JP3796029B2 - Waste water treatment apparatus and treatment method using microorganism-immobilized carrier separator - Google Patents

Waste water treatment apparatus and treatment method using microorganism-immobilized carrier separator Download PDF

Info

Publication number
JP3796029B2
JP3796029B2 JP32596097A JP32596097A JP3796029B2 JP 3796029 B2 JP3796029 B2 JP 3796029B2 JP 32596097 A JP32596097 A JP 32596097A JP 32596097 A JP32596097 A JP 32596097A JP 3796029 B2 JP3796029 B2 JP 3796029B2
Authority
JP
Japan
Prior art keywords
carrier
microorganism
treated water
tank
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32596097A
Other languages
Japanese (ja)
Other versions
JPH11156385A (en
Inventor
唯夫 塩谷
行義 末安
樹一郎 岡
博 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP32596097A priority Critical patent/JP3796029B2/en
Publication of JPH11156385A publication Critical patent/JPH11156385A/en
Application granted granted Critical
Publication of JP3796029B2 publication Critical patent/JP3796029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微生物固定化担体分離機(以下、微生物担体分離機、担体分離機又は分離機と略記することがある。)を用いた排水処理装置及び排水処理方法に関する。さらに詳しくは、浮遊流動状態の微生物固定化担体を保有する処理槽および該処理槽からの微生物固定化担体を含む中間処理水を担体分離ゾーンへ導くための傾斜したガイド板と該ガイド板に並行して設けられ、該処理水の流速を加速させるための傾斜邪魔板とからなる流速加速ゾーンを有する微生物固定化担体分離機組み合わせた排水処理装置及び処理方法に関する。
【0002】
【従来の技術】
従来、家庭や農村集落からの廃水、産業排水などの廃水は、本質的に最初沈殿池、曝気槽及び最終沈殿池から構成された処理装置で処理されており、該曝気槽中の活性汚泥によって有機物を分解除去し、最終沈殿池にて活性汚泥を沈降させ、上清を放流する方法が一般的に行われている。
【0003】
近年、活性汚泥処理における処理時間の短縮や処理の安定・高度化のために、排水処理槽内の微生物濃度を高め、微生物の滞留時間を増大させることを目的として、各種高分子、セラミックス、プラスチックス等からなる固定化担体に硝化菌を包括ないし固定化して処理槽に充填して使用する方法や装置が注目されている。この方法や装置によれば、微生物が担体に付着増殖し、廃水処理装置の小型化もはかることができ、一層の検討が進められている。このような装置は本質的に好気性槽からなる処理槽と沈殿槽とから構成されており、その一例を図4及び図5に示す。
【0004】
図4において、排水(被処理水)は排水供給ライン32から、微生物固定化担体6が浮遊流動する処理槽33へ導入されて生物反応が行われる(以下、微生物固定化担体を単に微生物担体という)。処理槽には、微生物担体の流出を防ぐために静置ゾーン仕切板36が設けられる。処理槽は通常は好気性槽(曝気槽)であり、空気35が散気部材34を通して供給される。処理水37は沈殿槽23に排出され、ここで浮遊汚泥や担体から剥離した汚泥などの沈殿物24と浄化処理水26とに分離される。浄化処理水は、必要ならばさらに処理を施して系外へ除去され、沈殿物は沈殿物抜き取りライン25から系外へ抜き出される。図5は、静置ゾーン仕切板の代わりにスクリーン38が使用されている例である。
【0005】
しかしながら、固定化担体に硝化菌などを固定化して微生物担体として使用するために既存の活性汚泥処理設備をこのような目的に適した設備に改造しようとすると、処理槽(曝気槽)を大幅に改造して大きな面積の静置ゾーン仕切板もしくはスクリーンを取り付ける必要があり、改造に大きな手間と費用を必要する。しかも、改造工事を行うには、既存の活性汚泥処理設備を相当な期間運転停止することになり、停止期間中の排水処理も問題となる。
【0006】
また、微生物担体による生物反応を促進するためには、既存の処理槽内で担体を充分に浮遊流動させ、かつ処理水中の溶存酸素量を増加させる必要があり、このため曝気手段の増強も必要であり、曝気用の散気部材の追加設置が必要となる。増強後の曝気量の大きさによっては、曝気強度(処理槽内の単位処理水量に対する曝気量)が過大になることによる過剰流動のため担体表面の微生物が剥離しやすくなり、浮遊汚泥が増加するとともに微細化し、沈殿槽で処理水からの浮遊汚泥の分離が困難になるという問題が生じる。また、この場合も相当な期間運転停止を伴う。
【0007】
一方、仮に既存の活性汚泥設備を改造できたとしても、生物反応によって生じる汚泥が浮遊したり、担体から剥離し、スクリーンに付着して目詰まりを起こすことが多く、設備を正常に維持管理するためには処理層における煩雑なスクリーンの頻繁な清掃を必要とする。また、既存の活性汚泥設備を微生物担体を用いる設備にそのまま変更すると、処理槽内において微生物担体が上流から下流に向かって流れる水流に乗って流下するため、微生物担体が理槽内で下流側へ片寄りが生じ、処理能力の低下をきたすことがある。
【0008】
これを解決するものとして、特開平5−261393号公報に、硝化工程での担体を一旦沈降分離して担体分離工程に導き、分離された担体を硝化工程へ返送するとともに、分離液は脱窒工程へ循環する有機性排水の処理方法が開示されている。この方法によれば、担体分離工程が硝化槽や脱窒槽とは別個に設けられるので、処理槽内へスクリーンを設ける必要はなく、設備の維持管理のために処理槽内のスクリーンを清掃する必要もない。
【0009】
また、特開平7−163995号公報には、反応槽からの流出水を分離装置により泥状物と清澄水とに分離し、反応槽とは別個に該泥状物の残部から微生物固定化担体を分離回収するための装置を設け、回収した微生物固定化担体を前記反応槽に返送する生物処理装置が開示されている。この場合も、担体の分離工程が処理槽とは別個に設けられるので、処理槽内へスクリーンを設ける必要はなく、設備の維持管理のために処理槽内のスクリーンを清掃する必要もない。
【0010】
【発明が解決しようとする課題】
しかしながら、特開平5−261393号に開示された担体分離工程は、液体サイクロンやスクリーンを使用するものであり、液体サイクロンを使用する場合は、担体によるアンダーフロー部の閉塞が起こりやすく、流量分配を調節する必要がある。しかも、閉塞が生じると運転を停止して閉塞を除く必要があり、安定に連続運転することはなかなかむずかしい。また、スクリーンを使用する方法では依然として汚泥による目詰まりが起こりやすく、頻繁なスクリーンの清掃が必要である。また、特開平7−163995号公報に開示された担体分離工程でもスクリーンを使用するので、同様に汚泥による目詰まりが起こりやすく、頻繁なスクリーンの清掃が必要である。したがって、本発明の目的は、微生物担体と処理水との分離が容易で、既存の活性汚泥処理設備を微生物固定化担体を用いる設備に容易に適用しうる微生物固定化担体分離機用いた排水処理装置及び処理方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため鋭意検討を重ね、本発明に至った。すなわち本発明は浮遊流動状態の微生物固定化担体の存在下で排水に微生物を接触させる処理槽並びに該処理槽からの微生物固定化担体を含む中間処理水の導入部、担体と中間処理水とを分離する担体分離ゾーン、分離された担体を返送する担体返送部及び担体を分離した中間処理水を排出する処理水流出部を有する微生物固定化担体分離機を有する排水処理装置であって、該中間処理水導入部の後に、導入された中間処理水を担体分離ゾーンへ導くための傾斜したガイド板と該ガイド板に並行して設けられ、該中間処理水の流速を加速させるための傾斜邪魔板とからなる流速加速ゾーンを該ガイド板と該傾斜邪魔板との間隙が、処理水の流れ方向に向かって漸次小さくなるように設けたことを特徴とする微生物固定化担体分離機と処理槽とを組み合わせた排水処理装置である。
【0013】
また、本発明の別の発明は、微生物固定化担体を用いる生物学的排水処理方法において、浮遊流動状態の微生物固定化担体を保有する処理槽で排水を処理し、該処理槽からの微生物固定化担体を含む中間処理水を傾斜したガイド板へ導くとともに、該ガイド板に並行に設けられた傾斜邪魔板で流速を加速して担体分離ゾーンへ導き、該担体分離ゾーンで担体と中間処理水とを分離し、分離された担体は処理槽へ返送し、担体と分離された中間処理水は処理水流出部から排出させることを特徴とする排水処理方法である。
【0014】
【発明の実施の形態】
以下、本発明に用いられる微生物固定化担体分離機を図によってさらに具体的に説明する。図1は本発明に用いられる微生物固定化担体分離機の一例を示す概略断面図である。1は微生物固定化担体分離機本体、2は担体を分離する前の中間処理水である。4は中間処理水の導入口であり、微生物固定化担体分離機の微生物担体6を含む中間処理水の導入部を構成する。
【0015】
微生物担体としては、菌を固定化できるものであればよく、例えば、ビニルアルコール系樹脂、アクリル系樹脂、アクリルアミド系樹脂、オレフィン系樹脂、スチレン系樹脂、ポリウレタン系樹脂、多糖類、ポリエーテル、多孔性無機化合物などをあげることができる。
【0016】
なかでも、微生物担体としては、菌を付着させた場合、BOD除去能力、硝化能力及び脱窒能力の点で高分子含水ゲルが好ましく、とくにポリビニルアルコールゲルは担体表面及び内部に網目構造を有しているため微生物が棲息しやすく、かつ有機化合物の捕捉性に優れており、しかも機械的強度にも優れているので好ましい。また、ポリビニルアルコールの平均重合度及び/又はケン化度は高い方がポリビニルアルコールの濃度を低下することができ、したがって、微生物の棲息性がよくなり、好ましい。かかる点からポリビニルアルコールの平均重合度は1000以上のものが好ましく、とくに1500以上のものがさらに好ましい。また、ポリビニルアルコールのケン化度は95モル%以上のものが好ましく、とくに98モル%以上のものがさらに好ましい。
【0017】
ポリビニルアルコールの溶出や劣化を防止するために、ポリビニルアルコールをアセタール化するのが望ましい。アセタール化剤としては、ホルマリン、グルタルアルデヒド、グリオキザール、テレフタルアルデヒド、ω,ω'-ノナンジアールなどを例示することができる。ポリビニルホルマールはこのようなアセタール化ポリビニルアルコールの好ましい例である。アセタール化度は、あまり低いと耐水性が低くなり、またあまり高いと疎水化されて微生物の棲息が悪くなるので、10〜60モル%が好ましく、20〜55モル%がさらに好ましい。
【0018】
ポリビニルアルコールのアセタール化を阻害しない範囲で、例えばアルギン酸ナトリウム、カラギーナン、ホウ酸などの成型助剤や炭酸イオン、炭酸水素イオン、硫酸イオン、リン酸イオンなどの2種以上の高分子を相分離させるような1価又は多価アニオンを添加してもよい。アセタール化ポリビニルアルコール系ゲルは、表面が凹凸構造であるとともに、表面から中心部ね連通口を有しているので、微生物が棲息するのに好適である。
【0019】
好ましい含水ゲルは、特願平9−11057号として出願人よりすでに出願されている、表面に平均径10〜100μm及び深さ10〜100μm の凹部を表面の長さ1mmあたり10個以上有し、含水率が50重量%以上であるアセタール化ポリビニルアルコールゲルである。このゲルを製造する方法は、上記明細書に詳述されているが、一例をあげれば、平均重合度1700、ケン化度99.8モル%のポリビニルアルコール8wt%、アルギン酸ナトリウム1wt%、炭酸水素ナトリウム0.3wt%の混合水溶液を調製し、該水溶液を0.1モル/リットルの塩化カルシウム水溶液に滴下することにより、球状成形物として得、しかる後、ホルムアルデヒド20g/リットル、硫酸200g/リットル、硫酸ナトリウム100g/リットルのアセタール化用水溶液に浸漬し、水洗して得ることができる。
【0020】
担体の形状はとくに限定されるものではなく、繊維状、サイコロ状、フィルム状、円柱状、中空円筒状、球状、円盤状などの任意に成型したものを使用することができるが、担体の流動性の点で球状のものが好ましい。硝化菌や脱窒菌などの菌は予め担体に付着させて使用すればよいが、担体を処理槽に投入後、菌の付着を待ってもよい。
【0021】
微生物担体6を含む中間処理水2は中間処理水導入口4から微生物固定化担体分離機へ導入される。微生物担体の中間処理水への充填率は通常5〜30容量%、好ましくは10容量%で実施される。微生物固定化担体分離機の底部は傾斜したガイド板5となっており、ガイド板5と並行に設けられた傾斜邪魔板3とで流速加速ゾーンを構成する。ガイド板は、担体分離機本体の底部を傾斜させてもよいし、担体分離機の内部に傾斜したガイド板を設けてもよい。
【0022】
ガイド板5の水平との角度(図1におけるc)はとくに限定されないが、通常は30度程度に設けられる。傾斜邪魔板3はガイド板5と並行に1枚又は複数枚設けられるが、傾斜邪魔板の少なくとも1枚は中間処理水の流れ方向に向かって流速が速くなるように先端部が狭くなるように設けるのが好ましい。本発明に用いられる微生物固定化担体分離機の大きな特徴はここにあり、図1はこのような例をしめしたものである。傾斜邪魔板3とガイド板との距離(図1におけるb)は、後述する担体分離ゾーンでの微生物担体の流動状態に応じて、担体の大きさや性状に合わせて決められるが、あまり小さいと傾斜邪魔板とガイド板との隙間を閉塞することがあり、またあまり大きいと加速効果が小さく、担体分離ゾーンで渦流が発生せず、微生物担体が底部に沈降、堆積する傾向があるので、1〜10cmに設定するのが好ましい。微生物担体を含む中間処理水は該中間処理水流速加速ゾーンで流速を速められて微生物担体分離ゾーン7へ導かれる。
【0023】
処理水に含有される浮遊汚泥、剥離汚泥は微生物担体の100分の一程度の微細な大きさであり、該汚泥の沈降速度は微生物担体の沈降速度に比して極めて小さいので、本発明に用いられる微生物固定化担体分離機内に滞留している時間内には全く沈降分離されることなく、処理水とともに次の工程に流出される。
【0024】
微生物担体分離ゾーン7において微生物担体6は流動するが、排水のみ越流堰9を越え、さらに波防止板10を潜って処理水流出部の流出口14から沈殿槽などに導かれる。この場合、処理水流出部に計量堰11を設けると流量を簡単に計量することができ、好ましい。中間処理水の流量を調節する必要がある場合は、別途中間処理水流量調節ライン13を設ければよい。微生物担体は担体分離機底部の分離担体抜き出し口12から抜き出され、担体返送部の返送ライン21を通り処理槽へ返送される。担体の抜き出し口12は微生物担体の大きさや性状に合わせて適当な大きさに決められる。
【0025】
担体分離ゾーン7において、図1に示すような担体分離板8を設けると、浄化処理水の流速が速くても、微生物担体が浄化処理水の渦流に同伴されるのを防ぐことができ、好ましい。担体分離板を設ける角度(換言すれば図1における傾斜邪魔板3との距離a)は、微生物固定化担体が担体分離ゾーンから飛び出さないように調節される。中間処理水の流量、微生物固定化担体の大きさや性状などにもよるが、通常は5〜20cm程度に設定される。前述したaとbは、a/b=1〜10、好ましくは3〜5になるように設定すると、微生物担体と中間処理水との分離を効果的に行うことができる。
【0026】
以上のように構成した本発明に用いられる微生物担体分離機は、処理槽や沈殿槽と組み合わせて使用される。処理槽は通常硝化槽などの好気性槽であるが、脱窒槽などの嫌気性槽又はこれらと組み合わせて使用してもよい。図2は、本発明に用いられる微生物担体分離機と、処理槽としての好気性槽及び沈殿槽を組み合わせて使用した例である。排水(被処理水)は排水供給ライン15から微生物担体6が浮遊する好気性槽16へ導入され、散気部材17を通して空気18で曝気処理される。
【0027】
曝気処理された微生物担体6を含む中間処理水19は、ポンプ20で本発明に用いられる担体分離機に導かれ、該担体分離機で微生物担体と中間処理水とに分離され、微生物担体は担体返送ライン21から好気性槽16へ返送される。また、微生物を分離した後の中間処理水は、沈殿槽供給ライン22により沈殿槽23に導かれ、浮遊汚泥や剥離した汚泥などからなる沈殿物24と浄化処理水26とに分離される。沈殿物24は抜き出されて焼却処分などの処理に付され、浄化処理水26は、必要ならばさらに処理を施して系外へ放流される。
【0028】
図3は、本発明に用いられる担体分離機を使用した他の例であり、既存の処理槽内へ曝気用の散気部材の追加設置を必要としない(曝気強度を増大させる必要のない)例である。微生物担体6を含む中間処理水19はポンプ20で本発明に用いられる担体分離機に導かれ、該担体分離機で微生物担体6と中間処理水27とに分離され、微生物担体6は担体返送ライン21から好気性槽16へ返送される。また、微生物を分離した後の中間処理水27は、溶存酸素付加槽28へ導かれ、酸素を付加した後、好気性槽16へ返送される。29はメカニカルエアレーター(機械回転式水中酸素供給機)である。微生物担体は、本発明に用いられる分離機により、中間処理水と分離されてから溶存酸素付加槽に入るので、微生物担体が破壊、摩滅することもない。好気性槽16から抜き出される中間処理水31は、例えば本発明に用いられる微生物担体分離機を使用して図2と同様な方法で処理される。以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。
【0029】
【実施例】
実施例1
30度(図1に示す本発明に用いられる微生物固定化担体分離機における角度c)の角度をなす、幅30cm、長さ110cmの傾斜したガイド板を設け、取付角度が水平方向に対して60度のスライド式傾斜邪魔板及び取付角度が水平方向に対して45度のスライド式担体分離板を備えた高さ60cmの微生物固定化担体分離機に、粒径が4.5mm、比重が1.03のポリビニルアルコール球状含水ゲルを10容量%含む水道水を1000〜5000リットル/時間で供給し、該球状含水ゲルの分離を行った。なお、該球状含水ゲルの静水中での沈降速度は約2cm/秒であった。結果を表1に示すが、連続的に安定した分離が可能であった。
【0030】
【表1】

Figure 0003796029
【0031】
実施例2
株式会社クラレ岡山工場の排水処理槽から採取した活性汚泥(MLSS5000ppm)に3日間浸漬した粒径が4.5mm、比重が1.03のポリビニルアルコール球状含水ゲルを充填率が10容量%になるように、TOC100ppm、アンモニア性窒素50ppmに調整した10m3の排水の入った曝気槽に投入し、実施例1と同じ微生物固定化担体分離機に1000リットル/時で供給した。処理水の水質は、アンモニア性窒素0.0ppm、亜硝酸性窒素0.1ppm、硝酸性窒素6.2ppm、TOC5.5ppmであり、連続して安定に運転することができた。
【0032】
【発明の効果】
本発明により、傾斜したガイド板と該ガイド板に並行に設けられた傾斜邪魔板を備えた微生物固定化担体分離機を用いた排水処理装置を提供することができる。本発明に用いられる微生物固定化担体分離機によれば、スクリーンを使用することなしに微生物担体を処理水から容易に分離することができるので、スクリーンに付着する剥離汚泥などの煩雑な清掃は不要であり、既存の活性汚泥設備と組み合わせて使用することができる。また、処理槽内で微生物担体の片寄りを生ずることもないので、微生物担体を使用する排水処理装置として有用である。
【図面の簡単な説明】
【図1】本発明に用いられる微生物固定化担体分離機の概略を示す断面図である。
【図2】本発明に用いられる微生物固定化担体分離機を使用した排水処理装置の一例である。
【図3】本発明に用いられる微生物固定化担体分離機を使用した排水処理装置の他の例である。
【図4】微生物固定化担体を使用した従来の排水処理装置の一例である。
【図5】微生物固定化担体を使用した従来の排水処理装置の他の例である。
【符号の説明】
1 微生物固定化担体分離機
2 中間処理水(微生物固定化担体分離前)
3 傾斜邪魔板
4 中間処理水導入口
5 ガイド板
6 微生物固定化担体
7 微生物固定化担体分離ゾーン
8 担体分離板
9 越流堰
10 波防止板
11 計量堰
12 分離担体抜き出し口
13 中間処理水流量調節ライン
14 流出口
15 排水供給ライン
16 好気性槽
17 散気部材
18 空気
19 中間処理水(微生物固定化担体分離前)
20 ポンプ
21 担体返送ライン
22 沈殿槽供給ライン
23 沈殿槽
24 沈殿物
25 沈殿物抜き取りライン
26 浄化処理水
27 中間処理水(微生物固定化担体分離後)
28 溶存酸素付加槽
29 メカニカルエアレーター
30 返送中間処理水
31 中間処理水
32 排水供給ライン
33 処理槽
34 散気部材
35 空気
36 静置ゾーン仕切板
37 処理水
38 スクリーン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wastewater treatment apparatus and a wastewater treatment method using a microorganism-immobilized carrier separator (hereinafter sometimes abbreviated as a microorganism carrier separator, a carrier separator, or a separator) . More specifically, a treatment tank holding a microorganism-immobilized carrier in a floating flow state, an inclined guide plate for guiding intermediate treated water containing the microorganism-immobilized carrier from the treatment tank to a carrier separation zone, and a parallel guide plate The present invention relates to a wastewater treatment apparatus and a treatment method, which are combined with a microorganism-immobilized carrier separator having a flow velocity acceleration zone that is provided with an inclined baffle plate for accelerating the flow velocity of the treated water.
[0002]
[Prior art]
Conventionally, wastewater from households and rural villages, industrial wastewater, etc., has been treated by a treatment device consisting essentially of a first settling basin, an aeration tank and a final settling basin, and activated sludge in the aeration tank. A method is generally employed in which organic substances are decomposed and removed, activated sludge is settled in a final sedimentation tank, and the supernatant is discharged.
[0003]
In recent years, various polymers, ceramics and plastics have been used to increase the concentration of microorganisms in the wastewater treatment tank and increase the residence time of microorganisms in order to shorten the treatment time in activated sludge treatment and to stabilize and enhance the treatment. Attention has been focused on a method and apparatus in which a nitrifying bacterium is contained or immobilized on an immobilization carrier made of soot or the like and filled into a treatment tank. According to this method and apparatus, microorganisms adhere to and propagate on the carrier, and the wastewater treatment apparatus can be downsized, and further studies are being made. Such an apparatus is composed of a processing tank and a sedimentation tank which are essentially composed of an aerobic tank, and an example thereof is shown in FIGS.
[0004]
In FIG. 4, wastewater (treated water) is introduced from a wastewater supply line 32 into a treatment tank 33 in which the microorganism-immobilized carrier 6 floats and flows to cause a biological reaction (hereinafter, the microorganism-immobilized carrier is simply referred to as a microorganism carrier). ). The treatment tank is provided with a stationary zone partition plate 36 to prevent the microbial carrier from flowing out. The treatment tank is usually an aerobic tank (aeration tank), and air 35 is supplied through the diffuser member 34. The treated water 37 is discharged into the sedimentation tank 23 where it is separated into a precipitate 24 such as floating sludge and sludge separated from the carrier and the purified treated water 26. If necessary, the purified treated water is further processed and removed from the system, and the precipitate is extracted from the precipitate extraction line 25 to the outside of the system. FIG. 5 shows an example in which a screen 38 is used instead of the stationary zone partition plate.
[0005]
However, if the existing activated sludge treatment facility is modified to a facility suitable for such purpose in order to immobilize nitrifying bacteria on the immobilization carrier and use it as a microorganism carrier, the treatment tank (aeration tank) will be greatly increased. It is necessary to remodel and install a large-area stationary zone partition plate or screen, and remodeling requires great effort and cost. Moreover, in order to carry out the remodeling work, the existing activated sludge treatment facility will be stopped for a considerable period of time, and wastewater treatment during the outage will also be a problem.
[0006]
In addition, in order to promote the biological reaction by the microorganism carrier, it is necessary to sufficiently float the carrier in the existing treatment tank and increase the amount of dissolved oxygen in the treated water. Therefore, it is necessary to additionally install an aeration member for aeration. Depending on the amount of aeration after augmentation, microorganisms on the surface of the carrier are likely to peel off due to excessive flow due to excessive aeration intensity (aeration amount relative to the unit treatment water amount in the treatment tank), and floating sludge increases. A problem arises in that it becomes difficult to separate the suspended sludge from the treated water in the sedimentation tank. Also in this case, the operation is stopped for a considerable period.
