufacturing Company Method of making an array of variable focal length microlenses
ES2140510T3 (es) * 1993-10-04 2000-03-01 Gen Electric Sistema para controlar el color de uno o varios polimeros en composicion usando mediciones del color durante su tratamiento.
CN1153242C (zh) 1994-01-21 2004-06-09 株式会社日立制作所 彩色阴极射线管及彩色显示装置的制造方法
US5932055A (en) * 1997-11-11 1999-08-03 Rockwell Science Center Llc Direct metal fabrication (DMF) using a carbon precursor to bind the "green form" part and catalyze a eutectic reducing element in a supersolidus liquid phase sintering (SLPS) process
US6491481B1 (en) * 2000-10-31 2002-12-10 Eastman Kodak Company Method of making a precision microlens mold and a microlens mold
CN100591506C (zh) * 2005-11-04 2010-02-24 鸿富锦精密工业(深圳)有限公司 模仁安装高度可调节的模具

Also Published As

Publication number Publication date
KR960705666A (ko) 1996-11-08
DE69529334T2 (de) 2003-10-16
US20060254318A1 (en) 2006-11-16
CN1137247A (zh) 1996-12-04
WO1996007523A1 (en) 1996-03-14
EP0734314A1 (en) 1996-10-02
US8069701B2 (en) 2011-12-06
CN1081976C (zh) 2002-04-03
JPH09505534A (ja) 1997-06-03
DE69529334D1 (de) 2003-02-13
US7125505B1 (en) 2006-10-24
KR100407874B1 (ko) 2004-05-24
EP0734314B1 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US8069701B2 (en) Device for manufacturing a mould for use in the manufacture of an optical element comprising optical sub-elements mutually arranged in a pattern
US5442482A (en) Microlens screens, photopolymerisable materials and artifacts utilising the same
US6835535B2 (en) Microlens arrays having high focusing efficiency
US8637799B2 (en) Imaging apparatus with lens array having densely arranged lens surfaces without a gap
JP3828402B2 (ja) 背面照明装置およびこれを用いた液晶表示装置並びに液晶表示装置の照明方法
US20070177116A1 (en) Method and apparatus for manufacturing microstructure and device manufactured thereby
KR20090047495A (ko) 백라이트 장치에 사용되는 마이크로렌즈 어레이 시트 및 마이크로렌즈 어레이 시트를 제조하기 위한 롤판
US6226120B1 (en) Three-dimensional microstructures, and methods for making three-dimensional microstructures
CN110524874B (zh) 光固化3d打印装置及其打印方法
CN101493650B (zh) 微透镜制造方法和固态图像传感器制造方法
JP2009266901A (ja) 転写装置、ウエハ状光学装置の製造方法、電子素子ウエハモジュール、センサウエハモジュール、電子素子モジュール、センサモジュールおよび電子情報機器
JP3975602B2 (ja) マイクロレンズアレイ基板
JP2006019243A (ja) 導光板及びその製造方法
CN213648656U (zh) 透镜压印模具及镜头模组
US7092165B2 (en) Microlens arrays having high focusing efficiency
JP2005014043A (ja) 凹部形成方法、光学フィルムの製造方法及び液晶表示装置
KR100565195B1 (ko) 렌티큘러 렌즈 금형 제조방법
JP4498884B2 (ja) 光導波路及び光導波路の製造方法並びに当該光導波路を用いた液晶表示装置
JP2004286906A (ja) マイクロレンズシートの製造方法およびそのマイクロレンズシートを用いた投写スクリーンの製造方法、並びに投写スクリーン
JP6651373B2 (ja) 光学面形成方法および光学デバイス作製用のエッチング基板の製造方法および押し型および光学デバイスの製造方法。
JP2004258423A (ja) 三角溝及び光学素子の製造方法
JP2004102088A (ja) 光学フィルムの製造方法及び液晶表示装置
JPH0635071A (ja) 透過形スクリーン及びその金型製造方法
Imahori et al. Micro-stereolithography of dot shapes for lightguide using LCD grayscale mask
JP2006078527A (ja) マイクロレンズの製造方法、マイクロレンズ、スクリーン、プロジェクタシステム、液晶ライトバルブ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20051220

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term