JP3797067B2 - 内燃機関の故障診断装置 - Google Patents

内燃機関の故障診断装置 Download PDF

Info

Publication number
JP3797067B2
JP3797067B2 JP2000197893A JP2000197893A JP3797067B2 JP 3797067 B2 JP3797067 B2 JP 3797067B2 JP 2000197893 A JP2000197893 A JP 2000197893A JP 2000197893 A JP2000197893 A JP 2000197893A JP 3797067 B2 JP3797067 B2 JP 3797067B2
Authority
JP
Japan
Prior art keywords
intake
intake air
air amount
pressure
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000197893A
Other languages
English (en)
Other versions
JP2002004872A (ja
Inventor
富久 小田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2000197893A priority Critical patent/JP3797067B2/ja
Publication of JP2002004872A publication Critical patent/JP2002004872A/ja
Application granted granted Critical
Publication of JP3797067B2 publication Critical patent/JP3797067B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の故障診断装置に関する。
【0002】
【従来の技術】
内燃機関に吸入せしめられる吸気量を増大するための排気ターボチャージャが公知である。例えば特開平10−47071号公報に排気ターボチャージャが開示されている。ここでの排気ターボチャージャは排気通路に配置される排気タービンと吸気通路に配置されるコンプレッサとを具備する。コンプレッサは排気タービンに連結されており、排気タービンが排気ガスにより回転せしめられるとコンプレッサが作動せしめられる。これによりコンプレッサが吸入空気を加圧するので内燃機関に吸入せしめられる吸気量が増大する。
【0003】
ところで上述したように排気ターボチャージャは排気ガスにより駆動せしめられる。したがってコンプレッサの圧縮作用は排気タービンを通過する排気ガスの流量(以下、排気流速)に依存する。すなわち排気流速が遅いと排気タービンの回転数が小さく、コンプレッサの圧縮作用が低くなる。そこで上記公報に開示されている排気ターボチャージャは排気流速が遅いときにでも排気タービンの回転数を大きく維持するために排気流速を増大するための機構(以下、排気流速制御機構)を備える。この排気流速制御機構によれば排気タービン周りに流路面積可変のノズルが配置されており、排気流速が遅くなったときにノズルの流路面積を小さくすることにより排気流速を増大する。斯くして排気タービンの回転数が大きく維持される。
【0004】
なお上記公報では排気ガスが排気通路から吸気通路に循環せしめられる。これは排気ガスを内燃機関に導入することで燃焼室での燃焼温度を低く抑えるためである。このように燃焼温度を低く抑えることにより燃焼室内で発生する窒素酸化物の量が少なくなる。
ところで上述した流速可変式排気ターボチャージャにおいて排気流速制御機構が故障した場合には次のような問題が生じる。すなわち例えばノズルの流路面積を狭くした状態でこの排気流速制御機構が故障した場合、排気ガスの流量が増大してもノズルの流路面積を広げることができない。このため吸気通路内の吸気圧を目標とする吸気圧とすることができない。したがって吸気通路内の吸気圧を目標吸気圧に維持するためには排気ターボチャージャの排気流速制御機構の故障の有無を検出する必要がある。そこで上記公報では内燃機関に導入される排気ガスの量(以下、EGR量)がその目標EGR量から所定値以上ずれているときに排気ターボチャージャの排気流速制御機構が故障していると診断している。このように診断できる理由は次の通りである。
【0005】
すなわちEGR量はその流量を制御するための弁(以下、EGR制御弁)の開弁量を制御することで制御される。そしてEGR量は吸気圧が大きいほど多くなる。そこで目標吸気圧に応じて定まる目標開弁量を予め求めておき、EGR制御弁の開弁量をこの目標開弁量とすることでEGR量を目標EGR量とする。したがって吸気圧が目標吸気圧に正確に制御されていればEGR量は正確に目標EGR量となる。しかしながら排気ターボチャージャの排気流速制御機構が故障していると吸気圧が目標吸気圧に制御されない。このときEGR量も目標EGR量に制御されない。したがってEGR制御弁の開弁量を目標開弁量としたときにEGR量が目標EGR量から所定値以上ずれているということは排気ターボチャージャの排気流速制御機構が故障しているということである。これがEGR量が目標EGR量から所定値以上ずれているときに排気流速制御機構が故障していると診断することができる理由である。
【0006】
【発明が解決しようとする課題】
ところで内燃機関によっては吸気圧と吸気量とに基づいて内燃運転を制御するものがある。すなわち上記公報に記載された内燃機関ではEGR量に基づいて排気ターボチャージャの故障を診断しているのでこのように吸気圧と吸気量とに基づいて機関運転を制御する内燃機関においては排気ターボチャージャの故障を診断することができない。そこで本発明の目的は吸気圧と吸気量とに基づいて排気ターボチャージャの故障を診断することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、1番目の発明によれば、内燃機関から排出される排気ガスにより回転せしめられる排気タービンを排気通路に備えると共に該排気タービンにより作動せしめられるコンプレッサを吸気通路に備え、前記排気タービンを通過する排気ガスの流速を調節するための流速調節手段を備える流速可変式排気ターボチャージャと、前記コンプレッサ下流側における吸気通路内の吸気圧を検出して該検出した吸気圧を出力する吸気圧出力手段と、内燃機関に吸入せしめられる吸気量を検出するための吸気量検出手段とを具備し、前記コンプレッサ下流側における吸気通路内の吸気圧を目標吸気圧とすべく前記排気タービンを通過する排気ガスの流速を調節するようにした内燃機関において、前記吸気圧出力手段から出力される吸気圧の目標吸気圧からのずれと前記吸気量検出手段により検出される吸気量の目標吸気量からのずれとに基づいて前記吸気圧出力手段が故障しているか否かを診断すると共に該吸気圧出力手段の故障の種類をも特定し、排気ガスを排気タービン上流側の排気通路からコンプレッサ下流側の吸気通路内に導入するための排気循環通路を具備し、該排気循環通路を介して吸気通路内に導入せしめられる排気ガスの量を制御することにより前記吸気量を目標吸気量に制御し、前記吸気量検出手段が前記排気循環通路を介して吸気通路内に導入せしめられる排気ガスの量と前記吸気圧出力手段から出力される吸気圧とに基づいて吸気量を算出し、該算出された吸気量を吸気量の検出値とする
上記課題を解決するために、2番目の発明によれば、内燃機関から排出される排気ガスにより回転せしめられる排気タービンを排気通路に備えると共に該排気タービンにより作動せしめられるコンプレッサを吸気通路に備え、前記排気タービンを通過する排気ガスの流速を調節するための流速調節手段を備える流速可変式排気ターボチャージャと、前記コンプレッサ下流側における吸気通路内の吸気圧を検出して該検出した吸気圧を出力する吸気圧出力手段と、内燃機関に吸入せしめられる吸気量を検出するための吸気量検出手段とを具備し、前記コンプレッサ下流側における吸気通路内の吸気圧を目標吸気圧とすべく前記排気タービンを通過する排気ガスの流速を調節するようにした内燃機関において、前記吸気圧出力手段から出力される吸気圧が目標吸気圧に制御されており且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に少ないときには前記吸気圧出力手段が実際の吸気圧よりも高い値の吸気圧を出力してしまう種類の故障状態にあると診断し、前記吸気圧出力手段から出力される吸気圧が目標吸気圧に制御されており且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に多いときには前記吸気圧出力手段が実際の吸気圧よりも低い値の吸気圧を出力してしまう種類の故障状態にあると診断する。
上記課題を解決するために、3番目の発明によれば、内燃機関から排出される排気ガスにより回転せしめられる排気タービンを排気通路に備えると共に該排気タービンにより作動せしめられるコンプレッサを吸気通路に備え、前記排気タービンを通過する排気ガスの流速を調節するための流速調節手段を備える流速可変式排気ターボチャージャと、前記コンプレッサ下流側における吸気通路内の吸気圧を検出して該検出した吸気圧を出力する吸気圧出力手段と、内燃機関に吸入せしめられる吸気量を検出するための吸気量検出手段とを具備し、前記コンプレッサ下流側における吸気通路内の吸気圧を目標吸気圧とすべく前記排気タービンを通過する排気ガスの流速を調節するようにした内燃機関において、前記吸気圧出力手段から出力される吸気圧の目標吸気圧からのずれと前記吸気量検出手段により検出される吸気量の目標吸気量からのずれとに基づいて前記流速調節手段が故障しているか否かを診断すると共に該流速調節手段の故障の種類をも特定する。
上記課題を解決するために、4番目の発明によれば、内燃機関から排出される排気ガスにより回転せしめられる排気タービンを排気通路に備えると共に該排気タービンにより作動せしめられるコンプレッサを吸気通路に備え、前記排気タービンを通過する排気ガスの流速を調節するための流速調節手段を備える流速可変式排気ターボチャージャと、前記コンプレッサ下流側における吸気通路内の吸気圧を検出して該検出した吸気圧を出力する吸気圧出力手段と、内燃機関に吸入せしめられる吸気量を検出するための吸気量検出手段とを具備し、前記コンプレッサ下流側における吸気通路内の吸気圧を目標吸気圧とすべく前記排気タービンを通過する排気ガスの流速を調節するようにした内燃機関において、前記吸気圧出力手段から出力される吸気圧が目標吸気圧よりも予め定められた値以上に高く且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に多いときには前記流速調節手段が排気タービンを通過する排気ガスの流速を遅くすることができない種類の故障状態にあると診断し、前記吸気圧出力手段から出力される吸気圧が目標吸気圧よりも予め定められた値以上に低く且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に少ないときには前記流速調節手段が排気タービンを通過する排気ガスの流速を速くすることができない種類の故障状態にあると診断する。
【0008】
上記課題を解決するために、5番目の発明によれば、内燃機関から排出される排気ガスにより回転せしめられる排気タービンを排気通路に備えると共に該排気タービンにより作動せしめられるコンプレッサを吸気通路に備え、前記排気タービンを通過する排気ガスの流速を調節するための流速調節手段を備える流速可変式排気ターボチャージャと、前記コンプレッサ下流側における吸気通路内の吸気圧を検出して該検出した吸気圧を出力する吸気圧出力手段と、内燃機関に吸入せしめられる吸気量を検出するための吸気量検出手段とを具備し、前記コンプレッサ下流側における吸気通路内の吸気圧を目標吸気圧とすべく前記排気タービンを通過する排気ガスの流速を調節するようにした内燃機関において、前記吸気圧出力手段から出力される吸気圧の目標吸気圧からのずれと前記吸気量検出手段により検出される吸気量の目標吸気量からのずれとに基づいて前記吸気圧出力手段が実際の吸気圧よりも高い値の吸気圧を出力してしまう故障状態にあるのか或いは実際の吸気圧よりも低い値の吸気圧を出力してしまう故障状態にあるのかを診断すると共に前記流速調節手段が排気ガスの流速を遅くすることができない故障状態にあるのか或いは排気ガスの流速を速くすることができない故障状態にあるのかを診断する。
上記課題を解決するために、6番目の発明によれば、内燃機関から排出される排気ガスにより回転せしめられる排気タービンを排気通路に備えると共に該排気タービンにより作動せしめられるコンプレッサを吸気通路に備え、前記排気タービンを通過する排気ガスの流速を調節するための流速調節手段を備える流速可変式排気ターボチャージャと、前記コンプレッサ下流側における吸気通路内の吸気圧を検出して該検出した吸気圧を出力する吸気圧出力手段と、内燃機関に吸入せしめられる吸気量を検出するための吸気量検出手段とを具備し、前記コンプレッサ下流側における吸気通路内の吸気圧を目標吸気圧とすべく前記排気タービンを通過する排気ガスの流速を調節するようにした内燃機関において、前記吸気圧出力手段から出力される吸気圧が目標吸気圧よりも予め定められた値以上に高く且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に多いときには前記流速調節手段が排気タービンを通過する排気ガスの流速を遅くすることができない種類の故障状態にあると診断し、前記吸気圧出力手段から出力される吸気圧が目標吸気圧よりも予め定められた値以上に低く且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に少ないときには前記流速調節手段が排気タービンを通過する排気ガスの流速を速くすることができない種類の故障状態にあると診断し、前記吸気圧出力手段から出力される吸気圧が目標吸気圧に制御されており且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に少ないときには前記吸気圧出力手段が実際の吸気圧よりも高い値の吸気圧を出力してしまう種類の故障状態にあると診断し、前記吸気圧出力手段から出力される吸気圧が目標吸気圧に制御されており且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に多いときには前記吸気圧出力手段が実際の吸気圧よりも低い値の吸気圧を出力してしまう種類の故障状態にあると診断する。
7番目の発明によれば、〜6番目の発明のいずれか1つにおいて、排気ガスを排気タービン上流側の排気通路からコンプレッサ下流側の吸気通路内に導入するための排気循環通路を具備し、該排気循環通路を介して吸気通路内に導入せしめられる排気ガスの量を制御することにより前記吸気量を目標吸気量に制御する。
8番目の発明によれば、7番目の発明において、前記吸気量検出手段が前記排気循環通路を介して吸気通路内に導入せしめられる排気ガスの量と前記吸気圧出力手段から出力される吸気圧とに基づいて吸気量を算出し、該算出された吸気量を吸気量の検出値とする。
【0009】
【発明の実施の形態】
以下、図面に示した実施例を参照して本発明を詳細に説明する。
図1は本発明の流速可変式排気ターボチャージャ故障診断装置を適用した内燃機関の全体図である。図1において1は機関本体、2は吸気マニホルド、3は吸気管、4は排気マニホルド、5は排気管である。吸気マニホルド2の枝管2aは機関本体1の対応する各燃焼室(図示せず)に接続される。吸気管3は吸気マニホルド2を介して機関本体1に接続される。排気マニホルド4の枝管4aは機関本体1の対応する各燃焼室に接続される。排気管5は排気マニホルド4を介して機関本体1に接続される。なお以下の説明では吸気マニホルド2と吸気管3とを含めて吸気通路と称し、参照符号6で示し、排気マニホルド4と排気管5とを含めて排気通路と称し、参照符号7で示す。
【0010】
内燃機関は流速可変式排気ターボチャージャ8を具備する。排気ターボチャージャ8はコンプレッサ9と排気タービン10とを具備する。コンプレッサ9は吸気通路6内に配置される。また排気タービン10は排気通路7内に配置される。これらコンプレッサ9と排気タービン10とはシャフト11により連結される。排気タービン10周りには回動可能なノズル弁12が配置される。これらノズル弁12はアクチュエータ39に接続される。アクチュエータ39は後述するようにしてノズル弁12を回動する。
【0011】
コンプレッサ9の下流側の吸気通路6には吸入空気を冷却するためのインタークーラ14が配置される。インタークーラ14の下流側の吸気通路6内には機関本体1に導入せしめられる吸入空気の量(以下、吸気量)を制御するためのスロットル弁15が配置される。スロットル弁15の下流側の吸気通路6には圧力センサ16が取り付けられる。圧力センサ16はスロットル弁15の下流側の吸気通路6内の吸気圧を検出する。一方、コンプレッサ9の上流側の吸気通路6には吸気量を検出するための質量流量計17が取り付けられる。質量流量計17の上流側の吸気通路6には吸入空気を濾過するためのエアクリーナ18が配置される。
【0012】
排気タービン10の上流側の排気通路7とその下流側の排気通路7とはバイパス通路19により接続される。バイパス通路19にはウエストゲートバルブ20が配置される。ウエストゲートバルブ20は通常はバイパス通路19を遮断しており、排気タービン10の上流側の排気通路7内の圧力が過剰に高くなったときなどに要求に応じてバイパス通路19を開放し、圧力を解放する。排気タービン10の下流側の排気通路7とバイパス通路19と連結部分21の下流側の排気通路7内には触媒22が配置される。触媒22は排気ガス中の有害成分を浄化するためのものである。
【0013】
排気タービン10の上流側の排気通路7とバイパス通路19との連結部分23の上流側の排気通路7、正確には排気マニホルド4は排気再循環(以下、EGR)通路24を介してコンプレッサ9の下流側の吸気通路6、正確には吸気マニホルド2に接続される。EGR通路24にはEGR制御弁25が配置される。EGR制御弁25は開口33を閉弁するための弁体26を有する。弁体26はアクチュエータ27によりその作動を制御される。アクチュエータ27はダイアフラム28を有する。弁体26はこのダイアフラム28に接続される。アクチュエータ27の内部はダイアフラム28により負圧室29と大気圧室30とに分割される。負圧室29にはコイルバネ31が配置される。コイルバネ31はEGR制御弁25を閉弁するようにダイアフラム28を付勢する。また負圧室29は切換弁32を介して大気または負圧源(図示せず)に接続される。
【0014】
負圧室29が負圧源に接続されるように切換弁32が作動せしめられたときにはダイアフラム28がコイルバネ31の付勢力に抗して移動せしめられ、弁体26が開口33を開放するように移動せしめられる。斯くしてEGR制御弁25が開弁せしめられる。一方、負圧室29が大気に接続されるように切換弁32が作動せしめられたときにはダイアフラム28がコイルバネ31の付勢力により移動せしめられ、弁体26が開口33を閉鎖するように移動せしめられる。斯くしてEGR制御弁25が閉弁せしめられる。
【0015】
内燃機関はコントローラ34を具備する。コントローラ34には圧力センサ16および質量流量計17が接続され、これらから信号を受信する。一方、コントローラ34はアクチュエータ39、スロットル弁15、ウエストゲートバルブ20および切換弁32に接続され、これらの作動を制御する。
次に図2を参照して排気ターボチャージャ8の排気流速制御機構を説明する。当該制御機構はリング部材35と、このリング部材35に連結された複数のノズル弁12とを具備する。リング部材35は環状の部材であり、排気タービン10の中心軸線をその中心として回動可能に配置される。各ノズル弁12は対応する軸37周りで回動可能に配置される。また隣接する二つのノズル弁12の間には排気ガスが通過するためのノズル38が形成される。リング部材35はアクチュエータ39により回動せしめられる。アクチュエータ39はダイアフラム40を有する。リング部材35はこのダイアフラム40に接続される。アクチュエータ39の内部はダイアフラム40により負圧室41と大気圧室42とに分割される。負圧室41にはコイルバネ43が配置される。コイルバネ43はノズル38の流路面積が大きくなるようにダイアフラム40を付勢する。また負圧室41は切換弁44を介して大気または負圧源(図示せず)に接続される。なお切換弁44はコントローラ34に接続され、このコントローラ34によりその作動を制御せしめられる。
【0016】
負圧室41が負圧源に接続されるように切換弁44が作動せしめられたときにはダイアフラム40がコイルバネ43の付勢力に抗して移動せしめられ、リング部材35、したがってそれに連結されているノズル弁12がノズル38の流路面積を狭めるように回動せしめられる。斯くしてノズル38を通過し、排気タービン10に供給される排気ガスの流速が速くなり、吸気圧が高くなる。一方、負圧室41が大気に接続されるように切換弁44が作動せしめられたときにはダイアフラム40がコイルバネ43の付勢力により移動せしめられ、リング部材35、したがってそれに連結されているノズル弁12がノズル38の流路面積を広げるように回動せしめられる。斯くしてノズル38を通過し、排気タービン10に供給される排気ガスの流速が遅くなり、吸気圧が低くなる。
【0017】
次に図3〜図7を参照して本発明の排気ターボチャージャ故障診断を説明する。これら図3〜図7において(A)は圧力センサ16により検出される吸気圧Pを示し、(B)は吸気圧Pが過大であると判別された回数を計数する吸気圧過大カウンタCpLまたは吸気圧Pが過小であると判別された回数を計数する吸気圧過小カウンタCpSを示し、(C)は質量流量計17により検出される吸気量Gaを示し、(D)は吸気量Gaが過大であると判別された回数を計数する吸気量過大カウンタCgaLまたは吸気量Gaが過小であると判別された回数を計数する吸気量過小カウンタCgaSを示し、(E)はノズル弁12が閉弁したまま回動不能であること(以下、閉弁故障)を予備的に示す予備閉弁故障フラグpFcまたはノズル弁12が開弁したまま回動不能であること(以下、開弁故障)を予備的に示す予備開弁故障フラグpFoを示し、(F)はノズル弁12が閉弁故障していることを示す閉弁故障フラグFcまたはノズル弁12が開弁故障していることを示す開弁故障フラグFoを示し、(G)は圧力センサ16が実際の圧力よりも高い圧力を出力してしまう故障(以下、高値故障)状態にあることを示すセンサ高値故障フラグFhまたは圧力センサ16が実際の圧力よりも低い圧力を出力してしまう故障(以下、低値故障)状態にあることを示すセンサ低値故障フラグFlを示す。
【0018】
本実施例の内燃機関では吸気圧が機関運転状態に応じて定まる目標吸気圧となるように排気ターボチャージャ8のノズル弁12の開度が制御される。例えば吸気圧が目標吸気圧より高ければノズル弁12はその開度が大きくなるように開弁せしめられる。これによれば排気タービン10の回転数が小さくなるので吸気圧が低下する。斯くして吸気圧が目標吸気圧となる。一方、このノズル弁12の開度制御とは別個に吸気量が機関運転状態に応じて定まる目標吸気量となるようにEGR制御弁25の開度が制御される。例えば吸気量が目標吸気量より多ければEGR制御弁25はその開度が大きくなるように開弁せしめられる。これによれば吸入空気中に流入するEGRガスの量が多くなるので逆に吸気量は少なくなる。斯くして吸気量が目標空気量となる。
【0019】
このようにノズル弁12および圧力センサ16が共に正常である場合には吸気圧Pは図3(A)に示したように排気ターボチャージャ8の排気流速制御機構により目標吸気圧TPに維持される。すなわち吸気圧Pが目標吸気圧TPよりも高くなるとノズル38の流路面積を広げるようにノズル弁12を回動するための信号(以下、ノズル開弁信号)がアクチュエータ39に送信される。すると吸気圧Pは目標吸気圧TPに向かって徐々に低くなり、やがては目標吸気圧TPとなる。一方、吸気圧Pが目標吸気圧TPよりも低くなるとノズル38の流路面積を狭めるようにノズル弁12を回動するための信号(以下、ノズル閉弁信号)がアクチュエータ39に送信される。すると吸気圧Pは目標吸気圧TPに向かって徐々に高くなり、やがては目標吸気圧TPとなる。斯くして吸気圧Pは目標吸気圧TP近傍に維持される。
【0020】
一方、ノズル弁12および圧力センサ16が共に正常である場合には吸気量Gaは図3(C)に示したようにEGR制御弁25の開度制御により目標吸気量TGaに維持される。すなわち吸気量Gaが目標吸気量TGaよりも多くなるとEGR制御弁25の開度を大きくするための信号がアクチュエータ27に送信される。EGR制御弁25の開度が大きくされれば吸気量Gaは目標吸気量TGaに向かって徐々に少なくなり、やがては目標吸気量TGaとなる。一方、吸気量が目標吸気量TGaよりも少なくなるとEGR制御弁25の開度を小さくするための信号がアクチュエータ27に送信される。EGR制御弁25の開度が小さくされれば吸気量Gaは目標吸気量TGaに向かって徐々に多くなり、やがては目標吸気量TGaとなる。斯くして吸気量Gaは目標吸気量TGa近傍に維持される。
【0021】
こうしてノズル弁12および圧力センサ16が共に正常である場合には吸気圧Pがその目標吸気圧TPに維持され、吸気量Gaがその目標吸気量TGaに維持される。したがってノズル弁12および圧力センサ16の故障診断に用いられる各カウンタCpL、CpS、CgaL、CgaS、および各フラグpFc、pFo、Fc、Fo、Fh、Flは全く作動されず、リセットされたままである。
【0022】
ところで上述したように吸気圧が目標吸気圧よりも高くなると吸気圧を下げるために排気ターボチャージャ8のノズル弁12の開度が増大せしめられる。しかしながらノズル弁12が閉弁故障していると吸気圧は目標吸気圧よりも高いままである。また吸気量は吸気圧が高くなると多くなる傾向にあるが実際にはEGR制御弁25の開度制御により目標吸気量に制御される。しかしながらノズル弁12が閉弁故障しているために吸気圧が非常に高くなってしまうとEGR制御弁25の開度を最大としても吸気量を少なくすることができなくなり、吸気量は目標吸気量よりも非常に多くなってしまう。これら吸気圧と吸気量との現象を利用して本実施例では吸気圧が目標吸気圧より予め定められた値以上に高く且つ吸気量が目標吸気量より予め定められた値以上に多いときにはノズル弁12が閉弁故障していると診断する。
【0023】
このように圧力センサ16は正常であるがノズル弁12が閉弁故障している場合にはカウンタやフラグは図4に示したように変化する。吸気圧Pが目標吸気圧TPよりも高くなるとノズル開弁信号がアクチュエータ39に送信される。しかしながらノズル弁12が閉弁故障しているので吸気圧Pは低くならずに引き続き徐々に高くなる。そして吸気圧Pがその目標吸気圧TPよりも予め定められた値ΔPTH以上に高くなると吸気圧過大カウンタCpLがカウントアップせしめられる。
【0024】
一方、吸気量Gaは吸気圧Pが目標吸気圧TPよりも高くなったとしてもEGR制御弁25の開度制御により暫くの間は目標吸気量TGa近傍に維持される。しかしながらEGR制御弁25が全開となった後においては吸気量Gaも目標吸気量TGaよりも多くなってしまう。そして吸気量Gaがその目標吸気量TGaよりも予め定められた値ΔGaTH以上に多くなると吸気量過大カウンタCgaLがカウントアップせしめられる。吸気圧過大カウンタCpLがその閾値CpLTHとなり且つ吸気量過大カウンタCgaLがその閾値CgaLTHとなると予備閉弁故障フラグpFcがセットされ、カウンタCpLおよびCgaLがリセットされる。そしてノズル全開信号がアクチュエータ39に送信される。
【0025】
このようにカウンタCpLおよびCgaLがリセットされ、且つノズル全開信号がアクチュエータ39に送信された後においても図4の場合ではノズル弁12が閉弁故障しているので吸気圧Pは依然としてその目標吸気圧TPよりも予め定められた値ΔPTH以上に高い。このため吸気圧過大カウンタCpLが再びカウントアップされる。また吸気量Gaも依然としてその目標吸気量TGaよりも予め定められた値ΔGaTH以上に多い。このため吸気量過大カウンタCpLが再びカウントアップされる。そして予備閉弁故障フラグpFcがセットされている状態で吸気圧過大カウンタCpLがその閾値CpLTHとなり且つ吸気量過大カウンタCgaLがその閾値CgaLTHとなると閉弁故障フラグFcがセットされ、これらカウンタCpLおよびCgaLがリセットされる。
【0026】
斯くして本実施例によれば閉弁故障フラグFcがセットされたことをもってノズル弁12が閉弁故障していると診断される。なお予備閉弁故障フラグpFcがセットされたときにノズル弁12が閉弁故障していると診断してもよい。しかしながら誤診断を回避するという観点からは本実施例のように予備閉弁故障フラグpFcがセットされた状態において各カウンタCpLおよびCgaLが対応する閾値CpLTHおよびCgaLTHとなったときにノズル弁12が閉弁故障していると診断することが好ましい。また圧力センサ16は高値故障していないので高値故障フラグFhはリセットされたままである。また図4には示していないが上述した以外のカウンタCpS、CgaS、およびフラグpFo、Fo、Flも全く作動されず、リセットされたままである。
【0027】
ところで圧力センサ16が高値故障していると実際の吸気圧(以下、実吸気圧)は高くないものの表示される吸気圧(以下、表示吸気圧)は高い。上述した内燃機関では表示吸気圧に基づいて排気ターボチャージャが制御されるので排気ターボチャージャ8のノズル弁12の開度が増大せしめられる。しかしながらノズル弁12の開度が最大となり、ノズル弁12の開度をそれ以上、増大することができなくなってしまっている場合には依然として目標吸気圧よりも非常に高い吸気圧が表示されることとなる。ところが表示吸気圧は目標吸気圧よりも非常に高いが実吸気圧は目標吸気圧よりも高くなく、むしろノズル弁12の開度は最大であるので目標吸気圧よりもかなり低い。
【0028】
このように実吸気圧が低くなると吸気量は少なくなる傾向にあるがEGR制御弁25の開度制御により目標吸気量に制御されるはずである。しかしながらEGR制御弁25の開度制御により制御可能な範囲を越えてしまうほど実吸気圧が低くなると吸気量は目標吸気量よりも非常に少なくなる。この現象を利用して本実施例では表示吸気圧が目標吸気圧に制御されているものの吸気量が目標吸気量よりも予め定められた値以上に少ないときには圧力センサ16が高値故障していると診断する。
【0029】
このようにノズル弁12は正常であるが圧力センサ16が高値故障している場合にはカウンタやフラグは図5に示したように変化する。吸気圧Pが目標吸気圧TPよりも高くなるとノズル開弁信号がアクチュエータ39に送信される。するとノズル弁12は正常であるので実際の吸気圧Pは低くなるが表示吸気圧Pは徐々に高くなり、その目標吸気圧TPよりも予め定められた値ΔPTH以上に高くなる。したがって吸気圧過大カウンタCpLがカウントアップせしめられる。
【0030】
一方、吸気量Gaは実吸気圧Pが目標吸気圧Pよりも低くなったとしてもEGR制御弁25の開度制御により暫くの間は目標吸気量TGa近傍に維持される。しかしながらEGR制御弁25が全閉となった後においては吸気量Gaも目標吸気量よりも少なくなる。そして吸気量Gaがその目標吸気量TGaよりも予め定められた値ΔGaTH以上に少なくなると吸気量過小カウンタCgaSがカウントアップせしめられる。このため吸気圧過大カウンタCpLがその閾値CpLTHとなり、吸気量過小カウンタCgaSがその閾値CgaSTHとなった場合には圧力センサ16が高値故障していると診断し、高値故障フラグFhがセットされる。
【0031】
斯くして本実施例によれば高値故障フラグFhがセットされたことをもって圧力センサ16が高値故障していることが診断される。なお高値故障フラグFhがセットされた後には実吸気圧Pをその目標吸気圧TPに向かって高くするべくノズル閉弁信号がアクチュエータ39に送信される。またノズル弁12は閉弁故障していないので予備閉弁故障フラグpFcおよび閉弁故障フラグFcはリセットされたままである。また図5には示していないが上述した以外のカウンタCpS、CgaL、およびフラグpFo、Fo、Flも全く作動されず、リセットされたままである。
【0032】
ところで上述したように吸気圧が目標吸気圧よりも低くなると吸気圧を上げるために排気ターボチャージャ8のノズル弁12の開度が減少せしめられる。しかしながらノズル弁12が開弁故障していると吸気圧は目標吸気圧よりも低いままである。また吸気量は吸気圧が低くなると少なくなる傾向にあるが実際にはEGR制御弁25の開度制御により目標吸気量に制御される。しかしながらノズル弁12が開弁故障して吸気圧が非常に低くなってしまうとEGR制御弁25の開度を零としても吸気量を多くすることができなくなり、吸気量は目標吸気量よりも非常に少なくなってしまう。これら吸気圧と吸気量との現象を利用して本実施例では吸気圧が目標吸気圧より予め定められた値以上に低く且つ吸気量が目標吸気量より予め定められた値以上に少ないときにはノズル弁12が開弁故障していると診断する。
【0033】
このように圧力センサ16は正常であるがノズル弁12が開弁故障している場合にはカウンタやフラグは図6に示したように変化する。吸気圧Pが目標吸気圧TPより低くなるとノズル閉弁信号がアクチュエータ39に送信される。しかしながらノズル弁12が開弁故障しているので吸気圧Pは高くならずに引き続き徐々に低くなる。そして吸気圧Pがその目標吸気圧TPよりも予め定められた値ΔPTH以上に低くなると吸気圧過小カウンタCpSがカウントアップせしめられる。
【0034】
一方、吸気量Gaは吸気圧Pが目標吸気圧TPよりも低くなったとしてもEGR制御弁25の開度制御により暫くの間は目標吸気量TGa近傍に維持される。しかしながらEGR制御弁25が全閉となった後においては吸気量Gaも目標吸気量TGaよりも少なくなってしまう。そして吸気量Gaがその目標吸気量TGaよりも予め定められた値ΔGaTH以上に少なくなると吸気量過小カウンタCgaSがカウントアップせしめられる。吸気圧過小カウンタCpSがその閾値CpSTHとなり且つ吸気量過小カウンタCgaSがその閾値CgaSTHとなると予備開弁故障フラグpFoがセットされ、これらカウンタCpSおよびCgaSがリセットされる。またノズル全閉信号がアクチュエータ39に送信される。
【0035】
このようにカウンタCpSおよびCgaSがリセットされ、ノズル全閉信号がアクチュエータ39に送信された後においても図6に示した場合ではノズル弁12が開弁故障しているので吸気圧Pは依然としてその目標吸気圧TPよりも予め定められた値ΔPTH以上に低い。このため吸気圧過小カウンタCpSが再びカウントアップされる。また吸気量Gaも依然としてその目標吸気量TGaよりも予め定められた値ΔGaTH以上に少ない。このため吸気量過小カウンタCpSが再びカウントアップされる。そして予備開弁故障フラグpFoがセットされている状態で吸気圧過小カウンタCpSがその閾値CpSTHとなり且つ吸気量過小カウンタCgaSがその閾値CgaSTHとなると開弁故障フラグFoがセットされ、これらカウンタCpSおよびCgaSがリセットされる。
【0036】
斯くして本実施例によれば開弁故障フラグFoがセットされたことをもってノズル弁12が開弁故障していると診断される。なお予備開弁故障フラグpFoがセットされたときにノズル弁12が開弁故障していると診断してもよい。しかしながら誤診断を回避するという観点からは本実施例のように予備開弁故障フラグpFoがセットされた状態において各カウンタCpSおよびCgaSが対応する閾値CpSTHおよびCgaSTHとなったときにノズル弁12が開弁故障していると診断することが好ましい。また図6の場合には圧力センサ16は低値故障していないので値故障フラグFlはリセットされたままである。また図6には示していないが上述した以外のカウンタCpL、CgaL、およびフラグpFc、Fc、Fhも全く作動されず、リセットされたままである。
【0037】
ところで圧力センサ16が低値故障していると実吸気圧は低くないものの表示吸気圧は低い。このため上述した内燃機関では排気ターボチャージャ8のノズル弁12の開度が減少せしめられる。しかしながらノズル弁12の開度が零となり、ノズル弁12の開度をそれ以上、減少することができなくなってしまっている場合には依然として目標吸気圧よりも非常に低い吸気圧が表示されることとなる。ところが表示吸気圧は目標吸気圧よりも非常に低いが実吸気圧は目標吸気圧よりも低くなく、むしろノズル弁12の開度は零であるので目標吸気圧よりもかなり高い。
【0038】
このように実吸気圧が高くなると吸気量は多くなる傾向にあるがEGR制御弁25の開度制御により目標吸気量に制御されるはずである。しかしながらEGR制御弁25の開度制御により制御可能な範囲を越えてしまうほど実吸気圧が高くなると吸気量は目標吸気量よりも非常に多くなる。この現象を利用して本実施例では表示吸気圧が目標吸気圧に制御されているものの吸気量が目標吸気量よりも予め定められた値以上に多いときには圧力センサ16が低値故障していると診断する。
【0039】
このようにノズル弁12は正常であるが圧力センサ16が低値故障している場合にはカウンタやフラグは図7に示したように変化する。吸気圧Pが目標吸気圧TPよりも低くなるとノズル閉弁信号がアクチュエータ39に送信される。するとノズル弁12は正常であるので実吸気圧Pは高くなるが表示吸気圧Pは徐々に低くなり、その目標吸気圧TPよりも予め定められた値ΔPTH以上に低くなる。したがって吸気圧過小カウンタCpSがカウントアップせしめられる。
【0040】
一方、吸気量Gaは実吸気圧Pが目標吸気圧Pよりも高くなったとしてもEGR制御弁25の開度制御により暫くの間は目標吸気量TGaの近傍に維持される。しかしながらEGR制御弁25が全開となった後においては吸気量Gaも目標吸気量よりも多くなる。そして吸気量Gaがその目標吸気量TGaよりも予め定められた値ΔGaTH以上に多くなると吸気量過大カウンタCgaLはカウントアップせしめられる。このため吸気圧過小カウンタCpSがその閾値CpSTHとなり、吸気量過大カウンタCgaLがその閾値CgaLTHとなった場合には圧力センサ16が低値故障していると診断し、低値故障フラグFlがセットされる。
【0041】
斯くして本実施例によれば低値故障フラグFlがセットされたことをもって圧力センサ16が低値故障していることが診断される。なお低値故障フラグFlがセットされた後には吸気圧Pをその目標吸気圧TPに向かって低くするべくノズル開弁信号がアクチュエータ39に送信される。またノズル弁12は開弁故障していないので予備開弁故障フラグpFoおよび開弁故障フラグFoはリセットされたままである。また図7には示していないが上述した以外のカウンタCpL、CgaS、およびフラグpFc、Fc、Fhも全く作動されず、リセットされたままである。
【0042】
次に本実施例の排気ターボチャージャ故障診断を図8〜図10のフローチャートを参照して説明する。初めにステップ10において圧力センサ16により検出された吸気圧Pと目標吸気圧TPとの差(吸気圧差)ΔPを算出し、次いでステップ11において質量流量計17により検出された吸気量Gaと目標吸気量TGaとの差(吸気量差)ΔGaを算出する。次いでステップ12において吸気量差ΔGaが予め定められた吸気量差ΔGaTHより大きい(ΔGa>ΔGaTH)か否か、すなわち吸気量Gaが目標吸気量TGaよりも予め定められた値ΔGaTH以上に多いか否かが判別される。ステップ12においてΔGa>ΔGaTHであると判別されたときにはステップ13に進んで吸気量過大カウンタCgaLがカウントアップされる。一方、ステップ12においてΔGa≦ΔGaTHであると判別されたときにはステップ16に進んで吸気量過大カウンタCgaLが零とされる。すなわち本例の故障診断では一度でも吸気量が目標吸気量よりも予め定められた値以上に多くなくなれば吸気量過大カウンタがリセットされる。しかしながらステップ16において吸気量過大カウンタをカウントダウンするようにしてもよい。
【0043】
次いでステップ14では吸気量差ΔGaが予め定められた吸気量差ΔGaTHの負の値より小さい(ΔGa<−ΔGaTH)か否か、すなわち吸気量Gaが目標吸気量TGaよりも予め定められた値ΔGaTH以上に少ないか否かが判別される。ステップ12においてΔGa<−ΔGaTHであると判別されたときにはステップ15に進んで吸気量過小カウンタCgaSがカウントアップされる。一方、ステップ14においてΔGa≧−ΔGaTHであると判別されたときにはステップ17に進んで吸気量過小カウンタCgaSが零とされる。すなわち本例の故障診断では一度でも吸気量が目標吸気量よりも予め定められた値以上に少なくなくなれば吸気量過小カウンタがリセットされる。しかしながらステップ17において吸気量過小カウンタをカウントダウンするようにしてもよい。
【0044】
次いでステップ18では吸気圧差ΔPが予め定められた吸気圧差ΔPTHより大きい(ΔP>ΔPTH)か否か、すなわち吸気圧Pが目標吸気圧TPよりも予め定められた値ΔPTH以上に高いか否かが判別される。ステップ18においてΔP>ΔPTHであると判別されたときにはステップ19に進んで吸気圧過大カウンタCpLがカウントアップされ、次いでステップ20以降の処理が実行される。一方、ステップ18においてΔP≦ΔPTHであると判別されたときにはステップ25に進んで吸気圧過大カウンタCpLが零とされる。すなわち本例の故障診断では一度でも吸気圧が目標吸気圧よりも予め定められた値以上に高くなくなれば吸気圧過大カウンタがリセットされる。しかしながらステップ25において吸気圧過大カウンタをカウントダウンするようにしてもよい。さらにステップ25では後述するステップ26においてセットされる予備閉弁故障フラグpFcがリセットされる。次いでステップ29以降の処理が実行される。
ステップ20では吸気圧過大カウンタCpLがその閾値CpLTHより大きい(CpL>CpLTH)か否か、すなわち或る期間に亘って吸気圧Pが目標吸気圧TPよりも予め定められた吸気圧差以上に高い状態が継続したか否かが判別される。ステップ20においてCpL>CpLTHであると判別されたときにはステップ21以降の処理が実行される。一方、ステップ20においてCpL≦CpLTHであると判別されたときには処理が終了せしめられる。
【0045】
ステップ21では吸気量過大カウンタCgaLがその閾値CgaLTHより大きい(CgaL>CgaLTH)か否か、すなわち或る期間に亘って吸気量Gaが目標吸気量TGaよりも予め定められた吸気量差以上に多い状態が継続したか否かが判別される。ステップ21においてCgaL>CgaLTHであると判別されたときには排気ターボチャージャ8のノズル弁12が閉弁故障している可能性があると判断し、ステップ22以降の処理が実行される。一方、ステップ21においてCgaL≦CgaLTHであると判別されたときにはステップ24に進む。処理がステップ24に進む場合とは吸気圧Pが或る期間に亘って目標吸気圧TPより予め定められた吸気圧差以上に高いものの吸気量Gaが上記期間に亘って目標吸気量TGaより予め定められた吸気量差以上に多くない場合である。したがってステップ24では圧力センサ16が高値故障していることを表示する高値故障フラグFhがセットされる。
【0046】
ところで本例によればステップ21においてCgaL>CgaLTHであると判別されたときに直ちにノズル弁12が閉弁故障していると診断してもよいが本例ではステップ22以降の処理により診断の精度を高めている。すなわちノズル弁12が閉弁故障していることを正確に診断するためにはノズル弁12の開度を最大としてもなお吸気圧Pが目標吸気圧TPよりも予め定められた値以上に高く且つ吸気量Gaが目標吸気量TGaよりも予め定められた値以上に多いことを確認する必要がある。そこでステップ22では予備閉弁故障フラグpFcがセットされているか否か、すなわち一度、ステップ22以降の処理が実行されているか否かが判別される。ステップ22において予備閉弁故障フラグpFcがセットされていると判別されたときにはステップ23に進む。処理がステップ23に進む場合とはステップ2以降の処理が一度実行されているにも係わらず吸気圧Pが目標吸気圧TPよりも予め定められた値以上に高く且つ吸気量Gaが目標吸気量TGaよりも予め定められた値以上に多いと判別された場合である。したがってステップ23では閉弁故障フラグFcがセットされる。
【0047】
一方、ステップ22において予備閉弁故障フラグpFcがリセットされていると判別されたときにはステップ26に進んで予備閉弁故障フラグpFcがセットされ、次いでステップ27においてノズル弁12の開度を最大にするための全開信号が発信され、次いでステップ28に進んで吸気圧過大カウンタCpLが零とされると共に吸気量過大カウンタCgaLが零とされる。
【0048】
さてステップ29では吸気圧差ΔPが予め定められた吸気圧差ΔPTHの負の値より小さい(ΔP<−ΔPTH)か否か、すなわち吸気圧Pが目標吸気圧TPよりも予め定められた値ΔPTH以上に低いか否かが判別される。ステップ29においてΔP<−ΔPTHであると判別されたときにはステップ30に進んで吸気圧過小カウンタCpSがカウントアップされ、次いでステップ31以降の処理が実行される。一方、ステップ29においてΔP≧−ΔPTHであると判別されたときにはステップ39に進んで吸気圧過小カウンタCpSが零とされる。すなわち本例の故障診断では一度でも吸気圧が目標吸気圧よりも予め定められた値以上に低くなくなれば吸気圧過小カウンタがリセットされる。しかしながらステップ39において吸気圧過小カウンタをカウントダウンするようにしてもよい。さらにステップ39では後述するステップ36においてセットされる予備開弁故障フラグpFcがリセットされる。次いでステップ40以降の処理が実行される。
【0049】
ステップ20では吸気圧過小カウンタCpSがその閾値CpSTHより大きい(CpS>CpLTH)か否か、すなわち或る期間に亘って吸気圧Pが目標吸気圧TPよりも予め定められた吸気圧差以上に低い状態が継続したか否かが判別される。ステップ32においてCpS>CpLTHであると判別されたときにはステップ32以降の処理が実行される。一方、ステップ31においてCpS≦CpLTHであると判別されたときには処理が終了せしめられる。
【0050】
ステップ32では吸気量過小カウンタCgaSがその閾値CgaSTHより大きい(CgaS>CgaSTH)か否か、すなわち或る期間に亘って吸気量Gaが目標吸気量TGaよりも予め定められた吸気量差以上に少ない状態が継続したか否かが判別される。ステップ32においてCgaS>CgaSTHであると判別されたときには排気ターボチャージャ8のノズル弁12が開弁故障している可能性があると判断し、ステップ33以降の処理が実行される。一方、ステップ32においてCgaS≦CgaSTHであると判別されたときにはステップ35に進む。処理がステップ35に進む場合とは吸気圧Pが或る期間に亘って目標吸気圧TPより予め定められた吸気圧差以上に低いものの吸気量Gaが上記期間に亘って目標吸気量TGaより予め定められた吸気量差以上に少なくない場合である。したがってステップ35では圧力センサ16が低値故障していることを表示する低値故障フラグFlがセットされる。
【0051】
ところで本例によればステップ32においてCgaS>CgaSTHであると判別されたときに直ちにノズル弁12が開弁故障していると診断してもよいが本例ではステップ33以降の処理により診断の精度を高めている。すなわちノズル弁12が開弁故障していることを正確に診断するためにはノズル弁12の開度を零としてもなお吸気圧Pが目標吸気圧TPよりも予め定められた値以上に低く且つ吸気量Gaが目標吸気量TGaよりも予め定められた値以上に少ないことを確認する必要がある。そこでステップ33では予備開弁故障フラグpFoがセットされているか否か、すなわち一度、ステップ32以降の処理が実行されているか否かが判別される。ステップ32において予備開弁故障フラグpFoがセットされていると判別されたときにはステップ34に進む。処理がステップ34に進む場合とはステップ36以降の処理が一度実行されているにも係わらず吸気圧Pが目標吸気圧TPよりも予め定められた値以上に低く且つ吸気量Gaが目標吸気量TGaよりも予め定められた値以上に少ないと判別された場合である。したがってステップ34では開弁故障フラグFoがセットされる。
【0052】
一方、ステップ33において予備開弁故障フラグpFoがリセットされていると判別されたときにはステップ36に進んで予備開弁故障フラグpFoがセットされ、次いでステップ37においてノズル弁12の開度を零にするための全閉信号が発信され、次いでステップ38に進んで吸気圧過小カウンタCpSが零とされると共に吸気量過小カウンタCgaSが零とされる。
【0053】
さてステップ40では吸気量過大カウンタCgaLがその閾値CgaLTHより大きい(CgaL>CgaLTH)か否かが判別される。ステップ40においてCgaL>CgaLTHであると判別されたときにはステップ41に進む。処理がステップ41に進む場合とは吸気圧Pが目標吸気圧TPに制御されているものの吸気量Gaが目標吸気量TGaよりも予め定められた値以上に多い場合である。したがってステップ41では低値故障フラグFlがセットされる。一方、ステップ40においてCgaL≦CgaLTHであると判別されたときにはステップ42に進む。
【0054】
ステップ42では吸気量過小カウンタCgaSがその閾値CgaSTHより大きい(CgaS>CgaSTH)か否かが判別される。ステップ42においてCgaS>CgaSTHであると判別されたときにはステップ43に進む。処理がステップ43に進む場合とは吸気圧Pが目標吸気圧TPに制御されているものの吸気量Gaが目標吸気量TGaよりも予め定められた値以上に少ない場合である。したがってステップ43では高値故障フラグFhがセットされる。
【0055】
なお上記実施例において圧力センサ16と吸気通路2とを接続する配管から吸気が漏洩する故障が生じた場合には吸気圧Pと吸気量Gaとは圧力センサ16が低値故障した場合と同じ挙動を示す。そこで低値故障フラグFlがセットされたときに圧力センサ16が低値故障しているか又は圧力センサ16を吸気通路2に接続する配管に吸気が漏洩する故障が生じていると診断してもよい。また予備閉弁故障フラグpFcをセットしたときにノズル全開信号を発信する代わりに単にノズル弁12の開弁度合いを大きくするための信号を発信してもよい。また予備閉弁故障フラグpFoをセットしたときにノズル全閉信号を発信する代わりに単にノズル弁12の閉弁度合いを大きくするための信号を発信してもよい。
【0056】
また吸気量GaはEGR量Geに応じて変化する。したがってEGR制御弁25が故障していると排気ターボチャージャ8や圧力センサ16が正常であっても吸気量Gaが目標吸気量TGaからずれてしまう。すなわち上記排気ターボチャージャ故障診断はEGR制御弁25が正常であることを前提として成立する。そこで排気ターボチャージャ故障診断の精度を向上するためにEGR制御弁25が正常であることを故障診断を実行する条件としてもよい。なおEGR制御弁25が正常であるか否かは次のようにして診断できる。すなわち吸入量Gaが一定であるとき、特に機関運転がアイドル運転であるときにEGR率Reを変化させる。このときEGR制御弁25が正常であれば吸気量Gaが変化する。したがってEGR率Reを変化させても吸気量Gaに変化がなければEGR制御弁25が故障していると診断することができる。
【0057】
以上、説明した本発明の故障診断の考え方は吸気圧が目標吸気圧になるようにノズル弁の開度を制御し、EGR制御弁の開度を機関回転数と要求負荷とに基づいて算出した開度に制御するようにした内燃機関にも適用することができる。すなわち吸気圧が目標吸気圧よりも高いときにはノズル弁の開度が大きくなるようにし、吸気圧が目標吸気圧よりも低いときにはノズル弁の開度が小さくなるようにし、機関回転数と要求負荷とに応じて定まるEGR制御弁の開度をマップの形で記憶しておき、EGR制御弁の開度がマップから求められた開度になるようにする内燃機関にも本発明を適用することができる。
【0058】
当該内燃機関においてはEGR制御弁の開度と吸気圧とに基づいて吸気量を推定することができる。そこで本発明を当該内燃機関に適用する場合には上記実施例における目標吸気量をこの推定された吸気量(以下、推定吸気量)に置き変えれば上記実施例と同じ方法でノズル弁の開弁故障および閉弁故障、並びに圧力センサの高値故障および低値故障を診断することができる。
【0059】
【発明の効果】
1および2番目の発明によれば、目標吸気圧からの吸気圧のずれと目標吸気量からの吸気量のずれとから、吸気圧出力手段が故障しているか否かだけでなく、該吸気圧出力手段の故障の種類をも特定することができる。
3および4番目の発明によれば、目標吸気圧からの吸気圧のずれと目標吸気量からの吸気量のずれとから、排気ターボチャージャの流速調節手段が故障しているか否かだけでなく、該流速調節手段の故障の種類をも特定することができる。
5および6番目の発明によれば、目標吸気圧からの吸気圧のずれと目標吸気量からの吸気量のずれとから、排気ターボチャージャの流速調節手段が故障しているか否かだけでなく、該流速調節手段の故障の種類をも特定することができると共に、吸気圧出力手段が故障しているか否かだけでなく、該吸気圧出力手段の故障の種類をも特定することができる。
【図面の簡単な説明】
【図1】本発明の排気ターボチャージャ故障診断装置を備えた内燃機関の全体図である。
【図2】排気ターボチャージャの排気ガス流速制御機構を示す図である。
【図3】排気ターボチャージャが正常である場合における各パラメータの変化を示すタイムチャートである。
【図4】排気ターボチャージャが閉弁故障している場合における各パラメータの変化を示すタイムチャートである。
【図5】圧力センサが高値故障している場合における各パラメータの変化を示すタイムチャートである。
【図6】排気ターボチャージャが開弁故障している場合における各パラメータの変化を示すタイムチャートである。
【図7】圧力センサが低値故障している場合における各パラメータの変化を示すタイムチャートである。
【図8】排気ターボチャージャ故障を診断するためのフローチャートの一部である。
【図9】排気ターボチャージャ故障を診断するためのフローチャートの一部である。
【図10】排気ターボチャージャ故障を診断するためのフローチャートの一部である。
【符号の説明】
1…機関本体
6…吸気通路
7…排気通路
8…排気ターボチャージャ
9…コンプレッサ
10…排気タービン
12…ノズル弁
16…圧力センサ
17…質量流量計
35…リング部材
38…ノズル

Claims (8)

  1. 内燃機関から排出される排気ガスにより回転せしめられる排気タービンを排気通路に備えると共に該排気タービンにより作動せしめられるコンプレッサを吸気通路に備え、前記排気タービンを通過する排気ガスの流速を調節するための流速調節手段を備える流速可変式排気ターボチャージャと、前記コンプレッサ下流側における吸気通路内の吸気圧を検出して該検出した吸気圧を出力する吸気圧出力手段と、内燃機関に吸入せしめられる吸気量を検出するための吸気量検出手段とを具備し、前記コンプレッサ下流側における吸気通路内の吸気圧を目標吸気圧とすべく前記排気タービンを通過する排気ガスの流速を調節するようにした内燃機関において、前記吸気圧出力手段から出力される吸気圧の目標吸気圧からのずれと前記吸気量検出手段により検出される吸気量の目標吸気量からのずれとに基づいて前記吸気圧出力手段が故障しているか否かを診断すると共に該吸気圧出力手段の故障の種類をも特定し、排気ガスを排気タービン上流側の排気通路からコンプレッサ下流側の吸気通路内に導入するための排気循環通路を具備し、該排気循環通路を介して吸気通路内に導入せしめられる排気ガスの量を制御することにより前記吸気量を目標吸気量に制御し、前記吸気量検出手段が前記排気循環通路を介して吸気通路内に導入せしめられる排気ガスの量と前記吸気圧出力手段から出力される吸気圧とに基づいて吸気量を算出し、該算出された吸気量を吸気量の検出値とすることを特徴とする故障診断装置。
  2. 内燃機関から排出される排気ガスにより回転せしめられる排気タービンを排気通路に備えると共に該排気タービンにより作動せしめられるコンプレッサを吸気通路に備え、前記排気タービンを通過する排気ガスの流速を調節するための流速調節手段を備える流速可変式排気ターボチャージャと、前記コンプレッサ下流側における吸気通路内の吸気圧を検出して該検出した吸気圧を出力する吸気圧出力手段と、内燃機関に吸入せしめられる吸気量を検出するための吸気量検出手段とを具備し、前記コンプレッサ下流側における吸気通路内の吸気圧を目標吸気圧とすべく前記排気タービンを通過する排気ガスの流速を調節するようにした内燃機関において、前記吸気圧出力手段から出力される吸気圧が目標吸気圧に制御されており且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に少ないときには前記吸気圧出力手段が実際の吸気圧よりも高い値の吸気圧を出力してしまう種類の故障状態にあると診断し、前記吸気圧出力手段から出力される吸気圧が目標吸気圧に制御されており且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に多いときには前記吸気圧出力手段が実際の吸気圧よりも低い値の吸気圧を出力してしまう種類の故障状態にあると診断することを特徴とする故障診断装置。
  3. 内燃機関から排出される排気ガスにより回転せしめられる排気タービンを排気通路に備えると共に該排気タービンにより作動せしめられるコンプレッサを吸気通路に備え、前記排気タービンを通過する排気ガスの流速を調節するための流速調節手段を備える流速可変式排気ターボチャージャと、前記コンプレッサ下流側における吸気通路内の吸気圧を検出して該検出した吸気圧を出力する吸気圧出力手段と、内燃機関に吸入せしめられる吸気量を検出するための吸気量検出手段とを具備し、前記コンプレッサ下流側における吸気通路内の吸気圧を目標吸気圧とすべく前記排気タービンを通過する排気ガスの流速を調節するようにした内燃機関において、前記吸気圧出力手段から出力される吸気圧の目標吸気圧からのずれと前記吸気量検出手段により検出される吸気量の目標吸気量からのずれとに基づいて前記流速調節手段が故障しているか否かを診断すると共に該流速調節手段の故障の種類をも特定することを特徴とする故障診断装置。
  4. 内燃機関から排出される排気ガスにより回転せしめられる排気タービンを排気通路に備えると共に該排気タービンにより作動せしめられるコンプレッサを吸気通路に備え、前記排気タービンを通過する排気ガスの流速を調節するための流速調節手段を備える流速可変式排気ターボチャージャと、前記コンプレッサ下流側における吸気通路内の吸気圧を検出して該検出した吸気圧を出力する吸気圧出力手段と、内燃機関に吸入せしめられる吸気量を検出するための吸気量検出手段とを具備し、前記コンプレッサ下流側における吸気通路内の吸気圧を目標吸気圧とすべく前記排気タービンを通過する排気ガスの流速を調節するようにした内燃機関において、前記吸気圧出力手段から出力される吸気圧が目標吸気圧よりも予め定められた値以上に高く且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に多いときには前記流速調節手段が排気タービンを通過する排気ガスの流速を遅くすることができない種類の故障状態にあると診断し、前記吸気圧出力手段から出力される吸気圧が目標吸気圧よりも予め定められた 値以上に低く且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に少ないときには前記流速調節手段が排気タービンを通過する排気ガスの流速を速くすることができない種類の故障状態にあると診断することを特徴とする故障診断装置。
  5. 内燃機関から排出される排気ガスにより回転せしめられる排気タービンを排気通路に備えると共に該排気タービンにより作動せしめられるコンプレッサを吸気通路に備え、前記排気タービンを通過する排気ガスの流速を調節するための流速調節手段を備える流速可変式排気ターボチャージャと、前記コンプレッサ下流側における吸気通路内の吸気圧を検出して該検出した吸気圧を出力する吸気圧出力手段と、内燃機関に吸入せしめられる吸気量を検出するための吸気量検出手段とを具備し、前記コンプレッサ下流側における吸気通路内の吸気圧を目標吸気圧とすべく前記排気タービンを通過する排気ガスの流速を調節するようにした内燃機関において、前記吸気圧出力手段から出力される吸気圧の目標吸気圧からのずれと前記吸気量検出手段により検出される吸気量の目標吸気量からのずれとに基づいて前記吸気圧出力手段が実際の吸気圧よりも高い値の吸気圧を出力してしまう故障状態にあるのか或いは実際の吸気圧よりも低い値の吸気圧を出力してしまう故障状態にあるのかを診断すると共に前記流速調節手段が排気タービンを通過する排気ガスの流速を遅くすることができない故障状態にあるのか或いは排気タービンを通過する排気ガスの流速を速くすることができない故障状態にあるのかを診断することを特徴とする故障診断装置。
  6. 内燃機関から排出される排気ガスにより回転せしめられる排気タービンを排気通路に備えると共に該排気タービンにより作動せしめられるコンプレッサを吸気通路に備え、前記排気タービンを通過する排気ガスの流速を調節するための流速調節手段を備える流速可変式排気ターボチャージャと、前記コンプレッサ下流側における吸気通路内の吸気圧を検出して該検出した吸気圧を出力する吸気圧出力手段と、内燃機関に吸入せしめられる吸気量を検出するための吸気量検出手段とを具備し、前記コンプレッサ下流側における吸気通路内の吸気圧を目標吸気圧とすべく前記排気タービンを通過する排気ガスの流速を調節するようにした内燃機関において、前記吸気圧出力手段から出力される吸気圧が目標吸気圧に制御されており且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に少ないときには前記吸気圧出力手段が実際の吸気圧よりも高い値の吸気圧を出力してしまう種類の故障状態にあると診断し、前記吸気圧出力手段から出力される吸気圧が目標吸気圧に制御されており且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に多いときには前記吸気圧出力手段が実際の吸気圧よりも低い値の吸気圧を出力してしまう種類の故障状態にあると診断し、前記吸気圧出力手段から出力される吸気圧が目標吸気圧よりも予め定められた値以上に高く且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に多いときには前記流速調節手段が排気タービンを通過する排気ガスの流速を遅くすることができない種類の故障状態にあると診断し、前記吸気圧出力手段から出力される吸気圧が目標吸気圧よりも予め定められた値以上に低く且つ前記吸気量検出手段により検出される吸気量が目標吸気量よりも予め定められた値以上に少ないときには前記流速調節手段が排気タービンを通過する排気ガスの流速を速くすることができない種類の故障状態にあると診断することを特徴とする故障診断装置。
  7. 排気ガスを排気タービン上流側の排気通路からコンプレッサ下流側の吸気通路内に導入するための排気循環通路を具備し、該排気循環通路を介して吸気通路内に導入せしめられる排気ガスの量を制御することにより前記吸気量を目標吸気量に制御することを特徴とする請求項〜6のいずれか1つに記載の故障診断装置。
  8. 前記吸気量検出手段が前記排気循環通路を介して吸気通路内に導入せしめられる排気ガスの量と前記吸気圧出力手段から出力される吸気圧とに基づいて吸気量を算出し、該算出された吸気量を吸気量の検出値とすることを特徴とする請求項7に記載の故障診断装置。
JP2000197893A 2000-06-27 2000-06-27 内燃機関の故障診断装置 Expired - Fee Related JP3797067B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197893A JP3797067B2 (ja) 2000-06-27 2000-06-27 内燃機関の故障診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197893A JP3797067B2 (ja) 2000-06-27 2000-06-27 内燃機関の故障診断装置

Publications (2)

Publication Number Publication Date
JP2002004872A JP2002004872A (ja) 2002-01-09
JP3797067B2 true JP3797067B2 (ja) 2006-07-12

Family

ID=18696154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197893A Expired - Fee Related JP3797067B2 (ja) 2000-06-27 2000-06-27 内燃機関の故障診断装置

Country Status (1)

Country Link
JP (1) JP3797067B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481671A (zh) * 2014-12-06 2015-04-01 李鹏飞 修正式脉冲增压系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10238288B4 (de) * 2002-08-21 2007-05-10 Siemens Ag Verfahren zur Diagnose eines Abgasturboladerstellers
US7353102B2 (en) 2004-05-06 2008-04-01 Kabushiki Kaisha Toyota Jidoshokki Trouble diagnosis apparatus for supercharger of internal combustion engine
KR100801714B1 (ko) * 2006-09-25 2008-02-11 조용성 히트파이프를 이용한 터널 외부 노면의 결빙 방지 시스템
JP2008240576A (ja) * 2007-03-26 2008-10-09 Toyota Motor Corp 過給システムの故障診断装置
US20110153146A1 (en) * 2008-09-08 2011-06-23 Volvo Lastvagnar Ab Method for on board diagnostics and system for on board diagnostics
JP2010096050A (ja) * 2008-10-15 2010-04-30 Denso Corp 過給システムの異常検出装置
KR101231325B1 (ko) 2010-12-06 2013-02-07 기아자동차주식회사 로우 프레셔 이지알 시스템 및 그를 통한 흡기계 누설 감지 방법
JP2013234864A (ja) * 2012-05-07 2013-11-21 Sinto S-Precision Ltd 検査機
CN104454142A (zh) * 2014-12-06 2015-03-25 何卓遥 引入式排气容积可控系统
CN108801641B (zh) * 2018-04-20 2020-03-10 上海船舶运输科学研究所 废气涡轮增压器的故障诊断与可靠性预测方法及其系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104481671A (zh) * 2014-12-06 2015-04-01 李鹏飞 修正式脉冲增压系统

Also Published As

Publication number Publication date
JP2002004872A (ja) 2002-01-09

Similar Documents

Publication Publication Date Title
US9181857B2 (en) Method for operating a turbocharger arrangement and control unit for a turbocharger arrangement
EP1235978B1 (en) Closed loop diesel engine egr control including event monitoring
US7895838B2 (en) Exhaust gas recirculation apparatus of an internal combustion engine and control method thereof
US8635869B2 (en) Turbocharging system for internal combustion engine
US8122870B2 (en) Blowby gas returning apparatus
JP3321837B2 (ja) 車両の診断制御方法
US7762068B2 (en) Control apparatus for internal combustion engine with supercharger
JP4743045B2 (ja) エンジンの過給装置
US7926272B2 (en) Exhaust gas recirculation system for internal combustion engine
US8156925B2 (en) Exhaust gas recirculation system for internal combustion engine
EP2489850B1 (en) Method for operating a turbocharger arrangement and control unit for a turbocharger arrangement
US6802302B1 (en) System for diagnosing EGR flow rate operation
JP2819836B2 (ja) 内燃機関の自己診断装置
US7437874B2 (en) System and method for backpressure compensation for controlling exhaust gas particulate emissions
US6732522B2 (en) System for estimating engine exhaust pressure
EP2333275B1 (en) Control valve abnormality determining device for internal combustion engine
KR100588316B1 (ko) 내연기관의 고장검출장치
JP3951951B2 (ja) 内燃機関の制御装置
US9062596B2 (en) Wastegate valve control device for internal combustion engine and wastegate valve control method for internal combustion engine
KR100500357B1 (ko) 과급압 가변식 과급장치 및 과급장치의 이상 판정 방법
US6925804B2 (en) Method for responding to sensor failures on EGR/VGT engines
JP5293897B2 (ja) 内燃機関の制御装置
JP4306703B2 (ja) 過給機付き内燃機関の制御装置
US6952640B2 (en) Method and arrangement for operating an internal combustion engine
US7000393B1 (en) System and method for relieving engine back-pressure by selectively bypassing a stage of a two-stage turbocharger during non-use of EGR

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees