JP3803237B2 - Steel structure component manufacturing system and temporary assembly simulation apparatus for the system - Google Patents

Steel structure component manufacturing system and temporary assembly simulation apparatus for the system Download PDF

Info

Publication number
JP3803237B2
JP3803237B2 JP2000285148A JP2000285148A JP3803237B2 JP 3803237 B2 JP3803237 B2 JP 3803237B2 JP 2000285148 A JP2000285148 A JP 2000285148A JP 2000285148 A JP2000285148 A JP 2000285148A JP 3803237 B2 JP3803237 B2 JP 3803237B2
Authority
JP
Japan
Prior art keywords
main
main member
model
steel structure
models
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000285148A
Other languages
Japanese (ja)
Other versions
JP2002092047A (en
Inventor
義隆 小櫻
▲脩▼一 長谷川
Original Assignee
株式会社横河ブリッジ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社横河ブリッジ filed Critical 株式会社横河ブリッジ
Priority to JP2000285148A priority Critical patent/JP3803237B2/en
Publication of JP2002092047A publication Critical patent/JP2002092047A/en
Application granted granted Critical
Publication of JP3803237B2 publication Critical patent/JP3803237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、鋼構造体構成部材の製作と仮組立検査とを自動化した鋼構造体構成部材の製作システムおよび、該製作システム用の仮組立シミュレーション装置に関するものである。
【0002】
【従来の技術および発明が解決しようとする課題】
鋼構造体の一種である鋼橋を製作する際、従来の方法では工場内で、主部材としての、主桁および、その主桁同士を横方向に連結する横桁や対傾構と、連結部材としての、主桁同士を縦方向に連結したり主桁と横桁とを連結したりする添接板および、主桁を斜め方向に連結する横構等の鋼橋構成部材を、原寸設計図に基づき全て製作した後、それらの鋼橋構成部材を、工場敷地内等に確保した組立ヤードに運び、そこでそれらの鋼橋構成部材を組み合わせて鋼橋を仮組立し、その鋼橋の各部寸法が設計図通りになっているか否かを検査して、不具合があったらその鋼橋構成部材を修正し、しかる後、仮組立した鋼橋を分解して上記各鋼橋構成部材を実際の架設地に運び、そこで鋼橋を組み立てていた。
【0003】
しかしながらかかる従来の製作方法では、仮組立工程が鋼橋の全製作工程の10〜20%にもなり、製作費の多大な部分を占めてしまうという問題や、仮組立工程の進行が天候に左右されるという問題があり、さらには組立ヤードでの高所作業の危険性の問題や組立ヤードの利用効率の問題もあった。
【0004】
このため近年、製作した複数の鋼橋構成部材の各々の寸法を計測して、その寸法に基づきCAD(コンピュータ支援設計)システムにより創成した複数の鋼橋構成部材モデルを鋼橋の設計図に従って配置して、鋼橋モデルを仮想空間上で数値的に仮組立し、そこから得られた組立誤差が所定組立精度を満たしているか否かを調査する仮組立シミュレーションを行い、その調査結果に基づいて鋼橋構成部材を修正するという方法を採用することが多くなってきている。
【0005】
しかしながらかかる仮組立シミュレーションを行っても、従来はその調査の結果から鋼橋構成部材を実際に修正するのに手間がかかるとともに、修正しきれず再製作が必要になる場合もあって費用もかかるという問題があった。
【0006】
【課題を解決するための手段およびその作用・効果】
この発明は、上記課題を有利に解決した鋼構造体構成部材の製作システムおよびその製作システムで用いる仮組立シミュレーション装置を提供することを目的とするものであり、この発明の鋼構造体構成部材の製作システムは、主部材同士をそれらの主部材のボルト穴と連結部材のボルト穴とに共に挿通して締着するボルトを介して前記連結部材で連結してなる鋼構造体についてあらかじめ作成された鋼構造体設計データに基づく数値制御を少なくとも板取と穴明けとに用いて前記鋼構造体の前記主部材を製作する主部材製作装置と、前記製作した主部材の前記ボルト穴の位置を含む寸法を計測する寸法計測装置と、前記計測した主部材のうち主桁の寸法を持つように創成した主部材モデルを前記鋼構造体設計データに基づきその鋼構造体の長手方向に複数整列させるとともにそれらの主部材モデルの前記ボルト穴間の距離が設計寸法となるように配置して主桁モデルとするとともに、その主桁モデルを前記鋼構造体設計データに基づき複数本並列に配置する調整前シミュレーションを行い、その調整前シミュレーションでの前記各主桁モデルの前記主部材モデル間の複数の隙間の各々の最大値および最小値と前記鋼構造体設計データにおける対応隙間の許容される最大値および最小値とから、前記並列に配置する複数本の主桁モデルで共通の長さ調整可能範囲を求め、前記複数本の主桁モデルの全長を、前記共通の長さ調整可能範囲が求まりかつそれが前記鋼構造体設計データにおける全長の規定値を含んでいる場合はその規定値に、また前記共通の長さ調整可能範囲が求まりかつそれが前記鋼構造体設計データにおける前記全長の規定値を含む許容範囲と重なっている場合はその共通の長さ調整可能範囲の前記規定値に近い側の端の長さに揃えるように前記複数の主部材モデルの配置調整を行い、その調整した配置で前記複数の主部材モデル同士を繋ぐように前記連結部材の寸法データを求める仮組立シミュレーション装置と、前記求めた寸法データに基づく数値制御を少なくとも前記主部材のボルト穴と一緒にボルトを挿通するボルト穴の穴明けに用いて前記連結部材を製作する連結部材製作装置と、を具えてなるものである。
【0007】
かかるシステムにあっては、主部材製作装置が、主部材同士をそれらの主部材のボルト穴と連結部材のボルト穴とに共に挿通して締着するボルトを介して前記連結部材で連結してなる鋼構造体についてあらかじめ作成された鋼構造体設計データに基づく数値制御を少なくとも板取と穴明けとに用いて前記鋼構造体の前記主部材を製作し、寸法計測装置が、前記製作した主部材の前記ボルト穴の位置を含む寸法を計測し、仮組立シミュレーション装置が、前記計測した主部材のうち主桁の寸法を持つように創成した主部材モデルを前記鋼構造体設計データに基づきその鋼構造体の長手方向に複数整列させるとともにそれらの主部材モデルの前記ボルト穴間の距離が設計寸法となるように配置して主桁モデルとするとともに、その主桁モデルを前記鋼構造体設計データに基づき複数本並列に配置する調整前シミュレーションを行い、その調整前シミュレーションでの前記各主桁モデルの前記主部材モデル間の複数の隙間の各々の最大値および最小値と前記鋼構造体設計データにおける対応隙間の許容される最大値および最小値とから、前記並列に配置する複数本の主桁モデルで共通の長さ調整可能範囲を求め、前記複数本の主桁モデルの全長を、前記共通の長さ調整可能範囲が求まりかつそれが前記鋼構造体設計データにおける全長の規定値を含んでいる場合はその規定値に、また前記共通の長さ調整可能範囲が求まりかつそれが前記鋼構造体設計データにおける前記全長の規定値を含む許容範囲と重なっている場合はその共通の長さ調整可能範囲の前記規定値に近い側の端の長さに揃えるように前記複数の主部材モデルの配置調整を行い、その調整した配置で前記複数の主部材モデル同士を繋ぐように前記連結部材の寸法データを求め、そして連結部材製作装置が、前記求めた寸法データに基づく数値制御を少なくとも前記主部材のボルト穴と一緒にボルトを挿通するボルト穴の穴明けに用いて前記連結部材を製作する。
【0008】
従って、この発明の鋼構造体構成部材の製作システムによれば、主部材としての主桁同士を縦方向に連結する連結部材を、組み立てた鋼構造体の複数本の主桁の全長が許容誤差以内に入るとともに互いに揃うように製作し得て、それらの連結部材の修正や再製作を不要とすることができ、これにより鋼構造体構成部材の製作の手間と費用とを削減することができる。
【0009】
なお、この発明の鋼構造体構成部材の製作システムにおいては、前記仮組立シミュレーション装置は、前記調整前シミュレーション時および前記複数の主部材モデルの配置調整時の前記主部材モデルのボルト穴の位置を穴群の位置データとして求めることとしても良く、このようにすれば、穴の位置データを群単位で処理できるので、寸法データの処理を容易なものとすることができる。ここで、主部材および連結部材の穴明けは数値制御で行っているので、各穴群における穴相互の位置精度は充分に高い精度とすることができる。
【0010】
また、上述した鋼構造体構成部材の製作システム用のこの発明の仮組立シミュレーション装置は、前記主桁の寸法を持つように創成した複数の主部材モデルのうちの所定の一の基準主部材モデルを前記鋼構造物設計データに基づき所定三次元位置に配置するとともにその基準主部材モデルに対し残りの前記主部材モデルを前記鋼構造体設計データに基づき前記鋼構造体の長手方向に整列させてそれらの主部材モデルの前記ボルト穴間の距離が設計寸法となるように配置して主桁モデルとし、その主桁モデルを前記鋼構造体設計データに基づき複数本並列に配置する調整前シミュレーションを行う主部材モデル三次元配置手段と、配置が済んだ前記複数の主部材モデルの相互の間隔の組立誤差を調査する組立誤差調査手段と、前記調査で得た複数の主部材モデルの相互の間隔の組立誤差データに基づきその組立誤差が許容値を超える主部材モデルに対応する主部材の修正データを出力する修正データ出力手段と、を具えてなるものである。
【0011】
かかる装置にあっては、主部材モデル三次元配置手段が、前記主桁の寸法を持つように創成した複数の主部材モデルのうちの所定の一の基準主部材モデルを前記鋼構造物設計データに基づき所定三次元位置に配置するとともにその基準主部材モデルに対し残りの前記主部材モデルを前記鋼構造体設計データに基づき前記鋼構造体の長手方向に整列させてそれらの主部材モデルの前記ボルト穴間の距離が設計寸法となるように配置して主桁モデルとし、その主桁モデルを前記鋼構造体設計データに基づき複数本並列に配置する調整前シミュレーションを行い、組立誤差調査手段が、配置が済んだ前記複数の主部材モデルの相互の間隔の組立誤差を調査し、そして修正データ出力手段が、前記調査で得た複数の主部材モデルの相互の間隔の組立誤差データに基づきその組立誤差が許容値を超える主部材モデルに対応する主部材の修正データを出力する。
【0012】
従って、この発明の仮組立シミュレーション装置によれば、相互の間隔の組立誤差が許容値を超える主部材について、自動的に修正データを得ることができるので、その修正データに基づき主部材を修正することで、最小限度の修正で複数の主部材を確実に、鋼構造体全体として許容組立誤差内に配置することができる。
【0013】
【発明の実施の形態】
以下に、この発明の実施の形態を実施例によって、図面に基づき詳細に説明する。ここに、図1は、鋼構造体としての鋼橋の製作に用いられる、この発明の鋼構造体構成部材の製作システムの一実施例としての鋼橋構成部材の製作システムおよび、その製作システム用の、この発明の仮組立シミュレーション装置の一実施例を示す構成図であり、この実施例の鋼橋構成部材の製作システムは、主部材としての主桁と横桁と対傾構等を製作する主部材製作装置1と、寸法計測装置2と、上記実施例の仮組立シミュレーション装置3と、連結部材としての添接板および横構を製作する連結部材製作装置4とを具えてなる。
【0014】
この実施例の製作システムにおける主部材製作装置1は、通常のNC(数値制御)罫書機と、通常のNC(数値制御)切断加工機と、通常のNC(数値制御)穴明け加工機と、通常の溶接機とを有し、あらかじめ作成された鋼橋設計データに基づく数値制御により上記NC罫書機、NC切断加工機およびNC穴明け加工機を作動させて、鋼板から主桁、横桁および対傾構等の構成板を切り出す板取加工と、その切り出した構成板の所定位置にボルト穴を明ける穴明け加工とを自動的に行い、そのようにして製作した複数の構成板をさらに上記溶接機により自動的にあるいは手動で相互に溶接してI型や箱型等の断面形状を持つ複数の主桁や横桁や対傾構等を製作する。
【0015】
また、この実施例のシステムにおける寸法計測装置2は、上記製作された主桁等の長尺部材を直線レールに沿わせて搭載してその直線レール上を走行する運搬台車と、その運搬台車上の長尺部材の両側方の床上に二箇所ずつ固定配置され、運搬台車の走行に伴って上記長尺部材の全体をステレオ撮像して長尺部材のステレオ画像信号を出力するステレオテレビカメラと、運搬台車の側方の床上に固定配置され、運搬台車の側部に取り付けられた定規を撮像してその定規の画像信号を出力する他のテレビカメラと、運搬台車の走行中の長尺部材の長手方向と直交する水平方向の変位と上下方向の変位と長手方向と直交する軸線回りのピッチングおよびヨーイングとをレーザー光により非接触で計測するレーザー式変位測定器と、運搬台車の走行中の長尺部材の長手方向軸線回りの傾動を計測する傾斜計と、それらステレオテレビカメラと他のテレビカメラとレーザー式変位測定器と傾斜計とに対して信号を入出力する通常のコンピュータとを有する。
【0016】
加えて、この実施例のシステムにおける寸法計測装置2は、上記製作された対傾構のような小部材を複数個重ねて搭載するターンテーブルと、そのターンテーブルの近くの床上に固定配置され、そのターンテーブル上の小部材を撮像して小部材のステレオ画像信号を出力するステレオテレビカメラと、上記ターンテーブルを回転させてその上の小部材のステレオテレビカメラで撮像する向きを変えるとともにロータリエンコーダでターンテーブルの回転角を計測してその回転角を出力するテーブル回転装置とを有しており、上記コンピュータはそれらステレオテレビカメラとテーブル回転装置とに対しても信号を入出力する。
【0017】
ここで、上記コンピュータは、あらかじめ与えられたプログラムに基づき上記ステレオ画像信号や上記レーザー式変位測定器および傾斜計からの計測データあるいは上記ロータリエンコーダからの計測データから、上記製作した各部材の、各ボルト穴の位置等を含む各部の三次元座標を計算して出力する。なお、かかる寸法計測装置2は、先に社団法人日本建設機械化協会が発行した雑誌「建設の機械化」1997年9月号中第41〜45頁に本願発明者が発表した論文「鋼橋仮組立に代わる検査システム(CATS)」で詳述しているのでここではさらなる説明は省略する。
【0018】
さらに、この実施例のシステムにおける仮組立シミュレーション装置3は、CAD(コンピュータ支援設計)プログラムをあらかじめ与えられた通常のコンピュータを有し、そのコンピュータの作動により、寸法計測装置2が計測した複数の主部材(主桁、横桁および対傾構等)の各々の寸法を持つように複数の三次元主部材モデルをそれぞれ創成して、それら複数の主部材モデルを、上記鋼橋設計データに基づき鋼橋全体としての組立誤差が許容値以内に納まるように相互に三次元的に配置し、その配置でそれら複数の主部材モデル同士を繋ぐように複数の連結部材(横構および添接板)のモデルを創成して、各ボルト穴の位置を含むそれら連結部材モデルの寸法データを求め、それを出力する。
【0019】
ここで、仮組立シミュレーション装置3は、図1に示すように、主部材モデル三次元配置手段としての主部材モデル三次元配置部3aと、組立誤差調査手段としての組立誤差調査部3bと、修正データ出力手段としての修正データ出力部3cとを有しており、主部材モデル三次元配置部3aは、上記複数の主部材モデルのうちで例えば鋼橋の長手方向に整列して互いに繋がる複数本の主桁に対応する複数本の主部材モデルのうちの左端部の一本のように当該装置のユーザーが定めた、後述の各主桁モデル毎に一つの基準主部材モデルを上記鋼橋設計データに基づき所定三次元位置に配置するとともにその基準主部材モデルに対し残りの前記主部材モデルを上記鋼橋設計データに基づき鋼橋の長手方向に整列させてそれらの主部材モデルのボルト穴間の距離が設計寸法となるように配置して主桁モデルとし、その主桁モデルを上記鋼橋設計データに基づき複数本並列に配置する調整前シミュレーションを行い、組立誤差調査部3bは、配置が済んだそれら複数の主部材モデルの相互の組立誤差を調査し、そして修正データ出力部3cは、その調査で得られた複数の主部材モデルの相互の組立誤差データに基づき、その組立誤差が許容値を超える主部材モデルに対応する主部材の、例えば端部を削る等の修正データを出力する。
【0020】
なお、上述した組立誤差が挙用値を超える主部材モデルは、例えば、先ず鋼橋の全長の組立誤差が許容値以内に納まるように例えば鋼橋の一端部に位置する主部材モデルを基準主部材モデルとして位置決めし、その基準主部材モデルに対し他の残りの主部材モデルを互いにボルト穴間の距離が設計寸法となるように配置して主部材モデル間の各隙間の最大値および最小値の大きさを求め、長手方向に整列する上記残りの主部材モデルのうちでそれ自体の寸法誤差がプラス側に最も大きいものを修正対象とすることことで求めることができ、その場合には、各隙間が規定値(例えば5mm)以下となるように他の残りの主部材モデルの位置を調節するとともに、その調節の結果生じた修正対象の主部材モデルの位置誤差による寸法誤差を、その主部材モデルに対応する主部材の修正データとして出力すれば良い。
【0021】
そしてこの実施例のシステムにおける連結部材製作装置4は、主部材製作装置1と同様、通常のNC罫書機と、通常のNC切断加工機と、通常のNC穴明け加工機と、通常の溶接機とを有し、仮組立シミュレーション装置3が求めて出力した各連結部材モデルの寸法データに基づく数値制御により上記NC罫書機、NC切断加工機およびNC穴明け加工機を作動させて、鋼板から添接板の構成板を切り出す板取加工と、その切り出した構成板の所定位置にボルト穴を明ける穴明け加工とを自動的に行い、そのようにして複数の添接板を製作する。また、山形鋼材やCT形鋼材等からなる横構も同様にして、NC切断加工機で鋼材を所定寸法に切断し、NC穴明け加工機でその鋼材の所定位置にボルト穴を明けて自動的に製作する。
【0022】
上述した仮組立シミュレーション装置3は、具体的には以下の如くして鋼橋モデル全体における主部材モデルの三次元位置の調整量を自動的に決定している。なお、調整量を決定する調整項目は、各主部材モデルのキャンバー(高さ方向位置)、主桁に対応する主部材モデルを鋼橋の全長分縦方向に連結したものである主桁モデルの全長、互いに並行する複数本のその主桁モデルの相互の間隔の3項目である。
【0023】
先ず、キャンバー調整量の決定方法について説明する。キャンバー調整は、図2に示すように、基準高さ(誤差0)からの上げ越し量ΔHを設定し、主桁モデルの中央付近のキャンバー誤差が一律上記ΔHとなるようにする。その際、主桁モデルの両端支点はキャンバー調整(上げ越し)なしとし、その両端支点に最も近いジョイント(縦方向連結部)J1,J4では、キャンバー誤差を上記ΔHの半分のΔH/2とする。このように主桁モデルを全体的に上げ越しする理由は、一つは、実際の主桁の組立後はその主桁上にコンクリート床材を施工するので、そのコンクリート床材の上面を平坦に仕上げるとともに床版厚さを均一にするのに、主桁の中央部が下がり気味よりも上がり気味になっている方が都合が良いからであり、もう一つは、キャンバーの許容誤差が下方側(マイナス)よりも上方側(プラス)に大きく規定されているので、調整が有利になるからである。
【0024】
例えば、キャンバー調整前に、図3に破線で示す如きキャンバー誤差になっていたとすると、各ジョイントのキャンバー調整量は、以下の式(1)のようにして算出する。ここに、nをジョイント数、mは1〜nの整数として、ΔC[m] はキャンバー調整量、ΔHは上げ越し量、ΔCL[m] はジョイントmの左側格点のキャンバー誤差(上フランジ側)、ΔCR[m] はジョイントmの右側格点のキャンバー誤差(上フランジ側)であり、j=2〜n−1である。
【数1】

Figure 0003803237
この計算で求めたキャンバー調整量を当てはめると、主桁モデル全体のキャンバー誤差は、図3に実線で示す如き上げ越し状態となる。なお、かかるキャンバー調整は、上述したように、互いに並行する全ての主桁モデルについて行う。
【0025】
次に、各主桁モデルの全長の調整量の決定方法について説明する。全長は、上記各ジョイントを構成する現場継手部の両側の主桁モデル端部のボルト穴群(通常、縦横に整列した多数のボルト穴からなる)の間の距離によって調整する。調整前のシミュレーションでは、このボルト穴群間距離には、設計寸法の値が自動的に入力され、これにより主部材モデルが、例えば図4に示す如く配置され、主桁モデルは、その図4に示す如き仮組立形状となる。この仮組立において、理想的なシミュレーション形状とは、各主桁モデルの全長が規定値内に収まり、かつ上記現場継手部の隙間も規定値を満たし、さらに複数本の主桁モデル間で端部の出入りが揃っている(設計位置よりも出ているかまたは引っ込んでいる)形状である。なお、図4は、3本の主桁モデルを構成するようにそれぞれ配置された9本の主部材モデルを側面図にて例示している。
【0026】
従って、かかる理想的なシミュレーション形状を得るため、ここでは各主桁モデルの全長の調整可能な範囲Pmin[k]〜Pmax[k](kは主桁モデルの本数に対応し、図4の例ではk=1〜3)を、以下の式(2)のようにして算出する。ここに、k=1〜nco(但し、ncoは主桁モデルの連数すなわち並列数)、j=1〜n[k] (但し、n[k] は各主桁モデルのジョイント数)であり、また、Δmin ,Δmax は隙間の許容最小、最大値(通常は、Δmin =0,Δmax =5mm)、δmin[k, j] ,δmax[k, j] は調整前のシミュレーション結果での各現場継手部の隙間の最小、最大値、Lkは調整前のシミュレーション結果での主桁モデルの全長、L0kは主桁モデルの全長の規定値である。
【数2】
Figure 0003803237
【0027】
上記のようにして求めた各主桁モデルの調整範囲を基に、今度は、図5に示すように、並行した複数本の主桁全体が共通して調整できる範囲である共通調整範囲を、以下の式(3)のようにして算出する。ここに、ncoは上記と同様主桁モデルの並列数である。
【数3】
Figure 0003803237
このようにして求めた調整範囲下限Pmin の最大値P1 と調整範囲上限Pmaxの最小値P2 との間で、図5に示すようにP1 ≦P2 の条件が満たされれば、共通調整範囲が存在することになる。
なお、図6に示すように、P1 =Pmin[2]がP2 =Pmax[1]よりも大きくなって、P1 ≦P2 の条件が満たされず、共通調整範囲が存在しない場合もあり得るが、かかる場合は、大きい方の値であるP1 を強制的に調整点に定める。
【0028】
このようにして共通調整範囲や調整点が定まったら、次は、主桁モデルの全長の規定値から、各主桁モデルの調整量を確定する。すなわちここでは、図7に示すように、主桁モデルの一端位置A1 を定めた場合に主桁モデルの全長の規定値から定まる他端位置であるA2 のラインに対し共通調整範囲や調整点がどのような位置にあるかのケースに応じて、上記A2 のラインから、全長の規定値からの調整点P0 までの距離ΔLP0を決定する。
【0029】
上述の如くして、全長の規定値からの調整点P0 が、例えば図8に示すように確定したとすると、各主桁モデルにおいて、全長を引き伸ばして調整するタイプ(図8のG1,G3 )と、逆に全長を縮めて調整するタイプ(図8のG2 )とが発生し得る。これらについての全長の調整量ΔLkは、以下の式(4)のようになる。ここに、ΔLP0は上記A2 のラインから、全長の規定値からの調整点P0 までの距離、Lkは主桁モデルの全長のシミュレーション値、L0kは主桁モデルの全長の規定値、k=1〜nco(但し、ncoは主桁モデルの並列数)である。
【数4】
ΔLk=ΔLP0−(Lk−L0k)・・・(4)
【0030】
このΔLkの調整は、前述した各主桁モデルの各現場継手部の隙間調整の問題となる。ここで、各現場継手部の隙間の最小値を一定とすることにすると、その一定の最小値は、以下の式(5)のようになる。
【数5】
Figure 0003803237
ここに、k=1〜nco(但し、ncoは主桁モデルの並列数)、j=1〜n[k](但し、n[k] は各主桁モデルのジョイント数)であり、δmin[k, j] は調整前のシミュレーション結果での各現場継手部の隙間の最小値、Δconst[k]は上記一定の最小値である。
従って、各ジョイントにおける隙間の調整量Δx[k, j]は、以下の式(6)のようになる。これを各現場継手部のボルト穴群間距離の調整量として与える。
【数6】
Δx[k, j]=Δconst[k]−δmin[k, j] ・・・(6)
なお、上述の方法では、図4および図8中、各主桁モデルの左端に位置する主部材モデルを所定位置に置いて、他の主部材モデルの三次元位置を求めているので、各主桁モデルの左端に位置する主部材モデルが基準主部材モデルに相当している。
【0031】
次に、互いに並行する複数本の主桁モデルの相互の間隔の調整量の決定方法について説明する。ここでは、図9中に破線で示すように、複数本の主桁モデルを各ジョイント位置で複数ブロックに分けて(図9の例ではブロック1〜3の3ブロック)、ブロック単位で、逐次主桁モデルの相互の間隔の調整を行うものとする。
【0032】
主桁モデルの相互の間隔を調整する前のシミュレーションの結果では、主桁以外の主部材としての横桁や対傾構等の二次部材のモデル(これも主部材モデルに含まれる)の寸法誤差は、図9に括弧なしの数値(単位はmm)で示すように、その二次部材モデルを配置した場合のボルト穴同士の位置ずれとして求められる(この場合もボルト穴群同士の位置ずれとして求め得る)。一般に、ボルト外径(M22の場合はφ22mm)はボルト穴内径((M22の場合はφ24.5mm)よりも2.5mm小さいので、二次部材の両端部のボルト穴の分を合わせて±5mm以内の寸法誤差であれば両端部のボルト穴にボルトを挿通し得るが、±5mmを超えると一方のボルト穴にボルトを挿通し得なくなる。このため、上記の寸法誤差が大き過ぎる場合(通常、±5mmを超える場合)は、主桁モデルの間隔を調整しなければならない。
【0033】
ここでは上記のようにブロック単位で調整を行うため、先ず、二次部材の寸法誤差の平均値、すなわち図9中括弧内に示す数値(単位はmm)を算出する。そしてそれらの平均値を鋼橋の幅方向(主桁モデルの横方向)に加算し、調整前の総合誤差の値を求める。このようにすると、図9の例では、1〜3ブロックの調整前の総合誤差の値はそれぞれ、+6.0mm、+6.4mm、−1.8mmとなる。
【0034】
次に、当該仮組立シミュレーション装置3のオペレータ(操作者)が、上記調整前の総合誤差値を基に、これを補正するための目標値を設定する。図示例のように3本の二次部材で4本の主桁モデルを鋼橋の幅方向に繋げる場合、各二次部材の許容値が±5mmであるので、総合誤差の目標値は±15mm以内ということになり、その範囲内で適宜設定する。図9の例では、1〜3ブロックの総合誤差の目標値をそれぞれ、+5.0mm、+7.5mm、0mmとして、3つのブロックの誤差傾向を0〜+側に揃えている。
【0035】
次に、各ブロックに関する主桁モデルの相互の間隔の調整量を算出する。ここでは、図10に3本の二次部材(横構)モデルで4本の主桁モデルを鋼橋の幅方向に繋げる場合について例示するように、間隔を調整した後の二次部材モデルの寸法誤差平均の二乗和が最小となるような目的関数を、次の式(7)のように選択する。ここに、ncoは主桁モデルの並列数、εi は間隔調整前の二次部材モデルの寸法誤差平均、Δyi は主桁モデルの相互の間隔の調整量である。
【数7】
Figure 0003803237
【0036】
そして、主桁モデル間隔を調整する際、上記の総合誤差の目標値を満たすものとするため、次の条件式(8)が成り立つように調整するものとする。ここに、MBは総合誤差の目標値である。
【数8】
Figure 0003803237
従って、式(7)および式(8)より、以下の式(9)の無条件の目的関数Gが最小となるように主桁モデルの間隔を調整する問題に変換する。ここに、λはラグランジュの未定乗数である。
【数9】
Figure 0003803237
【0037】
上記の式(9)のGの最小化は、その各変数(Δyi ,i=1〜nco-1)でGを偏微分した式をゼロと置くことによって求められた以下の連立方程式(10)を解く問題となる。
【数10】
Figure 0003803237
【0038】
上記式(10)を整理すると、以下の式(11)が得られる。
【数11】
Figure 0003803237
これを式(8)の条件式に代入すると、ラグランジュの未定乗数が、以下の式(12)のように求まる。
【数12】
Figure 0003803237
【0039】
従って、上記の式(12)のλを式(11)に代入した以下の式(13)によって、主桁モデルの相互の間隔の調整量を自動的に算出することができる。
【数13】
Figure 0003803237
【0040】
なお、図9中のブロック2では、以下の式(14)によって主桁モデル間隔の各調整量が求まる。
【数14】
Figure 0003803237
【0041】
その後は、上記の如くして求めた主桁モデル間隔の調整量を用いて、仮組立シミュレーションを再度行うが、ここではその再シミュレーションに先立ち、上記主桁モデル間隔の調整量が適切であるか否かを判断する。この判断の基準は、上記式(13)で求めた主桁モデル間隔の調整量で二次部材モデルの各寸法誤差平均を単純に補正した結果(二次部材モデルの各寸法誤差平均の推定値)が|5|(±5)mm以内である場合に、適切と判断するというものである。例えば図9に示す例では、図11に示す如き結果となるので、二次部材モデルの各寸法誤差平均の推定値(大括弧〔 〕内)は全て|5|mm以内である。従って、かかる場合は適切な主桁モデル間隔が与えられているとして、次の処理へ進む。その一方、二次部材モデルの何れかの寸法誤差平均の推定値が|5|mmを超えているのであれば、総合誤差の目標値を変更して、その寸法誤差平均の推定値が|5|mm以内となるようにする必要がある。
【0042】
主桁モデル間隔を調整する場合のシミュレーションでは、鋼橋モデルの仮組立シミュレーション結果(主桁モデルのキャンバー調整および全長調整を行った結果)の収束値を利用する。この収束値は、図12に4本の主桁モデルG1 〜G4を鋼橋の幅方向に繋げる場合について示す如き、各主桁に対応する各主部材モデルの座標系原点Cj,i (i=1〜nco,ncoは主桁連数)の、仮組立大座標系での座標値(X,Y,Z)を含むものである。
【0043】
主桁モデル間隔の調整は、上記の原点Cj,i のY軸方向のみの値を補正することによって行っている。従ってここでは、上述の如くして求めた主桁モデル間隔の調整量を用いて、以下の式(15)のようにして各原点Cj,i のY軸方向の補正値を求める。ここに、j=1〜BL、i=2〜ncoであり、BLはブロック数(1本の主桁モデル当たりの主部材モデル数)、ncoは主桁連数、ΔY[j, i]は主部材座標系原点Cj,i のY軸方向の補正値、AB[j] はブロックjにおける二次部材寸法総合誤差の調整値(総合誤差目標値−調整前総合誤差値)、そしてΔy[j, i-1]はブロックjにおける主桁モデル間隔の調整量である。
【数15】
Figure 0003803237
上記の補正値ΔY[j, i]を図9の例について具体的に計算すると、図13に示す如き結果が得られる。
【0044】
当該仮組立シミュレーション装置3はその後、上記の式(15)によって得られた補正値ΔY[j, i]を上述した収束値のY座標値に加えて、主桁モデル間隔を調整した後の仮組立シミュレーションを行い、その結果を当該装置3のコンピュータで画面表示や印字により出力して、その仮組立した鋼橋モデルが設計上の諸条件を満たしていることをオペレータ等が確認し得るようにするとともに、以上の過程で得られた、各連結部材の寸法データや、修正の必要な主部材の修正データを出力する。
【0045】
従ってこの実施例の鋼橋構成部材の製作システムによれば、連結部である、主部材としての主桁や横桁等を斜め方向に連結する横構と、主部材としての主桁同士を縦方向に連結したり主部材としての主桁と横桁とを連結したりする添接板とを、組み立てた鋼橋の組立誤差が許容誤差以内に納まるように製作し得て、それらの連結部材の修正や再製作を不要とすることができ、これにより鋼橋構成部材の製作の手間と費用とを削減することができる。
【0046】
また、この実施例の鋼橋構成部材の製作システムによれば、仮組立シミュレーション装置3が、ボルト穴の寸法データを群単位で処理するので、寸法データの処理を容易なものとすることができる。なお、主部材としての主桁、横桁および対傾構等と、連結部材としての横構および添設板とのそれぞれのボルト穴の穴明けは、数値制御で行っているので、各ボルト穴群におけるボルト穴相互の位置精度は充分に高い精度とすることができる。
【0047】
そしてこの実施例の仮組立シミュレーション装置3によれば、長手方向に整列する主部材間の隙間が規定値以下になりかつ均等になるとともに鋼橋全体として許容組立誤差内に位置するように複数の主部材を配置すると組立誤差が許容値を超える主部材について、自動的に修正データを得ることができるので、その修正データに基づき主部材を修正することで、最小限度の修正で複数の主部材を確実に鋼橋全体として許容組立誤差内に配置することができる。
【0048】
以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、例えば、上記寸法計測装置2と仮組立シミュレーション装置3とが、共通のコンピュータを併用するようにしても良く、また上記主部材製作装置1と連結部材製作装置4とが、NC罫書機とNC切断加工機とNC穴明け加工機と溶接機との少なくとも一つを共用していても良い。
【0049】
そしてこの発明の製作システムおよび仮組立シミュレーション装置は、上述した鋼橋のみならず、他の種類の鋼構造体の製作にも同様にして適用し得ることはいうまでもない。
【図面の簡単な説明】
【図1】 この発明の鋼構造体構成部材の製作システムの一実施例および、その製作システム用の、この発明の仮組立シミュレーション装置の一実施例を示す構成図である。
【図2】 上記実施例の仮組立シミュレーション装置が行うキャンバー調整の基本概念を示す説明図である。
【図3】 上記実施例の仮組立シミュレーション装置のキャンバー調整量の与え方を示す説明図である。
【図4】 上記実施例の仮組立シミュレーション装置による、全長調整前のシミュレーション結果を各主桁モデルについて側面図で示す説明図である。
【図5】 上記実施例の仮組立シミュレーション装置が行う共通調整範囲の抽出の方法を示す説明図である。
【図6】 上記共通調整範囲が存在しない場合を示す説明図である。
【図7】 上記実施例の仮組立シミュレーション装置が行う、全長の規定値からの調整量の確定の方法を示す説明図である。
【図8】 上記実施例の仮組立シミュレーション装置により全長の調整位置が確定された状態を各主桁モデルについて側面図で示す説明図である。
【図9】 上記実施例の仮組立シミュレーション装置による、主桁モデル間隔調整前のシミュレーション結果での、二次部材モデルの寸法誤差値を平面図で示す説明図である。
【図10】 上記実施例の仮組立シミュレーション装置での主桁モデル間隔の調整モデルを平面図で示す説明図である。
【図11】 上記実施例の仮組立シミュレーション装置により主桁モデル間隔を調整したとした場合の、二次部材モデルの寸法誤差平均の推定値を平面図で示す説明図である。
【図12】 上記実施例の仮組立シミュレーション装置での仮組立大座標系と各主部材モデルの座標系との関係を平面図で示す説明図である。
【図13】 上記実施例の仮組立シミュレーション装置が図9に示す例について求めた、主桁モデル間隔調整用データを平面図で示す説明図である。
【符号の説明】
1 主部材製作装置
2 寸法計測装置
3 仮組立シミュレーション装置
3a 主部材モデル三次元配置部
3b 組立誤差調査部
3c 修正データ出力部
4 連結部材製作装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel structure constituent member manufacturing system that automates the manufacture of a steel structure constituent member and provisional assembly inspection, and a temporary assembly simulation apparatus for the manufacturing system.
[0002]
[Background Art and Problems to be Solved by the Invention]
When manufacturing a steel bridge, which is a type of steel structure, in the conventional method, a main girder, a main girder, a horizontal girder that connects the main girder in the horizontal direction, a diagonal structure, and a connecting member are used in the factory. Steel plate components such as connecting plates for connecting main girders in the vertical direction or connecting main girders and horizontal girders and horizontal frames for connecting main girders in an oblique direction After manufacturing all of the steel bridges, they are transported to the assembly yard secured in the factory premises, etc., where the steel bridges are temporarily assembled by combining the steel bridge components and the dimensions of each part of the steel bridge. Inspect whether the steel bridge is in accordance with the design drawing, and if there is a problem, correct the steel bridge structural member, then disassemble the temporarily assembled steel bridge and install the above steel bridge structural members. He was transported to the ground and assembled a steel bridge there.
[0003]
However, in such a conventional manufacturing method, the temporary assembly process accounts for 10 to 20% of the total manufacturing process of the steel bridge, which occupies a large part of the manufacturing cost, and the progress of the temporary assembly process depends on the weather. In addition, there was a problem of the danger of working at a high place in the assembly yard and a problem of utilization efficiency of the assembly yard.
[0004]
Therefore, in recent years, the dimensions of each of the manufactured steel bridge components are measured, and a plurality of steel bridge component models created by a CAD (Computer Aided Design) system based on the dimensions are arranged according to the design drawing of the steel bridge. Then, the steel bridge model is numerically temporarily assembled in the virtual space, and a temporary assembly simulation is performed to check whether or not the assembly error obtained therefrom satisfies the predetermined assembly accuracy. Increasingly, the method of correcting steel bridge components is adopted.
[0005]
However, even if such a temporary assembly simulation is performed, it will take time to actually modify the steel bridge components from the results of the investigation, and it may not be able to be corrected, and it may be necessary to remanufacture it. There was a problem.
[0006]
[Means for solving the problems and their functions and effects]
An object of the present invention is to provide a steel structure constituent member manufacturing system and a temporary assembly simulation apparatus used in the manufacturing system that advantageously solve the above problems. The production system is A steel structure in which main members are connected by the connecting members via bolts that are inserted and fastened together with bolt holes of the main members and bolt holes of the connecting members. The numerical control based on the steel structure design data prepared in advance is used for at least cutting and drilling of the steel structure. Said A main member manufacturing apparatus for manufacturing a main member and the main member manufactured Including the location of the bolt holes Dimension measuring device for measuring dimensions, and the measured main member Main digit of To have dimensions of Main components created Based on the steel structure design data Next, a plurality of steel structures are aligned in the longitudinal direction, and the main girder model is arranged so that the distance between the bolt holes of the main member models is a design dimension. A plurality of pre-adjustment simulations arranged in parallel based on body design data are performed, and the maximum and minimum values of a plurality of gaps between the main member models of the main girder models in the pre-adjustment simulation and the steel structure From the maximum and minimum allowable gaps in the body design data, a common adjustable length range is determined for the plurality of main girder models arranged in parallel, and the total length of the plurality of main girder models is calculated. , If the common length adjustable range is obtained and if it includes the prescribed value of the total length in the steel structure design data, the common length adjustment When the active range is obtained and it overlaps the allowable range including the specified value of the overall length in the steel structure design data, the length of the end closer to the specified value of the common adjustable length range is set. The connection member is arranged so that the plurality of main member models are arranged so as to be aligned, and the plurality of main member models are connected to each other by the adjusted arrangement. A temporary assembly simulation device for obtaining the dimensional data of at least, and at least numerical control based on the obtained dimensional data Bolt holes for inserting bolts together with the bolt holes of the main member Used for drilling Manufacture the connecting member And a connecting member manufacturing apparatus.
[0007]
In such a system, the main member manufacturing apparatus is A steel structure in which main members are connected by the connecting members via bolts that are inserted and fastened together with bolt holes of the main members and bolt holes of the connecting members. The numerical control based on the steel structure design data prepared in advance is used for at least cutting and drilling of the steel structure. Said The main member is manufactured, and the dimension measuring device Including the location of the bolt holes Measure the dimensions, and the temporary assembly simulation device Main digit of To have dimensions of Main components created Based on the steel structure design data Next, a plurality of steel structures are aligned in the longitudinal direction, and the main girder model is arranged so that the distance between the bolt holes of the main member models is a design dimension. A plurality of pre-adjustment simulations arranged in parallel based on body design data are performed, and the maximum and minimum values of a plurality of gaps between the main member models of the main girder models in the pre-adjustment simulation and the steel structure From the maximum and minimum allowable gaps in the body design data, a common adjustable length range is determined for the plurality of main girder models arranged in parallel, and the total length of the plurality of main girder models is calculated. , If the common length adjustable range is obtained and if it includes the prescribed value of the total length in the steel structure design data, the common length adjustment When the active range is obtained and it overlaps the allowable range including the specified value of the overall length in the steel structure design data, the length of the end closer to the specified value of the common adjustable length range is set. The connection member is arranged so that the plurality of main member models are arranged so as to be aligned, and the plurality of main member models are connected to each other by the adjusted arrangement. And the connecting member manufacturing apparatus performs at least numerical control based on the obtained dimension data. Bolt holes for inserting bolts together with the bolt holes of the main member Used for drilling Manufacture the connecting member To do.
[0008]
Therefore, according to the manufacturing system of the steel structure constituent member of the present invention, Connect main girders as main members in the vertical direction Connect the connecting member to the assembled steel structure. Overall length of multiple main girders Within tolerance Align with each other as you enter Thus, it is possible to eliminate the need for modification and remanufacturing of the connecting members, thereby reducing the labor and cost of manufacturing the steel structure constituting member.
[0009]
In the manufacturing system of the steel structure constituent member of the present invention, the temporary assembly simulation device Arrangement adjustment of multiple main member models during simulation before adjustment of time Said Main part model Bolt hole position Group of holes As position data You can also ask for it, and if you do this, position Since data can be processed in units of groups, processing of dimension data can be facilitated. Here, since the drilling of the main member and the connecting member is performed by numerical control, the positional accuracy between the holes in each hole group can be sufficiently high.
[0010]
Further, the temporary assembly simulation apparatus of the present invention for the above-described steel structure component manufacturing system is the above-mentioned Created to have main girder dimensions A predetermined one of a plurality of main member models One The reference main member model is arranged at a predetermined three-dimensional position based on the steel structure design data. As well as , For the reference main member model Remaining Said Main part model Based on the steel structure design data, it is aligned in the longitudinal direction of the steel structure and arranged so that the distance between the bolt holes of the main member model is the design dimension, and the main girder model is obtained. Based on the steel structure design data, a pre-adjustment simulation is performed in which a plurality of steel structures are arranged in parallel A main member model three-dimensional arrangement means, an assembly error investigation means for investigating an assembly error between the plurality of main member models that have been arranged, and a mutual distance between the plurality of main member models obtained in the investigation. Correction data output means for outputting correction data of the main member corresponding to the main member model whose assembly error exceeds an allowable value based on the assembly error data.
[0011]
In such an apparatus, the main member model three-dimensional arrangement means is Created to have main girder dimensions A predetermined one of a plurality of main member models One The reference main member model is arranged at a predetermined three-dimensional position based on the steel structure design data. As well as , For the reference main member model Remaining Said Main part model Based on the steel structure design data, it is aligned in the longitudinal direction of the steel structure and arranged so that the distance between the bolt holes of the main member model is the design dimension, and the main girder model is obtained. Based on the steel structure design data An assembly error investigation means investigates an assembly error of a mutual interval between the plurality of main member models that have been arranged, and a correction data output means calculates a mutual error of the plurality of main member models obtained by the investigation. Based on the assembly error data, the main member correction data corresponding to the main member model whose assembly error exceeds the allowable value is output.
[0012]
Therefore, according to the temporary assembly simulation apparatus of the present invention, the correction data can be automatically obtained for the main members whose assembly error of the mutual interval exceeds the allowable value. Therefore, the main members are corrected based on the correction data. As a result, the plurality of main members can be reliably disposed within the allowable assembly error as the entire steel structure with the minimum correction.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, FIG. 1 shows a steel bridge structural member manufacturing system as an embodiment of a steel structure structural member manufacturing system of the present invention, which is used for manufacturing a steel bridge as a steel structure, and the manufacturing system thereof. FIG. 1 is a block diagram showing an embodiment of a temporary assembly simulation apparatus according to the present invention. A manufacturing system for steel bridge constituent members of this embodiment is a main girder, a horizontal girder, and a main frame for producing a tilting structure as main members. The apparatus includes a member manufacturing apparatus 1, a dimension measuring apparatus 2, a temporary assembly simulation apparatus 3 of the above-described embodiment, and a connecting member manufacturing apparatus 4 that manufactures an attachment plate and a horizontal structure as a connecting member.
[0014]
The main member manufacturing apparatus 1 in the manufacturing system of this embodiment includes a normal NC (numerical control) scoring machine, a normal NC (numerical control) cutting machine, a normal NC (numerical control) drilling machine, The NC scribing machine, NC cutting machine and NC drilling machine are operated by numerical control based on steel bridge design data prepared in advance, and the main girder, cross girder and A plate cutting process for cutting out a component plate such as an inclined structure and a drilling process for drilling a bolt hole at a predetermined position of the cut out component plate are automatically performed, and the plurality of component plates thus manufactured are further processed by the above-described welding machine. A plurality of main girders, cross girders, diagonal structures, etc. having a cross-sectional shape such as I-type or box-type are manufactured by automatically or manually welding each other.
[0015]
Further, the dimension measuring device 2 in the system of this embodiment includes a transporting carriage that travels on the straight rail by mounting the produced long member such as the main girder along the straight rail, and on the transporting cart. A stereo TV camera that is fixedly arranged on the floor on both sides of the long member, and stereo-images the entire long member and outputs a stereo image signal of the long member as the carriage moves, Other TV cameras that are fixedly placed on the floor on the side of the carriage and image the ruler attached to the side of the carriage and output the image signal of the ruler. Laser displacement measuring instrument that measures the displacement in the horizontal direction perpendicular to the longitudinal direction, the displacement in the vertical direction, and the pitching and yawing about the axis perpendicular to the longitudinal direction in a non-contact manner with a laser beam, and the traveling of the carriage An inclinometer that measures the tilt of the long member of the long member of the long member, and a normal computer that inputs and outputs signals to and from these stereo TV cameras, other TV cameras, laser displacement measuring instruments, and inclinometers Have.
[0016]
In addition, the dimension measuring device 2 in the system of this embodiment is fixedly arranged on a turntable on which a plurality of small members such as the above-described anti-tilt structure are stacked and mounted on a floor near the turntable. A stereo TV camera that images a small member on the turntable and outputs a stereo image signal of the small member, and a rotary encoder that rotates the turntable and changes the direction of imaging with the stereo TV camera of the small member on the turntable. And a table rotating device that measures the rotation angle of the turntable and outputs the rotation angle, and the computer inputs and outputs signals to and from the stereo television camera and the table rotating device.
[0017]
Here, the computer, based on the program given in advance, from the stereo image signal, the measurement data from the laser displacement measuring instrument and the inclinometer, or the measurement data from the rotary encoder, Calculate and output the three-dimensional coordinates of each part including the bolt hole position. In addition, the dimension measuring apparatus 2 is disclosed in the article “Steel Bridge Temporary Assembly” published in pages 41 to 45 in the September 1997 issue of the magazine “Mechanization of Construction” published by the Japan Construction Mechanization Association. Since it is described in detail in “Inspection system (CATS)”, further explanation is omitted here.
[0018]
Further, the temporary assembly simulation apparatus 3 in the system of this embodiment has a normal computer pre-assigned with a CAD (Computer Aided Design) program, and a plurality of main measurements measured by the dimension measuring apparatus 2 by the operation of the computer. A plurality of three-dimensional main member models are created so as to have the dimensions of each member (main girder, cross girder, anti-tilt structure, etc.), and the plurality of main member models are created based on the steel bridge design data. Models of multiple connecting members (horizontal structure and attachment plate) are arranged three-dimensionally so that the assembly error as a whole falls within the allowable value, and the multiple main member models are connected with each other Is generated, dimension data of the connecting member models including the positions of the respective bolt holes is obtained, and the dimension data is output.
[0019]
Here, as shown in FIG. 1, the temporary assembly simulation apparatus 3 includes a main member model three-dimensional arrangement unit 3a as a main member model three-dimensional arrangement unit, an assembly error investigation unit 3b as an assembly error investigation unit, and a correction. The main member model three-dimensional arrangement unit 3a is arranged in the longitudinal direction of, for example, a steel bridge among the plurality of main member models. And connected to each other Of multiple main member models corresponding to multiple main girders One left end As determined by the user of the device , One for each main girder model described below Based on the steel bridge design data for the reference main member model As well as , For the reference main member model Remaining Said Main part model Based on the steel bridge design data, the main girder model is arranged by aligning in the longitudinal direction of the steel bridge so that the distance between the bolt holes of the main member model is the design dimension. Based on the design data, perform a pre-adjustment simulation to arrange multiple units The assembly error investigation unit 3b investigates mutual assembly errors of the plurality of main member models that have been arranged, and the correction data output unit 3c performs mutual assembly of the plurality of main member models obtained by the investigation. Based on the error data, correction data such as cutting the end portion of the main member corresponding to the main member model whose assembly error exceeds an allowable value is output.
[0020]
In addition, Main member model in which the above-mentioned assembly error exceeds the raised value First, for example, steel bridge Full length So that the assembly error is within the tolerance , For example, steel bridge One end Positioning the main member model located at the reference main member model, That Standard main member model Against The remaining main model The distance between the bolt holes is the design dimension Arrange so that Each between main part models Gap Maximum and minimum values Of the remaining main member models aligned in the longitudinal direction can be obtained by making the one with the largest dimensional error on the plus side as a correction target. Adjust the positions of the other remaining main member models so that each gap is a specified value (for example, 5 mm) or less. With A dimensional error caused by the position error of the main member model to be corrected generated as a result of the adjustment may be output as correction data for the main member corresponding to the main member model.
[0021]
The connecting member manufacturing apparatus 4 in the system of this embodiment is similar to the main member manufacturing apparatus 1 in that it includes a normal NC crease machine, a normal NC cutting machine, a normal NC drilling machine, and a normal welding machine. The NC crease machine, NC cutting machine and NC drilling machine are operated by numerical control based on the dimensional data of each connecting member model obtained and output by the temporary assembly simulation device 3, and added from the steel plate. A plate cutting process for cutting out the component plate of the contact plate and a drilling process for drilling a bolt hole at a predetermined position of the cut component plate are automatically performed, and thus a plurality of attachment plates are manufactured. In the same way, for horizontal structures made of angle steel, CT steel, etc., the steel material is cut to a predetermined size with an NC cutting machine, and a bolt hole is automatically drilled at a predetermined position of the steel material with an NC drilling machine. To make.
[0022]
Specifically, the temporary assembly simulation apparatus 3 described above automatically determines the adjustment amount of the three-dimensional position of the main member model in the entire steel bridge model as follows. The adjustment items that determine the amount of adjustment are the camber (position in the height direction) of each main member model and the main member model corresponding to the main beam corresponding to the main girder in the longitudinal direction. These are three items of the total length and the mutual interval of a plurality of the main girder models parallel to each other.
[0023]
First, a method for determining the camber adjustment amount will be described. In the camber adjustment, as shown in FIG. 2, the carry-over amount ΔH from the reference height (error 0) is set so that the camber error near the center of the main girder model is uniformly the above ΔH. At that time, the fulcrum of the main girder model is not adjusted for camber (upward movement), and the camber error is set to ΔH / 2, which is half of the above ΔH, at the joints (longitudinal connecting portions) J1 and J4 closest to the fulcrum of both ends. . The main reason for raising the main girder model as a whole is that after the actual main girder is assembled, the concrete flooring is constructed on the main girder, so the top surface of the concrete girder is flattened. This is because it is more convenient that the center part of the main girder is lower than the lower part in order to finish and make the slab thickness uniform. The other is that the camber tolerance is lower. This is because the adjustment is advantageous because it is defined larger on the upper side (plus) than (minus).
[0024]
For example, if the camber error is as shown by a broken line in FIG. 3 before the camber adjustment, the camber adjustment amount of each joint is calculated as in the following equation (1). Here, n is the number of joints, m is an integer from 1 to n, ΔC [m] is the camber adjustment amount, ΔH is the overshoot amount, and ΔCL [m] is the camber error (upper flange side) of the left side score of the joint m. ), [Delta] CR [m] is the camber error (upper flange side) of the right grade of the joint m, and j = 2 to n-1.
[Expression 1]
Figure 0003803237
When the camber adjustment amount obtained by this calculation is applied, the camber error of the entire main girder model becomes an overturned state as shown by a solid line in FIG. Note that, as described above, the camber adjustment is performed for all main girder models that are parallel to each other.
[0025]
Next, a method for determining the adjustment amount of the total length of each main girder model will be described. The total length is adjusted by the distance between the bolt hole groups (usually composed of a large number of bolt holes aligned vertically and horizontally) at the ends of the main girder model on both sides of the field joint part constituting each joint. In the simulation before adjustment, the value of the design dimension is automatically input to the distance between the bolt hole groups, whereby the main member model is arranged as shown in FIG. 4, for example, and the main girder model is shown in FIG. It becomes a temporary assembly shape as shown in FIG. In this temporary assembly, the ideal simulation shape is that the overall length of each main girder model is within the specified value, and the gap between the above-mentioned field joint parts also satisfies the specified value. This is a shape in which the exits and exits are aligned (projected or retracted from the design position). FIG. 4 illustrates a side view of nine main member models arranged so as to constitute three main girder models.
[0026]
Therefore, in order to obtain such an ideal simulation shape, the adjustable range Pmin [k] to Pmax [k] (where k corresponds to the number of main girder models, and the example of FIG. Then, k = 1 to 3) is calculated as in the following formula (2). Here, k = 1 to nco (where nco is the number of consecutive main girder models, that is, the parallel number), and j = 1 to n [k] (where n [k] is the number of joints of each main girder model). Δmin and Δmax are the minimum and maximum allowable clearances (normally Δmin = 0, Δmax = 5 mm), and δmin [k, j] and δmax [k, j] are the simulation results before adjustment. The minimum and maximum values of the joint gap Lk are the total length of the main girder model in the simulation results before adjustment, and L0k is a specified value of the total length of the main girder model.
[Expression 2]
Figure 0003803237
[0027]
Based on the adjustment range of each main digit model obtained as described above, this time, as shown in FIG. 5, a common adjustment range, which is a range in which a plurality of parallel main digits can be adjusted in common, It calculates as the following formula | equation (3). Here, nco is the parallel number of the main digit model as described above.
[Equation 3]
Figure 0003803237
If the condition of P1 ≦ P2 is satisfied as shown in FIG. 5 between the maximum value P1 of the adjustment range lower limit Pmin and the minimum value P2 of the adjustment range upper limit Pmax thus obtained, a common adjustment range exists. It will be.
As shown in FIG. 6, P1 = Pmin [2] is larger than P2 = Pmax [1], the condition of P1 ≦ P2 is not satisfied, and there may be no common adjustment range. In this case, P1, which is the larger value, is forcibly determined as the adjustment point.
[0028]
After the common adjustment range and adjustment points are determined in this way, next, the adjustment amount of each main girder model is determined from the prescribed value of the total length of the main girder model. That is, here, as shown in FIG. 7, when one end position A1 of the main girder model is determined, there is a common adjustment range or adjustment point with respect to the line A2 which is the other end position determined from the specified value of the total length of the main girder model. The distance ΔLP0 from the line A2 to the adjustment point P0 from the specified value of the total length is determined according to the position of the position.
[0029]
As described above, assuming that the adjustment point P0 from the specified value of the total length is determined as shown in FIG. 8, for example, each main girder model is adjusted by extending the total length (G1, G3 in FIG. 8). On the contrary, a type (G2 in FIG. 8) in which the overall length is shortened and adjusted can be generated. The total length adjustment amount ΔLk for these is expressed by the following equation (4). Here, ΔLP0 is the distance from the above A2 line to the adjustment point P0 from the specified value of the total length, Lk is the simulation value of the total length of the main girder model, L0k is the specified value of the total length of the main girder model, k = 1 to nco (where nco is the parallel number of the main digit model).
[Expression 4]
ΔLk = ΔLP0− (Lk−L0k) (4)
[0030]
This adjustment of ΔLk becomes a problem of the clearance adjustment of each on-site joint portion of each main girder model described above. Here, assuming that the minimum value of the gap between each field joint portion is constant, the constant minimum value is expressed by the following equation (5).
[Equation 5]
Figure 0003803237
Here, k = 1 to nco (where nco is the parallel number of the main girder model), j = 1 to n [k] (where n [k] is the number of joints of each main girder model), and δmin [ k, j] is the minimum value of the gap of each field joint in the simulation result before adjustment, and Δconst [k] is the above-mentioned constant minimum value.
Therefore, the adjustment amount Δx [k, j] of the gap in each joint is expressed by the following equation (6). This is given as an adjustment amount of the distance between the bolt hole groups of each field joint part.
[Formula 6]
Δx [k, j] = Δconst [k] −δmin [k, j] (6)
In the above-described method, the main member model located at the left end of each main girder model is placed at a predetermined position in FIGS. 4 and 8, and the three-dimensional positions of the other main member models are obtained. The main member model located at the left end of the girder model corresponds to the reference main member model.
[0031]
Next, a description will be given of a method for determining the adjustment amount of the mutual interval between a plurality of main girder models parallel to each other. Here, as indicated by broken lines in FIG. 9, a plurality of main girder models are divided into a plurality of blocks at each joint position (in the example of FIG. 9, three blocks of blocks 1 to 3), and the main main model is sequentially incremented in units of blocks. The mutual spacing of the digit model shall be adjusted.
[0032]
As a result of the simulation before adjusting the distance between the main girder models, there is a dimensional error in the model of the secondary member such as a horizontal girder or a tilting structure as a main member other than the main girder (this is also included in the main member model). 9 is obtained as a positional deviation between the bolt holes when the secondary member model is arranged, as indicated by a numerical value without parentheses in FIG. 9 (in this case as a positional deviation between the bolt hole groups as well). Can ask). In general, the outer diameter of the bolt (φ22 mm for M22) is 2.5 mm smaller than the inner diameter of the bolt hole (φ24.5 mm for M22), so the combined bolt holes at both ends of the secondary member are ± 5 mm. Can be inserted into the bolt holes at both ends, but the bolt cannot be inserted into one of the bolt holes if it exceeds ± 5mm. , ± 5 mm), the main girder model spacing must be adjusted.
[0033]
Here, since adjustment is performed in units of blocks as described above, first, an average value of dimensional errors of the secondary members, that is, a numerical value (unit: mm) shown in parentheses in FIG. 9 is calculated. And the average value of these is added to the width direction of the steel bridge (lateral direction of the main girder model), and the value of the total error before adjustment is obtained. In this case, in the example of FIG. 9, the total error values before adjustment for blocks 1 to 3 are +6.0 mm, +6.4 mm, and −1.8 mm, respectively.
[0034]
Next, the operator (operator) of the temporary assembly simulation apparatus 3 sets a target value for correcting this based on the total error value before adjustment. When connecting four main girder models with three secondary members in the width direction of the steel bridge as shown in the example, since the allowable value of each secondary member is ± 5 mm, the target value of the total error is ± 15 mm. Within the range, set as appropriate. In the example of FIG. 9, the target values of the total errors of 1 to 3 blocks are +5.0 mm, +7.5 mm, and 0 mm, respectively, and the error tendency of the three blocks is aligned on the 0+ side.
[0035]
Next, the adjustment amount of the mutual interval of the main girder model for each block is calculated. Here, the secondary member model after adjusting the spacing as illustrated in FIG. 10 in the case where four main girder models are connected in the width direction of the steel bridge with three secondary member (horizontal) models. The objective function that minimizes the sum of squares of the average dimension error is selected as in the following equation (7). Here, nco is the parallel number of the main girder model, εi is the average dimensional error of the secondary member model before the interval adjustment, and Δyi is the adjustment amount of the interval between the main girder models.
[Expression 7]
Figure 0003803237
[0036]
Then, when adjusting the main digit model interval, it is assumed that the following conditional expression (8) is satisfied in order to satisfy the target value of the total error. Here, MB is a target value of the total error.
[Equation 8]
Figure 0003803237
Therefore, the equation (7) and the equation (8) are converted into the problem of adjusting the interval of the main digit model so that the unconditional objective function G of the following equation (9) is minimized. Here, λ is Lagrange's undetermined multiplier.
[Equation 9]
Figure 0003803237
[0037]
The minimization of G in the above equation (9) is performed by the following simultaneous equations (10) obtained by setting the equation obtained by partial differentiation of G with respect to each variable (Δyi, i = 1 to nco-1) as zero. It becomes a problem to solve.
[Expression 10]
Figure 0003803237
[0038]
By arranging the above equation (10), the following equation (11) is obtained.
[Expression 11]
Figure 0003803237
By substituting this into the conditional expression of equation (8), Lagrange's undetermined multiplier is obtained as in equation (12) below.
[Expression 12]
Figure 0003803237
[0039]
Therefore, the adjustment amount of the mutual interval of the main girder model can be automatically calculated by the following equation (13) in which λ of the above equation (12) is substituted into equation (11).
[Formula 13]
Figure 0003803237
[0040]
In block 2 in FIG. 9, each adjustment amount of the main digit model interval is obtained by the following equation (14).
[Expression 14]
Figure 0003803237
[0041]
After that, the temporary assembly simulation is performed again using the adjustment amount of the main girder model interval obtained as described above. Here, prior to the re-simulation, is the adjustment amount of the main girder model interval appropriate? Judge whether or not. The criterion for this determination is the result of simply correcting each dimensional error average of the secondary member model with the adjustment amount of the main girder model interval obtained by the above equation (13) (estimated value of each dimensional error average of the secondary member model ) Is within | 5 | (± 5) mm, it is determined to be appropriate. For example, in the example shown in FIG. 9, the result shown in FIG. 11 is obtained, and therefore, the estimated values of the average dimensional errors of the secondary member model (in the brackets []) are all within | 5 | mm. Accordingly, in such a case, it is determined that an appropriate main digit model interval is given, and the process proceeds to the next process. On the other hand, if the estimated value of the average dimension error of any of the secondary member models exceeds | 5 | mm, the target value of the total error is changed and the estimated value of the average dimension error is | 5. It must be within | mm.
[0042]
In the simulation when adjusting the main girder model interval, the convergence value of the temporary assembly simulation result of the steel bridge model (the result of the camber adjustment and the total length adjustment of the main girder model) is used. As shown in FIG. 12, when the four main girder models G1 to G4 are connected in the width direction of the steel bridge, the convergence value is expressed by the coordinate system origin Cj, i (i = 1 to nco and nco are coordinate numbers (X, Y, Z) in the temporary assembly large coordinate system.
[0043]
The main digit model interval is adjusted by correcting the value of the origin Cj, i only in the Y-axis direction. Accordingly, here, the correction value in the Y-axis direction of each origin Cj, i is obtained as shown in the following equation (15) using the adjustment amount of the main digit model interval obtained as described above. Here, j = 1 to BL, i = 2 to nco, BL is the number of blocks (the number of main member models per main girder model), nco is the main girder station number, and ΔY [j, i] is A correction value in the Y-axis direction of the main member coordinate system origin Cj, i, AB [j] is an adjustment value of the total secondary member dimension error in block j (total error target value-total error value before adjustment), and Δy [j , i−1] is an adjustment amount of the main digit model interval in the block j.
[Expression 15]
Figure 0003803237
When the above correction value ΔY [j, i] is specifically calculated for the example of FIG. 9, the result shown in FIG. 13 is obtained.
[0044]
Thereafter, the temporary assembly simulation apparatus 3 adds the correction value ΔY [j, i] obtained by the above equation (15) to the Y coordinate value of the convergence value described above, and adjusts the temporary digit model interval. Assembling simulation is performed, and the result is output by screen display or printing on the computer of the apparatus 3 so that the operator can confirm that the temporarily assembled steel bridge model satisfies various design conditions. At the same time, the dimensional data of each connecting member and the correction data of the main member that need to be corrected, obtained in the above process, are output.
[0045]
Therefore, according to the manufacturing system of the steel bridge structural member of this embodiment, the horizontal structure that connects the main girder and the horizontal girder as the main member in an oblique direction and the main girder as the main member are vertically connected. The connecting plate that connects in the direction and connects the main girder and the horizontal girder as the main member can be manufactured so that the assembly error of the assembled steel bridge falls within the allowable error, and those connecting members This eliminates the need for modification and remanufacturing, thereby reducing the labor and cost of manufacturing the steel bridge component.
[0046]
Further, according to the steel bridge component production system of this embodiment, the temporary assembly simulation device 3 processes the dimensional data of the bolt holes in units of groups, so that the processing of the dimensional data can be facilitated. . In addition, since the drilling of each bolt hole of the main girder, the horizontal girder and the counter tilting structure as the main member and the horizontal structure and the attached plate as the connecting member is performed by numerical control, each bolt hole group The positional accuracy between the bolt holes can be sufficiently high.
[0047]
And according to the temporary assembly simulation apparatus 3 of this embodiment, the gaps between the main members aligned in the longitudinal direction are equal to or less than a specified value and uniform, and a plurality of steel bridges are positioned within an allowable assembly error. When the main member is placed, correction data can be automatically obtained for the main member whose assembly error exceeds the allowable value. By correcting the main member based on the correction data, a plurality of main members can be corrected with the minimum correction. Can be reliably arranged within the allowable assembly error as a whole steel bridge.
[0048]
Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described example. For example, the dimension measuring device 2 and the temporary assembly simulation device 3 may use a common computer together. In addition, the main member manufacturing apparatus 1 and the connecting member manufacturing apparatus 4 may share at least one of an NC crease machine, an NC cutting machine, an NC drilling machine, and a welding machine.
[0049]
Needless to say, the production system and the temporary assembly simulation apparatus of the present invention can be applied not only to the steel bridge described above but also to the production of other types of steel structures.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a production system for a steel structure constituent member of the present invention and an embodiment of a temporary assembly simulation apparatus of the present invention for the production system.
FIG. 2 is an explanatory diagram showing a basic concept of camber adjustment performed by the temporary assembly simulation apparatus of the embodiment.
FIG. 3 is an explanatory diagram showing how to give a camber adjustment amount of the temporary assembly simulation apparatus of the embodiment.
FIG. 4 is an explanatory diagram showing, in a side view, a simulation result before full length adjustment for each main girder model by the temporary assembly simulation apparatus of the embodiment.
FIG. 5 is an explanatory diagram illustrating a method for extracting a common adjustment range performed by the temporary assembly simulation apparatus according to the embodiment.
FIG. 6 is an explanatory diagram showing a case where the common adjustment range does not exist.
FIG. 7 is an explanatory diagram illustrating a method for determining an adjustment amount from a specified value for the total length, which is performed by the temporary assembly simulation apparatus according to the embodiment.
FIG. 8 is an explanatory diagram showing a side view of each main girder model in a state where the adjustment position of the full length is determined by the temporary assembly simulation apparatus of the embodiment.
FIG. 9 is an explanatory view showing a dimensional error value of the secondary member model in a plan view as a simulation result before adjusting the main girder model interval by the temporary assembly simulation apparatus of the embodiment.
FIG. 10 is an explanatory view showing an adjustment model of a main girder model interval in a plan view in the temporary assembly simulation apparatus of the embodiment.
FIG. 11 is a plan view showing an estimated value of the average dimensional error of the secondary member model when the main girder model interval is adjusted by the temporary assembly simulation apparatus of the embodiment.
FIG. 12 is an explanatory view showing the relationship between the temporary assembly large coordinate system and the coordinate system of each main member model in a plan view in the temporary assembly simulation apparatus of the embodiment.
FIG. 13 is an explanatory diagram showing, in a plan view, main girder model interval adjustment data obtained by the temporary assembly simulation apparatus of the above embodiment for the example shown in FIG. 9;
[Explanation of symbols]
1 Main member manufacturing equipment
2 Dimension measuring device
3 Temporary assembly simulation equipment
3a Main member model three-dimensional arrangement part
3b Assembly error research department
3c Correction data output part
4 Connecting member manufacturing equipment

Claims (3)

主部材同士をそれらの主部材のボルト穴と連結部材のボルト穴とに共に挿通して締着するボルトを介して前記連結部材で連結してなる鋼構造体についてあらかじめ作成された鋼構造体設計データに基づく数値制御を少なくとも板取と穴明けとに用いて前記鋼構造体の前記主部材を製作する主部材製作装置と、
前記製作した主部材の前記ボルト穴の位置を含む寸法を計測する寸法計測装置と、
前記計測した主部材のうち主桁の寸法を持つように創成した主部材モデルを前記鋼構造体設計データに基づきその鋼構造体の長手方向に複数整列させるとともにそれらの主部材モデルの前記ボルト穴間の距離が設計寸法となるように配置して主桁モデルとするとともに、その主桁モデルを前記鋼構造体設計データに基づき複数本並列に配置する調整前シミュレーションを行い、その調整前シミュレーションでの前記各主桁モデルの前記主部材モデル間の複数の隙間の各々の最大値および最小値と前記鋼構造体設計データにおける対応隙間の許容される最大値および最小値とから、前記並列に配置する複数本の主桁モデルで共通の長さ調整可能範囲を求め、前記複数本の主桁モデルの全長を、前記共通の長さ調整可能範囲が求まりかつそれが前記鋼構造体設計データにおける全長の規定値を含んでいる場合はその規定値に、また前記共通の長さ調整可能範囲が求まりかつそれが前記鋼構造体設計データにおける前記全長の規定値を含む許容範囲と重なっている場合はその共通の長さ調整可能範囲の前記規定値に近い側の端の長さに揃えるように前記複数の主部材モデルの配置調整を行い、その調整した配置で前記複数の主部材モデル同士を繋ぐように前記連結部材の寸法データを求める仮組立シミュレーション装置と、
前記求めた寸法データに基づく数値制御を少なくとも前記主部材のボルト穴と一緒にボルトを挿通するボルト穴の穴明けに用いて前記連結部材を製作する連結部材製作装置と、
を具えてなる、鋼構造体構成部材の製作システム。
Steel structure design created in advance for steel structures formed by connecting the main members with the connecting members through bolts that are inserted and fastened together with the bolt holes of the main members and the bolt holes of the connecting members a main member manufacturing apparatus for fabricating the main members of the steel structure using a numerical control based on the data on at least blanking and drilling,
A dimension measuring device for measuring a dimension including the position of the bolt hole of the manufactured main member;
The bolt of their main member model causes multiple alignment of the main member model created in the longitudinal direction of the steel structure Hazuki group to the steel structure design data to have a main girder dimensions of the main member in the measurement A pre-adjustment simulation is performed in which a plurality of main girder models are arranged in parallel based on the steel structure design data, and the main girder model is arranged so that the distance between the holes becomes the design dimension. From the maximum value and the minimum value of each of the plurality of gaps between the main member models of each main girder model and the allowable maximum value and minimum value of the corresponding gaps in the steel structure design data, in parallel A common length adjustable range is obtained for a plurality of main girder models to be arranged, and the total length of the plurality of main girder models is obtained as the common length adjustable range. If the specified length of the steel structure design data is included, the common length adjustable range is obtained in the specified value, and the allowable value includes the specified length of the steel structure design data. If it overlaps with the range, the arrangement adjustment of the plurality of main member models is performed so as to align with the length of the end of the common length adjustable range close to the specified value, and the plurality of the plurality of main member models are adjusted with the adjusted arrangement. A temporary assembly simulation device for obtaining the dimension data of the connecting member so as to connect the main member models of
A connecting member manufacturing apparatus for manufacturing the connecting member by using numerical control based on the obtained dimensional data at least for drilling a bolt hole through which a bolt is inserted together with the bolt hole of the main member ;
Manufacturing system for steel structure components.
前記仮組立シミュレーション装置は、前記調整前シミュレーション時および前記複数の主部材モデルの配置調整時の前記主部材モデルのボルト穴の位置を穴群の位置データとして求めることを特徴とする、請求項1記載の鋼構造体構成部材の製作システム。The temporary assembly simulation apparatus obtains the position of the bolt hole of the main member model at the time of the pre-adjustment simulation and the arrangement adjustment of the plurality of main member models as position data of a hole group. The manufacturing system of the steel structure structural member described. 前記主桁の寸法を持つように創成した複数の主部材モデルのうちの所定の一の基準主部材モデルを前記鋼構造物設計データに基づき所定三次元位置に配置するとともにその基準主部材モデルに対し残りの前記主部材モデルを前記鋼構造体設計データに基づき前記鋼構造体の長手方向に整列させてそれらの主部材モデルの前記ボルト穴間の距離が設計寸法となるように配置して主桁モデルとし、その主桁モデルを前記鋼構造体設計データに基づき複数本並列に配置する調整前シミュレーションを行う主部材モデル三次元配置手段と、
配置が済んだ前記複数の主部材モデルの相互の間隔の組立誤差を調査する組立誤差調査手段と、
前記調査で得た複数の主部材モデルの相互の間隔の組立誤差データに基づきその組立誤差が許容値を超える主部材モデルに対応する主部材の修正データを出力する修正データ出力手段と、
を具えてなる、請求項1または2記載の鋼構造物構成部材の製作システム用の仮組立シミュレーション装置。
A predetermined one reference main member model among a plurality of main member models created to have the dimensions of the main girder is arranged at a predetermined three-dimensional position based on the steel structure design data, and the reference main member model the distance between the bolt holes of the remaining said main member model are aligned in the longitudinal direction of the steel structure on the basis of the steel structure design data their primary member model is arranged such that the design dimension to A main member model three-dimensional arrangement means for performing a pre-adjustment simulation in which a plurality of main girder models are arranged in parallel based on the steel structure design data .
Assembly error investigating means for investigating an assembly error of the interval between the plurality of main member models that have been arranged;
Correction data output means for outputting correction data of the main member corresponding to the main member model whose assembly error exceeds an allowable value based on the assembly error data of the mutual intervals of the plurality of main member models obtained in the investigation;
A temporary assembly simulation apparatus for a steel structure constituent member manufacturing system according to claim 1 or 2, comprising:
JP2000285148A 2000-09-20 2000-09-20 Steel structure component manufacturing system and temporary assembly simulation apparatus for the system Expired - Lifetime JP3803237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000285148A JP3803237B2 (en) 2000-09-20 2000-09-20 Steel structure component manufacturing system and temporary assembly simulation apparatus for the system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285148A JP3803237B2 (en) 2000-09-20 2000-09-20 Steel structure component manufacturing system and temporary assembly simulation apparatus for the system

Publications (2)

Publication Number Publication Date
JP2002092047A JP2002092047A (en) 2002-03-29
JP3803237B2 true JP3803237B2 (en) 2006-08-02

Family

ID=18769265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285148A Expired - Lifetime JP3803237B2 (en) 2000-09-20 2000-09-20 Steel structure component manufacturing system and temporary assembly simulation apparatus for the system

Country Status (1)

Country Link
JP (1) JP3803237B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531791B2 (en) * 2007-06-01 2010-08-25 日本車輌製造株式会社 Design size connection program
KR20150105103A (en) * 2014-03-07 2015-09-16 삼인정보시스템(주) Structure installation method using a simulation
CN108733935B (en) * 2018-05-24 2023-06-30 河北建设集团股份有限公司 Steel structure hole making process
US10957116B2 (en) * 2018-09-07 2021-03-23 The Boeing Company Gap detection for 3D models
JP6863631B1 (en) * 2020-02-18 2021-04-21 株式会社釧路製作所 Full-scale work support program
CN112053333B (en) * 2020-08-31 2023-04-07 中冶赛迪信息技术(重庆)有限公司 Square billet detection method, system, equipment and medium based on machine vision
CN112270057A (en) * 2020-11-13 2021-01-26 内蒙古第一机械集团股份有限公司 Large complex structural member assembling method
CN116911033A (en) * 2023-07-21 2023-10-20 广州大学 BIM platform-based steel structure virtual trial assembly method
CN116652440B (en) * 2023-07-31 2023-10-20 中建安装集团西安建设投资有限公司 Digital welding method and control system for steel structure

Also Published As

Publication number Publication date
JP2002092047A (en) 2002-03-29

Similar Documents

Publication Publication Date Title
CN110610518B (en) Target pose measurement system and method based on feature point position correction
JP3803237B2 (en) Steel structure component manufacturing system and temporary assembly simulation apparatus for the system
CN107009097A (en) The preparation method of large-scale bending steel stair
US9803977B2 (en) Apparatus and method for bridge assembly
JPH1077609A (en) Steel member manufacturing method
CN109297453B (en) Linear measurement method for arc-shaped template of lining trolley
JP5235458B2 (en) Guideway side wall installation method, measurement system, adjustment system and installation system
US11679551B2 (en) Compensating laser alignment for irregularities in an additive manufacturing machine powderbed
JP7017237B2 (en) Track roadbed measurement system
CN111854672A (en) Method for detecting flatness error of flat plate
JP2009221738A5 (en)
JP3165339B2 (en) Automatic formwork control system for short line match casting
CN115082557B (en) Binocular vision-based tower column hoisting relative attitude measurement method
KR101934319B1 (en) Method and apparatus for survey
KR100457080B1 (en) Method for surveying the characteristics of joint on rock slope using image
JPH09329425A (en) Measuring method for structural member and rule as its reference
JPH03103512A (en) Manufacture of coupling structure and manufacture of long large bridge main tower block
JP5510187B2 (en) Processing method of mating surfaces of steel structures
JP7017496B2 (en) Built-in error measurement management device
JP2006145464A (en) Method for measuring error in column construction, method for constructing column and beam, system for measuring error in column/beam construction, and system for evaluating column/beam construction
CN115874547A (en) Manufacturing line shape control method for space special-shaped curved surface steel box arch rib
JP2515932B2 (en) Planar shape measurement method
JP2794822B2 (en) Structure centering method
CN113601049B (en) Circumferential weld welding method and welding device
JP2022167209A (en) Inspection device for floor slab connection joint

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20000921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20001006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20030612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3803237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term