JP3799648B2 - Glass fiber sizing agent - Google Patents

Glass fiber sizing agent Download PDF

Info

Publication number
JP3799648B2
JP3799648B2 JP06023396A JP6023396A JP3799648B2 JP 3799648 B2 JP3799648 B2 JP 3799648B2 JP 06023396 A JP06023396 A JP 06023396A JP 6023396 A JP6023396 A JP 6023396A JP 3799648 B2 JP3799648 B2 JP 3799648B2
Authority
JP
Japan
Prior art keywords
weight
resin
glass fiber
sizing agent
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06023396A
Other languages
Japanese (ja)
Other versions
JPH09227173A (en
Inventor
一教 佐野
一智 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP06023396A priority Critical patent/JP3799648B2/en
Publication of JPH09227173A publication Critical patent/JPH09227173A/en
Application granted granted Critical
Publication of JP3799648B2 publication Critical patent/JP3799648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱可塑性樹脂に分散混合して、その樹脂を補強するガラス繊維に施される集束剤及びそれを付与した補強用ガラスチョップドストランドと、これを用いて得られた繊維強化熱可塑性樹脂成形体に関する。
【0002】
【従来の技術】
従来より、ガラス繊維強化熱可塑性樹脂成形体の物性改良を目的として、補強ガラス繊維と、熱可塑性樹脂との界面を改質するような、各種ガラス繊維用集束剤が提案されている。例えば、様々なイソシアネートとポリオールから合成されるポリウレタン樹脂を含有するガラス繊維用処理剤が、一般的に知られている。
また、特開昭55−52340号公報のように、ビスフェノールA型エポキシ樹脂のような多官能性エポキシ化合物を含有した、主に熱可塑性ポリエステル樹脂補強用のガラス繊維用処理剤が開示されており、また、フェノールノボラック型エポキシ樹脂を用いた例も公知の手法として報告されている。
更に、成形品特性値の改良を主目的として、アクリル系共重合樹脂を用いたガラス繊維用処理剤も検討されており、特開平7−223846号公報のように、アクリル系共重合体とエポキシ樹脂の縮合反応物を用いた例などが報告されている。
【0003】
【発明が解決しようとする課題】
しかしながら、これら従来の集束剤には次のような問題点が存在した.
まず、ポリウレタン樹脂を用いた集束剤は造膜性に優れる為、この集束剤で処理したガラス繊維は集束性に優れ、コンパウンディング等工程中での毛羽の発生量が少ない反面、ポリアミド樹脂のような熱可塑性樹脂の補強材として用いた場合に、充分な耐水強度を有する繊維補強樹脂体が得られないという問題を有している。
また、エポキシ系樹脂を用いた集束剤は、ポリアミド樹脂のような熱可塑性樹脂の補強材として用いた場合に、ポリウレタン樹脂に比べ良好な耐水強度を有する繊維補強樹脂体が得られるが、ガラス繊維は集束性に劣るという問題を有している。
次に、アクリル系樹脂を用いた集束剤も、エポキシと同様の長所、短所を有しており、実用面での問題を有している。
【0004】
そこで、上記のエポキシ系樹脂、アクリル系樹脂のガラス繊維の集束性の問題を改良する為に、ポリウレタン樹脂を混合して使用する方法が提案されているが、この方法では、エポキシ、アクリルを用いた物に比べ、繊維補強樹脂体の耐水強度が低下するということが確認されている。
したがって、本発明の目的は、これらの課題を解決し、集束性に優れ、かつ熱可塑性樹脂、特にナイロン系樹脂の補強材として用いた場合、機械的特性、特に耐水強度が高い繊維補強樹脂成形体を与えることができるガラス繊維集束剤及びそれを付与した補強用ガラス繊維を提供する事である。
【0005】
【課題を解決するための手段】
本発明者等は、集束剤中に式1に示すポリカルボジイミド樹脂を配合し、従来の集束剤の成分と組み合わせ混合して使用することによりこれらの課題を解決した。
【0006】
【式1】

Figure 0003799648
【0007】
【発明の実施の形態】
本発明のガラス繊維用集束剤は、ポリカルボジイミド樹脂1〜5重量%、ポリウレタン樹脂1〜5重量%、シランカップリング剤0.1〜1重量%、潤滑剤0.01〜0.5重量%、そして必要に応じて水酸基及び/ 又はカルボキシル基を有するアクリル系共重合体またはメタクリル系共重合体、もしくはマレイン系共重合体1〜10重量%を水に希釈して全重量を100重量%とした組成を特徴とする。
【0008】
また、本発明の補強用ガラス繊維は、熱可塑性樹脂に含浸させる補強用ガラス繊維において、上記集束剤が固形分として0.2〜3重量%付与されている事を特徴とする。
以下、本発明について、具体例をあげて説明する。
本発明に使用されるポリカルボジイミド樹脂は、式1に示すカルボジイミド基を持ち、部分的にポリオールセグメントを持つ事で水溶化された樹脂である。Rの部分は、ウレタン骨格を持ち、カルボジイミドの当量は250〜600程度のものが好ましく、分子量は3000〜10000程度が好ましい。
【0009】
次に、本発明に有効なポリウレタン樹脂は、ガラス繊維の集束剤として一般的に用いられるものであれば特に限定されず、例えばXDI、HMDI、IPDI等のイソシアネートとポリエステル系、ポリエーテル系のジオールから合成されるものが良く使用される。
本発明に用いられるアクリル酸ホモポリマーは、式2の構造を有する。
【0010】
【式2】
Figure 0003799648
式中のXは、水素原子またはメチルもしくは炭素原子1−10個を有するアルキル基であるが、水素原子のものが好ましい。分子量は1,000−90,000で、好ましくは1,000−25,000である。
【0011】
ポリアクリル酸の塩は、第一級、第二級または、第三級アミン、例えば、トリエチルアミン、トリエタノールアミン、グリシン等があげられ、中和度は約20〜90%の範囲とすることが出来る。20%以下では、ポリアクリル酸と他の併用薬剤(特にシランカップリング剤)との混合溶液安定性が不安定となる。また、アミン臭を考えると、40%〜60%が好ましい。
ポリアクリル酸の分子量は、約3000〜50000くらいの範囲であれば特に限定されるものではない。分子量が3000以下ではガラス集束性の低下、50000以上では成形品特性値の低下が始まる。
また、本発明に用いられる水酸基及び/ 又はカルボキシル基を有するアクリル系共重合体またはメタクリル系共重合体は、式3の構造式を有する。
【0012】
【式3】
Figure 0003799648
式中のXは、水素原子またはメチルであるが、水素原子のものが好ましい。また、Rは通常、水素原子、もしくは、中和剤である第一級〜第三級アミンのいずれかであるが、約50%程度までならば、メチル基等で置換されたいわゆる部分エステル変性であっても構わない。n:mは2:8−10.0:であり、好ましくは、n:mは5:5−10:0である。
【0013】
この様なアクリル系共重合体またはメタクリル系共重合体としては、例えば、アクリル酸、マレイン酸、メタクリル酸、ビニル酢酸、クロトン酸、イソクロトン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸等の水酸基、カルボキシル基を有するモノマーのうち1種類又は2種類を含有し、更にこれらのエステル系モノマーを1種類以上含有するものが使用できる。
シランカップリング剤としては、例えば、γ- アミノプロピルトリエトキシシラン、N- β- (アミノエチル)- γ- アミノプロピルトリメトキシン、 N- β- (アミノエチル)- N′- β- (アミノエチル)- γ- アミノプトリメトキシシランのようなアミノシラン類を中心として、エポキシシラン類、ビニルシラン類、メルカプトシラン類等から選ばれた1つ以上が好ましく用いられる。
【0014】
また、潤滑剤としては目的に適した通常液体又は固体の任意の滑剤材料を使用する事が出来る。例えば、カルナウバワックス、ラノリンといった植物、鉱物系ワックス、また、脂肪酸アミド、脂肪酸エステルまたはエーテル、芳香族系エステルまたはエーテルといった界面活性剤が用いられる。
本発明の集束剤は、それぞれ固形分として、ポリカルボジイミド樹脂1〜5重量%、ポリウレタン樹脂1〜5重量%、また、必要に応じてアクリル酸モノマーのホモポリマー、もしくは水酸基及び/ 又はカルボキシル基を有するアクリル系共重合体またはメタクリル系共重合体1〜10重量%、好ましくは2〜5重量%と活性アミノ基を主鎖骨格にもつ反応型ポリウレタン樹脂1〜5重量%、好ましくは2〜4重量%、シランカップリング剤0.1〜1重量%、潤滑剤0.01〜0.5重量%を水に希釈して全重量を100重量%としてガラス繊維用集束剤を調製する。
【0015】
上記において、ポリカルボジイミド樹脂の配合量が1重量%未満では、繊維補強樹脂成形体の機械的強度の低下が問題となり、また、5重量%を超えても、ガラス繊維の集束性や繊維補強樹脂成形体の機械的強度の更なる向上は確認できない。また、ポリウレタン樹脂の配合量が1重量%未満ではガラス繊維の集束性低下が生じ、5重量%を超えても更なる集束性向上効果はみられず、かえって繊維補強樹脂成形体の機械的強度の低下が問題となる。
次に、アクリル系共重合体またはメタクリル系共重合体の配合量が1重量%未満では、耐水強度を必要とする分野においては、吸水時の繊維補強樹脂成形体の機械的強度が低下するという問題があり、10重量%を超えると、ガラス繊維の集束性低下、繊維補強樹脂成形体の色調、外観、表面平滑性が低下するという問題を生ずる。
【0016】
次に、集束剤中におけるシランカップリング剤の配合量が0.1 重量%未満では、ガラス繊維の集束性及び繊維補強樹脂成形体の機械的強度の低下が問題となり、1重量%を超えても、ガラス繊維の集束性や繊維補強樹脂成形体の機械的強度の更なる向上は確認できない。
更に、本発明の集束剤中における潤滑剤の配合量が、0.01重量%未満では、充分な潤滑性が得られないという問題があり、1重量%を超えると、ガラス繊維とマトリクス樹脂との接着を妨げ、繊維補強樹脂成形体の機械的強度が低下するという問題がある。
【0017】
本発明の集束剤は、例えば、水溶液やコロイダルディスパージョンの形態で、あるいは乳化剤を用いたエマルジョンの形態で使用する事が出来る。
次に、本発明の集束剤を付与した補強用ガラス繊維は、上記集束剤を公知のガラス繊維製造工程において、ロ−ラ−型アプリケ−タ−などの公知の方法によりガラス繊維に付与して製造したガラス繊維ストランドを乾燥、切断してチョップドストランドとする事により得る事ができる。
この集束剤の添加量は、ガラス繊維に対し固形分で0.2〜3重量%付与させ、好ましくは0.3 〜2.0 重量%とする。集束剤の添加量が0.2 重量%未満では、ガス繊維の集束が維持できないという問題があり、3重量%を超えても、ガラス繊維の集束性や繊維補強樹脂成形体の強度が更に向上することはない。また、ストランドの乾燥は切断工程後に行ってもよく、或はストランドを乾燥した後、切断を行ってもよい。
【0018】
本発明の補強用ガラス繊維はポリアミド(ナイロン)樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等の飽和ポリエステル樹脂、アクリル酸やマレイン酸等で変性されたポリオレフィン樹脂、ポリカーボネート樹脂等のいわゆる熱可塑性樹脂の補強材として用いることができるが、特に、ポリアミド樹脂(ナイロン)を強化するのに有効である。
【0019】
補強用ガラス繊維と熱可塑性樹脂とを使用して、繊維強化樹脂成形体を製造する方法に特に限定はなく、公知の方法を使用できる。例えば、補強用ガラス繊維と熱可塑性樹脂とを、エクストルーダーで混練してペレットとし、このペレットを原料としてインジェクションモールディング法により繊維強化樹脂成形体を得るなどの方法を用いる事が出来る。なお、繊維強化樹脂成形体中に含有させる補強用ガラス繊維の量は、10〜60重量%程度が好ましく、20〜40重量%にするのがより好ましい。
【0020】
【実施例】
実施例1
ポリカルボジイミド樹脂(分子量5000、カルボジイミド当量600)を4重量%と、ポリウレタン樹脂ボンディック1205(大日本インキ社製)を2重量%、γ- アミノプロピルトリエトキシシラン0.6重量%、カルナウバワックス0.1重量%、及び残余水とからなる集束剤を、直径11μmのガラス繊維に、固形分として1.0重量%付与し、800本のガラス繊維を集束してストランドとし、このストランドを通常のチョップカット法により切断後、乾燥して、長さ3mmのチョップドストランドを得た。
【0021】
実施例2
ポリカルボジイミド樹脂(分子量5000、カルボジイミド当量600)を4重量%と、ポリウレタン樹脂ボンディック1205(大日本インキ社製)を2重量%、ポリアクリル酸分子量5000を4重量%、γ- アミノプロピルトリエトキシシラン0.6重量%、カルナウバワックス0.1重量%、及び残余水とからなる集束剤を、直径11μmのガラス繊維に、固形分として1.0重量%付与し、800本のガラス繊維を集束してストランドとし、このストランドを通常のチョップカット法により切断後、乾燥して、長さ3mmのチョップドストランドを得た。
【0022】
比較例1
実施例1において、ポリカルボジイミド樹脂を使用しない他は、実施例1と同様にしてチョップドストランドを得た。
【0023】
比較例2
実施例2において、ポリカルボジイミド樹脂を使用しない他は、実施例2と同様にしてチョップドストランドを得た。
【0024】
試験方法。
実施例1、2及び比較例1、2で得られたそれぞれのチョップドストランド33重量%とポリアミド66(ナイロン66)樹脂(東レ製アミランCM3001N )67重量%とを270℃で混練してペレットとし、インジェクションモールディング法によって、JIS K-7054に規定された試験用の繊維強化樹脂成形体を得た。
これらの試験片について、JIS K-7054の方法により引張り強度を測定した結果を、表1に示す。なお、吸水後引張強度はプレッシャークッカー120℃1気圧下にダンベル型試験片を放置した後引張り試験を行った結果である。
【0025】
【表2】
Figure 0003799648
【0026】
表1の結果より、ナイロン66樹脂をマトリクス樹脂とした場合において、実施例1、2の補強用ガラス繊維を用いた試験片は、比較例12の補強用ガラス繊維を用いた試験片のいずれと比較しても常態及び吸水強度において優れていることがわかった。
【0027】
【発明の効果】
以上説明したように、本発明のガラス繊維集束剤は、ポリカルボジイミド樹脂とウレタン樹脂、シランカップリング剤、潤滑剤、必要に応じて、アクリル樹脂とを含有する為、集束性の良好な補強用ガラス繊維を得る事ができ、且つこの補強用ガラス繊維を熱可塑性樹脂の補強材とすれば、引張り強度、特に耐水強度が高い繊維強化樹脂成形体を得る事が出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sizing agent applied to glass fibers that are dispersed and mixed in a thermoplastic resin to reinforce the resin, a reinforcing glass chopped strand provided with the same, and a fiber-reinforced thermoplastic resin obtained using the same. It relates to a molded body.
[0002]
[Prior art]
Conventionally, for the purpose of improving the physical properties of a glass fiber reinforced thermoplastic resin molded article, various sizing agents for glass fibers that modify the interface between the reinforced glass fiber and the thermoplastic resin have been proposed. For example, a glass fiber treating agent containing a polyurethane resin synthesized from various isocyanates and polyols is generally known.
Further, as disclosed in JP-A-55-52340, a treatment agent for glass fiber mainly for reinforcing a thermoplastic polyester resin containing a polyfunctional epoxy compound such as a bisphenol A type epoxy resin is disclosed. In addition, an example using a phenol novolac type epoxy resin has been reported as a known technique.
Further, a glass fiber treating agent using an acrylic copolymer resin has been studied mainly for the purpose of improving the characteristic value of a molded product. As disclosed in JP-A-7-223847, an acrylic copolymer and an epoxy are used. Examples using resin condensation products have been reported.
[0003]
[Problems to be solved by the invention]
However, these conventional sizing agents have the following problems.
First of all, since the sizing agent using polyurethane resin is excellent in film forming property, the glass fiber treated with this sizing agent is excellent in sizing property and generates less fuzz during the compounding process. When used as a reinforcing material for a thermoplastic resin, there is a problem that a fiber-reinforced resin body having sufficient water resistance cannot be obtained.
In addition, when a sizing agent using an epoxy resin is used as a reinforcing material for a thermoplastic resin such as a polyamide resin, a fiber-reinforced resin body having better water resistance than polyurethane resin can be obtained. Has the problem of poor convergence.
Next, the sizing agent using an acrylic resin also has the same advantages and disadvantages as the epoxy, and has practical problems.
[0004]
Therefore, in order to improve the problem of convergence of glass fibers of the above epoxy resin and acrylic resin, a method of mixing and using polyurethane resin has been proposed. In this method, epoxy and acrylic are used. It has been confirmed that the water-resistant strength of the fiber-reinforced resin body is lower than that of the conventional one.
Therefore, the object of the present invention is to solve these problems, and when it is used as a reinforcing material for thermoplastic resins, particularly nylon resins, it has excellent mechanical properties, particularly fiber reinforced resin molding with high water resistance. It is to provide a glass fiber sizing agent capable of giving a body and a reinforcing glass fiber provided with the same.
[0005]
[Means for Solving the Problems]
The present inventors solved these problems by blending the polycarbodiimide resin shown in Formula 1 in the sizing agent and using it in combination with the components of the conventional sizing agent.
[0006]
[Formula 1]
Figure 0003799648
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The sizing agent for glass fiber of the present invention comprises 1 to 5% by weight of polycarbodiimide resin, 1 to 5% by weight of polyurethane resin, 0.1 to 1% by weight of silane coupling agent, and 0.01 to 0.5% by weight of lubricant. In addition, if necessary, 1 to 10% by weight of an acrylic copolymer or methacrylic copolymer having a hydroxyl group and / or a carboxyl group, or a maleic copolymer is diluted with water so that the total weight becomes 100% by weight. Characterized by the composition.
[0008]
Further, the reinforcing glass fiber of the present invention is characterized in that in the reinforcing glass fiber impregnated in a thermoplastic resin, the sizing agent is provided in an amount of 0.2 to 3% by weight as a solid content.
Hereinafter, the present invention will be described with specific examples.
The polycarbodiimide resin used in the present invention is a resin having a carbodiimide group shown in Formula 1 and water-solubilized by partially having a polyol segment. The R portion has a urethane skeleton, the equivalent of carbodiimide is preferably about 250 to 600, and the molecular weight is preferably about 3000 to 10,000.
[0009]
Next, the polyurethane resin effective in the present invention is not particularly limited as long as it is generally used as a glass fiber sizing agent. For example, isocyanates such as XDI, HMDI, and IPDI, polyester-based, and polyether-based diols are used. What is synthesized from is often used.
The acrylic acid homopolymer used in the present invention has the structure of Formula 2.
[0010]
[Formula 2]
Figure 0003799648
X in the formula is a hydrogen atom or an alkyl group having 1 to 10 methyl or carbon atoms, preferably a hydrogen atom. The molecular weight is 1,000-90,000, preferably 1,000-25,000.
[0011]
Examples of the salt of polyacrylic acid include primary, secondary or tertiary amines such as triethylamine, triethanolamine, glycine and the like, and the degree of neutralization should be in the range of about 20 to 90%. I can do it. If it is 20% or less, the stability of the mixed solution of polyacrylic acid and other concomitant drugs (particularly silane coupling agent) becomes unstable. Moreover, when considering the amine odor, 40% to 60% is preferable.
The molecular weight of polyacrylic acid is not particularly limited as long as it is in the range of about 3000 to 50000. When the molecular weight is 3000 or less, the glass converging property starts decreasing, and when the molecular weight is 50000 or more, the characteristic value of the molded article starts decreasing.
Further, the acrylic copolymer or methacrylic copolymer having a hydroxyl group and / or a carboxyl group used in the present invention has the structural formula of Formula 3.
[0012]
[Formula 3]
Figure 0003799648
X in the formula is a hydrogen atom or methyl, preferably a hydrogen atom. R is usually a hydrogen atom or a primary to tertiary amine that is a neutralizing agent, but if it is up to about 50%, so-called partial ester modification substituted with a methyl group or the like. It does not matter. n: m is 2: 8-10.0 :, preferably n: m is 5: 5-10: 0.
[0013]
Examples of such acrylic copolymers or methacrylic copolymers include acrylic acid, maleic acid, methacrylic acid, vinyl acetic acid, crotonic acid, isocrotonic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, and the like. One or two kinds of monomers having a hydroxyl group or a carboxyl group are contained, and those containing one or more of these ester monomers can be used.
Examples of the silane coupling agent include γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxine, N-β- (aminoethyl) -N′-β- (aminoethyl). 1) One or more selected from epoxy silanes, vinyl silanes, mercapto silanes, etc. are preferably used, centering on amino silanes such as) -γ-aminoptrimethoxysilane.
[0014]
As the lubricant, any normal liquid or solid lubricant suitable for the purpose can be used. For example, plants such as carnauba wax and lanolin, mineral waxes, and surfactants such as fatty acid amides, fatty acid esters or ethers, aromatic esters or ethers are used.
The sizing agent of the present invention contains 1 to 5% by weight of a polycarbodiimide resin, 1 to 5% by weight of a polyurethane resin, and a homopolymer of an acrylic acid monomer, or a hydroxyl group and / or a carboxyl group, if necessary. 1 to 10% by weight, preferably 2 to 5% by weight of an acrylic copolymer or methacrylic copolymer, and 1 to 5% by weight of a reactive polyurethane resin having an active amino group in the main chain skeleton, preferably 2 to 4% A glass fiber sizing agent is prepared by diluting 1% by weight, 0.1 to 1% by weight of a silane coupling agent, and 0.01 to 0.5% by weight of a lubricant in water to make the total weight 100% by weight.
[0015]
In the above, if the blending amount of the polycarbodiimide resin is less than 1% by weight, the mechanical strength of the fiber reinforced resin molded product is deteriorated. No further improvement in the mechanical strength of the compact can be confirmed. Further, when the blending amount of the polyurethane resin is less than 1% by weight, the converging property of the glass fiber is lowered, and when it exceeds 5% by weight, no further effect of improving the converging property is seen. This is a problem.
Next, when the blending amount of the acrylic copolymer or the methacrylic copolymer is less than 1% by weight, the mechanical strength of the fiber-reinforced resin molded body at the time of water absorption is lowered in a field requiring water resistance strength. There is a problem, and when it exceeds 10% by weight, there arises a problem that the converging property of the glass fiber is lowered and the color tone, appearance, and surface smoothness of the fiber-reinforced resin molded product are lowered.
[0016]
Next, when the blending amount of the silane coupling agent in the sizing agent is less than 0.1% by weight, there is a problem in the sizing property of the glass fiber and the mechanical strength of the fiber reinforced resin molded article, and even if it exceeds 1% by weight, Further improvement of the glass fiber bundling property and the mechanical strength of the fiber-reinforced resin molded product cannot be confirmed.
Furthermore, if the blending amount of the lubricant in the sizing agent of the present invention is less than 0.01% by weight, there is a problem that sufficient lubricity cannot be obtained, and if it exceeds 1% by weight, the glass fiber and the matrix resin are bonded. There is a problem that the mechanical strength of the fiber-reinforced resin molded article is lowered.
[0017]
The sizing agent of the present invention can be used, for example, in the form of an aqueous solution or a colloidal dispersion, or in the form of an emulsion using an emulsifier.
Next, the reinforcing glass fiber provided with the sizing agent of the present invention is obtained by applying the sizing agent to the glass fiber by a known method such as a roller type applicator in a known glass fiber manufacturing process. It can be obtained by drying and cutting the produced glass fiber strand to obtain a chopped strand.
The sizing agent is added in an amount of 0.2 to 3% by weight, preferably 0.3 to 2.0% by weight, based on the glass fiber. If the addition amount of the sizing agent is less than 0.2% by weight, there is a problem that the sizing of the gas fibers cannot be maintained. Even if the amount exceeds 3% by weight, the sizing property of the glass fiber and the strength of the fiber-reinforced resin molded product are further improved. There is no. Further, the strand may be dried after the cutting step, or may be cut after the strand is dried.
[0018]
The reinforcing glass fiber of the present invention is a so-called saturated polyester resin such as polyamide (nylon) resin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyolefin resin modified with acrylic acid or maleic acid, polycarbonate resin or the like. Although it can be used as a reinforcing material for thermoplastic resin, it is particularly effective for reinforcing polyamide resin (nylon).
[0019]
There is no limitation in particular in the method of manufacturing a fiber reinforced resin molded object using the glass fiber for reinforcement and a thermoplastic resin, A well-known method can be used. For example, a reinforcing glass fiber and a thermoplastic resin can be kneaded with an extruder to form a pellet, and a method such as obtaining a fiber-reinforced resin molded article by an injection molding method using the pellet as a raw material can be used. In addition, about 10 to 60 weight% is preferable and, as for the quantity of the glass fiber for reinforcement contained in a fiber reinforced resin molding, it is more preferable to set it as 20 to 40 weight%.
[0020]
【Example】
Example 1
4% by weight of polycarbodiimide resin (molecular weight 5000, carbodiimide equivalent 600), 2% by weight of polyurethane resin bondic 1205 (manufactured by Dainippon Ink), 0.6 % by weight of γ-aminopropyltriethoxysilane, carnauba wax A sizing agent comprising 0.1 % by weight and residual water is applied to a glass fiber having a diameter of 11 μm as a solid content of 1.0 % by weight, and 800 glass fibers are bundled to form a strand. After being cut by the chop-cut method, a chopped strand having a length of 3 mm was obtained.
[0021]
Example 2
4% by weight of polycarbodiimide resin (molecular weight 5000, carbodiimide equivalent 600), 2% by weight of polyurethane resin bondic 1205 (Dainippon Ink Co., Ltd.), 4% by weight of polyacrylic acid molecular weight 5000, γ-aminopropyltriethoxy A sizing agent consisting of 0.6 % by weight of silane, 0.1 % by weight of carnauba wax, and residual water was added to a glass fiber having a diameter of 11 μm in a solid content of 1.0 % by weight, and 800 glass fibers were added. The strands were bundled into strands, and the strands were cut by a normal chop cutting method and then dried to obtain chopped strands having a length of 3 mm.
[0022]
Comparative Example 1
In Example 1, chopped strands were obtained in the same manner as in Example 1 except that no polycarbodiimide resin was used.
[0023]
Comparative Example 2
In Example 2, chopped strands were obtained in the same manner as in Example 2 except that no polycarbodiimide resin was used.
[0024]
Test method.
Each of the chopped strands 33% by weight obtained in Examples 1 and 2 and Comparative Examples 1 and 2 and polyamide 66 (nylon 66) resin (Toray Amilan CM3001N) 67% by weight were kneaded at 270 ° C. to form pellets, By the injection molding method, a fiber reinforced resin molded article for testing specified in JIS K-7054 was obtained.
Table 1 shows the results of measuring the tensile strength of these test pieces by the method of JIS K-7054. In addition, the tensile strength after water absorption is a result of conducting a tensile test after leaving a dumbbell-shaped test piece under pressure cooker 120 ° C. and 1 atm.
[0025]
[Table 2]
Figure 0003799648
[0026]
From the results of Table 1, when nylon 66 resin is used as the matrix resin, the test piece using the reinforcing glass fiber of Examples 1 and 2 is any of the test pieces using the reinforcing glass fiber of Comparative Example 12. Even in comparison, it was found that they were excellent in normal state and water absorption strength.
[0027]
【The invention's effect】
As described above, the glass fiber sizing agent of the present invention contains a polycarbodiimide resin, a urethane resin, a silane coupling agent, a lubricant, and, if necessary, an acrylic resin. If a glass fiber can be obtained and the reinforcing glass fiber is used as a reinforcing material for a thermoplastic resin, a fiber-reinforced resin molded article having a high tensile strength, particularly a high water resistance strength can be obtained.

Claims (4)

ポリカルボジイミド樹脂1〜5重量%、ポリウレタン樹脂1〜5重量%、シランカップリング剤0.1〜1重量%、潤滑剤0.01〜0.5重量%を含有する事を特徴としたガラス繊維用集束剤。Glass fiber characterized by containing 1 to 5% by weight of polycarbodiimide resin, 1 to 5% by weight of polyurethane resin, 0.1 to 1% by weight of silane coupling agent, and 0.01 to 0.5% by weight of lubricant. Sizing agent. アクリル酸のホモポリマーまたはアクリル酸とその他共重合成分とのコポリマ−あるいはこれらの第1級、第2級、第3級アミンとの塩より選んだ1種、もしくは2種以上のポリマ−1〜10重量%、ポリカルボジイミド樹脂1〜5重量%、ポリウレタン樹脂1〜5重量%、シランカップリング剤0.1〜1重量%、潤滑剤0.01〜0.5重量%を含有する事を特徴としたガラス繊維用集束剤。A homopolymer of acrylic acid or a copolymer of acrylic acid and other copolymer components, or one or two or more polymers selected from salts of these with primary, secondary and tertiary amines. 10% by weight, 1 to 5% by weight of polycarbodiimide resin, 1 to 5% by weight of polyurethane resin, 0.1 to 1% by weight of silane coupling agent, 0.01 to 0.5% by weight of lubricant Glass fiber sizing agent. 上記請求項1または2に示した集束剤を施した熱可塑性樹脂補強用ガラスチョップドストランド。A glass chopped strand for reinforcing a thermoplastic resin, to which the sizing agent according to claim 1 or 2 is applied. 上記請求項3に示したチョップドストランドと熱可塑性樹脂を重量比で1:9〜6:4の混合比で混練、射出成形して得られる繊維強化熱可塑性樹脂成形体 A fiber reinforced thermoplastic resin molded article obtained by kneading and injection molding the chopped strand and the thermoplastic resin according to claim 3 in a mixing ratio of 1: 9 to 6: 4 by weight .
JP06023396A 1996-02-23 1996-02-23 Glass fiber sizing agent Expired - Fee Related JP3799648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06023396A JP3799648B2 (en) 1996-02-23 1996-02-23 Glass fiber sizing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06023396A JP3799648B2 (en) 1996-02-23 1996-02-23 Glass fiber sizing agent

Publications (2)

Publication Number Publication Date
JPH09227173A JPH09227173A (en) 1997-09-02
JP3799648B2 true JP3799648B2 (en) 2006-07-19

Family

ID=13136261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06023396A Expired - Fee Related JP3799648B2 (en) 1996-02-23 1996-02-23 Glass fiber sizing agent

Country Status (1)

Country Link
JP (1) JP3799648B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201349A (en) * 2002-01-09 2003-07-18 Daicel Chem Ind Ltd Fiber-reinforced polyurethane resin composition, molding method and molded article
DE102005056791B4 (en) * 2005-11-28 2014-04-30 Saint-Gobain Isover G+H Ag Composition, mineral wool binder containing this composition and use of this composition
JP5286322B2 (en) * 2009-04-20 2013-09-11 旭化成ケミカルズ株式会社 Resin composition
JP5631623B2 (en) * 2009-04-22 2014-11-26 旭化成ケミカルズ株式会社 Glass fiber reinforced polyamide resin composition
JP5639381B2 (en) * 2009-04-22 2014-12-10 旭化成ケミカルズ株式会社 Glass fiber reinforced polyamide resin composition
JP2010269995A (en) * 2009-04-22 2010-12-02 Asahi Kasei Chemicals Corp Glass fiber sizing agent and glass fiber-reinforced thermoplastic resin composition
CN105531325B (en) 2013-10-29 2019-03-01 东丽株式会社 Moulding material, its manufacturing method and the masterbatch for it
EP3239239B1 (en) 2014-12-26 2018-10-10 Asahi Kasei Kabushiki Kaisha Polyamide resin composition, polyamide resin pellet group, molded article, and method for producing polyamide resin composition
JP6634085B2 (en) * 2015-07-31 2020-01-22 日本板硝子株式会社 Flake glass and resin composition
JP6901573B2 (en) 2017-08-29 2021-07-14 三井化学株式会社 Fiber converging agent, inorganic reinforcing material, resin composition and molded product
KR102613741B1 (en) * 2021-06-30 2023-12-14 주식회사 케이씨씨 Sizing composition and glass fiber using the same

Also Published As

Publication number Publication date
JPH09227173A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
JP3799648B2 (en) Glass fiber sizing agent
JP3390441B2 (en) Size composition
JP3438957B2 (en) Aqueous surface treatment agent for reinforcement, reinforcement treated with the aqueous surface treatment, and composite reinforced with reinforcement
KR100342115B1 (en) Glass fiber for organic matrix reinforcement
CN109796640A (en) A kind of wear-resisting antiskid emgloves and preparation method thereof
WO2005092814A1 (en) Process for production of copped strands
WO2007078900A2 (en) Two-part sizing composition for reinforcement fibers
CN115504687B (en) Glass fiber impregnating compound, preparation method thereof, glass fiber and application
JPH06200094A (en) Glass-reinforced thermoplastic resin
JP2000335942A (en) Glass fiber binder for reinforcing polyacetal resin and glass fiber bundle using the same
JP3783283B2 (en) Glass fiber sizing agent
GB1597299A (en) Process for the water vapour absorption capacity of textile substrates
JP4749045B2 (en) Method for producing reinforced fiber for modified polyphenylene ether resin molding material, and fiber reinforced modified polyphenylene ether resin molding material
JP2700761B2 (en) Sizing agent for glass fiber, reinforcing glass fiber using the sizing agent for glass fiber, and glass fiber reinforced resin body
JP2003201671A (en) Chopped glass strand and glass fiber-reinforced thermoplastic resin produced by using the strand as reinforcing material
JPH1077350A (en) Chopped strand of carbon fiber
JPH05239286A (en) Glass fiber-reinforced polyolefin resin composition
JP2764550B2 (en) Long fiber reinforced material and glass fiber reinforced polyamide resin composition
WO2020160378A1 (en) Optimized coating compositions for carbon fibers
JP2000303362A (en) Sizing agent and chopped carbon fiber treated with the sizing agent
JPS6137308B2 (en)
JP3408343B2 (en) Glass fiber for direct injection molding and glass fiber reinforced thermoplastic resin composition
JP2563828B2 (en) Reinforcing glass fiber bundle and method for producing resin body
JPH07223846A (en) Greige goods for glass fiber and reinforcing glass fiber
JPH07267690A (en) Fiber size for glass fiber and glass fiber for reinforcing resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees