JP3807658B2 - Underground cavity filling method - Google Patents

Underground cavity filling method Download PDF

Info

Publication number
JP3807658B2
JP3807658B2 JP2000272757A JP2000272757A JP3807658B2 JP 3807658 B2 JP3807658 B2 JP 3807658B2 JP 2000272757 A JP2000272757 A JP 2000272757A JP 2000272757 A JP2000272757 A JP 2000272757A JP 3807658 B2 JP3807658 B2 JP 3807658B2
Authority
JP
Japan
Prior art keywords
filling
filler
outer peripheral
underground cavity
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000272757A
Other languages
Japanese (ja)
Other versions
JP2002081054A (en
Inventor
義文 原
哲夫 松田
乾郎 杉浦
正人 時任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Tobishima Corp
Original Assignee
Fujita Corp
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp, Tobishima Corp filed Critical Fujita Corp
Priority to JP2000272757A priority Critical patent/JP3807658B2/en
Publication of JP2002081054A publication Critical patent/JP2002081054A/en
Application granted granted Critical
Publication of JP3807658B2 publication Critical patent/JP3807658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地下空洞のうち、限定された領域を埋戻すための技術に関するものである。
【0002】
【従来の技術】
各地の地中に存在する亜炭廃坑、防空壕,採石場、石灰岩やシラスによる自然空洞等、比較的大規模な地下空洞は、しばしば地盤沈下や地盤陥没等の事故を引き起こしており、その対策としては、前記地下空洞を埋め戻す充填工法が有効である。
【0003】
従来技術による典型的な充填工法においては、充填材としてセメントミルク、モルタル、コンクリート等を用いる工法や、エアモルタルを用いる工法や、土質材料に石灰系あるいはセメント系の固化材及び水を混合した流動性の高いスラリーを用いる工法が知られている。しかしながら、これら従来工法によれば、それぞれ次のような問題が指摘される。
【0004】
【発明が解決しようとする課題】
まず、充填材としてセメントミルク、モルタル、コンクリート等の固化材を用いる工法の場合は、材料コストが高価になり、しかも充填材の発現する強度が周囲の地盤よりも著しく大きいため、オーバースペックとなってしまう。また、充填後の流動性の制御や、限定された領域への充填が困難であり、しかも地下水が充満した空洞への充填では、材料分離による地下水汚染を防止するための増粘剤を配合するといった対策が必要であり、この場合は流動性の低下によって、ポンプによる長距離の圧送が困難になる。
【0005】
次に、充填材としてエアモルタルを用いる工法の場合は、ポンプによる地下空洞への圧送過程や地下水中でエアの損失を起こす可能性がある。しかも地下水中下では、高い水圧が作用することによって、混入されたエアの容積が地上に比較して著しく減少し、所定の充填形状を確保することが困難である。
【0006】
また、流動性の高いスラリーを用いる工法の場合は、地下空洞中の限定された領域に充填する工法としては不向きであり、充填対象外の広い領域まで充填材が流出してしまうといったロスを見込む必要があり、充填材の量が徒らに多くなって、充填に要する時間も長大化する等の問題がある。
【0007】
本発明は、上述のような問題に鑑みてなされたもので、その主な技術的課題とするところは、地下空洞内の任意の領域を地下水の有無に拘らず限定的に充填可能とし、低コストで、しかも施工の容易な充填工法を提供することにある。
【0008】
【課題を解決するための手段】
上述した技術的課題を有効に解決するための手段として、本発明に係る地下空洞の充填工法は、地中空洞の充填領域の外周部を、相対的に流動性の低いゲル状の外周充填材の注入により閉鎖し、その内周側の領域に、前記外周充填材よりも相対的に初期流動性の高い中詰充填材を充填するものである。好ましくは、例えば前記外周充填材は、水ガラス、セメント系固化材及び土質材料を構成材料とし、水ガラスを含む第一の充填液と、セメント系固化材を含む第二の充填液とを、地下空洞への供給過程で連続的に合流・混合させることによりゲル化させる。また、前記外周充填材の初期流動性は、前記構成材料の配合比率により制御するものである。
【0009】
【発明の実施の形態】
図1は、本発明に係る水中充填工法の好ましい実施の形態を概略的に示すもので、参照符号Gは地盤、Cはこの地盤G中に存在する亜炭廃坑等の平面的な広がりを持つ大規模な地下空洞である。
【0010】
地下空洞Cは、高さhが例えば1〜2m程度であり、地上までの土被り深さdが100m前後までである。また、亜炭廃坑からなる地下空洞Cの場合、亜炭の採掘方法によって、図2(A)に示されるような柱房式のものと、図2(B)に示されるような残柱式のものがあり、内部は、地下水GWで満たされている場合が多い。
【0011】
本工法においては、まず図3(A)に示されるように、地下空洞Cの充填領域Caの外周部へ向けて地盤Gのボーリングを行い、次に図3(B)に示されるように、そのボーリング孔に挿入した注入管101を介して、前記充填領域Caの外周部へ、初期流動性が低い外周充填材1を充填する。
【0012】
外周充填材1は、水ガラス、セメント系固化材、砂キラや粘土キラ等の土質材料及び水を構成材料とし、図4に示されるように、水ガラスを含む第一の充填液10と、セメント系固化材を含む第二の充填液20とを、地下空洞Cへ送る過程で合流・混合することによってゲル化させたものである。
【0013】
なお、上述した砂キラ及び粘土キラは、珪砂や、耐火煉瓦等の窯業原料として使用される耐火粘土の製造過程で副産物として生じる、石英、長石、カオリンを構成鉱物とする粘土混じりの微粒珪砂であって、「キラ」と総称され、微粒珪砂と粘土の混合比率によって砂キラと粘土キラに分類されたものである。そして、これらのキラ材は有害物質を含まず、他の土質材料に比較して安価に入手でき、ブリーディングが少なく,材料分離抵抗性に優れるため、本発明の工法において使用される充填材として極めて有用である。しかもキラ材はかつては廃棄物として河川に放流されていたものであり、河川の汚濁防止の観点で放流が禁止されて以来、有効利用が検討されて来たが、本工法は、このようなキラ材の有効利用を促進するものである。
【0014】
また、第一の充填液10に配合される水ガラスは、よく知られているように、二酸化珪素SIO及び酸化ナトリウムNaOからなるものであるが、充填領域外への充填材の流出を抑えるために、第二の充填液20のセメント系固化材との反応によって瞬時にゲル化を起こし、ゲル化後は、地下空洞Cの天端へ密着した状態に充填されるように、適度な塑性流動特性を保持し、主な劣化要因であるNaOの含有量の少ないものが選択される。
【0015】
第二の充填液20に用いられるセメント系固化材としては、早期に固結強度を発現し、しかも地下水GWへのアルカリ溶出が少ないものが望ましく、このような観点から、水ガラス中のアルカリ成分(NaO)を消費するスラグ−セメント系固化材が好適に使用される。
【0016】
第一の混合プラント102からポンプ106によって供給される第一の充填液10と、第二の混合プラント103からポンプ107によって供給される第二の充填液20は、いずれも高い流動性を有する。したがって、これら第一及び第二の充填液10,20は、それぞれ配管104,105内を円滑に送られるが、混合器108で合流してスタティックミキサ109で混合されることによって、第一の充填液10における水ガラス13と第二の充填液20におけるセメント系固化材21が反応し、地盤Gに挿入した注入管101から地下空洞Cへ送られる過程で短時間(10秒程度)でゲル化する。
【0017】
ゲル化した外周充填材1は、自らの重量による広がりが少なく、注入位置の近傍で地下空洞Cの天端に達して、この地下空洞Cを閉鎖するのに十分な粘度を有するものである。このため、外周充填材1を、充填領域Caの外周に沿って所定間隔で地盤Gに挿入した各注入管101から継続的に充填して行くことによって、その頂部がやがて地下空洞Cの天端に達し、前記充填領域Caの外周を閉鎖した状態で経時的に固結して行く。
【0018】
次に、外周充填材1の充填完了後は、これによって閉鎖された空間Sに、図3(C)に示されるように、前記外周充填材1よりも初期流動性の高い中詰充填材2を充填する。
【0019】
中詰充填材2も、上述の外周充填材1と同様に、水ガラス、セメント系固化材、砂キラや粘土キラ等の土質材料及び水を構成材料とし、図4に示されるように、水ガラスを含む第一の充填液10と、セメント系固化材を含む第二の充填液20とを、地下空洞Cへ送る過程で合流・混合することによってゲル化させたものであるが、水ガラス、セメント系固化材、砂キラや粘土キラ等の土質材料及び水の配合比率によって、ゲル化後の初期粘度が外周充填材1より低く(流動性が高く)調整されている。
【0020】
なお、中詰充填材2は外周充填材1で閉鎖された空間Sに充填されるものであるため、必ずしも外周充填材1のようにゲル化させる必要はない。したがって、中詰充填材2には構成材料として水ガラスを含まないもの、例えば従来工法において用いられていたスラリー充填材等を用いることもできる。また、この場合は圧送過程での第一及び第二の充填液10,20の合流・混合といった手法も不要である。
【0021】
上述のように、地下空洞C(閉鎖空間S)に放出された中詰充填材2は、外周充填材1よりも粘度が低く、高流動性であるため、外周充填材1による閉鎖空間S内を流動して平面的に広がろうとする。このため、充填孔のボーリング本数を少なくすることができる。しかも、その広がりは外周充填材1による連続壁で制限されるので、この外周充填材1によって閉鎖された空間Sに、その天端まで確実に充填されていく。したがって、本発明の充填工法によれば、流動性の高い中詰充填材2の地下空洞Cでの広がりが外周充填材1によって阻止されるので、材料ロスを生じることなく、限定した領域の充填を確実にかつ短時間で行うことができる。
【0022】
なお、本発明の工法は、亜炭廃坑による地下空洞以外にも、大谷石等の採石場、防空壕、地盤が石灰石からなる地域やシラス台地等における自然の地下空洞等の充填工法に適用することができ、外周充填材の流動性の調整によって、地下水の存在しない空洞の充填も可能であり、地下空洞に起因する地盤陥没事故の防止対策として有効である。
【0023】
【実施例】
次に、本発明による地下空洞の充填工法によって試験施工を実施した結果について説明する。
【0024】
この試験施工において充填対象とする地下空洞の地上部には、土工及び橋梁等の構造物の構築が計画されており、これらの構造物によって、要求される充填材の品質が異なり、また、充填過程での外周充填材及び中詰充填材の流動性を適切に設定する必要がある。したがって、この試験施工においては、橋梁部外周用及び中詰用、土工部外周用及び中詰用の各充填材に、想定される要求品質(例えば材齢28日の一軸圧縮強度)を次の表1のように設定した。
【表1】

Figure 0003807658
【0025】
また、上記橋梁部外周用及び中詰用、土工部外周用及び中詰用の各充填材を得るための第一及び第二の充填液は、それぞれ上記表1に示される要求品質に合致させるため、次の表2に示されるような配合を選定した。そしてこのうち、橋梁部外周用に配合した外周充填材と、土工部中詰用に配合した中詰充填材を試験施工に用いた。
【表2】
Figure 0003807658
【0026】
試験施工対象の亜炭廃坑は、残柱式で採掘されたもの(図2B参照)であることは事前に明らかであった。しかし、本工法の適用性を適切に評価するためには、事前に空洞C及び残柱Gaの状況を正確に把握しておく必要があり、これらの状況の調査結果は充填量の推定や充填順序を決定するための有用な資料となる。したがって、この試験施工においては、ボーリング調査及び音響探査によって空洞状況の事前調査を行った。
【0027】
ボーリング調査では合計99本のボーリングを行い、そのうち69本(約70%)で地下空洞が確認された。この地下空洞は、地表から約25mの深度に位置し、北から南へ5〜10%程度の勾配で傾斜しており、空洞の高さは殆どが0.8〜1.4mの範囲で、平均1.2m程度であった。なお、ボーリング孔は、事後、音響測深探査や充填管理のための観測孔及び充填用の孔としても利用した。
【0028】
次に音響測深探査では、地上に突出するロッドの上端に方位センサを取り付けた超音波ゾンデを、地下空洞が確認されたボーリング孔に挿入し、前記ロッドを介して、超音波ゾンデを空洞内の底盤付近、中間高さ位置及び天端付近で回転走査し、出射した超音波の反射波によって空洞Cの内壁面Gb(図2B参照)までの距離や残柱Gaの位置及び距離等を測定し、測定データを次のボーリング孔の削孔位置決定に利用した。そして、この探査の結果、空洞C内の残柱Gaはほぼ均等に分布し、各残柱Gaは数m〜十数mの断面寸法を有するものと推定された。
【0029】
上述のボーリング調査及び超音波測深探査結果を考慮して、外周充填材1及び中詰充填材2の材料配分を決定し、先に説明した図1、図3及び図4に示される方法によって、外周充填材1の充填を行った。
【0030】
外周充填材1の充填過程では、観測孔からのテープによる充填高さ計測により、空洞C内の充填材流動状況を確認した。また、充填形状の自動管理の可能性を検証するために、歪み計によるリアルタイムモニタリングも試行した。
【0031】
外周充填材1の充填終了時は、観測孔位置での外周充填材1の天端到達を確認すると共に、音響測深探査による充填形状の把握も実施した。また、充填法線方向に2測線を設定し、約2mピッチで設けた観測孔から、空洞C内の外周充填材1の充填勾配(外側面の勾配)を測定したところ、各測線での充填勾配はそれぞれ24%、17%であり、すなわち平面的な広がりが少なく、外周充填材1による充填領域の閉鎖が可能であることが確認された。
【0032】
外周充填材1による充填領域の閉鎖が完了した後、引き続き、中詰充填材2の充填を約10時間行った。その充填過程では充填領域に対応する各観測孔から地下水や充填材の噴出が認められたが、これは、空洞の天端までの確実な充填を裏付ける現象である。更に、充填完了後に行った合計8箇所の確認ボーリングにおいても、全箇所で天端までの充填が確認された。
【0033】
なお、スタティックミキサ109で第一の充填液10と第二の充填液20を混合することによってゲル化した外周充填材及び中詰充填材をそれぞれサンプリングし、所定の材齢(3日,7日,28日)までの水中養生後、一軸圧縮強度試験を行った。試験結果によれば、橋梁部外周用配合による外周充填材は、先の表1に示した要求強度の下限値である4kgf/cm(0.39N/mm)を満足し、平均で7.3kgf/cm(0.72N/mm)であった。また、土工部中詰用配合による中詰充填材の一軸圧縮強度は、試験結果、1.7kgf/cm(0.17N/mm)であり、表1に示した要求強度1kgf/cm(0.098N/mm)を満足するものであった。
【0034】
更に、本発明の充填工法による地下水の水質及び空洞内水質への影響を明らかにするために、近隣の水質調査した。調査箇所は充填領域から20〜220m(殆どは60m以内)に位置する既設の井戸2箇所、地表から3〜5mの沖積層に滞水している地下水を3箇所、地下空洞内3箇所、及び近隣の河川水1箇所、合計9箇所である。
【0035】
調査の結果、飲料水基準に沿った水質試験では、充填工事による水質変化は認められなかった。また、充填中に日常管理として行ったpHの調査では、アルカリの溶出によるpHの上昇は認められず、浮遊物質(SS)も、充填による影響は認められなかった。
【0036】
【発明の効果】
本発明に係る地下空洞の充填工法によれば、先行注入される外周充填材によって充填領域の外周部を閉鎖してから、流動性の高い中詰充填材を充填するため、材料ロスを生じることなく、地下空洞への限定的な充填を確実に行うことができる。また、この工法は、地下空洞における地下水の有無に関係なく採用可能である。しかも、外周充填材は、地下空洞への直前位置までは流動性の高い第一の充填液と第二の充填液として供給するため、圧送過程で管路が閉塞することなく円滑に供給することができ、地下空洞への直前位置で混合されてゲル化した状態で充填されるため、材料分離による地下水汚染も有効に防止することができる。
【図面の簡単な説明】
【図1】本発明に係る地下空洞の充填工法の好ましい実施の形態を概略的に示す説明図である。
【図2】亜炭廃坑による地下空洞の形状を示す部分的な水平断面図である。
【図3】本発明に係る地下空洞の充填工法の施工手順を概略的に示す説明図で、(A)は施工前の状態、(B)は外周充填材を充填した状態、(C)は中詰充填材を充填した状態を示すものである。
【図4】本発明の作業フローを示す説明図である。
【符号の説明】
1 外周充填材
2 中詰充填材
10 第一の充填液
20 第二の充填液
C 地下空洞
G 地盤[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for backfilling a limited area of an underground cavity.
[0002]
[Prior art]
Relatively large underground cavities, such as lignite abandoned mines, air defense pits, quarries, natural cavities due to limestone and shirasu, are often causing accidents such as land subsidence and ground subsidence. The filling method for refilling the underground cavity is effective.
[0003]
In a typical filling method according to the prior art, a method using cement milk, mortar, concrete or the like as a filler, a method using air mortar, or a fluid in which a soil material is mixed with a lime-based or cement-based solidifying material and water. A construction method using a highly-slurry slurry is known. However, according to these conventional methods, the following problems are pointed out.
[0004]
[Problems to be solved by the invention]
First, in the case of a method using a solidified material such as cement milk, mortar, or concrete as a filler, the material cost is high, and the strength expressed by the filler is significantly greater than that of the surrounding ground. End up. In addition, it is difficult to control fluidity after filling and filling a limited area, and in filling a cavity filled with groundwater, a thickener is added to prevent groundwater contamination due to material separation. In this case, due to the decrease in fluidity, long-distance pumping with a pump becomes difficult.
[0005]
Next, in the case of a construction method using air mortar as a filler, there is a possibility that air will be lost in the process of pumping into the underground cavity or in the underground water. Moreover, under ground water, high water pressure acts to significantly reduce the volume of mixed air compared to the ground, making it difficult to ensure a predetermined filling shape.
[0006]
In addition, in the case of a method using a slurry with high fluidity, it is not suitable as a method for filling a limited area in an underground cavity, and a loss is expected that the filler will flow out to a wide area outside the filling target. Therefore, there is a problem that the amount of filler is increased and the time required for filling is increased.
[0007]
The present invention has been made in view of the above-described problems, and the main technical problem is that any area in the underground cavity can be filled with a limited amount regardless of the presence or absence of groundwater. The object is to provide a filling method that is cost-effective and easy to construct.
[0008]
[Means for Solving the Problems]
As a means for effectively solving the technical problem described above, the underground cavity filling method according to the present invention includes a gel-like outer periphery filling material having a relatively low fluidity at the outer periphery of the filling region of the underground cavity. The inside filling region is filled with a filling material having an initial fluidity relatively higher than that of the outer periphery filling material. Preferably, for example, the outer peripheral filler includes water glass, a cement-based solidified material, and a soil material, and includes a first filling liquid containing water glass and a second filling liquid containing a cement-based solidified material. It is gelled by continuous merging and mixing during the supply process to the underground cavity. The initial fluidity of the outer peripheral filler is controlled by the blending ratio of the constituent materials.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 schematically shows a preferred embodiment of the underwater filling method according to the present invention. Reference numeral G is the ground, and C is a large expanse of a lignite abandoned mine existing in the ground G. It is a large underground cavity.
[0010]
The underground cavity C has a height h of, for example, about 1 to 2 m, and a soil covering depth d to the ground of up to about 100 m. Also, in the case of underground cavities C consisting of lignite abandoned mines, depending on the method of mining lignite, the columnar type as shown in FIG. 2 (A) and the remaining pillar type as shown in FIG. 2 (B) In many cases, the interior is filled with groundwater GW.
[0011]
In this construction method, as shown in FIG. 3 (A), first, the ground G is bored toward the outer periphery of the filling region Ca of the underground cavity C, and then, as shown in FIG. 3 (B), The outer peripheral filler 1 having low initial fluidity is filled into the outer peripheral portion of the filling region Ca through the injection tube 101 inserted into the borehole.
[0012]
The outer peripheral filler 1 is composed of a water glass, a cement-based solidified material, a soil material such as sand glitter and clay glitter, and water, and as shown in FIG. 4, a first filler 10 containing water glass, The second filling liquid 20 containing the cement-based solidifying material is gelled by joining and mixing in the process of sending it to the underground cavity C.
[0013]
The above-mentioned sand glitter and clay glitter are fine silica sand mixed with clay containing quartz, feldspar and kaolin as a by-product in the production process of silica sand and refractory clay used as ceramic raw materials such as refractory bricks. Therefore, it is collectively called “Kira” and is classified into sand glitter and clay glitter according to the mixing ratio of fine silica sand and clay. These glitter materials do not contain harmful substances, are available at a lower cost than other soil materials, have little bleeding, and have excellent material separation resistance. Therefore, they are extremely useful as fillers used in the construction method of the present invention. Useful. Moreover, Kira wood was once discharged into rivers as waste, and its effective use has been studied since its release was prohibited from the viewpoint of preventing pollution of rivers. It promotes the effective use of glitter materials.
[0014]
Further, as is well known, the water glass blended in the first filling liquid 10 is composed of silicon dioxide SIO 2 and sodium oxide Na 2 O, but the outflow of the filler out of the filling region. In order to suppress the above, the gelation is instantaneously caused by the reaction of the second filling liquid 20 with the cement-based solidified material, and after the gelation, the second filling liquid 20 is moderately filled so as to be in close contact with the top of the underground cavity C. Having a low plastic content and a low content of Na 2 O, which is the main deterioration factor, is selected.
[0015]
The cement-based solidifying material used for the second filling liquid 20 is preferably one that expresses solidification strength at an early stage and has little alkali elution into the groundwater GW. From such a viewpoint, the alkali component in the water glass A slag-cement solidifying material that consumes (Na 2 O) is preferably used.
[0016]
Both the first filling liquid 10 supplied from the first mixing plant 102 by the pump 106 and the second filling liquid 20 supplied from the second mixing plant 103 by the pump 107 have high fluidity. Accordingly, the first and second filling liquids 10 and 20 are smoothly fed through the pipes 104 and 105, respectively. However, the first and second filling liquids 10 and 20 are joined by the mixer 108 and mixed by the static mixer 109, whereby The water glass 13 in the liquid 10 reacts with the cement-based solidified material 21 in the second filling liquid 20 and gels in a short time (about 10 seconds) in the process of being sent from the injection pipe 101 inserted into the ground G to the underground cavity C. To do.
[0017]
The gelatinized outer peripheral filler 1 has a sufficient viscosity to reach the top end of the underground cavity C in the vicinity of the injection position and close the underground cavity C with little spread due to its own weight. For this reason, by continuously filling the outer peripheral filler 1 from the respective injection pipes 101 inserted into the ground G at predetermined intervals along the outer periphery of the filling region Ca, the top portion of the top end of the underground cavity C will eventually be obtained. And solidifies over time with the outer periphery of the filling area Ca closed.
[0018]
Next, after the filling of the outer peripheral filler 1 is completed, in the space S closed by this, as shown in FIG. Fill.
[0019]
Similarly to the outer peripheral filler 1 described above, the filling material 2 is composed of water glass, cement-based solidified material, soil material such as sand glitter and clay glitter and water, and water as shown in FIG. The first filling liquid 10 containing glass and the second filling liquid 20 containing cement-based solidified material are gelated by joining and mixing in the process of sending to the underground cavity C. The initial viscosity after gelation is adjusted to be lower (higher fluidity) than that of the peripheral filler 1 by the mixing ratio of the cement-based solidifying material, the soil material such as sand and clay and water.
[0020]
In addition, since the filling material 2 is filled in the space S closed by the outer peripheral filler 1, it does not necessarily need to be gelled like the outer peripheral filler 1. Therefore, the filling material 2 may be a material that does not contain water glass as a constituent material, such as a slurry filler that has been used in the conventional method. Further, in this case, a method of joining / mixing the first and second filling liquids 10 and 20 in the pumping process is not necessary.
[0021]
As described above, the filling material 2 discharged into the underground cavity C (closed space S) has a lower viscosity than the outer periphery filler 1 and is highly fluid, and therefore the inside of the closed space S formed by the outer periphery filler 1. To flow and spread in a plane. For this reason, the number of filling holes can be reduced. Moreover, since the spread is limited by the continuous wall formed by the outer peripheral filler 1, the space S closed by the outer peripheral filler 1 is reliably filled up to its top end. Therefore, according to the filling method of the present invention, since the expansion of the filling filler 2 with high fluidity in the underground cavity C is prevented by the outer peripheral filler 1, filling of a limited region without causing material loss. Can be carried out reliably and in a short time.
[0022]
The construction method of the present invention can be applied to a filling method for natural underground cavities in quarries such as Otani stone, air defense fences, grounds made of limestone, Shirasu plateau, etc. in addition to underground cavities due to lignite abandoned mines In addition, by adjusting the fluidity of the outer peripheral filler, it is possible to fill a cavity where there is no groundwater, which is effective as a countermeasure for preventing a ground collapse caused by the underground cavity.
[0023]
【Example】
Next, the result of carrying out the test construction by the underground cavity filling method according to the present invention will be described.
[0024]
Construction of structures such as earthworks and bridges is planned for the ground part of the underground cavity to be filled in this test construction, and the quality of the required filler varies depending on these structures. It is necessary to appropriately set the fluidity of the outer peripheral filler and the middle filler in the process. Therefore, in this test construction, the expected quality (for example, uniaxial compressive strength of 28 days of age) for each of the fillers for the outer periphery of the bridge portion and for the inner packing, for the outer periphery of the earthwork portion and for the inner packing is as follows. Table 1 was set.
[Table 1]
Figure 0003807658
[0025]
In addition, the first and second filling liquids for obtaining the fillers for the outer periphery of the bridge portion and the inner filling, the outer periphery of the earthwork portion, and the inner filling are matched with the required qualities shown in Table 1 above. Therefore, the formulation as shown in the following Table 2 was selected. And among these, the outer periphery filler mix | blended for bridge part outer periphery and the filling agent compounded for earthwork part filling were used for test construction.
[Table 2]
Figure 0003807658
[0026]
It was clear in advance that the lignite abandoned mine to be tested was one that was mined by the remaining pillar type (see FIG. 2B). However, in order to appropriately evaluate the applicability of this construction method, it is necessary to accurately grasp the conditions of the cavity C and the remaining pillar Ga in advance, and the survey results of these conditions are based on estimation of filling amount and filling Useful material for determining the order. Therefore, in this test construction, a preliminary survey of the cavity condition was conducted by boring survey and acoustic exploration.
[0027]
In the borehole survey, a total of 99 boreholes were drilled, of which 69 (about 70%) were found to have underground cavities. This underground cavity is located at a depth of about 25 m from the surface of the earth and is inclined with a gradient of about 5 to 10% from north to south, and the height of the cavity is mostly in the range of 0.8 to 1.4 m. The average was about 1.2 m. The borehole was also used as an observation hole for acoustic sounding survey and filling management, and a filling hole.
[0028]
Next, in acoustic sounding exploration, an ultrasonic sonde with an orientation sensor attached to the upper end of a rod protruding above the ground is inserted into a borehole in which an underground cavity has been confirmed, and the ultrasonic sonde is inserted into the cavity through the rod. Rotate and scan near the bottom plate, middle height, and near the top, and measure the distance to the inner wall surface Gb (see FIG. 2B) of the cavity C and the position and distance of the remaining pillar Ga by the reflected wave of the emitted ultrasonic wave. The measurement data was used to determine the drilling position of the next boring hole. As a result of this exploration, it was estimated that the remaining pillars Ga in the cavity C were distributed almost uniformly, and each remaining pillar Ga had a cross-sectional dimension of several meters to several tens of meters.
[0029]
In consideration of the above-described boring survey and ultrasonic sounding survey results, the material distribution of the outer peripheral filler 1 and the middle filler 2 is determined, and by the method shown in FIGS. 1, 3 and 4 described above, The outer peripheral filler 1 was filled.
[0030]
In the filling process of the outer peripheral filler 1, the filler flow state in the cavity C was confirmed by measuring the filling height with a tape from the observation hole. In addition, in order to verify the possibility of automatic management of the filling shape, real-time monitoring using a strain gauge was also attempted.
[0031]
At the end of the filling of the outer periphery filler 1, the top end of the outer periphery filler 1 at the observation hole position was confirmed and the filling shape was also grasped by acoustic sounding survey. In addition, two survey lines were set in the filling normal direction, and the filling gradient (gradient of the outer surface) of the outer peripheral filler 1 in the cavity C was measured from the observation holes provided at a pitch of about 2 m. It was confirmed that the gradients were 24% and 17%, respectively, that is, there was little planar spread, and the filling region could be closed by the outer peripheral filler 1.
[0032]
After the closing of the filling region with the outer peripheral filler 1 was completed, the filling with the filling material 2 was continued for about 10 hours. During the filling process, groundwater and filling material were ejected from each observation hole corresponding to the filling area, which is a phenomenon that supports reliable filling up to the top of the cavity. Furthermore, in the total of 8 confirmation drills performed after completion of filling, filling to the top edge was confirmed at all locations.
[0033]
It should be noted that the outer peripheral filler and the inner filler filled by mixing the first filling liquid 10 and the second filling liquid 20 with the static mixer 109 are sampled, respectively, and predetermined ages (3 days, 7 days). , 28 days), after the water curing, a uniaxial compressive strength test was conducted. According to the test results, the outer periphery filler with the bridge portion outer periphery composition satisfies 4 kgf / cm 2 (0.39 N / mm 2 ), which is the lower limit value of the required strength shown in Table 1 above, and averages 7 0.3 kgf / cm 2 (0.72 N / mm 2 ). Moreover, the uniaxial compressive strength of the filling material by filling for filling in the earthwork part is 1.7 kgf / cm 2 (0.17 N / mm 2 ) as a result of the test, and the required strength shown in Table 1 is 1 kgf / cm 2. (0.098 N / mm 2 ) was satisfied.
[0034]
Furthermore, in order to clarify the influence of the filling method of the present invention on the quality of groundwater and the quality of water in the cavity, the water quality in the vicinity was investigated. The survey locations are two existing wells located 20 to 220m (mostly within 60m) from the filling area, three groundwaters in the alluvium 3 to 5m from the surface, three in the underground cavity, and There are nine nearby river waters, for a total of nine.
[0035]
As a result of the investigation, in the water quality test in accordance with the drinking water standards, no water quality change due to filling work was found. Further, in the investigation of pH carried out as routine management during filling, no increase in pH due to alkali elution was observed, and the suspended solids (SS) were also not affected by filling.
[0036]
【The invention's effect】
According to the underground cavity filling method according to the present invention, the outer peripheral portion of the filling region is closed by the peripherally injected peripheral filler, and then the filling material with high fluidity is filled, resulting in material loss. In addition, limited filling of underground cavities can be ensured. Moreover, this construction method can be adopted regardless of the presence or absence of groundwater in the underground cavity. In addition, since the outer peripheral filler is supplied as the first fluid and the second fluid having high fluidity up to the position immediately before the underground cavity, it can be smoothly supplied without clogging the pipeline during the pressure feeding process. Since it is mixed and gelled in the position immediately before the underground cavity, groundwater contamination due to material separation can be effectively prevented.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing a preferred embodiment of an underground cavity filling method according to the present invention.
FIG. 2 is a partial horizontal sectional view showing the shape of an underground cavity formed by a lignite abandoned mine.
FIG. 3 is an explanatory view schematically showing the construction procedure of the underground cavity filling method according to the present invention, in which (A) is a state before construction, (B) is a state filled with a peripheral filler, (C) is The state which filled the inside filling material is shown.
FIG. 4 is an explanatory diagram showing a work flow of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outer periphery filling material 2 Filling filling material 10 First filling liquid 20 Second filling liquid C Underground cavity G Ground

Claims (3)

地中空洞の充填領域の外周部を、相対的に流動性の低いゲル状の外周充填材の注入により閉鎖し、その内周側の領域に、前記外周充填材よりも相対的に初期流動性の高い中詰充填材を充填することを特徴とする地下空洞の充填工法。The outer peripheral portion of the filling area of the underground cavity is closed by injection of a gel-like outer peripheral filler having relatively low fluidity, and the initial fluidity is relatively higher than the outer peripheral filler in the inner peripheral area. A filling method for underground cavities, characterized by filling high-filled filling material. 外周充填材は、水ガラス、セメント系固化材及び土質材料を構成材料とし、水ガラスを含む第一の充填液と、セメント系固化材を含む第二の充填液とを、地下空洞への供給過程で連続的に合流・混合させることによりゲル化させることを特徴とする請求項1に記載の地下空洞の充填工法。The outer peripheral filler is composed of water glass, cement-based solidified material and soil material, and supplies the first filling liquid containing water glass and the second filling liquid containing cement-based solidified material to the underground cavity. 2. The underground cavity filling method according to claim 1, wherein gelation is performed by continuously joining and mixing in the process. 外周充填材の初期流動性を、各構成材料の配合比率により制御することを特徴とする請求項1又は2に記載の地下空洞の充填工法。3. The underground cavity filling method according to claim 1 or 2, wherein the initial fluidity of the outer peripheral filler is controlled by a blending ratio of each constituent material.
JP2000272757A 2000-09-08 2000-09-08 Underground cavity filling method Expired - Lifetime JP3807658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000272757A JP3807658B2 (en) 2000-09-08 2000-09-08 Underground cavity filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000272757A JP3807658B2 (en) 2000-09-08 2000-09-08 Underground cavity filling method

Publications (2)

Publication Number Publication Date
JP2002081054A JP2002081054A (en) 2002-03-22
JP3807658B2 true JP3807658B2 (en) 2006-08-09

Family

ID=18758818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000272757A Expired - Lifetime JP3807658B2 (en) 2000-09-08 2000-09-08 Underground cavity filling method

Country Status (1)

Country Link
JP (1) JP3807658B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296988A (en) * 2011-07-06 2011-12-28 湖南科技大学 Paste gravity filling simulation test device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4099186B2 (en) * 2005-09-06 2008-06-11 栄一 鈴木 A quarrying method for underground stone cavities formed by a residual pillar type mining method
CN104612752A (en) * 2015-02-09 2015-05-13 德惠同利(北京)石油技术服务有限公司 Sand prevention filling device
CN105737902A (en) * 2016-04-18 2016-07-06 中南大学 Experimental test system for phosphogypsum filling, stirring and pumping integrated endless tube
JP6691492B2 (en) * 2017-02-13 2020-04-28 中日本建設コンサルタント株式会社 Structure and method for checking the filling status of underground caverns
JP6635603B2 (en) * 2017-07-07 2020-01-29 飛島建設株式会社 Underground cavity filling method
JP6530124B1 (en) * 2018-11-13 2019-06-12 中村建設株式会社 Backfill method
CN110185492A (en) * 2019-07-07 2019-08-30 长沙智能控制系统有限公司 A kind of moving distributing underground consolidated fill method and system
CN111775337A (en) * 2020-07-29 2020-10-16 中钢集团马鞍山矿山研究总院股份有限公司 Combined type dry material hauling accurate conveying and filling station suitable for mine filling system
JP7451471B2 (en) * 2021-09-28 2024-03-18 飛島建設株式会社 Method for producing cavity filling material and apparatus for producing the same
CN114961842A (en) * 2021-12-28 2022-08-30 江西正越建设工程有限公司 Construction method for backfilling underground old civil air defense roadway

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532905A (en) * 1976-06-30 1978-01-12 Gurauto Konsarutanto Kk Method of filling old cavity
JPS5837081A (en) * 1981-08-28 1983-03-04 Shimoda Gijutsu Kenkyusho:Kk Grouting material suitable for filling cave and injecting technique using said filling grout
JPS60188517A (en) * 1981-12-14 1985-09-26 Kyokado Eng Co Ltd Ground grouting work
JPH11269459A (en) * 1998-03-20 1999-10-05 Taiheiyo Cement Corp Cavity filler
JP2000160160A (en) * 1998-12-01 2000-06-13 Kawai Sekkai Kogyo Kk Soil stabilizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296988A (en) * 2011-07-06 2011-12-28 湖南科技大学 Paste gravity filling simulation test device

Also Published As

Publication number Publication date
JP2002081054A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
Nonveiller Grouting theory and practice
CN108166994B (en) A kind of construction method of the grouting reinforced region applied to water-rich sand layer shield tunnel
CN104329076B (en) A kind of deviational survey hole osmotic pressure counter device and installation method
CN110924967B (en) Fine control construction method for shield proximity sensitive building in water-rich sandy gravel stratum
JP3807658B2 (en) Underground cavity filling method
CN103526748A (en) Technology for constructing deepwater bridge underwater pier large-diameter bored piles in bead-stringed type karst areas
CN104110028B (en) A kind of dry operation boring is without the cast-in-place pile construction method of water law concrete perfusion
Littlejohn The development of practice in permeation and compensation grouting: a historical review (1802–2002): part 1 permeation grouting
KR101746654B1 (en) Method for constructing pile for reinforce of mine hole
CN104196488B (en) Underwater exploration hole hole-sealing technology
CN110644492B (en) Comprehensive grouting construction method for steep dip angle wide-crack stratum
Bruce et al. Glossary of grouting terminology
Pellegrini et al. Sao Paulo Metro Project–Control of Settlements in variable soil conditions through EPB pressure and bicomponent backfill grout
CN114183170A (en) Karst grouting construction method
Alkaya et al. Grouting applications of grout curtains in Cindere dam and hydroelectric power plant
CN104746511A (en) Method for controlling quality of rotary excavating pile under water-rich sand layer condition
Stadler et al. Permeation grouting
Garbin et al. Earth retention using the TRD method
Garbin, Jr et al. Mass Stabilization for Settlement Control of Shallow Foundations on Soft Organic Clayey Soils
Yao et al. Underwater Concrete in Drilled Shafts: the key Issues and Case Histories
US2782750A (en) Method of defining excavation limits
Vriend et al. Soil Improvement at the Botlek Railway Tunnel Project, Rotterdam, The Netherlands
Warner Fifty years of low mobility grouting
JPH01131786A (en) Method of cut off construction of overflow water by cut off chemical in deep layer boring hole
Argal Experience of Eliminating Karst Cavities.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

R150 Certificate of patent or registration of utility model

Ref document number: 3807658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term