[0007]
On the other hand, even if the existing activated sludge equipment can be modified, the sludge produced by biological reactions often floats or peels off from the carrier and adheres to the screen, causing clogging. This requires frequent cleaning of complicated screens in the treatment layer. Also, when an existing activated sludge facility to change it to the equipment using microorganisms carrier, for microbial carrier in the treatment tank flows down riding water flowing from upstream to downstream, the downstream microbial carrier in a processing tank Displacement may occur and processing capacity may be reduced.
[0008]
As a solution to this problem, Japanese Patent Laid-Open No. 5-261393 discloses that the carrier in the nitrification step is once settled and separated and guided to the carrier separation step, the separated carrier is returned to the nitrification step, and the separation liquid is denitrified. A method for treating organic wastewater circulating to the process is disclosed. According to this method, since the carrier separation step is provided separately from the nitrification tank and the denitrification tank, it is not necessary to provide a screen in the treatment tank, and it is necessary to clean the screen in the treatment tank for maintenance of the equipment. Nor.
[0009]
Japanese Patent Laid-Open No. 7-163395 separates effluent water from a reaction tank into sludge and clarified water by a separator, and separates the sludge from the remainder of the sludge separately from the reaction tank. There is disclosed a biological treatment apparatus provided with an apparatus for separating and recovering the microorganisms and returning the recovered microorganism-immobilized carrier to the reaction tank. Also in this case, since the separation process of the carrier is provided separately from the processing tank, it is not necessary to provide a screen in the processing tank, and it is not necessary to clean the screen in the processing tank for maintenance of the equipment.
[0010]
[Problems to be solved by the invention]
However, the carrier separation process disclosed in Japanese Patent Application Laid-Open No. 5-261393 uses a liquid cyclone or a screen. When a liquid cyclone is used, the underflow part is easily clogged by the carrier, and the flow distribution is performed. It needs to be adjusted. In addition, when the blockage occurs, it is necessary to stop the operation and remove the blockage, and it is difficult to perform stable continuous operation. Further, the method using a screen still tends to be clogged with sludge, and frequent screen cleaning is required. In addition, since the screen is used in the carrier separation process disclosed in Japanese Patent Laid-Open No. 7-163395, clogging due to sludge is likely to occur, and frequent screen cleaning is necessary. Accordingly, an object of the present invention are easy to separate the microbial carrier and the treated water was used easily applied to the microbe-immobilized carrier separator can the existing activated sludge treatment facilities equipment using microorganisms immobilized carrier wastewater To provide a processing apparatus and a processing method.
[0011]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies in order to achieve the above object, and have reached the present invention. That is, the present invention is the introduction of intermediate treated water effluent in the presence of a microorganism-immobilized carrier containing a microbe-immobilized carrier from the processing vessel and the processing vessel is brought into contact with microorganisms floating fluid state, the carrier and the intermediate processing water A wastewater treatment device having a microorganism-immobilized carrier separator having a carrier separation zone for separating the separated carrier, a carrier returning portion for returning the separated carrier, and a treated water outflow portion for discharging intermediate treated water from which the carrier has been separated, An inclined guide plate for guiding the introduced intermediate treated water to the carrier separation zone after the intermediate treated water introduction portion and a guide plate for accelerating the flow rate of the intermediate treated water are provided in parallel with the guide plate. A microorganism-immobilized carrier separator and a treatment tank, characterized in that a flow velocity acceleration zone comprising a plate is provided so that a gap between the guide plate and the inclined baffle plate gradually decreases in the direction of the treated water flow A wastewater treatment device combining.
[0013]
Another aspect of the present invention is a biological wastewater treatment method using a microorganism-immobilized carrier, wherein wastewater is treated in a treatment tank having a microorganism-immobilized carrier in a floating flow state, and the microorganism is immobilized from the treatment tank. The intermediate treated water containing the activated carrier is guided to the inclined guide plate, and the flow velocity is accelerated by the inclined baffle plate provided in parallel to the guide plate, and the flow is guided to the carrier separation zone. And the separated carrier is returned to the treatment tank, and the intermediate treated water separated from the carrier is discharged from the treated water outflow portion.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the microorganism-immobilized carrier separator used in the present invention will be described more specifically with reference to the drawings. FIG. 1 is a schematic sectional view showing an example of a microorganism-immobilized carrier separator used in the present invention. Reference numeral 1 is a microorganism-immobilized carrier separator main body, and 2 is intermediate treated water before the carrier is separated. 4 is an inlet for intermediate treated water, and constitutes an inlet for intermediate treated water containing the microorganism carrier 6 of the microorganism-immobilized carrier separator.
[0015]
Any microorganism carrier may be used as long as it can immobilize bacteria. For example, vinyl alcohol resin, acrylic resin, acrylamide resin, olefin resin, styrene resin, polyurethane resin, polysaccharide, polyether, porous And inorganic inorganic compounds.
[0016]
Among them, the microbial carrier is preferably a polymer hydrous gel in terms of BOD removal ability, nitrification ability, and denitrification ability when bacteria are attached, and in particular, polyvinyl alcohol gel has a network structure on the surface and inside of the carrier. Therefore, it is preferable because microorganisms are easily inhabited, organic compounds are easily captured, and mechanical strength is also excellent. Moreover, the higher the average degree of polymerization and / or saponification degree of polyvinyl alcohol, the lower the concentration of polyvinyl alcohol, and the better the habitation of microorganisms. In view of this, the average degree of polymerization of polyvinyl alcohol is preferably 1000 or more, more preferably 1500 or more. The saponification degree of polyvinyl alcohol is preferably 95 mol% or more, more preferably 98 mol% or more.
[0017]
In order to prevent elution and deterioration of polyvinyl alcohol, it is desirable to acetalize polyvinyl alcohol. Examples of the acetalizing agent include formalin, glutaraldehyde, glyoxal, terephthalaldehyde, ω, ω′-nonane dial and the like. Polyvinyl formal is a preferred example of such an acetalized polyvinyl alcohol. If the degree of acetalization is too low, the water resistance becomes low, and if it is too high, it becomes hydrophobic and the microbial habits worsen, so 10 to 60 mol% is preferable, and 20 to 55 mol% is more preferable.
[0018]
Phase separation of molding aids such as sodium alginate, carrageenan, and boric acid, and two or more polymers such as carbonate ion, hydrogen carbonate ion, sulfate ion, and phosphate ion within a range that does not inhibit the acetalization of polyvinyl alcohol Such monovalent or polyvalent anions may be added. The acetalized polyvinyl alcohol-based gel has a concavo-convex structure on the surface and has a communication port at the center from the surface, and is therefore suitable for microorganisms to inhabit.
[0019]
A preferred hydrogel has already been filed by the applicant as Japanese Patent Application No. 9-11057, and has 10 or more concave portions with an average diameter of 10 to 100 μm and a depth of 10 to 100 μm on the surface per 1 mm of the surface length, It is an acetalized polyvinyl alcohol gel having a water content of 50% by weight or more. The method for producing this gel is described in detail in the above specification. For example, polyvinyl alcohol having an average polymerization degree of 1700, a saponification degree of 99.8 mol%, 8 wt% of sodium alginate, 1 wt% of sodium alginate, hydrogen carbonate A mixed aqueous solution of 0.3 wt% sodium was prepared, and the aqueous solution was dropped into a 0.1 mol / liter calcium chloride aqueous solution to obtain a spherical molded product. Thereafter, formaldehyde 20 g / liter, sulfuric acid 200 g / liter, It can be obtained by immersing in an aqueous solution for acetalization of 100 g / liter of sodium sulfate and washing with water.
[0020]
The shape of the carrier is not particularly limited, and any shape such as a fiber shape, a dice shape, a film shape, a columnar shape, a hollow cylindrical shape, a spherical shape, or a disk shape can be used. Spherical ones are preferable in terms of properties. Bacteria such as nitrifying bacteria and denitrifying bacteria may be used after being attached to a carrier in advance, but after the carrier is put into the treatment tank, the bacteria may wait for adhesion.
[0021]
The intermediate treated water 2 containing the microorganism carrier 6 is introduced from the intermediate treated water inlet 4 into the microorganism-immobilized carrier separator. The filling rate of the microbial carrier into the intermediate treated water is usually 5 to 30% by volume, preferably 10% by volume. The bottom of the microorganism-immobilized carrier separator is an inclined guide plate 5, and the inclined baffle plate 3 provided in parallel with the guide plate 5 constitutes a flow velocity acceleration zone. The guide plate may be inclined at the bottom of the carrier separator body or may be provided with an inclined guide plate inside the carrier separator.
[0022]
The angle with respect to the horizontal of the guide plate 5 (c in FIG. 1) is not particularly limited, but is usually provided at about 30 degrees. One or more inclined baffle plates 3 are provided in parallel with the guide plate 5, but at least one of the inclined baffle plates has a narrow tip so that the flow velocity increases in the direction of the intermediate treated water flow. It is preferable to provide it. This is the main feature of the microorganism-immobilized carrier separator used in the present invention , and FIG. 1 shows such an example. The distance (b in FIG. 1) between the inclined baffle plate 3 and the guide plate is determined according to the size and properties of the carrier according to the flow state of the microorganism carrier in the carrier separation zone, which will be described later. The gap between the baffle plate and the guide plate may be blocked, and if it is too large, the acceleration effect is small, no vortex flow is generated in the carrier separation zone, and the microbial carrier tends to settle and deposit on the bottom. It is preferable to set it to 10 cm. The intermediate treated water containing the microorganism carrier is guided to the microorganism carrier separation zone 7 with the flow velocity increased in the intermediate treated water flow velocity acceleration zone.
[0023]
Floating sludge contained in the treated water, peeled sludge is about one minute size of 100 minutes microbial carrier, since sedimentation rate of sludge is extremely small compared to the settling velocity of the microorganisms carrier, the present invention In the period of staying in the microorganism-immobilized carrier separator to be used , it is discharged to the next step together with the treated water without being settled and separated at all.
[0024]
The microbial carrier 6 flows in the microbial carrier separation zone 7, but only the drainage passes over the overflow weir 9, further dives through the wave prevention plate 10, and is led from the outlet 14 of the treated water outflow portion to the precipitation tank or the like. In this case, it is preferable to provide the measurement weir 11 in the treated water outflow part because the flow rate can be easily measured. When it is necessary to adjust the flow rate of the intermediate treated water, the intermediate treated water flow rate adjustment line 13 may be provided separately. The microbial carrier is extracted from the separation carrier extraction port 12 at the bottom of the carrier separator, and returned to the treatment tank through the return line 21 of the carrier return unit. The carrier outlet 12 is appropriately sized according to the size and properties of the microbial carrier.
[0025]
When the carrier separation plate 8 as shown in FIG. 1 is provided in the carrier separation zone 7, it is possible to prevent the microbial carrier from being entrained in the swirl of the purified water even if the flow rate of the purified water is high. . The angle at which the carrier separation plate is provided (in other words, the distance a from the inclined baffle plate 3 in FIG. 1) is adjusted so that the microorganism-immobilized carrier does not jump out of the carrier separation zone. Although it depends on the flow rate of the intermediate treated water and the size and properties of the microorganism-immobilized carrier, it is usually set to about 5 to 20 cm. When a and b described above are set so that a / b = 1 to 10, preferably 3 to 5, separation of the microbial carrier and the intermediate treated water can be effectively performed.
[0026]
The microorganism carrier separator used in the present invention configured as described above is used in combination with a treatment tank or a precipitation tank. The treatment tank is usually an aerobic tank such as a nitrification tank, but may be used in combination with an anaerobic tank such as a denitrification tank. FIG. 2 shows an example in which the microorganism carrier separator used in the present invention is used in combination with an aerobic tank and a sedimentation tank as processing tanks. Waste water (treated water) is introduced from the waste water supply line 15 to the aerobic tank 16 in which the microorganism carrier 6 floats, and is aerated with air 18 through the air diffuser 17.
[0027]
The intermediate treated water 19 containing the aerated microbial carrier 6 is guided to a carrier separator used in the present invention by a pump 20 and separated into a microbial carrier and intermediate treated water by the carrier separator, and the microbial carrier is a carrier. It is returned from the return line 21 to the aerobic tank 16. In addition, the intermediate treated water after separating the microorganisms is guided to the settling tank 23 by the settling tank supply line 22 and separated into the precipitate 24 and the purified treated water 26 made of floating sludge and exfoliated sludge. The precipitate 24 is extracted and subjected to treatment such as incineration, and the purified treated water 26 is further treated if necessary and discharged outside the system.
[0028]
FIG. 3 is another example using the carrier separator used in the present invention , and does not require additional installation of an aeration member for aeration in an existing processing tank (no need to increase aeration intensity). It is an example. The intermediate treated water 19 containing the microbial carrier 6 is guided to the carrier separator used in the present invention by the pump 20 and separated into the microbial carrier 6 and the intermediate treated water 27 by the carrier separator, and the microbial carrier 6 is fed to the carrier return line. 21 is returned to the aerobic tank 16. Further, the intermediate treated water 27 after separating the microorganisms is guided to the dissolved oxygen addition tank 28, added with oxygen, and then returned to the aerobic tank 16. Reference numeral 29 denotes a mechanical aerator (a mechanical rotating underwater oxygen supply machine). Since the microbial carrier is separated from the intermediate treated water by the separator used in the present invention and then enters the dissolved oxygen addition tank, the microbial carrier is not destroyed or worn out. The intermediate treated water 31 withdrawn from the aerobic tank 16 is treated in the same manner as in FIG. 2 using , for example, the microorganism carrier separator used in the present invention. EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[0029]
【Example】
Example 1
An inclined guide plate having a width of 30 cm and a length of 110 cm is provided at an angle of 30 degrees (angle c in the microorganism-immobilized carrier separator used in the present invention shown in FIG. 1), and the mounting angle is 60 with respect to the horizontal direction. A 60 cm-high microorganism-immobilized carrier separator equipped with a slide-type inclined baffle plate having a height of 45 degrees and a slide-type carrier separator having a mounting angle of 45 degrees with respect to the horizontal direction has a particle diameter of 4.5 mm and a specific gravity of 1. Tap water containing 10% by volume of 03 polyvinyl alcohol spherical water-containing gel was supplied at 1000 to 5000 liters / hour to separate the spherical water-containing gel. The sedimentation speed of the spherical hydrous gel in still water was about 2 cm / second. The results are shown in Table 1, and continuous and stable separation was possible.
[0030]
[Table 1]
Figure 0003796029
[0031]
Example 2
A polyvinyl alcohol spherical hydrous gel with a particle size of 4.5 mm and a specific gravity of 1.03 soaked in activated sludge (MLSS 5000 ppm) collected from a wastewater treatment tank of the Kuraray Okayama Factory, Ltd. for 3 days so that the filling rate is 10% by volume. Into an aeration tank containing 10 m 3 of wastewater adjusted to TOC 100 ppm and ammonia nitrogen 50 ppm, the same microorganism-immobilized carrier separator as in Example 1 was supplied at 1000 liters / hour. The water quality of the treated water was ammonia nitrogen 0.0 ppm, nitrite nitrogen 0.1 ppm, nitrate nitrogen 6.2 ppm, TOC 5.5 ppm, and could be continuously operated stably.
[0032]
【The invention's effect】
ADVANTAGE OF THE INVENTION By this invention, the waste water treatment apparatus using the microorganisms fixed support | carrier separator provided with the inclined guide plate and the inclination baffle plate provided in parallel with this guide plate can be provided. According to the microorganism-immobilized carrier separator used in the present invention , since the microorganism carrier can be easily separated from the treated water without using a screen, complicated cleaning such as exfoliated sludge adhering to the screen is unnecessary. It can be used in combination with existing activated sludge equipment. Further, since the microbial carrier is not displaced in the treatment tank, it is useful as a waste water treatment apparatus using the microbial carrier.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a microorganism-immobilized carrier separator used in the present invention.
FIG. 2 is an example of a wastewater treatment apparatus using a microorganism-immobilized carrier separator used in the present invention.
FIG. 3 is another example of a wastewater treatment apparatus using the microorganism-immobilized carrier separator used in the present invention.
FIG. 4 is an example of a conventional wastewater treatment apparatus using a microorganism-immobilized carrier.
FIG. 5 is another example of a conventional wastewater treatment apparatus using a microorganism-immobilized carrier.
[Explanation of symbols]
1 Microbe-immobilized carrier separator 2 Intermediate treated water (before separation of microorganism-immobilized carrier)
3 Inclined baffle plate 4 Intermediate treatment water inlet 5 Guide plate 6 Microorganism immobilization carrier 7 Microorganism immobilization carrier separation zone 8 Carrier separation plate 9 Overflow weir 10 Wave prevention plate 11 Weighing plate 12 Separation carrier extraction port 13 Intermediate treatment water flow rate Control line 14 Outlet 15 Drain supply line 16 Aerobic tank 17 Aeration member 18 Air 19 Intermediate treated water (before separation of microorganism-immobilized carrier)
20 Pump 21 Carrier return line 22 Precipitation tank supply line 23 Precipitation tank 24 Precipitate 25 Precipitate removal line 26 Purified treated water 27 Intermediate treated water (after separation of microorganism-immobilized carrier)
28 Dissolved oxygen addition tank 29 Mechanical aerator 30 Return intermediate treated water 31 Intermediate treated water 32 Waste water supply line 33 Treated tank 34 Aeration member 35 Air 36 Static zone partition plate 37 Treated water 38 Screen

Claims (7)

少なくとも、浮遊流動状態の微生物固定化担体の存在下で排水に微生物を接触させる処理槽並びに該処理槽からの微生物固定化担体を含む中間処理水の導入部、担体と中間処理水とを分離する担体分離ゾーン、分離された担体を返送する担体返送部及び担体を分離した中間処理水を排出する処理水流出部を有する微生物固定化担体分離機を有する排水処理装置であって、該中間処理水導入部の後に、導入された中間処理水を担体分離ゾーンへ導くための傾斜したガイド板と該ガイド板に並行して設けられ、該中間処理水の流速を加速させるための傾斜邪魔板とからなる流速加速ゾーンを該ガイド板と該傾斜邪魔板との間隙が、処理水の流れ方向に向かって漸次小さくなるように設けたことを特徴とする微生物固定化担体分離機と処理槽とを組み合わせた排水処理装置。  At least, a treatment tank in which microorganisms are brought into contact with wastewater in the presence of a microorganism-immobilized carrier in a floating flow state, an introduction portion of intermediate treatment water containing the microorganism-immobilized carrier from the treatment tank, and the carrier and the intermediate treatment water are separated. A wastewater treatment apparatus having a microorganism-immobilized carrier separator having a carrier separation zone, a carrier return part for returning the separated carrier, and a treated water outflow part for discharging the intermediate treated water from which the carrier has been separated. After the introduction part, an inclined guide plate for guiding the introduced intermediate treated water to the carrier separation zone and an inclined baffle plate provided in parallel to the guide plate for accelerating the flow rate of the intermediate treated water The microorganisms-immobilized carrier separator and the treatment tank are combined so that a gap between the guide plate and the inclined baffle plate is gradually reduced in the flow direction of the treated water. The combined waste water treatment equipment. 該ガイド板と該傾斜邪魔板先端部の間隙が1cm〜10cmである請求項1の排水処理装置。    The waste water treatment apparatus according to claim 1, wherein a gap between the guide plate and the tip of the inclined baffle plate is 1 cm to 10 cm. 該担体分離ゾーンに、微生物固定化担体の上昇速度が該担体の沈降速度を越えないように担体分離板を設けた請求項1又は2のいずれか1項の排水処理装置。  The wastewater treatment apparatus according to claim 1, wherein a carrier separation plate is provided in the carrier separation zone so that the ascending speed of the microorganism-immobilized carrier does not exceed the sedimentation speed of the carrier. 処理水流出部に計量堰を設けた請求項1〜3いずれか1項の排水処理装置。  The wastewater treatment apparatus according to any one of claims 1 to 3, wherein a measuring weir is provided in the treated water outflow portion. 該微生物固定化担体がポリビニルアルコール系の含水ゲルである請求項1〜4いずれか1項の排水処理装置。  The wastewater treatment apparatus according to any one of claims 1 to 4, wherein the microorganism-immobilized carrier is a polyvinyl alcohol-based hydrogel. 該処理槽が脱窒槽及び/又は硝化槽である請求項1〜5いずれか1項の排水処理装置。  The wastewater treatment apparatus according to any one of claims 1 to 5, wherein the treatment tank is a denitrification tank and / or a nitrification tank. 微生物固定化担体を用いる生物学的排水処理方法において、浮遊流動状態の微生物固定化担体を保有する処理槽で排水を処理し、該処理槽からの微生物固定化担体を含む中間処理水を傾斜したガイド板へ導くとともに、該ガイド板に並行に設けられた傾斜邪魔板で流速を加速して担体分離ゾーンへ導き、該担体分離ゾーンで担体と中間処理水とを分離し、分離された担体は処理槽へ返送し、担体と分離された中間処理水は処理水流出部から排出させることを特徴とする排水処理方法。In a biological wastewater treatment method using a microorganism-immobilized carrier, wastewater is treated in a treatment tank having a microorganism-immobilized carrier in a floating flow state, and intermediate treated water containing the microorganism-immobilized carrier from the treatment tank is inclined. In addition to guiding to the guide plate, the inclined baffle plate provided in parallel to the guide plate accelerates the flow velocity to the carrier separation zone, and the carrier separation zone separates the carrier and the intermediate treatment water, and the separated carrier is A wastewater treatment method characterized in that the intermediate treated water returned to the treatment tank and separated from the carrier is discharged from the treated water outflow part.
JP32596097A 1997-11-27 1997-11-27 Waste water treatment apparatus and treatment method using microorganism-immobilized carrier separator Expired - Fee Related JP3796029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32596097A JP3796029B2 (en) 1997-11-27 1997-11-27 Waste water treatment apparatus and treatment method using microorganism-immobilized carrier separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32596097A JP3796029B2 (en) 1997-11-27 1997-11-27 Waste water treatment apparatus and treatment method using microorganism-immobilized carrier separator

Publications (2)

Publication Number Publication Date
JPH11156385A JPH11156385A (en) 1999-06-15
JP3796029B2 true JP3796029B2 (en) 2006-07-12

Family

ID=18182528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32596097A Expired - Fee Related JP3796029B2 (en) 1997-11-27 1997-11-27 Waste water treatment apparatus and treatment method using microorganism-immobilized carrier separator

Country Status (1)

Country Link
JP (1) JP3796029B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI235284B (en) * 1999-03-17 2005-07-01 Winbond Electronics Corp Photoresist supply device
JP4049577B2 (en) * 2001-12-05 2008-02-20 日本エンバイロケミカルズ株式会社 Water treatment carrier, production method thereof and water treatment apparatus
JP2012254412A (en) * 2011-06-09 2012-12-27 Kurita Water Ind Ltd Method and apparatus for biologically treating organic wastewater
NZ758065A (en) 2013-10-22 2022-08-26 Nuvoda Llc Reduction of substances in contaminated fluids using a naturally occurring biological growth media
JP6811360B2 (en) * 2018-06-29 2021-01-13 株式会社クラレ Water treatment method

Also Published As

Publication number Publication date
JPH11156385A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
EP0323705B1 (en) Two-stage wastewater treatment process
JPH06285496A (en) Hollow fiber membrane separation biological treatment and device for organic drainage
HU222677B1 (en) Method and apparatus for sewage water treatment
CN107151053A (en) A kind of aerobic membrane module processing unit of anoxic anaerobic/anoxic
JPH07155758A (en) Waste water treating device
CN107473378A (en) The aerobic membrane module processing method of anoxic anaerobic/anoxic
JP2009039700A (en) Method for biological waste water treatment
JP3796029B2 (en) Waste water treatment apparatus and treatment method using microorganism-immobilized carrier separator
KR100972395B1 (en) Advanced treatment apparatus and method for waste water
US4913820A (en) Organic sewage treatment process
KR101037888B1 (en) Hybrid wastewater treatment equipment with sedimentation, biological degradation, filtration, phosphorus removal and uv disinfection system in a reactor
CN206940544U (en) A30+MBR processing units
KR19980019270A (en) Treatment method of waste water using separate-type septic tank
JPH10296283A (en) Carrier separating method for biological reaction tank using carrier combinedly
KR20030004006A (en) Tertiary sewage treatment apparatus and method using porous filtering media
JP2005074357A (en) Membrane washing method in membrane separation activated sludge method
JP3395927B2 (en) Biological treatment method and apparatus using microorganism-adhered carrier
CN214244124U (en) Oily wastewater treatment system
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JP3666064B2 (en) Wastewater treatment equipment
JP3627402B2 (en) Wastewater treatment method using microorganism-immobilized carrier
KR950005759A (en) High efficiency improved aerobic livestock septic tank
JP2590474B2 (en) Wastewater treatment method
US20060266704A1 (en) Biological filtration module for use within a wastewater treatment system
CN218089275U (en) Wash processing system who moulds waste water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees