JP3810479B2 - Method for producing coated fabric - Google Patents

Method for producing coated fabric Download PDF

Info

Publication number
JP3810479B2
JP3810479B2 JP15040396A JP15040396A JP3810479B2 JP 3810479 B2 JP3810479 B2 JP 3810479B2 JP 15040396 A JP15040396 A JP 15040396A JP 15040396 A JP15040396 A JP 15040396A JP 3810479 B2 JP3810479 B2 JP 3810479B2
Authority
JP
Japan
Prior art keywords
water
solution
fabric
polyurethane resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15040396A
Other languages
Japanese (ja)
Other versions
JPH0941275A (en
Inventor
雅穂 榎本
Original Assignee
セイコー化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコー化成株式会社 filed Critical セイコー化成株式会社
Priority to JP15040396A priority Critical patent/JP3810479B2/en
Publication of JPH0941275A publication Critical patent/JPH0941275A/en
Application granted granted Critical
Publication of JP3810479B2 publication Critical patent/JP3810479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
この発明はコーティング布帛の製造方法に係り、詳しくは防水性、透湿性を有し、且つ結露性、吸水性が小さく、表面滑性にすぐれていてスポーツウエア等に用いて快適な着用感を与えることのできるコーティング布帛の製造方法に関するものである。
【0002】
【従来の技術およびその課題】
従来、衣服を着用した時の快適性に関しては、水分移動特性を中心として数多くの研究がなされており、直接皮膚に接する肌着材料については、皮膚側外側の組成を着用快適性から論じた場合、繊維組成において親水性、疎水性のどちらがより快適性を有するかは、着用する季節から来る外的要因と運動等から来る衣服内気候の変化により一定でないことが論じられている(日本繊維製品消費科学会誌、第36巻、60頁(1995)、日本繊維製品消費科学会発行)。
【0003】
また、機能性繊維材料としては、吸湿吸水性の視点から繊維メーカー各社が発表した親水性繊維と疎水性繊維からなる多層構造ニットの快適性に関する評価が日本繊維製品消費科学会誌、第30巻、197頁(1989)に報告されている。
【0004】
一方、ポリウレタン樹脂を主体とした湿式凝固法による透湿性防水布帛に関しては、その製造方法を中心として透湿性能および耐水圧性能等の機能向上を主目的とした検討が数多くなされている。
【0005】
その代表的なものとしては、ポリウレタン樹脂よりなる微多孔質皮膜を被覆した布帛があり、その製造方法としては、繊維基材にポリウレタン樹脂の水混和性溶媒溶液を塗布し、次いで水浴中に浸漬してポリウレタン樹脂よりなる微多孔質皮膜を形成する方法が知られている(特公昭60−47955号公報)。
【0006】
さらには、フッ素変性ポリウレタン樹脂あるいはフッ素変性ポリアミノ酸樹脂を用いたコーティング布帛(特開平3−27184号公報)やフッ素変性ポリウレタン樹脂とフッ素樹脂溶液を用いたコーティング布帛(特開平3−8874号公報)も知られているが、性能面から見たとき、耐水圧が0.3kgf/cm2程度で透湿度が9000〜10000g/m2・24hrs程度である。
【0007】
また、ポリアミノ酸樹脂/ウレタン樹脂溶液を用い、湿式凝固させたコーティング布帛においては、耐水圧が0.3kgf/cm2程度で透湿度が10000g/m2・24hrs程度の性能を有するものが知られている。
【0008】
また、近年は、結露による不快感を取り除くという観点から繊維/湿式凝固されたポリマー/繊維の三層構造による快適素材の改良(日本繊維製品消費科学会誌、第36巻、181頁(1995))、あるいは親水化されたポリマーによる結露性の改良(繊維学会誌、第48巻、411頁(1992)、繊維学会発行)が報告されている。
【0009】
スポーツウエア等の衣料素材に用いる湿式凝固法による透湿性防水布帛では、その断面構成について水分移動特性から論じた場合、皮膚側を疎水性の膜状にすると好ましくないのは当然であるが、親水性であっても発汗に伴う水分の吸水効果が逆に肌着等へ濡れ感を与えることになり、さらには運動後の冷えによる不快感をもたらすことを考えねばならない。従って、皮膚側を疎水性ネット状態に、中間を親水性に、外側を疎水性にすることにより、積極的な水分移動を可能とし、吸汗速乾機能を持った、即ち結露値、吸水値の低い衣料素材が着用快適感を有して望ましいと考えられる。
【0010】
また、上記の着用快適感を衣服着用時の身体に対する衣服圧、即ち圧迫感あるいは滑性の観点からみた場合には、成人が平常着用する衣服においては、その衣服圧はおよそ5.6g/cm2程度であるが、スポーツウエア等にあっては、この衣服圧はさらに小さいことが好ましいことから、綿製アンダーウエアとコーティング布帛、あるいはコーティング布帛同志等の摩擦力(動摩擦係数)の小さいものが望ましいと考えられる。
【0011】
この発明は、上記した従来のコーティング布帛とは全く異なった素材を用い、且つ異なった手段により耐水圧0.2kgf/cm2程度で、かつ透湿度が10000〜12500g/m2・24hrs以上という従来にない高透湿性能を有し、さらに結露性、吸水性が小さく、かつ加工表面の摩擦力が小さくて滑性にすぐれ、スポーツウエア等の衣料に用いた時に快適な着用感を与えることのできるコーティング布帛を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
即ち、この発明はポリウレタン樹脂溶液の湿式凝固法により得られるコーティング布帛の透湿性の向上および結露性、吸水性を低減せしめ、かつ表面滑性の向上した布帛を得る手段として、請求項1は 凝固価が6.0〜11.0(%水)であるポリウレタン樹脂の水混和性有機溶剤溶液と、この溶液と相溶性を有する凝固価が1.5〜4.5(%水)であるポリウレタン樹脂以外のポリ塩化ビニル樹脂、ポリ塩化ビニル−酢酸ビニル共重合樹脂、ポリ塩化ビニル−エチレン共重合樹脂のポリ塩化ビニル系樹脂から選ばれた少なくとも1種の有機系高分子樹脂の水混和性有機溶剤溶液とからなり、上記ポリウレタン樹脂溶液と有機系高分子樹脂溶液の混合比が樹脂分比でポリウレタン樹脂60〜99重量%、有機系高分子樹脂40〜1重量%である混合溶液を、予め撥水加工を施した繊維基材の片面にコーティングし、次いで水中に浸漬して水混和性有機溶剤を抽出した後、乾燥することを特徴とするもので、これによって防水性、透湿性があって、かつ結露性、吸水性が小さく、表面滑性にすぐれた快適な着用感を与えるコーティング布帛を得んとするものである。
【0013】
【作用】
以下、この発明を詳細に説明する。
まず、この発明で使用するポリウレタン樹脂および有機系高分子樹脂を規定する凝固価(Coagulation Value)は、これら樹脂の親水性、疎水性の範囲を定めるものである。
この凝固価については、その定義と測定法が高分子学会発行の高分子論文集、第39巻、535〜542頁、(1982)に述べられているが、この発明で使用するポリウレタン樹脂および有機系高分子樹脂は、その溶液粘度が非常に高くて上記の測定法によることが困難であるため、次のような方法で測定した。
【0014】
まず、合成したポリウレタン樹脂溶液あるいは有機系高分子樹脂溶液をDMFで固形分濃度1重量%に希釈し、この希釈溶液約30gを秤取した後、溶液温度を30〜30.5℃に保ち、マグネチックスターラーで攪拌しながら溶液中に非溶剤として水/DMF=40/60の混合液を滴下し、肉眼で判定した白濁開始点と終点の中間点を非溶剤の滴下量とした。そして、この操作を3回繰り返した滴下量の平均値を用いて次式によって凝固価を算出した。
凝固価(%水)=|0.4b/(a+b)|×100
(上式において、aはDMF希釈による1重量%濃度の樹脂溶液のg数、bは滴下量(ml)×0.985から算出されるg数である。)
【0015】
上記にて測定の結果、この発明で使用するポリウレタン樹脂の凝固価(C.V.)は6.0〜11.0(%水)と親水性であり、また有機系高分子樹脂の凝固価(C.V.)は1.5〜4.5(%水)と疎水性であることが必要である。
【0016】
この発明で、親水性のポリウレタン樹脂溶液と、疎水性の有機系高分子樹脂とからなる混合溶液を、予め撥水加工した疎水性繊維基材の片面にコーティングし、水中に浸漬すると、繊維基材の撥水効果により湿式凝固は、繊維面とは逆の湿式樹脂加工表面方向へのみ進む、所謂片面凝固が進み、その結果有機系高分子樹脂溶液の方がポリウレタン樹脂溶液より早く凝固沈積し、水混和性有機溶剤が凝固表面に抽出される際、有機系高分子樹脂が湿式樹脂加工表面方向に導かれ集中する。
【0017】
そして、この発明でポリウレタン樹脂とともに用いる有機系高分子樹脂は、ポリウレタン樹脂に比べて硬度が高く、かつ低伸度であるため、布帛の樹脂加工最表面の硬度が上がり、これによって布帛表面で発生する摩擦力のヒステリシス成分が減少して布帛の表面滑性が向上するのである。
【0018】
即ち、ポリウレタン樹脂/有機系高分子樹脂からなる布帛の断面構造を親水性、疎水性で表現すると、衣料素材となった場合、皮膚側となる湿式樹脂加工表面が有機系高分子樹脂により表面滑性にすぐれた疎水性ミクロネットを形成し、湿式樹脂内部はポリウレタン樹脂比率が高く、より高い親水性を呈した多孔体構造を形成し、外側となる繊維は疎水性繊維であるから、布帛の断面は疎水性―親水性―疎水性の三層構造を形成したことになる。
【0019】
上記のように、この発明のコーティング布帛は、これをスポーツウエア等の衣料に加工して着用した時、皮膚側となる湿式樹脂加工表面において、有機系高分子樹脂による表面滑性にすぐれた疎水性ミクロネット構造を形成させることが重要で、このミクロネット構造の間隙から体内において発生した発汗等に伴う水蒸気を、親水性であるポリウレタン樹脂がポンプアップ的に吸湿吸水し、次いで疎水性繊維に移動して拡散し乾燥するという水分の移行が適正に行われる、即ち防水性、透湿性を有し、且つ結露性、吸水性が小さくて、表面滑性にすぐれた着用時の快適感を向上させる効果を奏するコーティング布帛を得ることができる。
また、この発明になるコーティング布帛においては、上述したようにポリウレタン樹脂とともに用いる有機系高分子樹脂が硬度が高いだけでなく、低伸度であるので、布帛最表面の硬度があがり、布帛の表面滑性が向上するのであるが、この表面滑性を摩擦力としての動摩擦係数からみた時、綿布とコーティング布帛間では0.3〜0.7、コーティング布帛同志では0.5〜1.0の範囲内が好ましい。
【0020】
この発明において用いるポリウレタン樹脂の構成成分としては、一般にポリウレタン樹脂、ポリウレタン尿素樹脂といわれるもので、分子量400〜4000のポリアルキレンエーテルグリコールまたは末端に水酸基を有するポリエステルポリオール、ポリε−カプロラクトンポリオール、またはポリカーボネートジオール等の単独あるいは混合物を有機ジイソシアネートと反応させて得られるもので、必要に応じて2個の活性水素を有する化合物で鎖延長させて得られるものが好ましい。
【0021】
ポリアルキレンエーテルグリコールとしては、ポリテトラメチレンエーテルグリコール、ポリプロピレングリコール、ポリエチレングリコール、グリセリンプロピレンオキシド付加物、末端にエチレンオキサイドを付加したポリエーテルポリオール、ビニルモノマーグラフト化ポリエーテルポリオール等がある。また、ポリエステルポリオールとしては、エチレングリコール、ブチレングリコール、ヘキシレングリコール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール等のアルキレングリコール類とコハク酸、グルタール酸、アジピン酸、セバシン酸、マレイン酸、フマール酸、フタル酸、トリメリット酸等のカルボン酸類とを末端がヒドロキシル基となるように反応して与えられるものがよく、さらに必要であれば、アルキレングリコール類としてジメチロールプロピオン酸、アミノエタンスルホン酸へのエチレンオキサイド付加物等の親水性向上を可能とするグリコール類を併用してもよい。
【0022】
次いで、有機イソシアネートとしては、2,4−および2,6−トルイレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネート、1,5−ナフタレンジイソシアネート、キシリレンジイソシアネート等の芳香族系イソシアネート、1,6−ヘキサメチレンジイソシアネート、ジシクロヘキシルメタン−4,4′−ジイソシアネート、3−イソシアネートメチル−3,5,5′−トリメチルシクロヘキシルイソシアネート、2,6−ジイソシアネートメチルカプロエート等の脂肪族イソシアネート類があり、これらは単独あるいは混合して使用される。
【0023】
さらに、鎖延長剤としては、ヒドラジン、エチレンジアミン、テトラメチレンジアミン、水、ピペラジン、イソホロンジアミン、エチレングリコール、ブチレングリコール、ヘキシレングリコール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール等、あるいはジメチロールプロピオン酸、アミノエタンスルホン酸へのエチレンオキサイド付加物等の親水性向上を可能とするグリコール類、ジアミン類が単独または混合して使用される。
【0024】
また、この発明におけるポリウレタン樹脂としては、末端にイソシアネート基が残存せぬよう配合、反応して平均分子量30000〜120000の範囲としたものが望ましく、その凝固価は6.0〜11.0(%水)、好ましくは9.5〜10.5(%水)であり、この範囲外では湿式凝固性が著しく低下する。
【0025】
有機系高分子樹脂(ポリウレタン樹脂を除く)としては、ポリ塩化ビニル系樹脂例えば、ポリ塩化ビニル樹脂、ポリ塩化ビニル−酢酸ビニル共重合樹脂、ポリ塩化ビニル−エチレン共重合樹脂、ポリ塩化ビニルとビニル重合可能な共重合樹脂など水混和性有機溶剤溶液としてポリウレタン樹脂と相溶性のある樹脂を単独あるいは混合して用いることができる。
【0026】
かつ、上記有機系高分子樹脂の凝固価は、1.5〜4.5(%水)、好ましくは3.5〜4.0(%水)であり、この範囲外では加工した布帛の断面構造において、ミクロネット構造を形成せず、1.5(%水)より低い場合は、湿式樹脂加工最表面で疎水化フィルム形成の方向に進み、また4.5(%水)より高い場合は、疎水性ミクロネットからポリウレタン樹脂へ移るという傾斜構造をとらず、寧ろ均一系に近い方向に進み、その結果、ともに結露防止効果が低下する。
【0027】
その他、添加剤としては、コーティング基材との接着性を向上させるために、多官能ポリイソシアネート(例えば、商品名コロネートEH、コロネートHL、日本ポリウレタン工業社製)等を用いてもよい。また湿式凝固における脱溶剤の速度調整剤としてノニオン系界面活性剤の添加が有効である。
【0028】
水混和性有機溶剤としては、代表的なものとしてジメチルホルムアミド(DMF)があるが、この他にジメチルアセトアミド、N−メチルピロリドン、テトラヒドロフラン、ジオキサン等の単独またはそれらの混合物を使用することもでき、ポリウレタン樹脂溶液と有機系高分子樹脂溶液をこれらの溶剤で混和均一化した混合溶液を水中に浸漬すると、溶剤のみが水に溶解し、樹脂が水中にて凝固してくる。
【0029】
この発明でポリウレタン樹脂溶液と有機系高分子樹脂溶液を用いるに当たって、その混合比率としては、樹脂分比でポリウレタン樹脂60〜99%、有機系高分子樹脂40〜1%が透湿性、耐水圧が良好で、結露性、吸水性の低い値の布帛を得る為に好ましい。最適条件下で得られる布帛は、透湿度12500g/m2・24hrs、耐水圧0.19kgf/cm2、結露値4.6g/m2・hr、吸水値1.8g/m2・hr、また動摩擦係数は加工布帛と綿布間で0.65、加工布帛の表面同志では0.92を示し、不均一な塗工面も生じず、その結果、上記性能は塗工面全面に亘って均一に得ることができる。
【0030】
上記混合比率のポリウレタン樹脂溶液と有機系高分子樹脂溶液の混合方法は、常温で均一となるまで攪拌すればよいが、40〜60℃の加熱攪拌下で混合してもよい。混合溶液を繊維基材に塗布するには通常のコーティング法によればよく、その塗布厚は10〜300μmが適当である。
【0031】
上記の厚さの樹脂皮膜を形成した繊維基材を水中に浸漬する時の水温は、0〜30℃が好ましく、30℃以上では樹脂皮膜の孔が大きくなり、耐水圧が低下する。また、浸漬時間は30秒以上が必要である。30秒以下では樹脂の凝固が不十分となって好ましくない。なお、残留している有機溶剤を完全に除去するために、30〜80℃の温水中で3〜10分の湯洗を行ってもよい。また、湯洗後乾燥して得られたコーティング布帛にさらに撥水剤を付与することにより、耐水圧の向上をはかることができる。撥水剤としては、パラフィン系、シリコーン系、フッ素系等の各種があり、用途に応じて適宜選択すればよく、またその付与はバッティング法、コーティング法、スプレー法等通常の方法で行えばよい。
【0032】
かくして得られるこの発明のコーティング布帛は、ゴルフウエア、スキーウエア等のスポーツウエアに広く使用することができる。
【0033】
【実施例】
次に、この発明を実施例により詳細に説明するが、この発明はこれらの実施例のみに限定されるものではない。なお、部数は全て重量部である。
【0034】
実施例1
両末端にヒドロキシル基を有する平均分子量4000のエチレンブチレンアジペート420部、エチレングリコール36.9部、DMF806.7部を配合し、窒素気流下で均一に混合した。そして、この混合物に4,4′−ジフェニルメタンジイソシアネート(MDI)175部を加え、加熱反応させた後DMFで希釈して22%DMF溶液で95000cps/30℃の粘度を有するポリウレタン樹脂溶液を得た。このポリウレタン樹脂溶液の凝固価(C.V.)を上述の方法で測定したところ、9.9(%水)の値を得た。
【0035】
次に、DMF900部を窒素気流下で攪拌しながらポリ塩化ビニル樹脂粉末(平均重合度1050)100部を徐々に加え、その後70℃まで加熱して樹脂粉末を溶解し、ポリ塩化ビニル樹脂溶液を得た。この溶液の凝固価は3.4(%水)であった。
【0036】
上記で得たポリウレタン樹脂溶液409.1部、ポリ塩化ビニル樹脂溶液100部、白色カラートーナー25部、DMF215.9部を混和均一化し、コーティング溶液を調製した。
【0037】
一方、疎水性繊維基材として、例えば異形(三角)断面を持つナイロンフィラメントの平織物(縦糸、横糸ともに70d/34f、縦糸密度120本/インチ、横糸密度95本/インチ)を用意し、フッ素系撥水剤で撥水処理を行ってからカレンダー加工を行った。この基材に上記で得たコーティング溶液をベーカー式アプリケータを用いて150g/m2(wet)塗布した後、20℃の水浴中に2分間浸漬し、樹脂分を凝固させた。その後、50℃の温水中に10分間浸漬し、DMFを十分に抽出した。続いて乾燥を行ってこの発明のコーティング布帛を得た。
【0038】
実施例2
実施例1で得たポリウレタン樹脂溶液363.6部とポリ塩化ビニル樹脂溶液200部、白色カラートーナー25部、DMF161.4部を混和均一化し、コーティング溶液を調製した。得られた溶液を用いて実施例1と同じようにして基材に処理してコーティング布帛を得た。
【0039】
実施例3
実施例1で得たポリウレタン樹脂溶液272.7部とポリ塩化ビニル樹脂溶液400部、白色カラートーナー25部、DMF52.3部を混和均一化し、コーティング溶液を調製した。得られた溶液を用いて実施例1と同じようにして基材に処理してコーティング布帛を得た。
【0040】
実施例4
両末端にヒドロキシル基を有する平均分子量3000のエチレン・ジエチレンアジペート197.1部、平均分子量3000のポリテトラメチレンエーテルグリコール197.1部、ジシクロヘキシルメタン4,4′−ジイソシアネート39.3部を窒素気流下に均一に混合し、加熱反応後エチレングリコール46.2部、DMF1000部、MDI203部を加えて加熱反応したのち、DMFで希釈して22%DMF溶液で80000cps/30℃の粘度を有するポリウレタン樹脂溶液を得た。この溶液の凝固価は6.4(%水)であった。
【0041】
次に、DMF900部を窒素気流下に攪拌しながらポリ塩化ビニル/ポリ酢酸ビニル=95/5共重合体粉末(平均重合度750)100部を徐々に加え、その後70℃まで加熱、溶解してポリ塩化ビニル/ポリ酢酸ビニル共重合体溶液を得た。この溶液の凝固価は3.8(%水)であった。
【0042】
上記で得たポリウレタン樹脂溶液363.6部、ポリ塩化ビニル/ポリ酢酸ビニル共重合体溶液200部、白色カラートーナー25部、DMF161.4部を混和均一化し、コーティング溶液を調製した。得られた溶液を用いて実施例1と同じようにして基材に処理してコーティング布帛を得た。
【0043】
比較例1
実施例1で得たポリウレタン樹脂溶液のみを用い、この溶液454.6部、白色カラートーナー25部、DMF245.5部を混和均一化し、コーティング溶液を調製した。得られた溶液を用いて実施例1と同じようにして基材に処理してコーティング布帛を得た。
【0044】
比較例2
実施例1で得たポリウレタン樹脂溶液227.3部とポリ塩化ビニル樹脂溶液500部、白色カラートーナー25部を混和均一化し、コーティング溶液を調製した。得られた溶液を用いて実施例1と同じようにして基材に処理してコーティング布帛を得た。
【0045】
上記実施例1〜4および比較例1〜2で得たコーティング布帛について、耐水圧、透湿度、結露値、吸水値等の性能を測定したところ、表1の結果が得られた。なお、透湿度の測定はJIS L 1099 A−1法に準拠して行い、耐水圧はJIS L 1092 B法の静水圧法に準拠して測定した。また、結露値、吸水値は次のような容器および算出法にて測定した。
【0046】
即ち、口内径が6cmで容量が500ccの円筒状ガラス瓶の外側に発泡スチロールを厚さ約1cmに巻きつけ、この瓶内にその口上端から2cmまで40℃の水を入れて密封し、これを10℃×60%RHの恒温室に1時間放置した時、瓶内の水温が30±1℃に保温できる物を測定容器とした。
【0047】
上記の容器に40℃の水を口上端から2cmまで入れ、次いで容器の上部に上記実施例1〜4および比較例1〜2で得たコーティング布帛からそれぞれ直径10cmの円形に切り取った布帛試片の湿式樹脂加工表面を水面に向けて載せ、周囲を留め具で固定した後、10℃×60%RHの恒温室に1時間放置した。かくして放置前後の試片の重量変化から次式によって結露値、吸水値を算出した。
結露値(g/m2hr)=(m1−m2)/(0.032π)
吸水値(g/m2hr)=(m2−m0)/(0.032π)
〔式中、m0は予め測定しておいた布帛試片の乾燥重量(測定前に120℃×10分乾燥)、m1は測定直後の布帛試片の重量、m2はm1測定直後の試片表面の結露水を濾紙で吸い取った後の重量である。〕
【0048】
また、得られたコーティング布帛における表面滑性を摩擦力として判定するために動摩擦係数の測定をJIS K 7125に規定されるプラスチックフィルムの摩擦係数試験方法に準拠して行った。その結果は表1に示した。
即ち、試験片であるこの発明の布帛と、相手材料として用いる綿布(JIS L 0803に規定される染色堅牢度試験用添付白布を使用)および加工布帛は、23±2℃、50±2%RHの下で88時間以上放置したものを用い、滑り片(接触力を与えるおもり)の相手材料との相対速度100mm/minで移動し、最初の最大荷重を過ぎて最低を示したところから摩擦距離70mmまでの平均の荷重を動摩擦力とした。なお、測定の際の上記滑り片には接触表面2.5cm×7.5cm、重量47.4gのガラス板を用いた。そして、動摩擦係数は次式により算出した。
動摩擦係数μk=Fk/Fp
(上式において、Fkは動摩擦力(kgf)を示し、Fpは接触力(kgf)を示す。)
【0049】
【表1】

Figure 0003810479
【0050】
表1から明らかなように、この発明の方法により得られたコーティング布帛は、透湿度、耐水圧が良好で、なおかつ、結露値、吸水値についても低い数値を示し、透湿性能と低結露性、低吸水性の諸性能を兼ね備えていることが認められ、比較例1、2のそれらと比べて特に結露値、吸水値において良好な結果が得られた。また、布帛の表面滑性(動摩擦系数値)においても、本実施例によるものは良好な結果を示した。
【0051】
【発明の効果】
以上説明したように、この発明は特定した範囲の凝固価を有するポリウレタン樹脂と有機系高分子樹脂の両者を特定の範囲で均一に混合した混合溶液を用いてコーティング布帛を得たことによって、上記した良好な性能を具備していることから、このコーティング布帛をゴルフウエア、スキーウエア等のスポーツウエア用途の衣料素材として用いたとき、発汗に伴う水分移行性が良好で、肌着等へ濡れ感を与えることなく、そのために運動後の冷えによる不快感もなく、かつ表面の滑性にすぐれた快適な着用感を与えるという効果を奏するのである。[0001]
[Industrial application fields]
TECHNICAL FIELD The present invention relates to a method for producing a coated fabric, and in particular, has waterproofness and moisture permeability, low condensation and water absorption, excellent surface lubricity, and provides a comfortable wearing feeling for sportswear. It is related with the manufacturing method of the coating fabric which can be performed.
[0002]
[Prior art and problems]
Conventionally, with regard to comfort when wearing clothes, many studies have been made centering on moisture transfer characteristics, and for the underwear material that directly contacts the skin, when the composition on the skin side outer side is discussed from the wear comfort, It has been argued that whether the hydrophilicity or hydrophobicity of the fiber composition is more comfortable is not constant due to external factors that come from the season of wearing and changes in the climate in clothing that comes from exercise, etc. Journal of Science Society, 36, 60 (1995), published by Japan Textile Products Consumer Science Association).
[0003]
In addition, as a functional fiber material, evaluation of the comfort of a multilayer knit made of hydrophilic fibers and hydrophobic fibers announced by textile manufacturers from the viewpoint of moisture absorption and water absorption is published in Japan Textile Products Consumer Science, Vol. 30, 197 (1989).
[0004]
On the other hand, regarding a moisture-permeable waterproof fabric by a wet coagulation method mainly composed of a polyurethane resin, many studies have been made mainly for improvement of functions such as moisture permeability performance and water pressure resistance performance mainly on the production method.
[0005]
A typical example is a fabric coated with a microporous film made of a polyurethane resin. As a manufacturing method thereof, a water-miscible solvent solution of a polyurethane resin is applied to a fiber substrate, and then immersed in a water bath. A method of forming a microporous film made of a polyurethane resin is known (Japanese Patent Publication No. 60-47955).
[0006]
Furthermore, a coating fabric using a fluorine-modified polyurethane resin or a fluorine-modified polyamino acid resin (JP-A-3-27184) or a coating fabric using a fluorine-modified polyurethane resin and a fluororesin solution (JP-A-3-8874). However, when viewed from the viewpoint of performance, the water pressure resistance is about 0.3 kgf / cm 2 and the moisture permeability is about 9000 to 10000 g / m 2 · 24 hrs.
[0007]
Also, a coating fabric obtained by wet coagulation using a polyamino acid resin / urethane resin solution has a water pressure resistance of about 0.3 kgf / cm 2 and a moisture permeability of about 10,000 g / m 2 · 24 hrs. ing.
[0008]
Also, in recent years, comfort materials have been improved with a three-layer structure of fiber / wet-coagulated polymer / fiber from the viewpoint of removing discomfort due to condensation (Journal of Japanese Textile Products Consumer Science, Vol. 36, page 181 (1995)). Alternatively, improvement of dew condensation property by a hydrophilic polymer (Journal of the Fiber Society, Vol. 48, 411 (1992), published by the Fiber Society) has been reported.
[0009]
In the moisture-permeable waterproof fabric by wet coagulation method used for clothing materials such as sportswear, when the cross-sectional structure is discussed from the moisture transfer characteristics, it is natural that the skin side is not preferably a hydrophobic film, Even if it is sex, it must be considered that the water absorption effect associated with sweating gives wetness to the underwear, and also causes discomfort due to cooling after exercise. Therefore, by making the skin side into a hydrophobic net state, making the middle hydrophilic, and making the outside hydrophobic, it is possible to move moisture positively and have a sweat-absorbing quick-drying function, that is, condensation value and water absorption value. Low garment materials are considered desirable with a comfortable wearing feel.
[0010]
In addition, when the above-mentioned feeling of wearing comfort is viewed from the viewpoint of clothing pressure on the body at the time of wearing the clothing, that is, a feeling of pressure or slipperiness, the clothing pressure is about 5.6 g / cm in the clothing normally worn by adults. is about 2, but, in the sportswear and the like, since it is preferred that the garment pressure is smaller, underwear and a coating fabric made of cotton or frictional force, such as coating the fabric comrades having a small (dynamic friction coefficient), It is considered desirable.
[0011]
The present invention uses a material completely different from the above-mentioned conventional coated fabric, and has a water pressure resistance of about 0.2 kgf / cm 2 and a water vapor transmission rate of 10,000 to 12,500 g / m 2 · 24 hrs or more by different means. In addition, it has high moisture permeability, low condensation and water absorption, low frictional force on the processed surface, excellent slipperiness, and gives a comfortable wearing feeling when used in sportswear and other clothing. An object of the present invention is to provide a coating fabric that can be used.
[0012]
[Means for Solving the Problems]
That is, this invention is a means for improving the moisture permeability of the coated fabric obtained by the wet coagulation method of the polyurethane resin solution, reducing the dew condensation and water absorption, and obtaining the fabric having improved surface smoothness. A water-miscible organic solvent solution of a polyurethane resin having a value of 6.0 to 11.0 (% water) and a polyurethane having a coagulation value of 1.5 to 4.5 (% water) compatible with this solution Water-miscible organics of at least one organic polymer resin selected from polyvinyl chloride resins other than resins, polyvinyl chloride-vinyl acetate copolymer resins, and polyvinyl chloride-ethylene copolymer resins such as polyvinyl chloride-ethylene copolymer resins And a mixing ratio of the polyurethane resin solution and the organic polymer resin solution is 60 to 99% by weight of polyurethane resin and 40 to 1% by weight of organic polymer resin. A mixed solution is coated on one side of a fiber base that has been subjected to water-repellent treatment in advance, and is then immersed in water to extract the water-miscible organic solvent, and then dried. It is intended to obtain a coated fabric that provides a comfortable wearing feeling that is excellent in surface slipperiness, and has excellent moisture and moisture permeability, condensation and water absorption.
[0013]
[Action]
Hereinafter, the present invention will be described in detail.
First, the coagulation value that defines the polyurethane resin and organic polymer resin used in the present invention defines the hydrophilicity and hydrophobicity ranges of these resins.
The definition and measurement method of this coagulation value is described in Polymer Proceedings, Vol. 39, pp. 535-542, (1982), published by the Society of Polymer Science, Japan. Since the polymer polymer resin has a very high solution viscosity and is difficult to perform by the above measurement method, it was measured by the following method.
[0014]
First, the synthesized polyurethane resin solution or organic polymer resin solution was diluted with DMF to a solid content concentration of 1% by weight, and after weighing about 30 g of this diluted solution, the solution temperature was kept at 30 to 30.5 ° C. While stirring with a magnetic stirrer, a mixed solution of water / DMF = 40/60 was dropped into the solution as a non-solvent, and the intermediate point between the cloudy start point and the end point determined with the naked eye was taken as the non-solvent drop amount. And the coagulation value was computed by following Formula using the average value of the dripping amount which repeated this operation 3 times.
Coagulation value (% water) = | 0.4b / (a + b) | × 100
(In the above formula, a is the number of grams of a 1 wt% concentration resin solution diluted with DMF, and b is the number of grams calculated from the dripping amount (ml) × 0.985).
[0015]
As a result of the above measurement, the solidification value (C.V.) of the polyurethane resin used in the present invention is 6.0 to 11.0 (% water) and hydrophilic, and the solidification value of the organic polymer resin. (C.V.) needs to be 1.5 to 4.5 (% water) and hydrophobic.
[0016]
In this invention, when a mixed solution composed of a hydrophilic polyurethane resin solution and a hydrophobic organic polymer resin is coated on one side of a hydrophobic fiber substrate that has been subjected to water-repellent treatment in advance and immersed in water, Due to the water-repellent effect of the material, wet coagulation proceeds only in the direction of the wet resin processing surface opposite to the fiber surface, so-called single-side solidification proceeds, and as a result, the organic polymer resin solution coagulates and settles faster than the polyurethane resin solution. When the water-miscible organic solvent is extracted on the solidified surface, the organic polymer resin is guided and concentrated toward the wet resin processed surface.
[0017]
The organic polymer resin used together with the polyurethane resin in the present invention has higher hardness and lower elongation than the polyurethane resin, so that the hardness of the outermost surface of the fabric processed with the resin is increased, thereby generating on the fabric surface. This reduces the hysteresis component of the frictional force and improves the surface smoothness of the fabric.
[0018]
In other words, when the cross-sectional structure of a fabric made of polyurethane resin / organic polymer resin is expressed in terms of hydrophilicity and hydrophobicity, when it becomes a garment material, the wet resin processed surface on the skin side is surface-slid by the organic polymer resin. It forms a hydrophobic micronet with excellent properties, the wet resin inside has a high polyurethane resin ratio, forms a porous structure with higher hydrophilicity, and the outer fibers are hydrophobic fibers. The cross section formed a three-layer structure of hydrophobic-hydrophilic-hydrophobic.
[0019]
As described above, the coated fabric according to the present invention has a hydrophobic property excellent in surface lubricity due to the organic polymer resin on the wet resin processed surface on the skin side when the coated fabric is processed into clothes such as sportswear. It is important to form a water-resistant micronet structure, and the hydrophilic polyurethane resin absorbs and absorbs water vapor due to sweating generated in the body from the gaps in the micronet structure, and then into the hydrophobic fibers. Moisture transfer that moves, diffuses and dries properly is performed, that is, waterproof and moisture permeable, has low condensation and water absorption, and improves comfort when wearing with excellent surface smoothness Thus, a coated fabric exhibiting the effect of the above can be obtained.
In the coated fabric according to the present invention, as described above, the organic polymer resin used together with the polyurethane resin has not only high hardness but also low elongation, so that the hardness of the outermost surface of the fabric is increased and the surface of the fabric is increased. Although the lubricity is improved, when this surface lubricity is viewed from the dynamic coefficient of friction as a frictional force, it is 0.3 to 0.7 between the cotton fabric and the coated fabric, and 0.5 to 1.0 between the coated fabrics. Within the range is preferable.
[0020]
The constituent component of the polyurethane resin used in the present invention is generally called a polyurethane resin or a polyurethane urea resin, and is a polyalkylene ether glycol having a molecular weight of 400 to 4000, a polyester polyol having a hydroxyl group at the terminal, a polyε-caprolactone polyol, or a polycarbonate. Those obtained by reacting a diol or the like alone or with a mixture with an organic diisocyanate, and those obtained by extending a chain with a compound having two active hydrogens as required are preferred.
[0021]
Examples of the polyalkylene ether glycol include polytetramethylene ether glycol, polypropylene glycol, polyethylene glycol, glycerin propylene oxide adduct, polyether polyol having ethylene oxide added to the terminal, and vinyl monomer grafted polyether polyol. Polyester polyols include ethylene glycol, butylene glycol, hexylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol and other alkylene glycols and succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, fumaric acid, Those obtained by reacting with carboxylic acids such as phthalic acid and trimellitic acid so that the terminal is a hydroxyl group are good, and if necessary, as alkylene glycols to dimethylolpropionic acid, aminoethanesulfonic acid You may use together glycols which enable hydrophilicity improvement, such as an ethylene oxide adduct.
[0022]
Next, as the organic isocyanate, aromatic isocyanates such as 2,4- and 2,6-toluylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, and xylylene diisocyanate, 1,6-hexa There are aliphatic isocyanates such as methylene diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 3-isocyanate methyl-3,5,5′-trimethylcyclohexyl isocyanate, 2,6-diisocyanate methyl caproate, and these are independent. Or it mixes and is used.
[0023]
Furthermore, as chain extenders, hydrazine, ethylenediamine, tetramethylenediamine, water, piperazine, isophoronediamine, ethylene glycol, butylene glycol, hexylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, etc., or dimethylolpropionic acid, Glycols and diamines that can improve hydrophilicity, such as ethylene oxide adducts to aminoethanesulfonic acid, are used alone or in combination.
[0024]
Further, the polyurethane resin in the present invention is preferably one having an average molecular weight in the range of 30000 to 120,000 by mixing and reacting so that no isocyanate group remains at the terminal, and its coagulation value is 6.0 to 11.0 (% Water), preferably 9.5 to 10.5 (% water), and outside this range, the wet solidification property is remarkably reduced.
[0025]
Organic polymer resins (excluding polyurethane resins) include polyvinyl chloride resins such as polyvinyl chloride resins, polyvinyl chloride-vinyl acetate copolymer resins, polyvinyl chloride-ethylene copolymer resins, polyvinyl chloride and vinyl. As a water-miscible organic solvent solution such as a polymerizable copolymer resin, a resin compatible with a polyurethane resin can be used alone or in combination.
[0026]
The solidification value of the organic polymer resin is 1.5 to 4.5 (% water), preferably 3.5 to 4.0 (% water). If the structure does not form a micronet structure and is lower than 1.5 (% water), it proceeds in the direction of forming a hydrophobized film on the wet resin processing outermost surface, and if it is higher than 4.5 (% water) However, it does not take the inclined structure of moving from the hydrophobic micronet to the polyurethane resin, but rather proceeds in a direction closer to a uniform system, and as a result, the effect of preventing condensation is reduced.
[0027]
In addition, as an additive, a polyfunctional polyisocyanate (for example, trade name Coronate EH, Coronate HL, manufactured by Nippon Polyurethane Industry Co., Ltd.) or the like may be used in order to improve the adhesion to the coating substrate. In addition, the addition of a nonionic surfactant is effective as a solvent removal rate adjusting agent in wet coagulation.
[0028]
A typical example of the water-miscible organic solvent is dimethylformamide (DMF). In addition to this, dimethylacetamide, N-methylpyrrolidone, tetrahydrofuran, dioxane and the like can be used alone or as a mixture thereof. When a mixed solution obtained by mixing and homogenizing a polyurethane resin solution and an organic polymer resin solution with these solvents is immersed in water, only the solvent is dissolved in water and the resin is solidified in water.
[0029]
In using the polyurethane resin solution and the organic polymer resin solution in the present invention, the mixing ratio of the polyurethane resin is 60 to 99% of the polyurethane resin, and the organic polymer resin is 40 to 1% of moisture permeability and water pressure resistance. It is preferable in order to obtain a fabric having good values of dew condensation and water absorption. The fabric obtained under the optimum conditions has a moisture permeability of 12500 g / m 2 · 24 hrs, a water pressure resistance of 0.19 kgf / cm 2 , a dew condensation value of 4.6 g / m 2 · hr, a water absorption value of 1.8 g / m 2 · hr, The coefficient of dynamic friction is 0.65 between the processed fabric and the cotton fabric, and 0.92 between the surfaces of the processed fabric, and there is no uneven coating surface. As a result, the above performance can be obtained uniformly over the entire coating surface. Can do.
[0030]
The mixing method of the polyurethane resin solution and the organic polymer resin solution having the above mixing ratio may be stirred until uniform at room temperature, but may be mixed under heating and stirring at 40 to 60 ° C. In order to apply the mixed solution to the fiber base material, an ordinary coating method may be used, and the application thickness is suitably 10 to 300 μm.
[0031]
The water temperature when the fiber substrate on which the resin film having the above thickness is formed is immersed in water is preferably 0 to 30 ° C., and if it is 30 ° C. or more, the pores of the resin film become large and the water pressure resistance is lowered. Moreover, the immersion time needs to be 30 seconds or more. Less than 30 seconds is not preferable because the resin is insufficiently solidified. In addition, in order to remove the remaining organic solvent completely, you may perform hot water washing for 3 to 10 minutes in 30-80 degreeC warm water. Further, the water pressure resistance can be improved by further adding a water repellent to the coated fabric obtained by drying after washing with hot water. As the water repellent, there are various types such as paraffin type, silicone type, fluorine type, etc., which may be appropriately selected according to the use, and the application thereof may be performed by a usual method such as a batting method, a coating method, a spray method or the like. .
[0032]
The coated fabric of the present invention thus obtained can be widely used for sportswear such as golf wear and ski wear.
[0033]
【Example】
EXAMPLES Next, although this invention is demonstrated in detail by an Example, this invention is not limited only to these Examples. All the parts are parts by weight.
[0034]
Example 1
420 parts of ethylene butylene adipate having an average molecular weight of 4000 having hydroxyl groups at both ends, 36.9 parts of ethylene glycol, and 806.7 parts of DMF were blended and uniformly mixed under a nitrogen stream. Then, 175 parts of 4,4′-diphenylmethane diisocyanate (MDI) was added to this mixture, and the mixture was reacted by heating and diluted with DMF to obtain a polyurethane resin solution having a viscosity of 95000 cps / 30 ° C. with a 22% DMF solution. When the coagulation number (CV) of this polyurethane resin solution was measured by the above method, a value of 9.9 (% water) was obtained.
[0035]
Next, 100 parts of polyvinyl chloride resin powder (average polymerization degree 1050) is gradually added while stirring 900 parts of DMF in a nitrogen stream, and then heated to 70 ° C. to dissolve the resin powder. Obtained. The coagulation number of this solution was 3.4 (% water).
[0036]
409.1 parts of the polyurethane resin solution obtained above, 100 parts of the polyvinyl chloride resin solution, 25 parts of white color toner, and 215.9 parts of DMF were mixed and homogenized to prepare a coating solution.
[0037]
On the other hand, as a hydrophobic fiber base material, for example, a plain woven fabric of nylon filaments having an irregular (triangular) cross section (both warp and weft 70d / 34f, warp density 120 / inch, weft density 95 / inch), fluorine After performing a water repellent treatment with a water repellent, calendaring was performed. The coating solution obtained above was applied to this substrate at 150 g / m 2 (wet) using a baker type applicator, and then immersed in a 20 ° C. water bath for 2 minutes to solidify the resin component. Then, it was immersed in 50 degreeC warm water for 10 minutes, and DMF was fully extracted. Subsequently, drying was performed to obtain a coated fabric of the present invention.
[0038]
Example 2
363.6 parts of the polyurethane resin solution obtained in Example 1, 200 parts of polyvinyl chloride resin solution, 25 parts of white color toner, and 161.4 parts of DMF were mixed and homogenized to prepare a coating solution. Using the obtained solution, the substrate was treated in the same manner as in Example 1 to obtain a coated fabric.
[0039]
Example 3
272.7 parts of the polyurethane resin solution obtained in Example 1, 400 parts of the polyvinyl chloride resin solution, 25 parts of white color toner, and 52.3 parts of DMF were mixed and homogenized to prepare a coating solution. Using the obtained solution, the substrate was treated in the same manner as in Example 1 to obtain a coated fabric.
[0040]
Example 4
197.1 parts of ethylene / diethylene adipate having an average molecular weight of 3000 having hydroxyl groups at both ends, 197.1 parts of polytetramethylene ether glycol having an average molecular weight of 3000, and 39.3 parts of dicyclohexylmethane 4,4′-diisocyanate under a nitrogen stream Polyurethane resin solution having a viscosity of 80,000 cps / 30 ° C. with a 22% DMF solution after heating and reacting, adding 46.2 parts of ethylene glycol, 1000 parts of DMF, and 203 parts of MDI, followed by heating reaction. Got. The coagulation value of this solution was 6.4 (% water).
[0041]
Next, while stirring 900 parts of DMF under a nitrogen stream, 100 parts of polyvinyl chloride / polyvinyl acetate = 95/5 copolymer powder (average polymerization degree 750) was gradually added, and then heated to 70 ° C. and dissolved. A polyvinyl chloride / polyvinyl acetate copolymer solution was obtained. The coagulation number of this solution was 3.8 (% water).
[0042]
363.6 parts of the polyurethane resin solution obtained above, 200 parts of polyvinyl chloride / polyvinyl acetate copolymer solution, 25 parts of white color toner, and 161.4 parts of DMF were mixed and homogenized to prepare a coating solution. Using the obtained solution, the substrate was treated in the same manner as in Example 1 to obtain a coated fabric.
[0043]
Comparative Example 1
Using only the polyurethane resin solution obtained in Example 1, 454.6 parts of this solution, 25 parts of white color toner, and 245.5 parts of DMF were mixed and homogenized to prepare a coating solution. Using the obtained solution, the substrate was treated in the same manner as in Example 1 to obtain a coated fabric.
[0044]
Comparative Example 2
227.3 parts of the polyurethane resin solution obtained in Example 1, 500 parts of the polyvinyl chloride resin solution, and 25 parts of the white color toner were mixed and homogenized to prepare a coating solution. Using the obtained solution, the substrate was treated in the same manner as in Example 1 to obtain a coated fabric.
[0045]
The coating cloths obtained in Examples 1 to 4 and Comparative Examples 1 and 2 were measured for performance such as water pressure resistance, moisture permeability, dew condensation value, water absorption value, etc., and the results shown in Table 1 were obtained. The moisture permeability was measured according to the JIS L 1099 A-1 method, and the water pressure resistance was measured according to the hydrostatic pressure method of the JIS L 1092 B method. Moreover, the dew condensation value and the water absorption value were measured by the following containers and calculation methods.
[0046]
That is, a polystyrene foam is wound around the outside of a cylindrical glass bottle having a mouth inner diameter of 6 cm and a capacity of 500 cc to a thickness of about 1 cm, and 40 ° C. water is put into the bottle from the upper end of the mouth to 2 cm and sealed. When the sample was allowed to stand in a constant temperature room at 60 ° C. × 60% RH for 1 hour, an object capable of keeping the water temperature in the bottle at 30 ± 1 ° C. was used as a measurement container.
[0047]
40 ° C. water was placed in the above container up to 2 cm from the upper end of the mouth, and then the fabric specimen was cut into a circular shape having a diameter of 10 cm from each of the coated fabrics obtained in Examples 1 to 4 and Comparative Examples 1 and 2 above the container. The wet processed resin surface was placed facing the water surface, and the periphery was fixed with fasteners, and then left in a temperature-controlled room at 10 ° C. × 60% RH for 1 hour. Thus, the dew condensation value and the water absorption value were calculated from the weight change of the specimen before and after being left standing by the following equations.
Condensation value (g / m 2 hr) = (m 1 −m 2 ) / (0.03 2 π)
Water absorption value (g / m 2 hr) = (m 2 −m 0 ) / (0.03 2 π)
[In the formula, m 0 is the dry weight of the fabric specimen previously measured (dried at 120 ° C. for 10 minutes before measurement), m 1 is the weight of the fabric specimen immediately after measurement, and m 2 is immediately after the measurement of m 1. This is the weight after the condensed water on the surface of the test piece is sucked with a filter paper. ]
[0048]
Further, in order to determine the surface slipperiness of the resulting coated fabric as a frictional force, the dynamic friction coefficient was measured in accordance with the plastic film friction coefficient test method defined in JIS K 7125. The results are shown in Table 1.
That is, the fabric of the present invention, which is a test piece, and the cotton fabric used as the counterpart material (using the attached white fabric for dyeing fastness test specified in JIS L 0803) and the processed fabric are 23 ± 2 ° C., 50 ± 2% RH The frictional distance from the point at which the minimum load was exceeded after the initial maximum load, using a slide piece (weight giving contact force) that moved at a relative speed of 100 mm / min. The average load up to 70 mm was defined as the dynamic friction force. A glass plate having a contact surface of 2.5 cm × 7.5 cm and a weight of 47.4 g was used as the sliding piece in the measurement. The dynamic friction coefficient was calculated by the following equation.
Coefficient of dynamic friction μ k = F k / F p
(In the above equation, F k represents the dynamic friction force (kgf), and F p represents the contact force (kgf).)
[0049]
[Table 1]
Figure 0003810479
[0050]
As is apparent from Table 1, the coated fabric obtained by the method of the present invention has good moisture permeability and water pressure resistance, and also shows low values for dew condensation value and water absorption value, moisture permeability and low dew condensation property. In addition, it was recognized that various performances of low water absorption were also obtained, and good results were obtained particularly in the dew condensation value and the water absorption value as compared with those of Comparative Examples 1 and 2. Moreover, also in the surface slipperiness (dynamic friction system numerical value) of the fabric, the results of this example showed good results.
[0051]
【The invention's effect】
As described above, the present invention provides a coated fabric by using a mixed solution in which both a polyurethane resin having a coagulation value in a specified range and an organic polymer resin are uniformly mixed in a specific range. Therefore, when this coated fabric is used as an apparel material for sportswear such as golf wear and ski wear, it has good moisture transfer due to sweating and gives wetness to underwear. Therefore, there is an effect of giving a comfortable wearing feeling excellent in surface lubricity without causing discomfort due to cooling after exercise.

Claims (1)

凝固価が6.0〜11.0(%水)であるポリウレタン樹脂の水混和性有機溶剤溶液と、この溶液と相溶性を有する凝固価が1.5〜4.5(%水)であるポリウレタン樹脂以外のポリ塩化ビニル樹脂、ポリ塩化ビニル−酢酸ビニル共重合樹脂、ポリ塩化ビニル−エチレン共重合樹脂のポリ塩化ビニル系樹脂から選ばれた少なくとも1種の有機系高分子樹脂の水混和性有機溶剤溶液とからなり、上記ポリウレタン樹脂溶液と有機系高分子樹脂溶液の混合比が樹脂分比でポリウレタン樹脂60〜99重量%、有機系高分子樹脂40〜1重量%である混合溶液を、予め撥水加工を施した繊維基材の片面にコーティングし、次いで水中に浸漬して水混和性有機溶剤を抽出した後、乾燥することを特徴とする防水性、透湿性にすぐれ結露性、吸水性が小さく加工表面の滑性にすぐれたコーティング布帛の製造方法。A water-miscible organic solvent solution of polyurethane resin having a coagulation value of 6.0 to 11.0 (% water), and a coagulation value compatible with this solution is 1.5 to 4.5 (% water). Water miscibility of at least one organic polymer resin selected from polyvinyl chloride resins other than polyurethane resins, polyvinyl chloride-vinyl acetate copolymer resins, and polyvinyl chloride-ethylene copolymer resins such as polyvinyl chloride-ethylene copolymer resins An organic solvent solution, a mixed solution in which the mixing ratio of the polyurethane resin solution and the organic polymer resin solution is 60 to 99% by weight of polyurethane resin and 40 to 1% by weight of organic polymer resin, It is coated on one side of a fiber base that has been subjected to water-repellent treatment in advance, and then dipped in water to extract the water-miscible organic solvent, followed by drying. Sex Method for producing a coated fabric with excellent lubricity of fence working surface.
JP15040396A 1995-05-25 1996-05-21 Method for producing coated fabric Expired - Lifetime JP3810479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15040396A JP3810479B2 (en) 1995-05-25 1996-05-21 Method for producing coated fabric

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15251695 1995-05-25
JP7-152516 1995-05-25
JP15040396A JP3810479B2 (en) 1995-05-25 1996-05-21 Method for producing coated fabric

Publications (2)

Publication Number Publication Date
JPH0941275A JPH0941275A (en) 1997-02-10
JP3810479B2 true JP3810479B2 (en) 2006-08-16

Family

ID=26480004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15040396A Expired - Lifetime JP3810479B2 (en) 1995-05-25 1996-05-21 Method for producing coated fabric

Country Status (1)

Country Link
JP (1) JP3810479B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015116276A1 (en) * 2013-12-23 2015-08-06 Cytec Industries Inc. Carbon fibers and high performance fibers for composite applications

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804502B2 (en) 2001-10-10 2004-10-12 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals
US9653601B2 (en) 2005-07-11 2017-05-16 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US20080076371A1 (en) 2005-07-11 2008-03-27 Alexander Dribinsky Circuit and method for controlling charge injection in radio frequency switches
US7890891B2 (en) 2005-07-11 2011-02-15 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US7910993B2 (en) 2005-07-11 2011-03-22 Peregrine Semiconductor Corporation Method and apparatus for use in improving linearity of MOSFET's using an accumulated charge sink
US7960772B2 (en) 2007-04-26 2011-06-14 Peregrine Semiconductor Corporation Tuning capacitance to enhance FET stack voltage withstand
US9831857B2 (en) 2015-03-11 2017-11-28 Peregrine Semiconductor Corporation Power splitter with programmable output phase shift
US9948281B2 (en) 2016-09-02 2018-04-17 Peregrine Semiconductor Corporation Positive logic digitally tunable capacitor
US10236872B1 (en) 2018-03-28 2019-03-19 Psemi Corporation AC coupling modules for bias ladders
US10886911B2 (en) 2018-03-28 2021-01-05 Psemi Corporation Stacked FET switch bias ladders
US10505530B2 (en) 2018-03-28 2019-12-10 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US11476849B2 (en) 2020-01-06 2022-10-18 Psemi Corporation High power positive logic switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015116276A1 (en) * 2013-12-23 2015-08-06 Cytec Industries Inc. Carbon fibers and high performance fibers for composite applications
AU2014380135B2 (en) * 2013-12-23 2018-08-02 Cytec Industries Inc. Carbon fibers and high performance fibers for composite applications

Also Published As

Publication number Publication date
JPH0941275A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
JP3810479B2 (en) Method for producing coated fabric
JP4503096B1 (en) Moisture permeable waterproof fabric and method for producing the same
EP0454391B1 (en) Film-forming copolymers and their use in water vapour permeable coatings
JP4022000B2 (en) Moisture permeable waterproof fabric and method for producing the same
Jassal et al. Waterproof breathable polymeric coatings based on polyurethanes
JP4008922B2 (en) Leather-like sheet, production method thereof, and fluorine-containing side chain-modified urethane compound
JP5717521B2 (en) Moisture permeable waterproof fabric
KR100335576B1 (en) Manufacturing method of coated fabric
JP6691699B2 (en) Method for manufacturing waterproof fabric
JP2004115982A (en) Method for producing coating cloth
JP3834123B2 (en) Moisture permeable waterproof coating fabric and method for producing the same
JPH0299671A (en) Production of coated fabric
JP2003201675A (en) Method of producing dry type moisture-permeating coating fabric
US5266403A (en) Film-forming copolymers and their use in water vapour permeable coatings
JP6726383B2 (en) Waterproof fabric
JPH04163373A (en) Production of coated fabric
JPH03294581A (en) Production of coated cloth
JPH038874A (en) Production of coated fabric
JPH02104771A (en) Production of coated cloth
JPH04146275A (en) Moisture permeable waterproofing cloth having excellent waterproofing performance
JPH06272168A (en) Moisture-permeable and waterproof-coated fabric
JPH06270343A (en) Production of humidity permeable waterproof coating fabric
JPH04194082A (en) Moisture-permeable water-proofing cloth having excellent abrasion resistance
JPH09316784A (en) Production of moisture-permeable waterproof fabric
JP2001303453A (en) Method for manufacturing dew condensation-preventive moisture-permeable waterproof coated fabric

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150602

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term