JP3792981B2 - Chlorine concentration measuring device - Google Patents

Chlorine concentration measuring device Download PDF

Info

Publication number
JP3792981B2
JP3792981B2 JP2000080144A JP2000080144A JP3792981B2 JP 3792981 B2 JP3792981 B2 JP 3792981B2 JP 2000080144 A JP2000080144 A JP 2000080144A JP 2000080144 A JP2000080144 A JP 2000080144A JP 3792981 B2 JP3792981 B2 JP 3792981B2
Authority
JP
Japan
Prior art keywords
electrode
chlorine concentration
plating solution
chlorine
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000080144A
Other languages
Japanese (ja)
Other versions
JP2001264290A (en
Inventor
信之 市枝
哲夫 田中
保▲廣▼ 溝畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2000080144A priority Critical patent/JP3792981B2/en
Publication of JP2001264290A publication Critical patent/JP2001264290A/en
Application granted granted Critical
Publication of JP3792981B2 publication Critical patent/JP3792981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電解メッキ液等のメッキ液中に含まれている、遊離している塩素の濃度を測定する塩素濃度測定装置に関する。
【0002】
【従来の技術】
従来からメッキ液中の塩素の濃度を測定する塩素濃度測定装置として、特開平8−313481号公報に記載されたものが知られている。
【0003】
図8は、従来の塩素濃度測定装置を示す概略図である。この塩素濃度測定装置はメッキ液中の塩素の濃度を測定する2電極式の測定装置である。
【0004】
この塩素濃度測定装置において、符号102はフローセルであり、このフローセル102の下側にはメッキ液入口104が形成され、横側にはメッキ液出口106が形成されている。フローセル102にはメッキ液108が導入されており、このメッキ液108には円柱形の検出極支持体110が浸漬されており、この検出極支持体110の外周面には円形の検出極(白金電極)112が取り付けられている。また、このメッキ液108には円柱形の対極支持体114が浸漬されており、この検出極支持体114の外周面には円形の対極(銀/塩化銀電極)116が取り付けられている。なお、符号118は検出極回転モータ、符号120は加電圧回路、符号122は電流計を示している。
【0005】
フローセル102内は、仕切り124によって検出極室126と対極室128とに仕切られており、検出室126内のメッキ液中には検出極洗浄用のビーズ(図示せず)が投入されている。
【0006】
なお、従来の塩素濃度測定装置を用いて塩素の濃度を測定する場合、モータ118の作動によって検出極支持体110を回転させ、これにより検出極112を回転させる。そして、加電圧回路120によって検出極112と対極116との間に測定電圧を印加し、このとき検出極112と対極116との間に流れる測定電流iを電流計122で検出する。
【0007】
【発明が解決しようとする課題】
しかしながら、従来の塩素濃度測定装置では、対極(銀/塩化銀電極)116が電位の基準を与える基準(参照)極の役割を兼ねているため、電流が流れることで対極116の電位がずれ、正確に電位を印加することが困難である。
【0008】
また、従来の塩素濃度測定装置では、測定電流を0.2μA以下に制限することで、この誤差を軽減しているが、小さい電流しか流せないといったように、測定法自体が制限を受けてしまう。さらに、例え、微弱な電流であっても繰り返し流れることで、対極(銀/塩化銀電極)116が劣化してしまい、銀/塩化銀電極が劣化してしまうことになる。
【0009】
本発明は、かかる事情に鑑みてなされたものであって、銀/塩化銀電極の劣化に起因する測定誤差を排して塩素濃度の測定を正確に行える塩素濃度測定装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上述した課題を解決するために、請求項記載の塩素濃度測定装置は、メッキ液中に含まれている塩素の濃度を測定する塩素濃度測定装置において、メッキ液を収容する収容器と、前記収容器内に配置される対極と、前記収容器内に配置される作用電極と、前記収容器内に配置される基準電極と、前記基準電極に対する前記作用電極の電位が所定の電位になるように、前記作用電極と前記対極との間に電流を流す電源と、前記作用電極と前記対極との間に流れた電流値に基づいて、メッキ液の塩素濃度を求める制御手段と、を備え、前記制御手段は、前記基準電極に対する前記作用電極の電圧を掃引すべく前記電源を制御する手段と、前記電圧の掃引時に前記作用電極と前記対極との間に流れる電流値を記録する記録手段と、塩素濃度が異なる複数の較正用メッキ液について前記記録手段によって記録される電流値と塩素濃度との相関を記録する相関記録手段と、この相関記録手段によって記録された相関に基づいて作成される較正曲線を記憶する手段と、塩素濃度が未知のメッキ液について前記記録手段によって記録される電流値および前記較正曲線に基づいて当該メッキ液の塩素濃度を求める手段とを含むことを特徴とするものである。
また、請求項に記載の塩素濃度測定装置は、請求項1に記載の塩素濃度測定装置において、前記作用電極を回転させる駆動手段をさらに備えたことを特徴とするものである。
【0012】
さらに、請求項に記載の塩素濃度測定装置は、請求項1または2に記載の塩素濃度測定装置において、前記作用電極が、平滑な電極表面を有することを特徴とするものである。
【0013】
【発明の実施の形態】
以下、図面を参照して本発明に係る塩素濃度測定方法の実施の形態を説明する。
【0014】
図1は、本発明の実施の形態に係る塩素濃度測定装置の概略構成図である。塩素濃度測定装置は、測定セル1を備えており、この測定セル1の中には硫酸銅メッキ液(以下、単にメッキ液とする)が満たされている。この測定セル1内には、対極2と、作用電極3と、基準電極4とがそれぞれ設けられている。この対極2には、銅電極(Cu)、白金電極(Pt)あるいはステンレス(SUS)等が用いられ、作用電極3には、測定対象となるメッキ液内において不活性な任意の導電性材料、例えば白金電極(Pt)あるいは金電極(Au)が用いられ、基準電極4には銀塩化銀電極や飽和カロメル電極が用いられている。
【0015】
なお、作用電極3は、回転軸31を介してモータ8に連結接続されており、このモータ8の駆動に伴ってメッキ液中において所定の回転数(例えば、2500rpm)で、作用電極3を回転させる。また、作用電極3は、直径5mm程度の平滑な電極表面を有している。作用電極3は、この平滑な電極表面を有しているので、対極2との間で電流を流しやすくできる。
【0016】
対極2は配線20を介してポテンシオスタット5と接続されており、作用電極3は配線30を介してポテンシオスタット5と接続されており、基準電極4は配線40を介してポテンシオスタット5と接続されている。ポテンシオスタット5は、一種の定電圧電源であり、基準電極4に対する作用電極3の電位が所定の電位になるように、必要な電流を作用電極3と対極2との間に流すものである。
【0017】
このポテンシオスタット5は、さらに制御部6に接続されている。制御部6にはコンピュータ等が用いられ、ポテンシオスタット5から出力される電流を測定・記録する機能(記録手段としての機能)、測定された電流値と塩素濃度との相関を記録する機能(相関記録手段としての機能)、電流値と上記相関を比較して塩素濃度を算出する機能(メッキ液の塩素濃度を求める手段としての機能)、及びポテンシオスタット5に印加する電位を指示する機能(電源を制御する手段としての機能)を有している。
【0018】
制御部6には、さらに設定手段7が接続されている。この設定手段7は、メッキ液の塩素濃度を設定したり、任意の電位を設定したりするものである。
【0019】
なお、メッキ液中には、塩素以外にも複数の有機物、例えば、ジプロピルジスルフィド−3,3’−スルフォン酸、ポリエチレングリコール(PEG)等が含まれており、このような有機物の濃度測定においても、この塩素濃度測定装置(従来から用いられている添加物測定装置)が用いられる。有機物の濃度測定と塩素濃度測定については、いずれを先に行ってもよい。
【0020】
次に、本発明に係る塩素濃度測定方法について説明する。
この塩素濃度測定方法は、大きく「較正曲線の作成」と「メッキ液の塩素濃度測定」との2つの段階を備えている。「較正曲線の作成」は、予め調製された複数の塩素濃度が既知であるメッキ液により、得られた電流値と塩素濃度との相関を得るものである。また、「メッキ液の塩素濃度測定」は、塩素濃度が未知であるメッキ液について「較正曲線の作成」と同じ手順で測定を行い、上記相関に基づいて、メッキ液の塩素濃度を測定するものである。以下、「較正曲線の作成」「メッキ液の塩素濃度測定」の順で説明する。
【0021】
A 較正曲線の作成
まず、較正曲線の作成工程について説明する。なお、本実施の形態では、4種類の較正用メッキ液を使用する場合で説明する。
【0022】
較正曲線の作成においては、最初に測定セル1外の別途ビーカ等に較正用メッキ液を入れておき、この較正用メッキ液に所定の量の塩酸を加えて、十分に攪拌する。これにより、所定の塩素濃度のN番目の較正用メッキ液が調製される(ステップA−1)。N番目の較正用メッキ液の塩素濃度を設定手段7に設定する(ステップA−2)。設定手段7により設定されたN番目の較正用メッキ液の塩素濃度は制御部6に記憶される。
【0023】
ステップA−1において調製されたN番目の較正用メッキ液を、測定セル1内に対極2と、作用電極3と、基準電極4とが十分に浸漬されるだけの量(例えば、100ml)だけ、ビーカから測定セル1内に移しかえる(ステップA−3)。なお、測定される電流値には、塩素イオンの量ではなく塩素濃度が直接反映されるため、メッキ液の量は測定精度に全く影響を与えない。
【0024】
次に、モータ8を駆動させて、作用電極3をメッキ液中で回転させる(ステップA−4)。この作用電極3の回転は、濃度測定中の作用電極3の表面のメッキ液の流れを一定に保つことを目的としており、そのためには、1000rpm以上の高速な回転にする必要がある。なお、本実施の形態においては、回転数は2500rpmに設定されている。また、作用電極3の回転ならば、上下動や振動等のような他の方法に比べて、簡単に作用電極3を移動させることができる。
【0025】
次に、作用電極3を回転させた状態で、基準電極4に対する作用電極3の電圧を掃引する(ステップA−5)。なお、掃引する電圧については、予め設定手段7から設定されており、その電圧は制御部6に記憶されている。このときの電圧掃引の測定条件は、掃引開始電圧+500mV、上限電圧+1575mV、下限電圧−225mV、電圧掃引速度100mV/secである。そして、図3に示すように、▲1▼第1順方向スイープ、▲2▼逆方向スイープ、▲3▼第2順方向スイープと電圧の変化パターンを三角波にする。具体的には、▲1▼▲2▼▲3▼の電圧の変化パターンにしたがって電圧が掃引されるように、制御部6からの指示により、ポテンシオスタット5が対極2と作用電極3との間に電流を流す。このときの電流値(mA)と電圧値(mV)との関係は、図4に示すような結果となる。
【0026】
図4に示すように、掃引開始から掃引終了までの1サイクルで、電流値(mA)と電圧値(mV)とに関連する1つの波形、すなわちサイクリックボルタモグラム(CV、以下単にCVと称する)が得られる(ステップA−6)。
【0027】
測定されたCVから次式(1)で示される塩素の電極反応に起因する電流(Ich)と塩素の電流を含まない部分での電流(Icon)とを読み取る(ステップA−7)。
式(1)
2Cl→Cl+2e
【0028】
具体的には、図5に示すように、測定されたCVから、2つの特定電位における正方向スイープ時、すなわち第1順方向スイープ時の電流を塩素の電極反応に起因する電流(Ich:Chloride Current)と塩素の電流を含まない部分での電流(Icon:Contamination current)として読み取る。ここで「塩素の電極反応に起因する電流(Ich)」とは、塩素の酸化反応の限界拡散電流のことをいい、「塩素の電流を含まない部分での電流(Icon)」とは、銅および塩素の反応が生じない電圧における電流値で、電極の酸化皮膜形成、メッキ液中の不純物の反応等によるバックグラウンド電流のことをいう。なお、このときの特定電圧は、+1075mV、+1425mVに設定されている。
【0029】
次に、制御部6において、読み取られた電流(Icon)と電流(Ich)との差が、測定電流値(Idiff)として求められる(ステップA−8)。求められた測定電流値(Idiff)は、上述したステップA−2で設定手段7に設定され、制御部6に記憶されたN番目の較正用メッキ液の塩素濃度(μl/L)と対応させて制御部6に記憶しておく(ステップA−9)。なお、測定電流値(Idiff)は、読み取られた電流(Icon)と電流(Ich)との差であるので、後述するステップA−14においての較正用メッキ液の塩素濃度(μl/L)と測定電流値(Idiff)との相関の結果の精度が高くなる。
【0030】
ステップA−5からステップA−9への電流測定の工程が終了すると、モータ7を駆動を停止させて、メッキ液中での作用電極3の回転を停止させる(ステップA−10)。そして、 N番目の較正用メッキ液を測定セル1から排出する(ステップA−11)。これにより、N番目の較正用メッキ液の一連の処理が終了する。
【0031】
N番目の較正用メッキ液の一連の処理が終了すると、Nが較正用メッキ液の数になった否かを判断する。本実施の形態においては、4種類の較正用メッキ液を使用する場合を例に挙げている、N<4の判断を行う(ステップA−12)。ステップA−12において、N<4と判断された場合には、ステップA−13へ進んで、「N←N+1」として、再度上述したステップA−1からステップA−11の工程を行う。ステップA−12において、N<4ではないと判断された場合には、制御部6で、較正用メッキ液の塩素濃度(μl/L)と測定電流値(Idiff)との相関の結果が作成される(ステップA−14)。
【0032】
較正用メッキ液の塩素濃度(μl/L)と測定電流値(Idiff)との相関の結果は以下の通りである。
N=1のとき 100μl/L 347.5/μA
N=2のとき 150μl/L 375.2/μA
N=3のとき 200μl/L 410.3/μA
N=4のとき 250μl/L 453.1/μA
【0033】
次に、この相関の結果に基づいて、図6に示すような較正曲線が求められる(ステップA−15)。この較正曲線は、次式(2)のように1次関数でもよいし、次式(3)のように2次関数でもよい。
1次関数:式(2)
C=1.421*I−388.406
2次関数:式(3)
C=−0.0043*I2+4.8725*I−107.1
(C:HCl濃度(μl/L)、 I:Idiff/μA)
なお、2次関数の較正曲線の場合の方が、1次関数の較正曲線の場合よりも誤差が小さいというメリットがある。
【0034】
この較正曲線が求められると、制御部6に記憶される(ステップA−16。制御部6の較正曲線を記憶する手段としての機能)。以上により、一連の較正曲線の作成工程が終了する。
【0035】
B メッキ液の塩素濃度測定
次に、メッキ液の塩素濃度測定工程ついて説明する。塩素濃度が未知であるメッキ液の塩素濃度測定においては、最初に、測定セル1内においてメッキ液を対極2と、作用電極3と、基準電極4とが十分に浸漬されるだけの量(例えば、100ml)だけ測定セル1内へ入れる(ステップB−1)。なお、後述される測定電流値には、塩素イオンの量ではなく塩素濃度が反映されるため、メッキ液の量は測定精度に全く影響を与えない。
【0036】
次に、モータ8を駆動させて、作用電極3をメッキ液中で回転させる(ステップB−2)。この作用電極3の回転は、較正用メッキ液の場合と同様に、濃度測定中の電極表面のメッキ液の流れを一定に保つことを目的としており、そのためには、1000rpm以上の高速な回転にする必要がある。なお、本実施の形態においては、回転数は2500rpmに設定されている。また、作用電極3の回転ならば、上下動や振動等のような他の方法に比べて、簡単に作用電極3を移動させることができる。
【0037】
次に、作用電極3を回転させた状態で、基準電極4に対する作用電極3の電圧を掃引する(ステップB−3)。なお、掃引する電圧については、予め設定手段7から設定されており、その電圧は制御部6に記憶されている。このときの電圧掃引の測定条件は、較正用メッキ液の較正曲線を求めるときと同様、掃引開始電圧+500mV、上限電圧+1575mV、下限電圧−225mV、電圧掃引速度100mV/secである。そして、図3に示すように、▲1▼第1順方向スイープ、▲2▼逆方向スイープ、▲3▼第2順方向スイープと電圧の変化パターンを三角波にする。具体的には、▲1▼▲2▼▲3▼の電圧の変化パターンに電圧が掃引されるように、制御部6からの制御により、ポテンシオスタット5が対極2と作用電極3との間に電流を流す。このときの電流値(mA)と電圧値(mV)との関係は、図4に示すような結果となる。
【0038】
図4に示すように、掃引開始から掃引終了までの1サイクルで、電流値(mA)と電圧値(mV)に関連する1つの波形、すなわちサイクリックボルタモグラム(CV、以下単にCVと称する)が得られる(ステップB−4)。
【0039】
測定されたCVから次式(4)で示される塩素の電極反応に起因する電流(Ich)と塩素の電流を含まない部分での電流(Icon)を読み取る(ステップB−7)。
式(4)
2Cl→Cl+2e
【0040】
具体的には、図5に示すように、測定されたCVから、2つの特定電位における正方向スイープ時、すなわち第1順方向スイープ時の電流を塩素の電極反応に起因する電流(Ich:Chloride Current)と塩素の電流を含まない部分での電流(Icon:Contamination current)として読み取る。ここで「塩素の電極反応に起因する電流(Ich)」とは、塩素の酸化反応の限界拡散電流のことをいい、「塩素の電流を含まない部分での電流(Icon)」とは、銅および塩素の反応が生じない電圧における電流値で、電極の酸化皮膜形成、メッキ液中の不純物の反応等によるバックグラウンド電流のことをいう。なお、このときの特定電圧は、+1075mV、+1425mVに設定されている。
【0041】
制御部6において、読み取られた電流(Icon)と電流(Ich)との差が、測定電流値(Idiff)として求められる(ステップB−6)。求められた測定電流値(Idiff)は、ステップA−16により記憶されている較正曲線の1次関数のIあるいは2次関数のIに代入され、メッキ液の塩素濃度が求められる(ステップB−7)。
【0042】
ステップB−3からステップB−7の電流測定の工程が終了すると、モータ8を駆動を停止させて、メッキ液中での作用電極3の回転を停止させる(ステップB−8)。そして、メッキ液を測定セル1から排出する(ステップA−9)。これにより、メッキ液の濃度測定工程の一連の処理が終了する。
【0043】
本発明の実施の形態においては、4種類の較正用メッキ液を使用する場合を例に挙げて説明したが、較正用メッキ液は少なくとも2種類以上あればよい。
【0044】
【発明の効果】
以上詳細に説明したように、本発明に係る塩素濃度測定装置によれば、電源は基準電極に対する作用電極の電位が所定の電位になるように、作用電極と対極との間に電流を流し、作用電極と前記対極との間に流れた電流値に基づいて、メッキ液の塩素濃度を求めているので、銀/塩化銀電極の劣化に起因する測定誤差を排して正確に塩素濃度の測定できる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る塩素濃度測定装置の概略図である。
【図2】較正曲線の作成の処理工程を示すフローチャートである。
【図3】電圧掃引方法を示す図である。
【図4】図3に示す電圧掃引方法に基づくサイクリックボルタモグラムを示す図である。
【図5】図4に示すサイクリックボルタモグラムの一部を示す図である。
【図6】塩素濃度と測定電流値との相関を示す1次関数および2次関数を示す図である。
【図7】メッキ液の塩素濃度測定の処理工程を示すフローチャートである。
【図8】従来の塩素濃度測定装置の概略図である
【符号の説明】
1 測定セル
2 対極
3 作用電極
4 基準電極
5 ポテンシオスタット
6 制御部
7 設定手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chlorine concentration measuring apparatus for measuring the concentration of free chlorine contained in a plating solution such as an electrolytic plating solution.
[0002]
[Prior art]
Conventionally, as a chlorine concentration measuring device for measuring the concentration of chlorine in a plating solution, one described in Japanese Patent Application Laid-Open No. 8-313481 is known.
[0003]
FIG. 8 is a schematic view showing a conventional chlorine concentration measuring apparatus. This chlorine concentration measuring device is a two-electrode type measuring device that measures the concentration of chlorine in the plating solution.
[0004]
In this chlorine concentration measuring apparatus, reference numeral 102 denotes a flow cell. A plating solution inlet 104 is formed on the lower side of the flow cell 102, and a plating solution outlet 106 is formed on the lateral side. A plating solution 108 is introduced into the flow cell 102, and a cylindrical detection electrode support 110 is immersed in the plating solution 108, and a circular detection electrode (platinum) is formed on the outer peripheral surface of the detection electrode support 110. Electrode) 112 is attached. Further, a cylindrical counter electrode support 114 is immersed in the plating solution 108, and a circular counter electrode (silver / silver chloride electrode) 116 is attached to the outer peripheral surface of the detection electrode support 114. Reference numeral 118 denotes a detection pole rotating motor, reference numeral 120 denotes an applied voltage circuit, and reference numeral 122 denotes an ammeter.
[0005]
The flow cell 102 is partitioned into a detection electrode chamber 126 and the counter electrode chamber 128 by a partition 124, beads for detecting electrode cleaning in the plating solution in the detection electrode chamber 126 (not shown) is turned .
[0006]
When the chlorine concentration is measured using a conventional chlorine concentration measuring device, the detection electrode support 110 is rotated by the operation of the motor 118, thereby rotating the detection electrode 112. Then, a measurement voltage is applied between the detection electrode 112 and the counter electrode 116 by the applied voltage circuit 120, and at this time, a measurement current i flowing between the detection electrode 112 and the counter electrode 116 is detected by the ammeter 122.
[0007]
[Problems to be solved by the invention]
However, in the conventional chlorine concentration measurement device, the counter electrode (silver / silver chloride electrode) 116 also serves as a reference (reference) electrode that provides a reference for the potential. It is difficult to apply a potential accurately.
[0008]
Further, in the conventional chlorine concentration measuring apparatus, this error is reduced by limiting the measurement current to 0.2 μA or less, but the measurement method itself is limited such that only a small current can flow. . Furthermore, even if a weak current flows repeatedly, the counter electrode (silver / silver chloride electrode) 116 deteriorates, and the silver / silver chloride electrode deteriorates.
[0009]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a chlorine concentration measuring device that can accurately measure the chlorine concentration by eliminating measurement errors due to deterioration of the silver / silver chloride electrode. And
[0011]
[Means for Solving the Problems]
In order to solve the above-described problem, a chlorine concentration measuring device according to claim 1 is a chlorine concentration measuring device that measures the concentration of chlorine contained in a plating solution. A counter electrode disposed in the container, a working electrode disposed in the container, a reference electrode disposed in the container, and a potential of the working electrode with respect to the reference electrode being a predetermined potential. A power source for passing a current between the working electrode and the counter electrode, and a control means for obtaining a chlorine concentration of the plating solution based on a current value flowing between the working electrode and the counter electrode, The control means controls the power supply to sweep the voltage of the working electrode with respect to the reference electrode; and a recording means for recording a current value flowing between the working electrode and the counter electrode when the voltage is swept. The chlorine concentration is different Correlation recording means for recording the correlation between the current value and chlorine concentration recorded by the recording means for a plurality of calibration plating solutions, and a calibration curve created based on the correlation recorded by the correlation recording means are stored. And means for determining the chlorine concentration of the plating solution based on the current value recorded by the recording unit and the calibration curve for the plating solution of unknown chlorine concentration.
A chlorine concentration measuring device according to claim 2 is the chlorine concentration measuring device according to claim 1, further comprising drive means for rotating the working electrode.
[0012]
Furthermore, the chlorine concentration measuring apparatus according to claim 3 is the chlorine concentration measuring apparatus according to claim 1 or 2 , wherein the working electrode has a smooth electrode surface.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a chlorine concentration measuring method according to the present invention will be described below with reference to the drawings.
[0014]
FIG. 1 is a schematic configuration diagram of a chlorine concentration measuring apparatus according to an embodiment of the present invention. The chlorine concentration measuring device includes a measuring cell 1, and the measuring cell 1 is filled with a copper sulfate plating solution (hereinafter simply referred to as a plating solution). In the measurement cell 1, a counter electrode 2, a working electrode 3, and a reference electrode 4 are provided. The counter electrode 2 is made of a copper electrode (Cu), a platinum electrode (Pt), stainless steel (SUS) or the like, and the working electrode 3 is made of any conductive material that is inactive in the plating solution to be measured, For example, a platinum electrode (Pt) or a gold electrode (Au) is used, and a silver / silver chloride electrode or a saturated calomel electrode is used as the reference electrode 4.
[0015]
The working electrode 3 is connected and connected to the motor 8 via the rotary shaft 31, and the working electrode 3 is rotated at a predetermined rotational speed (for example, 2500 rpm) in the plating solution as the motor 8 is driven. Let The working electrode 3 has a smooth electrode surface with a diameter of about 5 mm. Since the working electrode 3 has this smooth electrode surface, current can be easily passed between the working electrode 3 and the counter electrode 2.
[0016]
The counter electrode 2 is connected to the potentiostat 5 via the wiring 20, the working electrode 3 is connected to the potentiostat 5 via the wiring 30, and the reference electrode 4 is connected to the potentiostat 5 via the wiring 40. Connected with. The potentiostat 5 is a kind of constant voltage power source, and allows a necessary current to flow between the working electrode 3 and the counter electrode 2 so that the potential of the working electrode 3 with respect to the reference electrode 4 becomes a predetermined potential. .
[0017]
The potentiostat 5 is further connected to the control unit 6. A computer or the like is used for the control unit 6, a function for measuring and recording the current output from the potentiostat 5 (function as a recording means) , and a function for recording the correlation between the measured current value and the chlorine concentration ( A function as a correlation recording means) , a function for calculating the chlorine concentration by comparing the current value with the above correlation ( a function as a means for obtaining the chlorine concentration of the plating solution) , and a function for indicating the potential applied to the potentiostat 5 (Function as means for controlling the power supply) .
[0018]
A setting means 7 is further connected to the control unit 6. The setting means 7 sets the chlorine concentration of the plating solution or sets an arbitrary potential.
[0019]
In addition to chlorine, the plating solution contains a plurality of organic substances such as dipropyl disulfide-3,3′-sulfonic acid, polyethylene glycol (PEG), and the like in the concentration measurement of such organic substances. Also, this chlorine concentration measuring device (a conventionally used additive measuring device) is used. Any one of the organic substance concentration measurement and the chlorine concentration measurement may be performed first.
[0020]
Next, the chlorine concentration measuring method according to the present invention will be described.
This chlorine concentration measuring method is roughly provided with two stages of “creating a calibration curve” and “measuring the chlorine concentration of the plating solution”. “Creation of calibration curve” is to obtain a correlation between the obtained current value and chlorine concentration by using a plating solution prepared in advance and having a plurality of known chlorine concentrations. “Measurement of chlorine concentration in plating solution” is the same as “Creation of calibration curve” for plating solution with unknown chlorine concentration, and measures the chlorine concentration of plating solution based on the above correlation. It is. In the following, description will be given in the order of “creation of calibration curve” and “measurement of chlorine concentration in plating solution”.
[0021]
A Creation of Calibration Curve First, the calibration curve creation process will be described. In this embodiment, a case where four types of calibration plating solutions are used will be described.
[0022]
In preparing the calibration curve, first, a calibration plating solution is put in a separate beaker or the like outside the measurement cell 1, and a predetermined amount of hydrochloric acid is added to the calibration plating solution, followed by thorough stirring. Thereby, the Nth calibration plating solution having a predetermined chlorine concentration is prepared (step A-1). The chlorine concentration of the Nth calibration plating solution is set in the setting means 7 (step A-2). The chlorine concentration of the Nth calibration plating solution set by the setting means 7 is stored in the control unit 6.
[0023]
The amount of the Nth calibration plating solution prepared in step A-1 is such that the counter electrode 2, the working electrode 3 and the reference electrode 4 are sufficiently immersed in the measurement cell 1 (for example, 100 ml). Then, transfer from the beaker into the measurement cell 1 (step A-3). Since the measured current value directly reflects the chlorine concentration, not the amount of chlorine ions, the amount of plating solution does not affect the measurement accuracy at all.
[0024]
Next, the motor 8 is driven to rotate the working electrode 3 in the plating solution (step A-4). The purpose of the rotation of the working electrode 3 is to keep the flow of the plating solution on the surface of the working electrode 3 during concentration measurement constant. For that purpose, it is necessary to rotate at a high speed of 1000 rpm or more. In the present embodiment, the rotational speed is set to 2500 rpm. Further, if the working electrode 3 is rotated, the working electrode 3 can be easily moved as compared with other methods such as vertical movement and vibration.
[0025]
Next, with the working electrode 3 rotated, the voltage of the working electrode 3 with respect to the reference electrode 4 is swept (step A-5). Note that the voltage to be swept is set in advance from the setting means 7, and the voltage is stored in the control unit 6. The measurement conditions of the voltage sweep at this time are sweep start voltage +500 mV, upper limit voltage +1575 mV, lower limit voltage -225 mV, and voltage sweep speed 100 mV / sec. Then, as shown in FIG. 3, (1) first forward sweep, (2) reverse sweep, and (3) second forward sweep and voltage change pattern are triangular waves. Specifically, the potentiostat 5 is connected between the counter electrode 2 and the working electrode 3 in accordance with an instruction from the control unit 6 so that the voltage is swept according to the voltage change pattern of (1), (2), and (3). Current flows between them. The relationship between the current value (mA) and the voltage value (mV) at this time is as shown in FIG.
[0026]
As shown in FIG. 4, in one cycle from the start of the sweep to the end of the sweep, one waveform related to the current value (mA) and the voltage value (mV), that is, a cyclic voltammogram (CV, hereinafter simply referred to as CV). Is obtained (step A-6).
[0027]
From the measured CV, the current (I ch ) resulting from the electrode reaction of chlorine represented by the following formula (1) and the current (I con ) in the portion not including the chlorine current are read (step A-7).
Formula (1)
2Cl → Cl 2 + 2e
[0028]
Specifically, as shown in FIG. 5, from the measured CV, the current during the forward sweep at two specific potentials, that is, the current during the first forward sweep, is the current (I ch : It reads as current (I con : Contamination current) in a portion not including Chloride Current) and chlorine current. Here, the “current due to the electrode reaction of chlorine (I ch )” means the limiting diffusion current of the oxidation reaction of chlorine, and the “current in a portion not including the current of chlorine (I con )” The current value at a voltage at which the reaction between copper and chlorine does not occur, which means the background current due to the formation of an oxide film on the electrode, the reaction of impurities in the plating solution, and the like. The specific voltage at this time is set to +1075 mV and +1425 mV.
[0029]
Next, the control unit 6 obtains a difference between the read current (I con ) and the current (I ch ) as a measured current value (I diff ) (step A-8). The obtained measured current value (I diff ) is set in the setting means 7 in step A-2 described above, and corresponds to the chlorine concentration (μl / L) of the Nth calibration plating solution stored in the control unit 6. And stored in the control unit 6 (step A-9). Since the measured current value (I diff ) is the difference between the read current (I con ) and the current (I ch ), the chlorine concentration (μl / L) of the calibration plating solution in step A-14 described later L) and the accuracy of the result of the correlation between the measured current value (I diff ) are increased.
[0030]
When the current measurement process from step A-5 to step A-9 is completed, the drive of the motor 7 is stopped and the rotation of the working electrode 3 in the plating solution is stopped (step A-10). Then, the Nth calibration plating solution is discharged from the measurement cell 1 (step A-11). Thereby, a series of processes of the Nth calibration plating solution is completed.
[0031]
When a series of processes of the Nth calibration plating solution is completed, it is determined whether N has reached the number of calibration plating solutions. In the present embodiment, N <4 is determined as an example in which four types of calibration plating solutions are used (step A-12). If it is determined in step A-12 that N <4, the process proceeds to step A-13, where “N ← N + 1” is performed, and the above-described steps A-1 to A-11 are performed again. If it is determined in step A-12 that N <4 is not satisfied, the control unit 6 obtains a correlation result between the chlorine concentration (μl / L) of the calibration plating solution and the measured current value (I diff ). It is created (step A-14).
[0032]
The results of correlation between the chlorine concentration (μl / L) of the calibration plating solution and the measured current value (I diff ) are as follows.
When N = 1 100 μl / L 347.5 / μA
When N = 2 150 μl / L 375.2 / μA
When N = 3 200 μl / L 410.3 / μA
When N = 4 250 μl / L 453.1 / μA
[0033]
Next, based on the result of this correlation, a calibration curve as shown in FIG. 6 is obtained (step A-15). This calibration curve may be a linear function as in the following equation (2) or a quadratic function as in the following equation (3).
Linear function: Formula (2)
C = 1.421 * I-388.406
Quadratic function: Formula (3)
C = −0.0043 * I2 + 4.8725 * I-107.1
(C: HCl concentration (μl / L), I: I diff / μA)
Note that there is an advantage that the error is smaller in the case of the calibration curve of the quadratic function than in the case of the calibration curve of the linear function.
[0034]
When this calibration curve is obtained, it is stored in the control unit 6 (step A-16. Function of the control unit 6 as a means for storing the calibration curve) . Thus, a series of calibration curve creation steps is completed.
[0035]
Chlorine concentration measurement of B plating solution will now be described with the chlorine concentration measurement step of the plating solution. In the measurement of the chlorine concentration of a plating solution whose chlorine concentration is unknown, first, an amount sufficient to immerse the counter electrode 2, the working electrode 3, and the reference electrode 4 in the measuring cell 1 (for example, , 100 ml) into the measuring cell 1 (step B-1). Note that the measurement current value, which will be described later, reflects the chlorine concentration, not the amount of chlorine ions, so the amount of plating solution does not affect the measurement accuracy at all.
[0036]
Next, the motor 8 is driven to rotate the working electrode 3 in the plating solution (step B-2). The rotation of the working electrode 3 is intended to keep the flow of the plating solution on the electrode surface during concentration measurement constant as in the case of the calibration plating solution. For this purpose, the working electrode 3 is rotated at a high speed of 1000 rpm or more. There is a need to. In the present embodiment, the rotational speed is set to 2500 rpm. Further, if the working electrode 3 is rotated, the working electrode 3 can be easily moved as compared with other methods such as vertical movement and vibration.
[0037]
Next, with the working electrode 3 rotated, the voltage of the working electrode 3 with respect to the reference electrode 4 is swept (step B-3). Note that the voltage to be swept is set in advance from the setting means 7, and the voltage is stored in the control unit 6. The measurement conditions of the voltage sweep at this time are the sweep start voltage +500 mV, the upper limit voltage +1575 mV, the lower limit voltage -225 mV, and the voltage sweep rate 100 mV / sec, as in the case of obtaining the calibration curve of the calibration plating solution. Then, as shown in FIG. 3, (1) first forward sweep, (2) reverse sweep, and (3) second forward sweep and voltage change pattern are triangular waves. Specifically, the potentiostat 5 is placed between the counter electrode 2 and the working electrode 3 under the control of the control unit 6 so that the voltage is swept in the voltage change pattern of (1), (2), and (3). Current is passed through. The relationship between the current value (mA) and the voltage value (mV) at this time is as shown in FIG.
[0038]
As shown in FIG. 4, in one cycle from the start of the sweep to the end of the sweep, one waveform related to the current value (mA) and the voltage value (mV), that is, a cyclic voltammogram (CV, hereinafter simply referred to as CV). Is obtained (step B-4).
[0039]
From the measured CV, the current (I ch ) resulting from the electrode reaction of chlorine represented by the following formula (4) and the current (I con ) in the portion not containing the chlorine current are read (step B-7).
Formula (4)
2Cl → Cl 2 + 2e
[0040]
Specifically, as shown in FIG. 5, from the measured CV, the current during the forward sweep at two specific potentials, that is, the current during the first forward sweep, is the current (I ch : It reads as current (I con : Contamination current) in a portion not including Chloride Current) and chlorine current. Here, the “current due to the electrode reaction of chlorine (I ch )” means the limiting diffusion current of the oxidation reaction of chlorine, and the “current in a portion not including the current of chlorine (I con )” The current value at a voltage at which the reaction between copper and chlorine does not occur, which means the background current due to the formation of an oxide film on the electrode, the reaction of impurities in the plating solution, and the like. The specific voltage at this time is set to +1075 mV and +1425 mV.
[0041]
In the control unit 6, a difference between the read current (I con ) and the current (I ch ) is obtained as a measured current value (I diff ) (step B-6). The obtained measured current value (I diff ) is substituted into the linear function I or the quadratic function I stored in step A-16, and the chlorine concentration of the plating solution is obtained (step B). -7).
[0042]
When the current measurement process from step B-3 to step B-7 is completed, the motor 8 is stopped to stop the rotation of the working electrode 3 in the plating solution (step B-8). Then, the plating solution is discharged from the measurement cell 1 (step A-9). Thereby, a series of processes in the plating solution concentration measurement process is completed.
[0043]
In the embodiment of the present invention, the case where four types of calibration plating solutions are used has been described as an example, but at least two types of calibration plating solutions may be used.
[0044]
【The invention's effect】
As described above in detail, according to the chlorine concentration measuring apparatus according to the present invention, the power source passes a current between the working electrode and the counter electrode so that the potential of the working electrode with respect to the reference electrode becomes a predetermined potential, Since the chlorine concentration of the plating solution is obtained based on the current value flowing between the working electrode and the counter electrode, the measurement error due to the deterioration of the silver / silver chloride electrode is eliminated and the chlorine concentration is accurately measured. it can.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a chlorine concentration measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a flowchart showing processing steps for creating a calibration curve.
FIG. 3 is a diagram illustrating a voltage sweep method.
4 is a diagram showing a cyclic voltammogram based on the voltage sweep method shown in FIG. 3. FIG.
FIG. 5 is a diagram showing a part of the cyclic voltammogram shown in FIG. 4;
FIG. 6 is a diagram showing a linear function and a quadratic function showing a correlation between a chlorine concentration and a measured current value.
FIG. 7 is a flowchart showing processing steps for measuring the chlorine concentration of a plating solution.
FIG. 8 is a schematic view of a conventional chlorine concentration measuring apparatus .
[Explanation of symbols]
1 Measurement Cell 2 Counter Electrode 3 Working Electrode 4 Reference Electrode 5 Potentiostat 6 Control Unit 7 Setting Means

Claims (3)

メッキ液中に含まれている塩素の濃度を測定する塩素濃度測定装置において、
メッキ液を収容する収容器と、
前記収容器内に配置される対極と、
前記収容器内に配置される作用電極と、
前記収容器内に配置される基準電極と、
前記基準電極に対する前記作用電極の電位が所定の電位になるように、前記作用電極と前記対極との間に電流を流す電源と、
前記作用電極と前記対極との間に流れた電流値に基づいて、メッキ液の塩素濃度を求める制御手段と、
を備え、
前記制御手段は、前記基準電極に対する前記作用電極の電圧を掃引すべく前記電源を制御する手段と、前記電圧の掃引時に前記作用電極と前記対極との間に流れる電流値を記録する記録手段と、塩素濃度が異なる複数の較正用メッキ液について前記記録手段によって記録される電流値と塩素濃度との相関を記録する相関記録手段と、この相関記録手段によって記録された相関に基づいて作成される較正曲線を記憶する手段と、塩素濃度が未知のメッキ液について前記記録手段によって記録される電流値および前記較正曲線に基づいて当該メッキ液の塩素濃度を求める手段とを含む
ことを特徴とする塩素濃度測定装置。
In a chlorine concentration measuring device that measures the concentration of chlorine contained in the plating solution,
A container for containing a plating solution;
A counter electrode disposed in the container;
A working electrode disposed in the container;
A reference electrode disposed in the container;
A power source for passing a current between the working electrode and the counter electrode so that the potential of the working electrode with respect to the reference electrode becomes a predetermined potential;
Control means for determining the chlorine concentration of the plating solution based on the current value flowing between the working electrode and the counter electrode;
With
The control means controls the power supply to sweep the voltage of the working electrode with respect to the reference electrode; and a recording means for recording a current value flowing between the working electrode and the counter electrode when the voltage is swept. A correlation recording unit that records a correlation between the current value recorded by the recording unit and the chlorine concentration for a plurality of calibration plating solutions having different chlorine concentrations, and a correlation recording unit that is created based on the correlation recorded by the correlation recording unit; Chlorine comprising means for storing a calibration curve, and means for determining the chlorine concentration of the plating solution based on the current value recorded by the recording unit and the calibration curve for a plating solution with an unknown chlorine concentration Concentration measuring device.
請求項1に記載の塩素濃度測定装置において、
前記作用電極を回転させる駆動手段をさらに備えたことを特徴とする塩素濃度測定装置。
In the chlorine concentration measuring apparatus according to claim 1 ,
A chlorine concentration measuring device further comprising a driving means for rotating the working electrode.
請求項1または2に記載の塩素濃度測定装置において、
前記作用電極は、平滑な電極表面を有することを特徴とする塩素濃度測定装置。
In the chlorine concentration measuring apparatus according to claim 1 or 2 ,
The said working electrode has a smooth electrode surface, The chlorine concentration measuring apparatus characterized by the above-mentioned.
JP2000080144A 2000-03-22 2000-03-22 Chlorine concentration measuring device Expired - Fee Related JP3792981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000080144A JP3792981B2 (en) 2000-03-22 2000-03-22 Chlorine concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000080144A JP3792981B2 (en) 2000-03-22 2000-03-22 Chlorine concentration measuring device

Publications (2)

Publication Number Publication Date
JP2001264290A JP2001264290A (en) 2001-09-26
JP3792981B2 true JP3792981B2 (en) 2006-07-05

Family

ID=18597294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000080144A Expired - Fee Related JP3792981B2 (en) 2000-03-22 2000-03-22 Chlorine concentration measuring device

Country Status (1)

Country Link
JP (1) JP3792981B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4303484B2 (en) 2003-01-21 2009-07-29 大日本スクリーン製造株式会社 Plating equipment
JP4610965B2 (en) * 2004-08-11 2011-01-12 株式会社タニタ Electrochemical measuring device
WO2021066415A1 (en) * 2019-09-30 2021-04-08 Korea Institute Of Materials Science Cell for measuring concentration of additive breakdown production in plating solution

Also Published As

Publication number Publication date
JP2001264290A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
US6280602B1 (en) Method and apparatus for determination of additives in metal plating baths
Kolthoff et al. The Fundamental Principles and Applications of Electrolysis with the Dropping Mercury Electrode and Heyrovský's Polarographic Method of Chemical Analysis.
US6551479B1 (en) Apparatus for controlling and/or measuring additive concentration in an electroplating bath
JP4041667B2 (en) Plating bath analysis method
CN103119431B (en) Measurement arrangement and method for ascertaining an analyte concentration in a measurement medium
US4146436A (en) Electrochemical determination of heavy metals in water and apparatus therefor
Trebbe et al. A new calcium-sensor based on ion-selective conductometric microsensors–membranes and features
JP3792981B2 (en) Chlorine concentration measuring device
JPS638423B2 (en)
JP3718400B2 (en) Chlorine concentration measurement method
Shervedani et al. One-impedance for one-concentration impedimetry as an electrochemical method for determination of the trace zirconium ion
US6814855B2 (en) Automated chemical management system having improved analysis unit
JP3795769B2 (en) Method for measuring chlorine concentration in plating solution
JP2010286423A (en) Potential difference measuring method
JP4869849B2 (en) Solution analysis method
JP3654694B2 (en) Residual chlorine measuring method and residual chlorine meter
CN107402250A (en) A kind of multi-parameter water quality heavy metal automatic on-line detector and detection method
Sharma et al. Voltammetry: An Electrochemical Analytical Method
Biedermann et al. On the Standard Potential of the Europium (II, III) Couple
JP2004294422A (en) Solution analysis apparatus and method for reproducing the same, solution analysis method
JPH10185871A (en) Method for cleaning electrode of residual chlorine meter, and residual chlorine meter
RU2386124C1 (en) Method of determining concentration of ions in liquid electrolyte solutions
JPS61210938A (en) Method for measuring uric acid
JPH0635959B2 (en) Residual chlorine measurement method not affected by interfering components
Pungor et al. Automatic Electrochemical Analysis: Part 1

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees