JP3790833B2 - Projection exposure method and apparatus - Google Patents

Projection exposure method and apparatus Download PDF

Info

Publication number
JP3790833B2
JP3790833B2 JP20826096A JP20826096A JP3790833B2 JP 3790833 B2 JP3790833 B2 JP 3790833B2 JP 20826096 A JP20826096 A JP 20826096A JP 20826096 A JP20826096 A JP 20826096A JP 3790833 B2 JP3790833 B2 JP 3790833B2
Authority
JP
Japan
Prior art keywords
illumination
light
optical system
illumination light
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20826096A
Other languages
Japanese (ja)
Other versions
JPH1050585A (en
Inventor
純夫 橋本
孝司 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP20826096A priority Critical patent/JP3790833B2/en
Priority to EP19970113696 priority patent/EP0823662A2/en
Publication of JPH1050585A publication Critical patent/JPH1050585A/en
Application granted granted Critical
Publication of JP3790833B2 publication Critical patent/JP3790833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体素子、液晶表示素子、撮像素子(CCD等)、又は薄膜磁気ヘッド等を製造するためのフォトリソグラフィ工程でマスク上のパターンを感光性の基板上に露光するために使用される投影露光装置に関し、特にマスク上の転写用のパターン中のスリット状のような回転非対称な領域のパターンを基板上に投影した状態で、マスクと基板とを投影光学系に対して同期走査して露光を行うステップ・アンド・スキャン方式等の走査露光型の投影露光装置に適用して好適なものである。
【0002】
【従来の技術】
従来、半導体素子等を製造するために、マスクとしてのレチクル(又はフォトマスク等)上のほぼ正方形状の照明領域内のパターンを投影光学系を介して、感光性の基板としてのフォトレジストが塗布されたウエハ(又はガラスプレート等)上に露光するステッパー等の一括露光型の投影露光装置が多用されてきた。これに対して最近は、半導体素子等のチップパターンの大型化に対応するために、より大きな面積のレチクルのパターンをウエハ上の各ショット領域に転写することが求められている。ところが、広い有効露光フィールド(視野)の全面でディストーションや像面湾曲等の収差を所定の許容値以下に抑制した投影光学系の設計及び製造は困難である。
【0003】
そのため、最近ではレチクル上の長方形又は円弧状等のスリット状の照明領域内のパターンを投影光学系を介してウエハ上に投影した状態で、レチクルとウエハとを投影光学系に対して同期走査しながらレチクルのパターンをウエハ上の各ショット領域に逐次露光するステップ・アンド・スキャン方式等の走査露光型の投影露光装置が注目されている。この走査露光型の投影露光装置は、投影光学系の有効露光フィールドの直径を最大限に利用できるほか、走査方向への転写パターンの長さはその有効露光フィールドの直径よりも長くできるため、結果として大面積のレチクルのパターンを小さい収差でウエハ上に転写できる。
【0004】
【発明が解決しようとする課題】
一般に投影露光装置においては、露光に際し、投影光学系のレンズに対して高いエネルギーを有する照明光が照射される。そのため、投影光学系のレンズを構成する硝材の照射エネルギーの吸収率が僅かに0.2%/cm程度であっても、照明光がレンズ上に光軸に関して回転非対称性を有した状態で照射された場合、照射エネルギーの吸収熱によりレンズの温度分布が変化することによってレンズが回転非対称に熱変形したり、部分的な温度上昇により硝材の屈折率分布が回転非対称に変動する。これにより、投影光学系の収差が徐々に悪化するというような、回転非対称性を有する不均一な照度分布の照明光の照射による投影光学系の収差変動が生じる。このような収差変動は、今日のような高解像力、且つ高い露光精度が要求される条件下では容認できない状態となってきた。
【0005】
従来は、このような投影光学系の収差の変動に対しては、投影光学系を例えば3つのブロックに分け、夫々のブロックを密閉して各ブロック内のレンズに接する気体の圧力を制御することで対処してきた。この方法では、ほぼ正方形の照明領域を使用する一括露光型の場合には、その照明領域の回転非対称性の程度が低いため、収差変動は充分に補正されてきた。しかし、走査露光型の投影露光装置のように、レチクル上の照明領域を長方形又は円弧状等のスリット状にするというような著しく光軸に関し回転非対称な照明領域を使用する場合には、そのような気圧制御を行っても、ディストーションや像面湾曲等の収差の変動が許容値以内に収まらない恐れがでてきた。特に回転非対称性が著しいときは、投影光学系の露光フィールドの中心でメリジオナル方向のパターンの最良像面と、それと垂直な方向のパターンの最良像面とが光軸方向に離れるというような非点収差が生じるという不都合もある。
【0006】
本発明は斯かる点に鑑み、レチクル上の回転非対称な領域のパターンを投影光学系を介してウエハ上に転写する場合に、投影光学系の収差変動の少ない投影露光方法及び装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明による第1の投影露光装置は、例えば図1に示すように、マスク(4)に形成された所定の転写用パターンを感光性基板(7)上に投影する投影光学系(6)と、その投影光学系の光軸(AX)とその感光性基板(7)の被露光面とが交わる第1の点(P1)に対して回転対称な所定の円形露光領域(20)内において、その第1の点(P1)に対し回転非対称な露光照明領域(21)を形成して回転非対称なマスクパターン像をその感光性基板(7)上に転写するために、その感光性基板(7)を感光させる波長を持つ第1照明光(IL1)を供給し、その投影光学系(6)の光軸とそのマスク(4)のパターン面とが交わる第2の点(P2)に対してそのマスク(4)のパターン面内で回転非対称な露光照明領域(18)を形成する第1の照明系(1,2)と、その投影光学系(6)を介してその感光性基板(7)に向けて非感光性の波長を持つ第2照明光(IL2A,IL2B)を供給し、その第1照明光(IL1)を伴ってその所定の円形露光領域(20)内のほぼ全体を照明するように、その感光性基板(7)の被露光面内でのその回転非対称な露光照明領域(21)を補完する非露光照明領域(22,23)をその所定の円形露光領域(20)内に形成する第2照明系(3A,3B,9A,9B,16A,16B)と、を有するものである。
【0008】
この場合、その第2照明光(IL2A,IL2B)は投影光学系(6)を構成するレンズの硝材に或る程度は吸収される必要がある。但し、レンズの硝材で吸収される代わりに、レンズのコーティング膜で吸収されてもよい。
斯かる本発明の第1の投影露光装置によれば、第2照明光(IL2A,IL2B)も第1照明光(IL1)と同様に感光性基板(7)上に照射されるが、第2照明光(IL2A,IL2B)は感光性基板(7)に対して非感光性であるため、第1照明光(IL1)により照明されるマスク(4)上の回転非対称な露光照明領域(18)のパターンの像だけが感光性基板(7)上の回転非対称な露光照明領域(21)に転写される。また、感光性基板(7)上の回転非対称な露光照明領域(21)を補完して回転対称な円形露光領域(20)を形成する被露光領域(22,23)を、第2照明光(IL2A,IL2B)により照明するため、投影光学系(6)のレンズへの照射エネルギー分布の回転対称性が増加する。従って、投影光学系(6)のレンズの回転非対称な熱変形が減少し、回転非対称な屈折率分布も減少するため、投影光学系(6)の収差の変動が少なくなる。
【0009】
また、本発明による第2の投影露光装置は、例えば図2に示すように、マスク(4)に形成された所定の転写用パターンを感光性基板(7)上に投影する投影光学系(6)と、その感光性基板(7)を感光させる波長を持つ第1照明光(IL1)を供給する第1光源部(1,41)と、その感光性基板(7)に対して非感光性の波長を持つ第2照明光(IL2A)を供給する第2光源部(3A,47)と、その第1照明光(IL1)とその第2照明光(IL2A)とを合成してそのマスク(4)へ導く合成系(42,44,46)と、この合成系とそのマスク(4)との間の光路上で、そのマスク(4)のパターン面と実質的に共役となる位置に配置された視野絞り(48)と、を設け、その視野絞り(48)は、その第1照明光(IL1)を透過させる第1の透過部(50)と第2照明光(IL2A)を透過させる第2の透過部(49,51)とを有し、その第1の透過部(50)は、その投影光学系(6)の光軸(AX)とそのマスク(4)のパターン面とが交わる所定の点に対して回転対称な所定の円形領域(48)内において、その所定の点に対し回転非対称な露光照明領域としての第1の領域(50)と共役であり、その第2の透過領域(49,51)は、その第1照明光(IL1)を伴うことによってその回転対称な所定の円形領域(48)内のほぼ全体を照明するように、その回転非対称な第1の領域(50)を補完する被露光照明領域としての第2の領域(49,51)と共役であるものである。
【0010】
斯かる本発明の第2の投影露光装置によれば、合成系(42,44,46)により一旦合成された第1及び第2照明光(IL1,IL2A)は視野絞り(48)により、マスク(4)上の回転非対称な被露光照明領域(50)、及びその回転非対称な被露光照明領域を補完する被露光照明領域(49,51)を領域を通過し、投影光学系(6)を経て感光性基板(7)上に照射される。この場合、第1照明光(IL1)は、視野絞り(48)によりマスク(4)の回転非対称な被露光照明領域としての第1の領域(50)と共役な第1の透過部(50)だけを通過するため、感光性基板(7)上には、そのマスク(4)上のその第1の領域(50)のパターンの像だけが転写される。
【0011】
一方、投影光学系(6)には、マスク(4)上の第1の領域(50)を透過する第1照明光(IL1)と、その第1の領域を補完して実質的に回転対称な円形領域(48)を形成するマスク(4)上の第2の領域(49,51)を透過する第2照明光(IL2A)とが入射する。第1及び第2照明光(IL1,IL2A)の全体の照射領域は実質的に回転対称な円形領域となるため、本発明の第1の投影露光装置と同様に、投影光学系(6)のレンズへの照射エネルギー分布の回転対称性が増加する。従って、投影光学系(6)の収差変動が少なくなる。また、本発明ではマスク(4)上の回転非対称な被露光照明領域に照射される第1照明光(IL1)の視野を規定するための光学系、及び第2照明光(IL2A)のマスク(4)上での視野を規定するための光学系が不要となる。
【0012】
また、本発明の第1及び第2の投影露光装置において、その第2照明光(IL2A)が照明する領域に位置するそのマスク(4)上のマスクマーク(11A,11B)とその第2照明光(IL2A)が照明する領域に位置するその感光性基板(7)上の基板マーク(12A,12B)との少なくとも一方からの光を光電的に検出し、双方のマークの内の少なくとも一方のマークの位置を検出するマーク位置検出系(13A,13B)を有することが好ましい。これにより、第2照明光(IL2A)をマスク(4)又は感光性基板(7)の位置を検出するためのマーク位置検出系(13A,13B)用の照明光として有効に利用できる。
【0013】
また、その回転対称な所定の円形露光領域(20)、又はその回転対称な所定の円形領域(48)と共役なその感光性基板(7)上の領域は、その投影光学系(6)の感光性基板(7)側の視野と一致することが好ましい。これにより、投影光学系(6)のレンズはほぼ回転対称でほぼ最大径の円形の照明領域により照明されるため、レンズへの照射エネルギーの分布が更に回転対称になる。
【0014】
また、本発明による第3の投影露光装置は、例えば図8に示すように、マスク(4)に形成された所定の転写用パターンを感光性基板(7)上に投影する投影光学系(6)と、その感光性基板(7)を感光させる波長を持つ照明光(IL1)でそのマスク(4)を照明する照明光学系(1A,41)と、その投影光学系(6)とその感光性基板(7)との間に配置され、所定の光透過部(73)を持つ光制限部材(71)と、を設け、この光制限部材の光透過部(73)を通過したその照明光(IL1)は、その投影光学系(6)の光軸(AX)とその感光性基板(7)の被露光面とが交わる所定の点に対して回転対称な所定の円形露光領域(71)内において、その所定の点に対し回転非対称な領域(73)に入射するものである。
【0015】
斯かる本発明の第3の投影露光装置によれば、感光性基板(6)に対して感光性の照明光(IL1)は、マスク(4)及び投影光学系(6)の回転対称な領域を通過した後、光制限部材(71)によりマスク(4)上の回転非対称な領域に対応する領域だけを通過して感光性基板(7)上に照射される。従って、マスク(4)上の回転非対称な領域のパターンの像だけが、感光性基板(7)上に転写される。また、照明光(IL1)によりマスク(4)上の回転対称な領域を照明するため、本発明の第1及び第2の投影露光装置と同様に、投影光学系(6)のレンズへの照射エネルギー分布の回転対称性が増加し、投影光学系(6)の収差変動が少なくなる。本発明では、特に1つの照明光(IL1)だけでマスク(4)を照明するため、投影光学系(6)のレンズ全体に一様な波長の光エネルギーが照射される。従って、それらレンズにおける熱エネルギーの吸収量も一様になり、レンズの回転非対称な熱変形が更に減少し、投影光学系(6)の収差の発生も更に抑えられる。また、1つの照明光(IL1)だけを使用するため、光源や照明光学系等の設備を節約できる。
次に、本発明による投影露光方法は、本発明の投影露光装置を用いて、そのマスクに形成された所定の転写用パターンを感光性基板に投影するものである。
【0016】
【発明の実施の形態】
以下、本発明の投影露光装置の実施の形態の第1の例につき図1を参照して説明する。本例はステップ・アンド・スキャン方式の投影露光装置に本発明を適用したものである。
図1(a)は、本例の投影露光装置の概略構成を示し、この図1(a)に示すように、本例にはレチクル4上のパターン領域を照明する3つの光源部1,3A,3Bが設けられている。露光時には、光源部1からはウエハ7上に塗布されたフォトレジストに感光性の波長λ1の照明光IL1が射出され、光源部3A,3Bからはウエハ7のフォトレジストに非感光性の波長λ2の照明光IL2A,IL2Bが射出される。光源部1は、露光光源、レチクル4上の照度分布を均一にするためのフライアイレンズ、レチクル4上の照明領域を規定する視野絞り等を含んで構成され、光源部1から射出された照明光IL1は、照明光学系2を介してレチクル4上の非走査方向に長い長方形の照明領域18(図1(b)参照)に照射される。その照明光IL1のもとで、レチクル4の長方形の照明領域18内のパターンの像が投影光学系6を介してフォトレジストが塗布されたウエハ7上に投影倍率β(βは例えば1/4又は1/5等)で転写される。以下、投影光学系6の光軸AXに平行にZ軸を取り、Z軸に垂直な2次元平面内で図1(a)の紙面に平行にX軸、図1(a)の紙面に垂直にY軸を取って説明する。本例では走査露光時のレチクル4及びウエハ7の走査方向はX方向である。
【0017】
一方、非露光光の光源部3A,3Bは、それぞれ光源、レチクル4上の照度分布を均一にするためのフライアイレンズ、及びレチクル4上での照明領域を規定する視野絞り等を含んで構成されている。そして、レチクル4の−X方向の上部に配置された光源部3Aから射出された波長λ2の照明光IL2Aは、コンデンサレンズ9Aを透過し、照明光IL2Aの入射方向に対して斜設された僅かな透過率を有するミラー16Aにより下方に反射されてレチクル4上の照明領域17(図1(b)参照)に集光される。また、レチクル4の+X方向の上部に配置された光源部3Bから射出された波長λ2の照明光IL2Bは、コンデンサレンズ9Bを透過し、照明光IL2Bの入射方向に対して斜設された僅かな透過率を有するミラー16Bにより下方に反射されてレチクル4上の照明領域19に集光される。そして、レチクル4を透過した照明光IL2A,IL2Bは、投影光学系6を介してウエハ7上に照射される。
【0018】
この場合、照明光IL2Aの照明領域17及び照明光IL2Bの照明領域19は、それぞれ照明光IL1のレチクル4上の長方形の照明領域18に対して走査方向に外側の領域になるように設定されている。
照明光IL1の波長λ1及び照明光IL2A,IL2Bの波長λ2は、フォトレジストの種類及び投影光学系6の硝材の種類により異なるが、通常の場合、波長λ1は530nm未満、波長λ2は530nm以上の波長を選択する。露光用の照明光IL1としては、水銀ランプのi線(波長365nm)やg線(波長436nm)等の輝線、ArFエキシマレーザ光(波長193nm)やKrFエキシマレーザ光(波長248nm)等のエキシマレーザ光、あるいは銅蒸気レーザ光やYAGレーザ光の高調波等が使用される。
【0019】
また、照明光IL2A,IL2Bは投影光学系6の硝材に対する回転非対称な照射エネルギーの分布を抑える目的で使用されるため、硝材又はレンズのコーティング膜での単位面積当たりの光吸収量が全体として照明光IL1に近いものが好ましい。その意味から、照明光IL2A,IL2Bとしては、フォトレジストを感光させない波長で、光の吸収率が小さいときには光源の光強度が強く、一方光源の光強度が小さいときには投影光学系6のレンズの硝材又はコーティング膜に対する光吸収率のできるだけ大きな波長を有するものが好ましい。好ましい例としては、例えばHe−Neレーザからのレーザビーム(波長633nm)等が挙げられる。
【0020】
なお、投影光学系の硝材として、石英やガラス等が使用された場合、これらの硝材は、約2μm以上の長い波長でもかなりの光吸収率を有するので、照明光IL2A,IL2Bとして、フッ化水素(HF)ガスの化学反応を利用したHF化学レーザ光(波長2.4〜3.4μm)等を使用してもよい。また、石英以外の光学ガラスは、不純物を含んでいるため、530nm以上の長い波長でも1%/cmに近い光吸収率を有するものもあり、このような1%/cmに近い光吸収率を有する照明光でも照射エネルギーの回転非対称な分布の対策としては十分有効である。このような照明光の例としては、水素(H2 )放電管からのC線(波長656.3nm)やヘリウム(He)放電管からのd線(波長587.6nm)等が挙げられる。
【0021】
次に、レチクル4は走査方向(X方向)に一定速度で移動自在で且つX方向及びY方向に微動可能なレチクルステージ5上に載置されている。レチクルステージ5の位置は外部のレーザ干渉計(不図示)により精密に計測されており、そのレーザ干渉計の測定値に基づいてレチクルステージ5の位置が制御されている。また、レチクル4上にはウエハ7との位置合わせ用のレチクルマーク11A,11Bが形成されている。
【0022】
一方、ウエハ7は不図示のウエハホルダを介して走査方向(X方向)に一定速度で移動自在なウエハステージ8上に載置されている。ウエハステージ8はX方向及びY方向にステッピング移動もできるように構成されており、ウエハ7上の各ショット領域を投影光学系6の露光領域への走査開始位置に移動する動作と、走査露光動作とを繰り返すステップ・アンド・スキャン方式によりウエハ7上の各ショット領域にレチクル4のパターンの像が逐次転写される。走査露光時には、レチクル4が+X方向(又は−X方向)へ、例えば速度VR でスキャンされるのと同期して、ウエハ7が−X方向(又は+X方向)に速度β・VR (βは投影倍率)でスキャンされる。また、ウエハ7上の各ショット領域には位置合わせ用のウエハマーク12A,12Bが形成されている。
【0023】
次に、本例の露光動作について説明する。本例では、走査露光時にはレチクル4上のスリット状の照明領域だけでなく、それ以外のパターン領域も照明する。即ち、走査露光が開始されると同時に、3個の光源部1,3A,3Bからそれぞれ照明光IL1,IL2A,IL2Bが射出される。
図1(b)は、レチクル4上の照明光IL1,IL2A,IL2Bの照明領域を示し、この図1(b)において光源部1からの照明光IL1は、投影光学系6の有効露光フィールド(視野)と共役な円形の有効照明領域14の外形と接する点L1,L2,N1,N2を結んだ長方形の照明領域18に照射されている。この場合、円形の有効照明領域14の中心P2は光軸AXに一致している。一方、光源部3Aからの照明光IL2Aは照明領域18の−X方向の点L1,N1を結んだ境界線から左外側の台形状の照明領域17に照射されている。また、光源部3Bからの照明光IL2Bは照明領域18の+X方向の点L2,N2を結んだ境界線から右外側の台形状の照明領域19に照射されている。即ち、照明領域17,19は回転非対称な長方形の照明領域18を補完して円形の有効照明領域14に近い照明領域を形成するための補完照明領域といえる。照明領域18を透過した照明光IL1、及び照明領域17,19をそれぞれ透過した照明光IL2A,IL2Bは、共に投影光学系6を透過してウエハ7上に照射される。
【0024】
図1(c)は、ウエハ7上の照明領域を示し、この図1(c)において、投影光学系6の有効露光フィールド(視野)IRと一致する円形の有効露光領域20の外周に内接する非走査方向(Y方向)に長い長方形の露光領域21にウエハ7のフォトレジストに感光性の照明光IL1が照射されている。この場合、円形の有効露光領域20の中心P1は光軸AXに一致している。そして、その長方形の露光領域21を補完して円形の有効露光領域20に近い照明領域を形成する照明領域22,23にそれぞれウエハ7のフォトレジストに非感光性の照明光IL2A,IL2Bが照射されている。
【0025】
即ち、走査露光時にはレチクル4上で回転対称に近い領域が照明され、投影光学系6内のレンズもほぼ回転対称に照明されるため、レンズの硝材における照明光のエネルギーの吸収密度は回転対称に近い分布となる。従って、投影光学系6のレンズの回転非対称な熱変形等が抑えられ、投影光学系6の収差変動が抑えられる。この場合、その収差変動をできるだけ少なくするために、光源部3A,3Bからのそれぞれの照明光IL2A,IL2Bによるレチクル4上の照明領域17,19の合計面積は、有効照明領域14内の照明光IL1による照明領域18以外の面積の1/2以上であることが望ましい。
【0026】
また、レチクル4上の照明領域17,19を透過した照明光IL2A,IL2Bがそれぞれウエハ7上の照明領域22,23にも照射されるが、照明光IL2A,IL2Bはウエハ7上のフォトレジストに非感光性であるため、ウエハ7上にはレチクル4上の照明領域18内のパターンの像だけが転写される。
また、本例では光源部3A,3Bからの照明光IL2A,IL2Bをレチクル4とウエハ7との位置合わせのためのアライメントセンサの検出光としても使用する。そのため、レチクル4のX方向の両端部の上方に、TTR方式で画像処理方式のアライメントセンサ13A,13Bを設置し、光源部3A,3Bから射出された照明光IL2A,IL2Bを、それぞれレチクル4上のレチクルマーク11A,11Bが形成された位置を含む領域に照射する。そして、アライメントセンサ13A,13Bを用いてウエハマーク12A,12Bとレチクルマーク11A,11Bとの相対的な位置ずれを検出する。この場合には、アライメントセンサ用の光源を設ける必要がなく効率的である。なお、アライメントセンサ13A,13Bはレチクルマーク11A,11Bとウエハマーク12A,12Bとをそれぞれ別々に検出するアライメントセンサでもよい。
【0027】
次に、本発明の実施の形態の第1の例の変形例について、図7を参照して説明する。本変形例は、図1の光源部3A,3Bからの照明光をレチクル4の下部側から直接投影光学系6に入射させるように構成したものである。その他の構成は第1の例と同様であり、図7において図1と対応する部分には同一符号を付し、その説明を省略する。
【0028】
図7(a)は、本変形例の投影露光装置の概略構成を示し、この図7(a)において、レチクル4の下部の左右に図1と同様に波長λ2の照明光IL2A,IL2Bを射出する光源部3A,3Bが設置されている。光源部3Aからの照明光IL2Aは、コンデンサレンズ9Aを透過し、照明光IL2Aの入射方向に対して斜設されたミラー33Aにより下方に反射されて投影光学系6に入射する。もう1つの光源部3Bからの照明光IL2Bも同様にコンデンサレンズ9Bを透過し、照明光IL2Bの入射方向に対して斜設されたミラー33Bにより下方に反射されて投影光学系6に入射する。以下は第1の例と同様である。
【0029】
図7(b)は、レチクル4上における照明領域を示し、この図7(b)において、光源部1からの照明光IL1は、円形の有効照明領域14の外形に内接する長方形の照明領域18に照射されている。一方、光源部3A,3Bからのそれぞれの照明光IL2A,IL2Bはレチクル4上には照射されないが、ミラー33A,33Bで光路を折り返したレチクル4上の仮想的な照明領域は、それぞれ点線で示す台形状の照射領域17A,17Bとなる。従って、第1の例と同様に、投影光学系6のレンズの照射エネルギーの分布はほぼ回転対称となり、投影光学系6の収差変動を低減することができる。
【0030】
本変形例は、スペース面や配置上の制約から第1の例のように、レチクル4の入射側に、ミラー16A,16Bを配置できない場合に有効な方法である。但し、本変形例の場合はミラー33A,33Bによる照明光IL1のケラレのために、レチクル4上における照明光IL1の照明領域18と、光源部3A,3Bからの照明光IL2A,IL2Bによる仮想的な照明領域17A,19Aとの境界を、明確に区別することが困難であることがある。
【0031】
次に、本発明による実施の形態の第2の例について、図2を参照して説明する。本例は、2つの光源部を設置し、合成光学系及び波長選択性を有する視野絞り等を利用して投影光学系内にほぼ回転対称なエネルギー分布を有する照明光を供給するものである。基本的な構成は第1の例と同様であり、図2において図1と対応する部分には同一符号を付し、その詳細説明を省略する。なお、図2ではウエハステージ等は省略している。
【0032】
図2は、本例の投影露光装置の概略構成を示し、この図2において、光源部1から射出されたウエハ7上のフォトレジストに感光性の波長λ1の照明光IL1は、リレーレンズ41により平行光束となり、照明光IL1の光路に対して斜設された偏光ビームスプリッタ42を透過してコンデンサレンズ46に入射する。なお、本例の照明光IL1及びIL2AはそれぞれP偏光に直線偏光して偏光ビームスプリッタ42に入射するものとする。もう一方の光源部3Aから射出されたウエハ7上のフォトレジストに非感光性の波長λ2の照明光IL2Aも、リレーレンズ47により平行光束となり、照明光IL1と直交する方向から偏光ビームスプリッタ42に入射する。照明光IL2Aは偏光ビームスプリッタ42を透過し、1/4波長板43を経てミラー44により反射され、再び1/4波長板43を経てS偏光として偏光ビームスプリッタ42に入射する。S偏光となった照明光IL2Aは偏光ビームスプリッタ42により反射され、先に説明した照明光IL1と合成されて照明光IL3としてコンデンサレンズ46に入射し、コンデンサレンズ46を介してレチクル4上に照射される。また、偏光ビームスプリッタ42とコンデンサレンズ46との間には1/4波長板45が設置され、照明光IL3はほぼ円偏光の状態でレチクル4に照射される。これによって、レチクル4のパターンの方向が変わっても良好な転写が行われる。
【0033】
レチクル4の上面には、近接して波長選択性を有する視野絞り48が設置されており、この視野絞り48により、照明光IL3を構成する照明光IL1及び照明光IL2Aのレチクル4上におけるそれぞれの照明領域が決定される。視野絞り48は、波長選択性を有する2種類の光学フィルターから構成されている。
図2(b)は、視野絞り48の平面図を示し、この図2(b)において、視野絞り48の中央には、波長λ1の光束を選択的に透過する非走査方向に長い長方形の光学フィルター50が設けられている。本例では視野絞り48はレチクル4と近接しているため、この光学フィルター50の形状がそのままレチクル4上の照明光IL1の照明領域とみなせる。また、視野絞り48上の光学フィルター50の左右に波長λ2の照明光IL2Aを選択的に透過する半円状の光学フィルター49,51が設けられている。そして、光学フィルター50及び光学フィルター49,51は全体として光軸AXを中心とする円形領域を形成しており、この円形領域はレチクル4上の有効照明領域に収まる領域である。
【0034】
これらの光学フィルター49〜51が設けられた視野絞り48を通過した照明光IL1,IL2Aは、レチクル4を透過した後、更に投影光学系6を通過してウエハ7上に照射されるが、照明光IL2Aはウエハ7上のフォトレジストに非感光性であるため、ウエハ7上には光学フィルター50の形状で規定されるレチクル4上のパターンの像だけが転写される。
【0035】
また、光源部1から射出された照明光IL1と光源部3Aから射出された照明光IL2Aとを同時に投影光学系6に入射させることによって、投影光学系6内の硝材の吸収エネルギーは、光軸AXに対し回転対称に近い密度分布になって、収差変動が少なくなる。また、従来例のように、投影光学系6の硝材の熱変形が著しく回転非対称である場合は、投影光学系の露光フィールドの中心でメリジオナル方向のパターンの最良像面と、それと垂直な方向のパターンの最良像面とが光軸方向に離れるというような非点収差(以下、「中心アス」という)が生じることがある。しかし、本例ではこのような中心アス等の回転非対称な収差変動の発生も抑えられる。また、本例の方法は以下のように円弧状の露光領域を用いる場合に特に有効である。
【0036】
図2(c)は、露光領域として円弧状の露光領域を用いる場合に視野絞り48の代わりに使用する視野絞りの状態を示し、この図2(c)において、視野絞り48Aの中央には光源部1からの照明光IL1を選択的に透過する円弧状の光学フィルター50Aが配置され、視野絞り48A上の光学フィルター50Aの左右に波長λ2の照明光IL2Aを選択的に透過する半円状光学フィルター49A及び三日月状の光学フィルター51Aが設けられている。これらの光学フィルター49A,51A及び50Aの形状は、全体として光軸AXを中心とする円形領域を形成するように設定されている。本例では、レチクル4上で円弧状の光学フィルター50Aの内部のパターンが投影光学系6を介してウエハ7上に投影される。しかも、投影光学系6にはほぼ光軸AXを中心として回転対称の照射エネルギーが供給され、収差変動が少なくなる。
【0037】
このように円弧状の照明領域の場合、第1の例において投影光学系6内の硝材に対して回転対称な照射エネルギーを与えるためには、光源部1,3A,3B内の視野絞りを極めて複雑な形状に設定する必要があり、製造コストが増大する。しかし本例によれば、そのレチクル4上の円弧状の照明領域に合わせて光学フィルター50Aの形状を設定すればよく、しかもそれに合わせて容易に照明光IL2Aの光学フィルター49A,51Aの形状も設定できる。
【0038】
なお、図2(b)の光学フィルター50としては、光源部3Aからの照明光IL2Aに対する透過率の出来るかぎり小さいものが、投影光学系6内の回転非対称な照射エネルギー分布による収差変動を低減する効果が大きく望ましい。また、投影光学系6の収差変動をできるだけ少なくするためには、光学フィルター49,51の面積は、光学フィルター50に外接する円内のうち、光学フィルター50以外の部分の面積の少なくとも1/2以上であることが望ましい。
【0039】
また、図2(a)の例においては、視野絞り48はレチクル4のパターン面の近傍に設定されているが、視野絞り48をレチクル4のパターン面と共役な面に配置してもよい。
なお、図2(a)において、合成光学系として偏光ビームスプリッタ42の代わりに2点鎖線で示すようにダイクロイックミラーDMを用いてもよい。このダイクロイックミラーDMは照明光IL1を透過して照明光IL2Aを反射する波長選択性を有し、これによって両照明光IL1,IL2Aが無駄なく合成される。また、この際には1/4波長板45は不要である。
【0040】
次に、本発明の投影露光装置の実施の形態の第3の例について、図8を参照して説明する。本例は、1つの光源だけを使用し、投影光学系とウエハとの間に遮光板を設けたものであり、図8において図1又は図2と対応する部分には同一符号を付し、その詳細説明を省略する。
図8(a)は、本例の投影露光装置の概略構成を示し、この図8(a)において、光源部1Aから射出されたフォトレジストに対して感光性の照明光IL1は、コンデンサレンズ41によりレチクル4上に照射される。この場合、照明光IL1のレチクル4上での照明領域形状は、図1の照明領域18のように長方形には整形されておらず、投影光学系6の有効露光フィールドと共役な円形の有効照明領域となっている。レチクル4上の円形の有効照明領域を通過した照明光IL1は、投影光学系6を透過し、ウエハ7に近接して配置された遮光板71に入射する。
【0041】
図8(b)は、遮光板71の平面図を示し、この図8(b)において、遮光板71の中心は光軸AXに一致している。遮光板71の中央部には、光軸AXを中心とするY方向に長い長方形の透過領域73が設けられており、その透過領域73を囲むように遮光帯72が設けられている。遮光板71に入射した照明光IL1の内で透過領域73を透過した照明光のみがウエハ7上に照射される。これにより、ウエハ7上には、遮光板71の透過領域73に対応するレチクル4上のY方向に長い長方形の領域のパターンの像が転写される。
【0042】
本例によれば、投影光学系6とウエハ7との間に遮光板71を設けるだけで、レチクル4上の所望の回転非対称な領域のパターンの像だけを転写できる。そのため、照明光IL1の照明領域を整形するための照明光学系の構成が簡単になる。また、1つの光源部1Aだけを使用するため、図1、図2、図7の例に比較して光源部やコンデンサレンズ等の設備が節約できる。また、遮光板71を設けるだけでよいため、構成が極めて簡単で調整等の作業も容易に行える。特に、本例では1つの光源部1Aからの照明光IL1によりレチクル4及び投影光学系6の回転対称な領域を照明するため、投影光学系6の硝材の光エネルギーの吸収密度分布は更に光軸AXの周りに回転対称となり、硝材の熱変形に伴う投影光学系6の収差の発生が更に抑えられる。
【0043】
なお、遮光板71を入れ換えるための交換機構を設け、透過領域の形状を露光領域に合わせて形成した複数の遮光板をその交換機構を介して交換するように構成してもよい。また、透過領域73を任意な形状に変更可能な視野調整機構を遮光板71の代わりに設けてもよい。
なお、図8の例において、機構的な都合でウエハ7と遮光板71との間に有限の距離d1が存在して、遮光板71によるケラレによってウエハ7上での照明むらが問題となる場合においては、図9(a)で示すようにウエハ7上での露光光の最大開口数(NA)をsin θとすると、レチクル4の付近又はレチクル4よりも光源側のレチクル4の共役位置に、図9(b)で示すようなウエハ7の露光領域と共役な領域81の外側に、幅dR =2β・d1・tan θ(βは1/4,1/5等の投影倍率)の遮光帯84,85を設けた部材80を配置するとよい。この場合、図8(a)の照明光IL1は遮光帯84,85を除く領域81,82,83を通過する。
【0044】
それにより図9(a)において、幅dR の遮光帯85とウエハ7上で共役な位置7Aから7Bまでの領域においては露光が全くされず、遮光板71の透過領域73と遮光帯72との境界を位置7Aと7Bとの中間位置7Cの上方に配置し、他方の遮光帯84についても同様にすれば、遮光板71によるケラレは起こらない。遮光帯84,85の幅dR が円形の部材80の直径よりも十分小さい場合、図8(a)の投影光学系6のレンズはほぼ回転対称に照明され、回転非対称な収差変動は十分に補正される。
【0045】
次に、上述の実施の形態における投影光学系の収差変動の低減の効果を計算例に基づいて説明する。先ず、照明エネルギーによる温度分布の上昇を計算する。そのため、図1の例において、投影光学系6のレンズを円筒形に近似して、レンズの側面から空気を通して熱が流出せずレンズの縁が金属と接することにより、そのレンズの縁からのみ熱が流出するものと仮定する。そのレンズの半径方向の距離をr、光軸AXの回りの角度をφ、上昇後の温度分布をT(r,φ)、レンズの単位体積当たりの熱吸収量をω(r,φ)、熱伝導率をλ、レンズの外半径をaとすると、熱平衡状態での円筒座標系(r,φ)での熱伝導方程式は、次式のようになる。
【0046】
【数1】

Figure 0003790833
【0047】
そこで、(数1)の熱伝導方程式を解くと、次式のようになる。
【0048】
【数2】
Figure 0003790833
【0049】
ここで、Jn(pin・r)は、第1種第n次(n=0,1,2,…)のベッセル(Bessel)関数で、pin(i=1,2,…)は、Jn(pin・a)=0を満たす数列である。
また、係数Cinは次式により表される。
【0050】
【数3】
Figure 0003790833
【0051】
但し、n=0のときのみ、係数Cinは次式により求められる。
【0052】
【数4】
Figure 0003790833
【0053】
また、係数Sinは次式により表される。
【0054】
【数5】
Figure 0003790833
【0055】
次に、温度分布の上昇によりどの次数の収差変動が多く現れるかを調べるために、上昇後の温度分布T(r,φ)を以下のように最小2乗法でフーリエ・ベキ級数展開する。ここで、上昇後の温度分布T(r,φ)の単位は℃で、距離rの単位はmmである。
【0056】
【数6】
Figure 0003790833
【0057】
但し、i=0,2,4,6,…である。
ここで、i=0,n=0の場合の級数B00は、光軸AX、即ちr=0での上昇温度になる。
以下、実際の数値に基づいて第1の例における効果を第1及び第2の2つの計算例により説明する。第1の計算例ではレチクル上の露光光の照明領域として長方形の照明領域を使用し、第2の計算例では円弧状の照明領域を使用する。この場合、投影光学系6のレンズをレンズ61で代表し(図3〜図6参照)、レンズ61を外半径aが40mmの円筒形の石英であるとする。石英の場合、熱伝導率は、0.0138W/(cm・℃)である。また、ウエハ7のフォトレジストを感光する波長λ1の照明光IL1に対するレンズ61の熱吸収率を2%/cmとする。
【0058】
第1の計算例において、先ず比較のため、図1のレチクル4上の70mm×16.8mmの長方形の照明領域18だけに照明光IL1が照射される場合について計算する。この場合、上記(数3)、(数4)、及び(数5)の熱吸収量ω(r,φ)に長方形の吸収エネルギー密度を代入して、その結果を(数2)に代入した場合の熱伝導方程式の解に基づいて計算する。
【0059】
図3(a)は、長方形の照明領域だけに照明光IL1が照射された場合のレンズ61上の照射状態を示し、この図3(a)において、図1(b)の照明領域18の点L1,L2,N1,N2に対応する点L1’,L2’,N1’,N2’で囲まれた長方形の照明領域62の走査方向の幅DX及び非走査方向の幅DYをそれぞれ16.8mm、及び70mmとする。そして、その照明領域62は照明光IL1により一様に照射されているものとし、単位時間当たりの全照射量を1Wとする。
【0060】
図3(b)は、以上の計算結果を図に表したものであり、横軸及び縦軸はそれぞれ光軸AXから走査方向への距離x及び非走査方向への距離yを表す。この図3(b)において、レンズ61上の温度分布を温度差0.02℃毎の等温線63Aで示す。なお、温度は内側から外側に向けて低い値となっている。なお、以下説明する図4(b)〜図6(b)においても、横軸及び縦軸はそれぞれ光軸AXから走査方向への距離x及び非走査方向への距離yを表し、等温線63B〜63Dは内側から外側に向かって低下する温度差0.02℃毎の等温線を示している。
【0061】
この図3(b)の光軸AXを中心とする非走査方向に長い楕円状の等温線63Aに示すように、レンズ61上の長方形の照明領域62に照明光ILIが照射されているだけの場合は、レンズ61上の光軸AXから離れた位置では、回転対称に近い温度分布となっているが、光軸AX(x=0,y=0)の近くでは回転非対称な温度分布となっている。
【0062】
表1は、上記(数6)によって、フーリエ・ベキ級数展開した級数Binを示し、横欄にn(0,1,2,…)、縦欄にi(=0,2,4,…)を取り、それぞれのn,iの値に対応する級数Binの値が示されている。表1については後で説明する。なお、後述する表2〜表4も表1と同様に級数Binの値が示されている。
【0063】
【表1】
Figure 0003790833
【0064】
次に、図1の第1の例に基づき、光源部1からの照明光IL1に加えて、光源部3A,3Bからの照明光IL2A,IL2Bにより投影光学系6のレンズ61を照射した場合の計算結果を示す。なお、光源部3A,3Bからの照明光IL2A,IL2Bの照射領域は第1の例と少し異なっているが、効果の面では同様と考えてよい。
【0065】
図4(a)は、レンズ61上の照射状態を示し、この図4(a)において、照明領域62が内接する円内で照明領域62に接する左右のほぼ半円形の照明領域64A,64Bにそれぞれ照明光IL2A,IL2Bが一様に照射されているとする。この場合、ウエハ7のフォトレジストを感光しない波長λ2の照明光IL2A,IL2Bに対するレンズ61の吸収エネルギー密度を照明領域62における照明光IL1に対する吸収エネルギー密度と等しいものとする。
【0066】
図4(b)は、以上の計算結果を図に表したものであり、この図4(b)において、レンズ61上の光軸AXを中心とする同心円状の等温線63Bに示すように、レンズ61上ではほぼ回転対称に近い温度分布となっている。また、以上の計算結果に基づいて、上記(数6)によって、フーリエ・ベキ級数展開した級数Binを計算した結果を表2に示す。
【0067】
【表2】
Figure 0003790833
【0068】
図3(b)及び図4(b)のそれぞれの上昇後の温度分布を比較すると、図4(b)の温度分布の方がかなり回転対称に近くなっている。更に、表1と表2とを比較した場合、i=0,n=0の場合の級数B00、即ち光軸AX(r=0)での温度は、表2の場合の方が大きいにもかかわらず、それ以外の級数の絶対値は大体において表2の方が小さい。級数Binの値のうち、n=0でi=0以外の級数の値が小さいことは、照明光の照射による球面収差変動が小さいことを示し、n=0以外のn=2やn=4の級数Binの値が小さいことは、照明光の照射による回転非対称な収差変動が小さいことを表す。即ち、図1の第1の例により、照明光の照射による中心アス等の回転非対称な収差変動が低減されることが分かる。
【0069】
次に、第2の計算例について説明する。この第2の計算例は図1に示す第1の例において、円弧状の照明領域を用いる場合の効果を具体的に数値で示すものである。先ず、比較のため、レチクル上の円弧状の照明領域だけに図1の照明光IL1が照射される場合について計算する。
図5(a)は、投影光学系6のレンズ61上の照明光IL1の照射状態を示し、この図5(a)において、レンズ61は第1の計算例の長方形の照明領域62(図3(a)参照)と同じ面積を有し、且つ同じ外接円を持つ円弧状の照明領域65により照明されている。この照明領域65は、投影光学系6の中心部のフレアを避けるために、光軸AXからの距離が8.4mmの円内の領域を含まないように形成されており、照明領域65の中心66は光軸AXから所定の距離dの位置に設定されている。なお、照明光IL1のレンズ61における照射エネルギー量は1Wである。その結果、円弧状の照明領域65の2つのY方向の隅の点L3,L4(又は点N3,N4)を直線的に結ぶ距離DRは16.8mm、照明領域65の2つのX方向の隅の点L4,N4(又は点L3,N3)を直線的に結ぶ距離DSは70mmである。そして、光軸AXから8.4mmの円内の領域を避けるために、図5(a)の点N3,L3を結ぶ直線から照明領域65の左側の円弧の接線との間のX方向の距離Sは25.2mmになるように設定されている。
【0070】
図5(b)は、レンズ61上の円弧状の照明領域65だけが照明光IL1により照明されている場合のレンズ61上の上昇後の温度分布を計算した結果を示し、この図5(b)において、0.02℃毎の等温線63Cに示すように、温度分布は光軸AXに対して右側に偏した非走査方向に長い楕円状の温度分布となる。この場合のフーリエ・ベキ級数展開した級数Binを表3に示す。
【0071】
【表3】
Figure 0003790833
【0072】
次に、図1(a)において、光源部1からの照明光IL1に加えて、光源部3A,3Bからの照明光IL2A,IL2Bによりレンズ61を照射した場合の計算例を示す。
図6(a)は、レンズ61上の照射状態を示し、この図6(a)において、照明領域65に接する左右の半円形の照明領域67A,67Bにそれぞれ照明光IL2A,IL2Bが一様に照射されているとする。この場合、上述のように、光源部3A,3Bからの照明光IL2A,IL2Bの照明領域を円弧状の照明領域に合わせるように、光源部3A,3B等を製作することは容易ではなく、本計算例においては、図6(a)に示すように、円弧状の照明領域65の−X方向の頂点を結ぶ直線を一辺とする照明領域67Aと、円弧状の照明領域65の右側の円弧の接線を一辺とする半円状の照明領域67Bとに、それぞれ照明光IL2A,IL2Bが照射されているものとする。そして、フォトレジストに感光しない波長λ2の照明光IL2A,IL2Bによる照明領域67A,67Bでのレンズ61の吸収エネルギー密度を円弧状の照明領域65における吸収エネルギー密度と等しいものとする。
【0073】
図6(b)は、以上の条件での計算結果を図に表したものであり、この図6(b)において、等温線63Dで示す温度分布は図5(b)の温度分布に比べて回転対称に近くなっている。また、以上の計算結果に基づいて、上記(数6)によって、フーリエ・ベキ級数展開した級数Binを計算した結果を表4に示す。
【0074】
【表4】
Figure 0003790833
【0075】
表3及び表4を比較すると、光軸AXにおける温度上昇を示す級数B00以外の大部分の級数Binの絶対値が、表4の値が表3の値より小さいとはいえず、図6(表4)の場合の方が大きな値の級数もかなりある。
即ち、円弧状の照射領域の場合、図1に示す第1の例による方法では、レンズ61上における温度分布の回転非対称性の改善の程度が小さく、回転非対称な収差変動の低減効果が小さい。従って、円弧状の露光領域の場合は、図2に示す実施の形態のように、光学フィルターによりウエハ上のフォトレジストを感光せず、且つ投影光学系6のレンズに吸収される波長の照明光による照明領域を円弧状の照明領域に隙間なく接するように設定すれば、投影光学系6のレンズ上の照射エネルギー分布の回転対称性が向上し、投影光学系の収差変動を低減できる。
【0076】
なお、本発明は走査露光型の投影露光装置に限らず、ステッパー方式等の一括露光型の投影露光装置で、レチクル上の回転非対称な領域のパターンをウエハ上に転写する場合にも同様に適用できる。
このように、本発明は上述の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
【0077】
【発明の効果】
本発明の第1の投影露光装置及び本発明の投影露光方法によれば、第1及び第2照明光は共に感光性基板上に照射されるが、第2照明光は感光性基板に対して非感光性であるため、第1照明光により照明されるマスク上の回転非対称な露光照明領域のパターンの像だけが感光性基板上の回転非対称な露光照明領域に転写される。また、第2照明光により第1照明光による回転非対称な露光照明領域を補完して、ほぼ回転対称な露光照明領域を通過した照明光により投影光学系を照明するため、投影光学系のレンズへの照射エネルギー分布の回転対称性が増加する。従って、回転非対称な熱エネルギーの分布によるレンズの熱変形や屈折率の回転非対称な分布が減少し、投影光学系の収差変動が少なくなる利点がある。
【0078】
また、本発明の第2の投影露光装置によれば、合成系により一旦合成された第1及び第2の照明光は視野絞りにより決定される領域をそれぞれ通過し、投影光学系を経て感光性基板上に照射される。第2照明光は感光性基板に対して非感光性であるため、第1照明光だけによる感光性基板上の被露光照明領域にマスク上のパターンの像が転写される。この場合、第1照明光は、視野絞りによりマスクの回転非対称な被露光照明領域としての第1の領域と共役な第1の透過部だけを通過するため、感光性基板上には、マスク上の第1の領域のパターンの像だけが転写される。一方、投影光学系には、マスク上の第1の領域を透過する第1照明光と、第1の領域を補完して実質的に回転対称な円形領域を形成するマスク上の第2の領域を透過する第2照明光とが入射する。第1及び第2照明光の全体の照射領域は実質的にほぼ回転対称な円形領域となるため、本発明の第1の投影露光装置と同様に、投影光学系のレンズへの照射エネルギー分布の回転対称性が増加して、投影光学系の収差変動が少なくなる利点がある。また、本発明ではマスク上の回転非対称な被露光照明領域に照射される第1照明光を整形するための光学系、及び第2照明光の照明領域を整形するための光学系が不要となる利点もある。
【0079】
また、本発明の第1及び第2の投影露光装置において、第2照明光が照明する領域に位置するマスク上のマスクマークと第2照明光が照明する領域に位置する感光性基板上の基板マークとの少なくとも一方からの光を光電的に検出し、双方のマークの内の少なくとも一方のマークの位置を検出するマーク位置検出系を有する場合には、第2照明光をマスク又は感光性基板の位置を検出するためのアライメント用の照明光としても有効に利用できる利点がある。
【0080】
また、回転対称な所定の円形露光領域、又は回転対称な所定の円形領域と共役な感光性基板上の領域が、投影光学系の感光性基板側の視野と一致する場合には、投影光学系のレンズは回転対称で最大径のほぼ円形の照明領域により照明されるため、投影光学系のレンズへの照射エネルギーの分布の回転対称性が向上する利点がある。
【0081】
また、本発明の第3の投影露光装置によれば、感光性基板に対して感光性の照明光は、光制限部材によりマスク上の回転非対称な領域に対応する領域だけを通過して感光性基板上に照射される。従って、マスク上の回転非対称な領域のパターンの像だけが、感光性基板上に転写される。また、照明光によりマスク上のほぼ回転対称な領域を照明できるため、本発明の第1及び第2の投影露光装置と同様に、投影光学系のレンズへの照射エネルギー分布の回転対称性が増加する。本発明では、特に1つの照明光だけでマスクを照明するため、投影光学系のレンズ全体に一様な波長の光エネルギーが照射される。従って、投影光学系のレンズにおける熱エネルギーの吸収量もレンズ全体で一様になり、レンズの熱変形が更に減少し、投影光学系の収差変動も更に抑えられる利点がある。また、1つの照明光だけを使用するため、光源や照明光学系等の設備を節約できる利点もある。
【図面の簡単な説明】
【図1】(a)は本発明による投影露光装置の実施の形態の第1の例を示す概略構成図、(b)は図1(a)のレチクル上での照明領域を示す図、(c)は図1(a)のウエハ上での照明領域を示す図である。
【図2】(a)は本発明の実施の形態の第2の例を示す概略構成図、(b)は図2(a)の視野絞りを示す平面図、(c)は図2(b)の視野絞りの変形例を示す平面図である。
【図3】(a)は図1の実施の形態による収差改善効果を示すための第1の計算例において、比較計算に使用されるレンズ上の照明領域を示す平面図、(b)はそのレンズ上の上昇後の温度分布の計算結果を示す図である。
【図4】(a)はその第1の計算例において使用されるレンズ上の照明領域を示す平面図、(b)はそのレンズ上の上昇後の温度分布の計算結果を示す図である。
【図5】(a)は図1の実施の形態の収差改善効果を示すための第2の計算例において、比較計算に使用されるレンズ上の照明領域を示す平面図、(b)はそのレンズ上の上昇後の温度分布の計算結果を示す図である。
【図6】(a)はその第2の計算例において使用されるレンズ上の照明領域を示す平面図、(b)はそのレンズ上の上昇後の温度分布の計算結果を示す図である。
【図7】本発明の実施の形態の第1の例の変形例を示す概略構成図である。
【図8】(a)は本発明の実施の形態の第3の例を示す概略構成図、(b)は図8(a)の遮光板を示す平面図である。
【図9】(a)は図8の実施の形態の例において遮光板とウエハとの間に間隔がある場合の遮光板による照明光のケラレの状況を示す図、(b)はその場合にレチクル又はレチクルと共役位置に配置する部材の例を示す図である。
【符号の説明】
1 光源部(露光用)
2 照明光学系
3A,3B 光源部(非露光用)
IL1 照明光(露光用)
IL2A,IL2B 照明光(非露光用)
4 レチクル
6 投影光学系
7 ウエハ
8 ウエハステージ
11A,11B レチクルマーク
12A,12B ウエハマーク
13A,13B アライメントセンサ
17,17A,19,19A レチクル上の照明領域(非露光領域)
18 レチクル上の照明領域(露光領域)
20 ウエハ上の有効露光領域
21 ウエハ上の露光領域
22,23 ウエハ上の照明領域(非露光領域)
42 偏光ビームスプリッタ
43,45 1/4波長板
48,48A 視野絞り
49,50,51,49A,50A,51A 光学フィルター
71 遮光板
73 透過領域[0001]
BACKGROUND OF THE INVENTION
The present invention is used for exposing a pattern on a mask onto a photosensitive substrate in a photolithography process for manufacturing, for example, a semiconductor element, a liquid crystal display element, an imaging element (CCD, etc.), or a thin film magnetic head. In particular, the mask and the substrate are scanned synchronously with respect to the projection optical system in a state where a pattern of a rotationally asymmetric region such as a slit in the transfer pattern on the mask is projected onto the substrate. Therefore, the present invention is suitable for application to a scanning exposure type projection exposure apparatus such as a step-and-scan method.
[0002]
[Prior art]
Conventionally, a photoresist as a photosensitive substrate is applied to a pattern in a substantially square illumination area on a reticle (or photomask) as a mask through a projection optical system in order to manufacture a semiconductor element or the like. A batch exposure type projection exposure apparatus such as a stepper for exposing on a wafer (or glass plate or the like) has been widely used. On the other hand, recently, in order to cope with an increase in the size of a chip pattern such as a semiconductor element, it is required to transfer a reticle pattern having a larger area to each shot region on the wafer. However, it is difficult to design and manufacture a projection optical system in which aberrations such as distortion and curvature of field are suppressed to a predetermined allowable value or less over the entire surface of a wide effective exposure field (field of view).
[0003]
For this reason, recently, the reticle and wafer are scanned synchronously with respect to the projection optical system while a pattern in a slit-like illumination area such as a rectangle or arc on the reticle is projected onto the wafer via the projection optical system. However, a scanning exposure type projection exposure apparatus such as a step-and-scan system that sequentially exposes a reticle pattern to each shot area on a wafer has been attracting attention. This scanning exposure type projection exposure apparatus can utilize the diameter of the effective exposure field of the projection optical system to the maximum, and the length of the transfer pattern in the scanning direction can be longer than the diameter of the effective exposure field. As a result, a large area reticle pattern can be transferred onto the wafer with small aberrations.
[0004]
[Problems to be solved by the invention]
In general, in a projection exposure apparatus, illumination light having high energy is irradiated onto a lens of a projection optical system during exposure. Therefore, even if the absorption rate of the irradiation energy of the glass material constituting the lens of the projection optical system is only about 0.2% / cm, the illumination light is irradiated on the lens in a state of rotational asymmetry with respect to the optical axis. In this case, the lens temperature distribution changes due to the absorption heat of the irradiation energy, so that the lens is thermally deformed in a rotationally asymmetric manner, or the refractive index distribution of the glass material fluctuates in a rotationally asymmetric manner due to a partial temperature rise. As a result, the aberration variation of the projection optical system is caused by the irradiation of illumination light having a non-uniform illumination distribution having rotational asymmetry such that the aberration of the projection optical system gradually deteriorates. Such aberration fluctuations have become unacceptable under conditions where high resolution and high exposure accuracy are required as in today.
[0005]
Conventionally, for such aberration fluctuations of the projection optical system, the projection optical system is divided into, for example, three blocks, and each block is sealed to control the pressure of the gas in contact with the lens in each block. Have dealt with. In this method, in the case of the collective exposure type using a substantially square illumination area, the degree of rotational asymmetry of the illumination area is low, and thus aberration fluctuations have been sufficiently corrected. However, as in the case of a scanning exposure type projection exposure apparatus, when using an illumination area that is remarkably rotationally asymmetric with respect to the optical axis, such as making the illumination area on the reticle into a slit shape such as a rectangle or an arc, such a case. Even if atmospheric pressure control is performed, there is a fear that fluctuations in aberrations such as distortion and curvature of field do not fall within the allowable values. In particular, when rotational asymmetry is significant, the astigmatism that the best image plane of the pattern in the meridional direction at the center of the exposure field of the projection optical system and the best image plane of the pattern in the direction perpendicular thereto are separated in the optical axis direction. There is also the inconvenience that aberrations occur.
[0006]
  In view of this point, the present invention is a projection exposure system in which a variation in aberration of the projection optical system is small when a pattern of a rotationally asymmetric region on the reticle is transferred onto the wafer via the projection optical system.Method andAn object is to provide an apparatus.
[0007]
[Means for Solving the Problems]
A first projection exposure apparatus according to the present invention includes a projection optical system (6) for projecting a predetermined transfer pattern formed on a mask (4) onto a photosensitive substrate (7) as shown in FIG. In a predetermined circular exposure region (20) rotationally symmetric with respect to the first point (P1) where the optical axis (AX) of the projection optical system and the exposed surface of the photosensitive substrate (7) intersect, In order to form a rotationally asymmetric exposure illumination region (21) with respect to the first point (P1) and transfer a rotationally asymmetric mask pattern image onto the photosensitive substrate (7), the photosensitive substrate (7 ) To the second point (P2) where the optical axis of the projection optical system (6) and the pattern surface of the mask (4) intersect with each other. A rotationally asymmetric exposure illumination region (18) is formed in the pattern surface of the mask (4). Second illumination light (IL2A, IL2B) having a non-photosensitive wavelength is supplied to the photosensitive substrate (7) via the first illumination system (1, 2) and the projection optical system (6). Then, the rotationally asymmetrical surface of the photosensitive substrate (7) in the exposed surface is illuminated so as to illuminate almost the entire circular exposure area (20) with the first illumination light (IL1). A second illumination system (3A, 3B, 9A, 9B, 16A, 16B) that forms a non-exposure illumination area (22, 23) that complements the exposure illumination area (21) within the predetermined circular exposure area (20); , Has.
[0008]
In this case, the second illumination light (IL2A, IL2B) needs to be absorbed to some extent by the glass material of the lens constituting the projection optical system (6). However, instead of being absorbed by the lens glass material, it may be absorbed by the lens coating film.
According to the first projection exposure apparatus of the present invention, the second illumination light (IL2A, IL2B) is also irradiated onto the photosensitive substrate (7) in the same manner as the first illumination light (IL1). Since the illumination light (IL2A, IL2B) is non-photosensitive to the photosensitive substrate (7), the rotationally asymmetric exposure illumination region (18) on the mask (4) illuminated by the first illumination light (IL1). Is transferred to the rotationally asymmetric exposure illumination area (21) on the photosensitive substrate (7). In addition, the exposed areas (22, 23) that form a rotationally symmetric circular exposure area (20) by complementing the rotationally asymmetric exposure illumination area (21) on the photosensitive substrate (7) are converted into the second illumination light ( Illumination by IL2A, IL2B) increases the rotational symmetry of the irradiation energy distribution to the lens of the projection optical system (6). Accordingly, the rotationally asymmetric thermal deformation of the lens of the projection optical system (6) is reduced, and the rotationally asymmetric refractive index distribution is also reduced, so that the variation in the aberration of the projection optical system (6) is reduced.
[0009]
Further, the second projection exposure apparatus according to the present invention projects a predetermined transfer pattern formed on the mask (4) onto the photosensitive substrate (7), for example, as shown in FIG. ), A first light source part (1, 41) for supplying first illumination light (IL1) having a wavelength for exposing the photosensitive substrate (7), and non-photosensitive to the photosensitive substrate (7). The second light source unit (3A, 47) for supplying the second illumination light (IL2A) having a wavelength of λ, the first illumination light (IL1) and the second illumination light (IL2A), and the mask ( 4) and the composition system (42, 44, 46) leading to 4), and the optical system between the composition system and its mask (4) is arranged at a position substantially conjugate with the pattern surface of the mask (4). The field stop (48), and the field stop (48) includes the first illumination light (IL1). It has a first transmission part (50) for transmitting and a second transmission part (49, 51) for transmitting the second illumination light (IL2A), and the first transmission part (50) has its projection optics. In a predetermined circular area (48) which is rotationally symmetric with respect to a predetermined point where the optical axis (AX) of the system (6) and the pattern surface of the mask (4) intersect, it is rotationally asymmetric with respect to the predetermined point. The second transmissive region (49, 51) is conjugate with the first region (50) as the exposure illumination region, and the second transmissive region (49, 51) is a predetermined circular region that is rotationally symmetric with the first illumination light (IL1). (48) is conjugated with the second region (49, 51) as the exposure illumination region which complements the rotationally asymmetric first region (50) so as to illuminate almost the whole.
[0010]
According to the second projection exposure apparatus of the present invention, the first and second illumination lights (IL1, IL2A) once synthesized by the synthesis system (42, 44, 46) are masked by the field stop (48). (4) The projection illumination system (6) passes through the rotationally asymmetric exposure illumination region (50) and the exposure illumination region (49, 51) that complements the rotationally asymmetric exposure illumination region. Then, it is irradiated onto the photosensitive substrate (7). In this case, the first illumination light (IL1) is conjugated with the first region (50) as the rotationally asymmetric illumination region to be exposed of the mask (4) by the field stop (48). Only the pattern image of the first region (50) on the mask (4) is transferred onto the photosensitive substrate (7).
[0011]
On the other hand, in the projection optical system (6), the first illumination light (IL1) transmitted through the first region (50) on the mask (4) and the first region are complemented and substantially rotationally symmetric. The second illumination light (IL2A) that passes through the second region (49, 51) on the mask (4) that forms the circular region (48) is incident. Since the entire irradiation area of the first and second illumination lights (IL1, IL2A) is a substantially rotationally symmetric circular area, the projection optical system (6) is similar to the first projection exposure apparatus of the present invention. The rotational symmetry of the irradiation energy distribution to the lens increases. Accordingly, the aberration variation of the projection optical system (6) is reduced. In the present invention, an optical system for defining the field of view of the first illumination light (IL1) irradiated on the rotationally asymmetric exposure illumination area on the mask (4) and the mask of the second illumination light (IL2A) ( 4) An optical system for defining the field of view above is not required.
[0012]
In the first and second projection exposure apparatuses of the present invention, the mask mark (11A, 11B) on the mask (4) located in the area illuminated by the second illumination light (IL2A) and the second illumination. Light from at least one of the substrate marks (12A, 12B) on the photosensitive substrate (7) located in the region illuminated with light (IL2A) is detected photoelectrically, and at least one of both marks is detected. It is preferable to have a mark position detection system (13A, 13B) for detecting the position of the mark. Thereby, the second illumination light (IL2A) can be effectively used as illumination light for the mark position detection system (13A, 13B) for detecting the position of the mask (4) or the photosensitive substrate (7).
[0013]
The rotationally symmetric predetermined circular exposure region (20) or the region on the photosensitive substrate (7) conjugate with the rotationally symmetric predetermined circular region (48) is a region of the projection optical system (6). It is preferable to coincide with the visual field on the photosensitive substrate (7) side. As a result, the lens of the projection optical system (6) is substantially rotationally symmetric and is illuminated by a circular illumination area having a substantially maximum diameter, so that the distribution of irradiation energy to the lens is further rotationally symmetric.
[0014]
Further, the third projection exposure apparatus according to the present invention projects a predetermined transfer pattern formed on the mask (4) onto the photosensitive substrate (7), for example, as shown in FIG. ), An illumination optical system (1A, 41) that illuminates the mask (4) with illumination light (IL1) having a wavelength for exposing the photosensitive substrate (7), the projection optical system (6), and the photosensitive And a light limiting member (71) having a predetermined light transmitting portion (73) disposed between the light transmitting substrate (7) and the illumination light passing through the light transmitting portion (73) of the light limiting member. (IL1) is a predetermined circular exposure region (71) rotationally symmetric with respect to a predetermined point where the optical axis (AX) of the projection optical system (6) and the exposed surface of the photosensitive substrate (7) intersect. The light is incident on a rotationally asymmetric region (73) with respect to the predetermined point.
[0015]
  According to the third projection exposure apparatus of the present invention, the illumination light (IL1) that is photosensitive with respect to the photosensitive substrate (6) is a rotationally symmetric region of the mask (4) and the projection optical system (6). After passing, the light limiting member (71) passes through only the region corresponding to the rotationally asymmetric region on the mask (4) and is irradiated onto the photosensitive substrate (7). Therefore, only the image of the pattern of the rotationally asymmetric region on the mask (4) is transferred onto the photosensitive substrate (7). Further, since the rotationally symmetric region on the mask (4) is illuminated by the illumination light (IL1), the projection optical system (6) is irradiated on the lens in the same manner as in the first and second projection exposure apparatuses of the present invention. The rotational symmetry of the energy distribution is increased and the aberration variation of the projection optical system (6) is reduced. In the present invention, since the mask (4) is illuminated with only one illumination light (IL1), the entire lens of the projection optical system (6) is irradiated with light energy having a uniform wavelength. Accordingly, the amount of thermal energy absorbed by these lenses is also uniform, rotationally asymmetric thermal deformation of the lenses is further reduced, and the occurrence of aberrations in the projection optical system (6) is further suppressed. Moreover, since only one illumination light (IL1) is used, facilities such as a light source and an illumination optical system can be saved.
  Next, a projection exposure method according to the present invention projects a predetermined transfer pattern formed on the mask onto a photosensitive substrate using the projection exposure apparatus of the present invention.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A first example of the embodiment of the projection exposure apparatus of the present invention will be described below with reference to FIG. In this example, the present invention is applied to a step-and-scan type projection exposure apparatus.
FIG. 1A shows a schematic configuration of the projection exposure apparatus of this example. As shown in FIG. 1A, in this example, three light source units 1 and 3A for illuminating a pattern region on the reticle 4 are shown. , 3B are provided. At the time of exposure, illumination light IL1 having a photosensitive wavelength λ1 is emitted from the light source unit 1 to the photoresist coated on the wafer 7, and the non-photosensitive wavelength λ2 is applied to the photoresist on the wafer 7 from the light source units 3A and 3B. Illumination lights IL2A and IL2B are emitted. The light source unit 1 includes an exposure light source, a fly-eye lens for making the illuminance distribution on the reticle 4 uniform, a field stop for defining an illumination area on the reticle 4, and the like, and illumination emitted from the light source unit 1 The light IL1 is irradiated to the rectangular illumination area 18 (see FIG. 1B) that is long in the non-scanning direction on the reticle 4 via the illumination optical system 2. Under the illumination light IL1, an image of the pattern in the rectangular illumination area 18 of the reticle 4 is projected onto the wafer 7 coated with a photoresist via the projection optical system 6 (β is, for example, 1/4). Or 1/5). Hereinafter, the Z-axis is taken in parallel to the optical axis AX of the projection optical system 6, the X-axis is parallel to the paper surface of FIG. 1A within a two-dimensional plane perpendicular to the Z-axis, and the paper surface is perpendicular to the paper surface of FIG. The Y axis is taken for explanation. In this example, the scanning direction of the reticle 4 and the wafer 7 during scanning exposure is the X direction.
[0017]
On the other hand, the non-exposure light source units 3A and 3B each include a light source, a fly-eye lens for making the illuminance distribution on the reticle 4 uniform, a field stop for defining an illumination area on the reticle 4, and the like. Has been. The illumination light IL2A having the wavelength λ2 emitted from the light source unit 3A disposed on the upper side of the reticle 4 in the −X direction passes through the condenser lens 9A, and is slightly inclined with respect to the incident direction of the illumination light IL2A. Is reflected downward by the mirror 16A having a high transmittance, and is condensed on the illumination area 17 on the reticle 4 (see FIG. 1B). In addition, the illumination light IL2B having the wavelength λ2 emitted from the light source unit 3B disposed on the upper side of the reticle 4 in the + X direction passes through the condenser lens 9B, and is slightly inclined with respect to the incident direction of the illumination light IL2B. The light is reflected downward by the mirror 16 </ b> B having transmittance, and is condensed on the illumination area 19 on the reticle 4. The illumination lights IL2A and IL2B that have passed through the reticle 4 are irradiated onto the wafer 7 via the projection optical system 6.
[0018]
In this case, the illumination area 17 of the illumination light IL2A and the illumination area 19 of the illumination light IL2B are set to be areas outside in the scanning direction with respect to the rectangular illumination area 18 on the reticle 4 of the illumination light IL1. Yes.
The wavelength λ1 of the illumination light IL1 and the wavelength λ2 of the illumination lights IL2A and IL2B vary depending on the type of the photoresist and the type of the glass material of the projection optical system 6, but in a normal case, the wavelength λ1 is less than 530 nm and the wavelength λ2 is 530 nm or more. Select the wavelength. As illumination light IL1 for exposure, excimer lasers such as bright lines such as i-line (wavelength 365 nm) and g-line (wavelength 436 nm), ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), etc. Light or harmonics of copper vapor laser light or YAG laser light is used.
[0019]
Further, since the illumination lights IL2A and IL2B are used for the purpose of suppressing the distribution of rotationally asymmetric irradiation energy with respect to the glass material of the projection optical system 6, the amount of light absorption per unit area in the glass material or lens coating film as a whole is illuminated. Those close to the light IL1 are preferable. In this sense, the illumination light IL2A, IL2B is a glass material for the lens of the projection optical system 6 when the light intensity of the light source is low at a wavelength at which the photoresist is not exposed and when the light absorption rate is low. Or what has a wavelength as large as possible of the light absorption rate with respect to a coating film is preferable. Preferable examples include a laser beam (wavelength 633 nm) from a He—Ne laser, for example.
[0020]
When quartz, glass, or the like is used as the glass material for the projection optical system, these glass materials have a considerable light absorption rate even at a long wavelength of about 2 μm or more. Therefore, as the illumination lights IL2A and IL2B, hydrogen fluoride is used. (HF) HF chemical laser light (wavelength 2.4 to 3.4 μm) using a chemical reaction of gas may be used. In addition, since optical glass other than quartz contains impurities, some optical glasses have a light absorptance close to 1% / cm even at a long wavelength of 530 nm or more. Such a light absorptance close to 1% / cm is obtained. Even the illumination light possessed is sufficiently effective as a countermeasure against the rotationally asymmetric distribution of irradiation energy. Examples of such illumination light include hydrogen (H2) C line (wavelength 656.3 nm) from the discharge tube, d line (wavelength 587.6 nm) from the helium (He) discharge tube, and the like.
[0021]
Next, the reticle 4 is placed on a reticle stage 5 that can move at a constant speed in the scanning direction (X direction) and can be moved slightly in the X and Y directions. The position of the reticle stage 5 is precisely measured by an external laser interferometer (not shown), and the position of the reticle stage 5 is controlled based on the measured value of the laser interferometer. Also, reticle marks 11A and 11B for alignment with the wafer 7 are formed on the reticle 4.
[0022]
On the other hand, the wafer 7 is placed on a wafer stage 8 that is movable at a constant speed in the scanning direction (X direction) via a wafer holder (not shown). The wafer stage 8 is configured to be capable of stepping movement in the X direction and the Y direction. An operation for moving each shot area on the wafer 7 to a scanning start position for an exposure area of the projection optical system 6 and a scanning exposure operation. The pattern image of the reticle 4 is sequentially transferred to each shot area on the wafer 7 by the step-and-scan method. At the time of scanning exposure, the reticle 4 moves in the + X direction (or -X direction), for example, at a speed V.RIn synchronism with the scanning of the wafer 7, the velocity of the wafer 7 in the −X direction (or + X direction) is β · V.R(Β is a projection magnification). In addition, wafer marks 12A and 12B for alignment are formed in each shot area on the wafer 7.
[0023]
Next, the exposure operation of this example will be described. In this example, not only the slit-shaped illumination area on the reticle 4 but also other pattern areas are illuminated during scanning exposure. That is, simultaneously with the start of scanning exposure, illumination lights IL1, IL2A, and IL2B are emitted from the three light source sections 1, 3A, and 3B, respectively.
FIG. 1B shows the illumination areas of the illumination lights IL1, IL2A, IL2B on the reticle 4. In FIG. 1B, the illumination light IL1 from the light source unit 1 is an effective exposure field (of the projection optical system 6). A rectangular illumination area 18 connecting points L1, L2, N1, and N2 that are in contact with the outer shape of the circular effective illumination area 14 conjugate with the field of view) is irradiated. In this case, the center P2 of the circular effective illumination area 14 coincides with the optical axis AX. On the other hand, the illumination light IL2A from the light source unit 3A is irradiated to the left-side trapezoidal illumination area 17 from the boundary line connecting the points L1 and N1 in the −X direction of the illumination area 18. Further, the illumination light IL2B from the light source unit 3B is irradiated to the trapezoidal illumination area 19 on the right outer side from the boundary line connecting the points L2 and N2 in the + X direction of the illumination area 18. That is, the illumination areas 17 and 19 can be said to be complementary illumination areas for complementing the rotationally asymmetric rectangular illumination area 18 to form an illumination area close to the circular effective illumination area 14. The illumination light IL1 transmitted through the illumination area 18 and the illumination lights IL2A and IL2B transmitted through the illumination areas 17 and 19 are both transmitted through the projection optical system 6 and irradiated onto the wafer 7.
[0024]
FIG. 1C shows an illumination area on the wafer 7. In FIG. 1C, the illumination area is inscribed in the outer periphery of a circular effective exposure area 20 that coincides with the effective exposure field (field of view) IR of the projection optical system 6. Photosensitive illumination light IL1 is applied to the photoresist of the wafer 7 on a rectangular exposure region 21 that is long in the non-scanning direction (Y direction). In this case, the center P1 of the circular effective exposure region 20 coincides with the optical axis AX. Then, non-photosensitive illumination lights IL2A and IL2B are applied to the photoresist of the wafer 7 on the illumination areas 22 and 23, which complement the rectangular exposure area 21 and form an illumination area close to the circular effective exposure area 20, respectively. ing.
[0025]
That is, during scanning exposure, a region close to rotational symmetry on the reticle 4 is illuminated, and the lens in the projection optical system 6 is also illuminated almost rotationally symmetrically, so that the energy absorption density of the illumination light in the lens glass material is rotationally symmetrical. Close distribution. Accordingly, rotationally asymmetric thermal deformation or the like of the lens of the projection optical system 6 can be suppressed, and aberration fluctuations of the projection optical system 6 can be suppressed. In this case, in order to reduce the aberration variation as much as possible, the total area of the illumination areas 17 and 19 on the reticle 4 by the illumination lights IL2A and IL2B from the light source units 3A and 3B is the illumination light in the effective illumination area 14, respectively. It is desirable that it is 1/2 or more of the area other than the illumination area 18 by IL1.
[0026]
Illumination light IL2A and IL2B transmitted through the illumination areas 17 and 19 on the reticle 4 are also irradiated onto the illumination areas 22 and 23 on the wafer 7, respectively. The illumination lights IL2A and IL2B are applied to the photoresist on the wafer 7. Since it is non-photosensitive, only the image of the pattern in the illumination area 18 on the reticle 4 is transferred onto the wafer 7.
In this example, the illumination lights IL2A and IL2B from the light source units 3A and 3B are also used as detection light of an alignment sensor for aligning the reticle 4 and the wafer 7. Therefore, TTR image processing type alignment sensors 13A and 13B are installed above both ends of the reticle 4 in the X direction, and illumination lights IL2A and IL2B emitted from the light source units 3A and 3B are respectively placed on the reticle 4. The region including the position where the reticle marks 11A and 11B are formed is irradiated. Then, the relative displacement between the wafer marks 12A and 12B and the reticle marks 11A and 11B is detected using the alignment sensors 13A and 13B. In this case, it is not necessary to provide a light source for the alignment sensor, which is efficient. Alignment sensors 13A and 13B may be alignment sensors that detect reticle marks 11A and 11B and wafer marks 12A and 12B, respectively.
[0027]
Next, a modification of the first example of the embodiment of the present invention will be described with reference to FIG. In this modification, the illumination light from the light source units 3A and 3B in FIG. 1 is directly incident on the projection optical system 6 from the lower side of the reticle 4. The other configuration is the same as that of the first example. In FIG. 7, the same reference numerals are given to the portions corresponding to those in FIG.
[0028]
FIG. 7A shows a schematic configuration of the projection exposure apparatus of the present modification. In FIG. 7A, illumination lights IL2A and IL2B having a wavelength λ2 are emitted on the left and right sides of the reticle 4 as in FIG. Light source units 3A and 3B are installed. The illumination light IL2A from the light source unit 3A passes through the condenser lens 9A, is reflected downward by the mirror 33A obliquely arranged with respect to the incident direction of the illumination light IL2A, and enters the projection optical system 6. Similarly, the illumination light IL2B from the other light source unit 3B passes through the condenser lens 9B, is reflected downward by the mirror 33B obliquely arranged with respect to the incident direction of the illumination light IL2B, and enters the projection optical system 6. The following is the same as in the first example.
[0029]
FIG. 7B shows an illumination area on the reticle 4. In FIG. 7B, the illumination light IL 1 from the light source unit 1 is a rectangular illumination area 18 that is inscribed in the outer shape of the circular effective illumination area 14. Has been irradiated. On the other hand, the illumination lights IL2A and IL2B from the light source units 3A and 3B are not irradiated onto the reticle 4, but virtual illumination areas on the reticle 4 whose optical paths are turned back by the mirrors 33A and 33B are indicated by dotted lines, respectively. The trapezoidal irradiation areas 17A and 17B are formed. Accordingly, as in the first example, the distribution of the irradiation energy of the lenses of the projection optical system 6 is substantially rotationally symmetric, and aberration fluctuations in the projection optical system 6 can be reduced.
[0030]
This modification is an effective method when the mirrors 16A and 16B cannot be arranged on the entrance side of the reticle 4 as in the first example due to space constraints and arrangement restrictions. However, in the case of this modification, because of the vignetting of the illumination light IL1 by the mirrors 33A and 33B, the illumination region 18 of the illumination light IL1 on the reticle 4 and the virtual illumination light IL2A and IL2B from the light source units 3A and 3B It may be difficult to clearly distinguish the boundaries between the illumination areas 17A and 19A.
[0031]
Next, a second example of the embodiment according to the present invention will be described with reference to FIG. In this example, two light source units are installed, and illumination light having a substantially rotationally symmetric energy distribution is supplied into the projection optical system using a combination optical system and a field stop having wavelength selectivity. The basic configuration is the same as that of the first example. In FIG. 2, parts corresponding to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted. In FIG. 2, the wafer stage and the like are omitted.
[0032]
FIG. 2 shows a schematic configuration of the projection exposure apparatus of this example. In FIG. 2, the illumination light IL 1 having a wavelength λ 1 that is photosensitive to the photoresist on the wafer 7 emitted from the light source unit 1 is transmitted by the relay lens 41. The light beam becomes a parallel light beam, passes through the polarizing beam splitter 42 obliquely provided with respect to the optical path of the illumination light IL 1, and enters the condenser lens 46. It is assumed that the illumination lights IL1 and IL2A in this example are linearly polarized into P-polarized light and enter the polarization beam splitter 42. The illumination light IL2A of wavelength λ2 that is non-photosensitive to the photoresist on the wafer 7 emitted from the other light source unit 3A is also converted into a parallel light beam by the relay lens 47, and enters the polarization beam splitter 42 from a direction orthogonal to the illumination light IL1. Incident. The illumination light IL2A passes through the polarization beam splitter 42, is reflected by the mirror 44 through the quarter wavelength plate 43, and enters the polarization beam splitter 42 as S polarization again through the quarter wavelength plate 43. The illumination light IL2A that has become S-polarized light is reflected by the polarization beam splitter 42, is combined with the illumination light IL1 described above, enters the condenser lens 46 as the illumination light IL3, and is irradiated onto the reticle 4 via the condenser lens 46. Is done. A quarter-wave plate 45 is installed between the polarizing beam splitter 42 and the condenser lens 46, and the illumination light IL3 is irradiated onto the reticle 4 in a substantially circularly polarized state. As a result, good transfer can be performed even if the pattern direction of the reticle 4 changes.
[0033]
A field stop 48 having wavelength selectivity is provided close to the upper surface of the reticle 4, and the field stop 48 allows the illumination light IL 1 and the illumination light IL 2 A constituting the illumination light IL 3 to be respectively on the reticle 4. An illumination area is determined. The field stop 48 is composed of two types of optical filters having wavelength selectivity.
FIG. 2B shows a plan view of the field stop 48. In FIG. 2B, a rectangular optical element that is long in the non-scanning direction and selectively transmits the light flux having the wavelength λ1 is located at the center of the field stop 48. A filter 50 is provided. In this example, since the field stop 48 is close to the reticle 4, the shape of the optical filter 50 can be regarded as the illumination area of the illumination light IL 1 on the reticle 4 as it is. Semicircular optical filters 49 and 51 that selectively transmit the illumination light IL2A having the wavelength λ2 are provided on the left and right of the optical filter 50 on the field stop 48, respectively. The optical filter 50 and the optical filters 49 and 51 as a whole form a circular area centered on the optical axis AX, and this circular area is an area that fits in the effective illumination area on the reticle 4.
[0034]
The illumination lights IL1 and IL2A that have passed through the field stop 48 provided with these optical filters 49 to 51 pass through the reticle 4 and then pass through the projection optical system 6 to be irradiated onto the wafer 7. Since the light IL 2 A is non-photosensitive to the photoresist on the wafer 7, only the pattern image on the reticle 4 defined by the shape of the optical filter 50 is transferred onto the wafer 7.
[0035]
Further, by causing the illumination light IL1 emitted from the light source unit 1 and the illumination light IL2A emitted from the light source unit 3A to enter the projection optical system 6 at the same time, the absorption energy of the glass material in the projection optical system 6 is reduced to the optical axis. The density distribution is close to rotational symmetry with respect to AX, and aberration variation is reduced. Further, as in the conventional example, when the thermal deformation of the glass material of the projection optical system 6 is extremely rotationally asymmetric, the best image plane of the meridional pattern at the center of the exposure field of the projection optical system and the direction perpendicular thereto Astigmatism (hereinafter referred to as “center astigmatism”) may occur in which the best image plane of the pattern is separated in the optical axis direction. However, in this example, the occurrence of such rotationally asymmetric aberration fluctuations such as central astigmatism can be suppressed. The method of this example is particularly effective when an arc-shaped exposure area is used as follows.
[0036]
FIG. 2C shows a state of a field stop used in place of the field stop 48 when an arc-shaped exposure region is used as the exposure region. In FIG. 2C, a light source is placed at the center of the field stop 48A. An arc-shaped optical filter 50A that selectively transmits the illumination light IL1 from the section 1 is disposed, and a semicircular optical that selectively transmits the illumination light IL2A having the wavelength λ2 to the left and right of the optical filter 50A on the field stop 48A. A filter 49A and a crescent-shaped optical filter 51A are provided. The shapes of these optical filters 49A, 51A, and 50A are set so as to form a circular region centered on the optical axis AX as a whole. In this example, the pattern inside the arc-shaped optical filter 50 </ b> A on the reticle 4 is projected onto the wafer 7 via the projection optical system 6. In addition, the projection optical system 6 is supplied with rotationally symmetric irradiation energy about the optical axis AX, and aberration variation is reduced.
[0037]
Thus, in the case of the arcuate illumination area, in order to give rotationally symmetric irradiation energy to the glass material in the projection optical system 6 in the first example, the field diaphragms in the light source units 1, 3A, 3B are extremely limited. It is necessary to set a complicated shape, and the manufacturing cost increases. However, according to this example, the shape of the optical filter 50A may be set in accordance with the arcuate illumination area on the reticle 4, and the shapes of the optical filters 49A and 51A of the illumination light IL2A can be easily set in accordance with the shape. it can.
[0038]
As the optical filter 50 in FIG. 2B, a filter having as small a transmittance as possible with respect to the illumination light IL2A from the light source section 3A reduces aberration fluctuations due to rotationally asymmetric irradiation energy distribution in the projection optical system 6. Great effect is desirable. In order to minimize the aberration variation of the projection optical system 6, the areas of the optical filters 49 and 51 are at least 1/2 of the area of the portion other than the optical filter 50 in the circle circumscribing the optical filter 50. The above is desirable.
[0039]
In the example of FIG. 2A, the field stop 48 is set near the pattern surface of the reticle 4, but the field stop 48 may be disposed on a surface conjugate with the pattern surface of the reticle 4.
In FIG. 2A, a dichroic mirror DM may be used as a synthesizing optical system as shown by a two-dot chain line instead of the polarization beam splitter 42. The dichroic mirror DM has a wavelength selectivity for transmitting the illumination light IL1 and reflecting the illumination light IL2A, and thereby synthesizes both illumination lights IL1 and IL2A without waste. In this case, the quarter wavelength plate 45 is not necessary.
[0040]
Next, a third example of the embodiment of the projection exposure apparatus of the present invention will be described with reference to FIG. In this example, only one light source is used, and a light shielding plate is provided between the projection optical system and the wafer. In FIG. 8, portions corresponding to FIG. 1 or FIG. Detailed description thereof is omitted.
FIG. 8A shows a schematic configuration of the projection exposure apparatus of this example. In FIG. 8A, illumination light IL1 that is photosensitive to the photoresist emitted from the light source unit 1A is a condenser lens 41. Is irradiated onto the reticle 4. In this case, the illumination area shape of the illumination light IL1 on the reticle 4 is not shaped into a rectangle like the illumination area 18 in FIG. 1, but is a circular effective illumination conjugate with the effective exposure field of the projection optical system 6. It is an area. The illumination light IL1 that has passed through the circular effective illumination area on the reticle 4 passes through the projection optical system 6 and enters a light shielding plate 71 disposed close to the wafer 7.
[0041]
FIG. 8B shows a plan view of the light shielding plate 71. In FIG. 8B, the center of the light shielding plate 71 coincides with the optical axis AX. A rectangular transmission region 73 that is long in the Y direction with the optical axis AX as the center is provided at the center of the light shielding plate 71, and a light shielding band 72 is provided so as to surround the transmission region 73. Of the illumination light IL1 incident on the light shielding plate 71, only the illumination light transmitted through the transmission region 73 is irradiated onto the wafer 7. As a result, a pattern image of a rectangular region that is long in the Y direction on the reticle 4 corresponding to the transmission region 73 of the light shielding plate 71 is transferred onto the wafer 7.
[0042]
According to this example, only by providing the light shielding plate 71 between the projection optical system 6 and the wafer 7, it is possible to transfer only the pattern image of the desired rotationally asymmetric region on the reticle 4. Therefore, the configuration of the illumination optical system for shaping the illumination area of the illumination light IL1 is simplified. Further, since only one light source unit 1A is used, facilities such as a light source unit and a condenser lens can be saved as compared with the examples of FIGS. Further, since it is only necessary to provide the light shielding plate 71, the configuration is extremely simple, and operations such as adjustment can be easily performed. In particular, in this example, the rotationally symmetric region of the reticle 4 and the projection optical system 6 is illuminated by the illumination light IL1 from one light source unit 1A. Owing to the rotational symmetry around AX, the occurrence of aberration in the projection optical system 6 due to thermal deformation of the glass material is further suppressed.
[0043]
In addition, an exchange mechanism for replacing the light shielding plate 71 may be provided, and a plurality of light shielding plates formed in accordance with the shape of the transmissive area in accordance with the exposure area may be exchanged via the exchange mechanism. Further, a visual field adjustment mechanism that can change the transmission region 73 to an arbitrary shape may be provided instead of the light shielding plate 71.
In the example of FIG. 8, there is a finite distance d1 between the wafer 7 and the light shielding plate 71 due to mechanical reasons, and uneven illumination on the wafer 7 becomes a problem due to vignetting by the light shielding plate 71. As shown in FIG. 9A, the maximum numerical aperture (NA) of exposure light on the wafer 7 is expressed as sin. Assuming that θ, the width d is located near the reticle 4 or at the conjugate position of the reticle 4 on the light source side of the reticle 4 and outside the region 81 conjugate with the exposure region of the wafer 7 as shown in FIG.R A member 80 provided with light shielding bands 84 and 85 of = 2β · d1 · tan θ (β is a projection magnification of 1/4, 1/5, etc.) may be disposed. In this case, the illumination light IL1 in FIG. 8A passes through the regions 81, 82, and 83 excluding the light shielding bands 84 and 85.
[0044]
Accordingly, in FIG. 9A, the width dR In the region between the light shielding band 85 and the position 7A to 7B conjugate on the wafer 7, no exposure is performed, and the boundary between the transmission region 73 and the light shielding band 72 of the light shielding plate 71 is an intermediate position 7C between the positions 7A and 7B. If the same is applied to the other light shielding band 84, vignetting by the light shielding plate 71 does not occur. Width d of shading bands 84 and 85R Is sufficiently smaller than the diameter of the circular member 80, the lens of the projection optical system 6 in FIG. 8A is illuminated almost rotationally symmetrically, and rotationally asymmetric aberration fluctuations are sufficiently corrected.
[0045]
Next, the effect of reducing aberration fluctuations of the projection optical system in the above-described embodiment will be described based on calculation examples. First, an increase in temperature distribution due to illumination energy is calculated. Therefore, in the example of FIG. 1, the lens of the projection optical system 6 is approximated to a cylindrical shape, and heat does not flow out from the side of the lens through the air, and the edge of the lens is in contact with the metal. Is assumed to flow out. The distance in the radial direction of the lens is r, the angle around the optical axis AX is φ, the temperature distribution after the rise is T (r, φ), the heat absorption amount per unit volume of the lens is ω (r, φ), Assuming that the thermal conductivity is λ and the outer radius of the lens is a, the thermal conduction equation in the cylindrical coordinate system (r, φ) in the thermal equilibrium state is as follows.
[0046]
[Expression 1]
Figure 0003790833
[0047]
Therefore, solving the equation (1) for heat conduction gives the following equation.
[0048]
[Expression 2]
Figure 0003790833
[0049]
Where Jn(pinR) is a Bessel function of the nth order (n = 0, 1, 2,...) Of the first kind, and pin(I = 1, 2,...)n(pinA number sequence satisfying a) = 0.
The coefficient CinIs represented by the following equation.
[0050]
[Equation 3]
Figure 0003790833
[0051]
However, the coefficient C only when n = 0.inIs obtained by the following equation.
[0052]
[Expression 4]
Figure 0003790833
[0053]
Also, the coefficient SinIs represented by the following equation.
[0054]
[Equation 5]
Figure 0003790833
[0055]
Next, in order to investigate which order of aberration fluctuations appear frequently due to an increase in temperature distribution, the temperature distribution T (r, φ) after the increase is expanded by a Fourier-power series by the least square method as follows. Here, the unit of the temperature distribution T (r, φ) after the increase is ° C., and the unit of the distance r is mm.
[0056]
[Formula 6]
Figure 0003790833
[0057]
However, i = 0, 2, 4, 6,.
Here, the series B when i = 0 and n = 000Becomes the temperature rise at the optical axis AX, that is, r = 0.
Hereinafter, the effects of the first example will be described based on actual numerical values using the first and second calculation examples. In the first calculation example, a rectangular illumination area is used as the exposure area of the exposure light on the reticle, and in the second calculation example, an arcuate illumination area is used. In this case, the lens of the projection optical system 6 is represented by the lens 61 (see FIGS. 3 to 6), and the lens 61 is assumed to be cylindrical quartz having an outer radius a of 40 mm. In the case of quartz, the thermal conductivity is 0.0138 W / (cm · ° C.). Further, the heat absorption rate of the lens 61 with respect to the illumination light IL1 having the wavelength λ1 for exposing the photoresist on the wafer 7 is set to 2% / cm.
[0058]
In the first calculation example, first, for comparison, the calculation is performed for the case where the illumination light IL1 is irradiated only on the rectangular illumination area 18 of 70 mm × 16.8 mm on the reticle 4 of FIG. In this case, a rectangular absorption energy density is substituted into the heat absorption amount ω (r, φ) in the above (Equation 3), (Equation 4), and (Equation 5), and the result is substituted into (Equation 2). Calculate based on the solution to the heat conduction equation.
[0059]
FIG. 3A shows an irradiation state on the lens 61 when the illumination light IL1 is irradiated only on the rectangular illumination area. In FIG. 3A, the point of the illumination area 18 in FIG. A width DX in the scanning direction and a width DY in the non-scanning direction of the rectangular illumination area 62 surrounded by the points L1 ′, L2 ′, N1 ′, N2 ′ corresponding to L1, L2, N1, N2 are 16.8 mm, And 70 mm. And the illumination area | region 62 shall be uniformly irradiated with illumination light IL1, and the total irradiation amount per unit time shall be 1W.
[0060]
FIG. 3B illustrates the above calculation results. The horizontal axis and the vertical axis represent the distance x from the optical axis AX to the scanning direction and the distance y from the non-scanning direction, respectively. In FIG. 3B, the temperature distribution on the lens 61 is indicated by an isotherm 63A with a temperature difference of 0.02 ° C. The temperature is low from the inside to the outside. 4B to 6B described below, the horizontal axis and the vertical axis represent the distance x from the optical axis AX to the scanning direction and the distance y from the non-scanning direction, respectively, and the isotherm 63B. -63D has shown the isotherm for every temperature difference 0.02 degreeC which falls toward an outer side from inner side.
[0061]
As shown by an elliptical isotherm 63A that is long in the non-scanning direction centered on the optical axis AX in FIG. 3B, the illumination light ILI is only irradiated to the rectangular illumination region 62 on the lens 61. In this case, the temperature distribution is close to rotational symmetry at a position away from the optical axis AX on the lens 61, but the temperature distribution is rotationally asymmetric near the optical axis AX (x = 0, y = 0). ing.
[0062]
Table 1 shows a series B obtained by expanding the Fourier power series according to the above (Equation 6).in, N (0, 1, 2,...) In the horizontal column, i (= 0, 2, 4,...) In the vertical column, and series B corresponding to the values of n and i, respectively.inThe value of is shown. Table 1 will be described later. In addition, Table 2 to Table 4 described later is a series B as in Table 1.inThe value of is shown.
[0063]
[Table 1]
Figure 0003790833
[0064]
Next, based on the first example of FIG. 1, in addition to the illumination light IL1 from the light source unit 1, in addition to the illumination light IL2A and IL2B from the light source units 3A and 3B, the lens 61 of the projection optical system 6 is irradiated. The calculation result is shown. Note that the irradiation areas of the illumination lights IL2A and IL2B from the light source units 3A and 3B are slightly different from those in the first example, but may be considered the same in terms of effects.
[0065]
FIG. 4A shows an irradiation state on the lens 61. In FIG. 4A, the left and right substantially semicircular illumination areas 64A and 64B in contact with the illumination area 62 in the circle inscribed with the illumination area 62 are shown. Assume that the illumination lights IL2A and IL2B are uniformly irradiated, respectively. In this case, the absorption energy density of the lens 61 with respect to the illumination light IL2A and IL2B of the wavelength λ2 that does not expose the photoresist on the wafer 7 is assumed to be equal to the absorption energy density with respect to the illumination light IL1 in the illumination region 62.
[0066]
FIG. 4B is a diagram showing the above calculation result. In FIG. 4B, as shown by a concentric isotherm 63B centered on the optical axis AX on the lens 61, FIG. On the lens 61, the temperature distribution is nearly rotationally symmetric. Further, based on the above calculation result, a series B which is a Fourier-power series expansion by the above (Equation 6).inThe results of calculating are shown in Table 2.
[0067]
[Table 2]
Figure 0003790833
[0068]
Comparing the respective temperature distributions after the increase in FIGS. 3B and 4B, the temperature distribution in FIG. 4B is much closer to rotational symmetry. Further, when Table 1 and Table 2 are compared, the series B in the case of i = 0 and n = 000That is, although the temperature at the optical axis AX (r = 0) is larger in the case of Table 2, the absolute values of the other series are generally smaller in Table 2. Series BinAmong the values of n, the value of the series other than n = 0 and i = 0 is small, indicating that the variation of spherical aberration due to illumination light irradiation is small, and the series of n = 2 or n = 4 other than n = 0. BinA small value of represents that the rotationally asymmetric aberration fluctuation due to illumination light irradiation is small. That is, according to the first example of FIG. 1, it can be seen that rotationally asymmetric aberration fluctuations such as central astigmatism due to illumination light irradiation are reduced.
[0069]
Next, a second calculation example will be described. This second calculation example specifically shows the effect of using an arcuate illumination area in the first example shown in FIG. First, for comparison, the calculation is performed for the case where only the arcuate illumination area on the reticle is irradiated with the illumination light IL1 of FIG.
FIG. 5A shows the irradiation state of the illumination light IL1 on the lens 61 of the projection optical system 6. In FIG. 5A, the lens 61 is a rectangular illumination area 62 (FIG. 3) of the first calculation example. Illuminated by an arcuate illumination area 65 having the same area as (a) and the same circumscribed circle. The illumination area 65 is formed so as not to include an area within a circle whose distance from the optical axis AX is 8.4 mm in order to avoid flare at the center of the projection optical system 6. 66 is set at a position of a predetermined distance d from the optical axis AX. The irradiation energy amount of the illumination light IL1 in the lens 61 is 1W. As a result, the distance DR that linearly connects the points L3 and L4 (or points N3 and N4) of the two Y-direction corners of the arc-shaped illumination area 65 is 16.8 mm, and the two X-direction corners of the illumination area 65 The distance DS that linearly connects the points L4 and N4 (or points L3 and N3) is 70 mm. Then, in order to avoid a region within a circle of 8.4 mm from the optical axis AX, the distance in the X direction between the straight line connecting the points N3 and L3 in FIG. S is set to be 25.2 mm.
[0070]
FIG. 5B shows the result of calculating the temperature distribution after rising on the lens 61 when only the arcuate illumination area 65 on the lens 61 is illuminated by the illumination light IL1, and FIG. ), The temperature distribution becomes an elliptical temperature distribution that is long in the non-scanning direction and is biased to the right side with respect to the optical axis AX, as indicated by an isothermal line 63C at every 0.02 ° C. In this case, the Fourier-power series expanded series BinIs shown in Table 3.
[0071]
[Table 3]
Figure 0003790833
[0072]
Next, in FIG. 1A, an example of calculation in the case where the lens 61 is irradiated with the illumination light IL2A and IL2B from the light source units 3A and 3B in addition to the illumination light IL1 from the light source unit 1 is shown.
FIG. 6A shows an irradiation state on the lens 61. In FIG. 6A, the illumination lights IL2A and IL2B are uniformly applied to the left and right semicircular illumination areas 67A and 67B in contact with the illumination area 65, respectively. Suppose that it is irradiated. In this case, as described above, it is not easy to manufacture the light source parts 3A, 3B and the like so that the illumination areas of the illumination lights IL2A, IL2B from the light source parts 3A, 3B are matched with the arcuate illumination area. In the calculation example, as shown in FIG. 6A, an illumination area 67 </ b> A having a straight line connecting the vertices in the −X direction of the arc-shaped illumination area 65 and an arc on the right side of the arc-shaped illumination area 65. It is assumed that illumination lights IL2A and IL2B are respectively irradiated to a semicircular illumination region 67B having one side as a tangent line. The absorption energy density of the lens 61 in the illumination areas 67A and 67B by the illumination light IL2A and IL2B having the wavelength λ2 that is not exposed to the photoresist is equal to the absorption energy density in the arcuate illumination area 65.
[0073]
FIG. 6B shows the calculation results under the above conditions. In FIG. 6B, the temperature distribution indicated by the isotherm 63D is compared to the temperature distribution of FIG. 5B. It is close to rotational symmetry. Further, based on the above calculation result, a series B which is a Fourier-power series expansion by the above (Equation 6).inThe results of calculating are shown in Table 4.
[0074]
[Table 4]
Figure 0003790833
[0075]
When Table 3 and Table 4 are compared, a series B indicating a temperature rise in the optical axis AX.00Most series other thaninThe absolute values of Table 4 cannot be said to be smaller than the values in Table 3, and there are considerably more series of values in the case of FIG. 6 (Table 4).
That is, in the case of an arcuate irradiation region, the method according to the first example shown in FIG. 1 has a small degree of improvement in rotational asymmetry of the temperature distribution on the lens 61, and the effect of reducing rotationally asymmetric aberration fluctuation is small. Therefore, in the case of the arc-shaped exposure region, as in the embodiment shown in FIG. 2, the illumination light having a wavelength that is not exposed to the photoresist on the wafer by the optical filter and is absorbed by the lens of the projection optical system 6 is used. If the illumination area is set so as to be in contact with the arcuate illumination area without any gap, the rotational symmetry of the irradiation energy distribution on the lens of the projection optical system 6 is improved, and the aberration fluctuation of the projection optical system can be reduced.
[0076]
The present invention is not limited to a scanning exposure type projection exposure apparatus, but is also applied to a case where a pattern of a rotationally asymmetric region on a reticle is transferred onto a wafer in a batch exposure type projection exposure apparatus such as a stepper method. it can.
As described above, the present invention is not limited to the above-described embodiment, and can have various configurations without departing from the gist of the present invention.
[0077]
【The invention's effect】
  Of the present inventionFirstAccording to the projection exposure apparatus and the projection exposure method of the present invention, the first and second illumination lights are both irradiated onto the photosensitive substrate, but the second illumination light is non-photosensitive to the photosensitive substrate. Only the pattern image of the rotationally asymmetric exposure illumination area on the mask illuminated by the first illumination light is transferred to the rotationally asymmetric exposure illumination area on the photosensitive substrate. In addition, the second illumination light supplements the rotationally asymmetric exposure illumination region by the first illumination light, and the projection optical system is illuminated by the illumination light that has passed through the substantially rotationally symmetric exposure illumination region. The rotational symmetry of the irradiation energy distribution increases. Accordingly, there is an advantage that the thermal deformation of the lens due to the rotationally asymmetric thermal energy distribution and the rotationally asymmetric distribution of the refractive index are reduced, and the aberration variation of the projection optical system is reduced.
[0078]
According to the second projection exposure apparatus of the present invention, the first and second illumination lights once synthesized by the synthesis system pass through the regions determined by the field stop, respectively, and pass through the projection optical system to be photosensitive. Irradiated onto the substrate. Since the second illumination light is non-photosensitive to the photosensitive substrate, the image of the pattern on the mask is transferred to the exposure illumination area on the photosensitive substrate by only the first illumination light. In this case, since the first illumination light passes only through the first transmission portion conjugate with the first region as the exposure asymmetric illumination region of the mask by the field stop, on the photosensitive substrate, on the mask. Only the pattern image of the first region is transferred. On the other hand, the projection optical system includes a first illumination light that passes through the first area on the mask and a second area on the mask that forms a substantially rotationally symmetric circular area that complements the first area. 2nd illumination light which permeate | transmits. Since the entire irradiation area of the first and second illumination lights is a substantially rotationally symmetric circular area, the irradiation energy distribution to the lens of the projection optical system is similar to that of the first projection exposure apparatus of the present invention. There is an advantage that the rotational symmetry is increased and the aberration variation of the projection optical system is reduced. Further, in the present invention, an optical system for shaping the first illumination light irradiated on the rotationally asymmetric exposure illumination area on the mask and an optical system for shaping the illumination area of the second illumination light become unnecessary. There are also advantages.
[0079]
In the first and second projection exposure apparatuses of the present invention, the mask mark on the mask located in the area illuminated by the second illumination light and the substrate on the photosensitive substrate located in the area illuminated by the second illumination light. In the case of having a mark position detection system that photoelectrically detects light from at least one of the marks and detects the position of at least one of the two marks, the second illumination light is masked or photosensitive substrate There is an advantage that it can be effectively used also as illumination light for alignment for detecting the position of.
[0080]
Further, when the rotationally symmetric predetermined circular exposure region or the region on the photosensitive substrate conjugate with the rotationally symmetric predetermined circular region coincides with the visual field on the photosensitive substrate side of the projection optical system, the projection optical system Since this lens is rotationally symmetric and illuminated by a substantially circular illumination region having the maximum diameter, there is an advantage that the rotational symmetry of the irradiation energy distribution to the lens of the projection optical system is improved.
[0081]
According to the third projection exposure apparatus of the present invention, the photosensitive illumination light with respect to the photosensitive substrate passes through only the region corresponding to the rotationally asymmetric region on the mask by the light limiting member and is photosensitive. Irradiated onto the substrate. Therefore, only the pattern image of the rotationally asymmetric region on the mask is transferred onto the photosensitive substrate. In addition, since a substantially rotationally symmetric area on the mask can be illuminated by the illumination light, the rotational symmetry of the irradiation energy distribution to the lens of the projection optical system increases as in the first and second projection exposure apparatuses of the present invention. To do. In the present invention, since the mask is illuminated with only one illumination light, the entire lens of the projection optical system is irradiated with light energy having a uniform wavelength. Therefore, the amount of thermal energy absorbed by the lens of the projection optical system is uniform throughout the lens, and there is an advantage that the thermal deformation of the lens is further reduced and aberration variations of the projection optical system can be further suppressed. Moreover, since only one illumination light is used, there is an advantage that facilities such as a light source and an illumination optical system can be saved.
[Brief description of the drawings]
FIG. 1A is a schematic configuration diagram showing a first example of an embodiment of a projection exposure apparatus according to the present invention, FIG. 1B is a diagram showing an illumination area on the reticle of FIG. FIG. 2C is a diagram showing an illumination area on the wafer of FIG.
2A is a schematic configuration diagram showing a second example of the embodiment of the present invention, FIG. 2B is a plan view showing the field stop of FIG. 2A, and FIG. 2C is FIG. It is a top view which shows the modification of the field stop of ().
3A is a plan view showing an illumination area on a lens used for comparison calculation in the first calculation example for showing the aberration improvement effect according to the embodiment of FIG. 1, and FIG. It is a figure which shows the calculation result of the temperature distribution after the raise on a lens.
4A is a plan view showing an illumination area on a lens used in the first calculation example, and FIG. 4B is a diagram showing a calculation result of a temperature distribution after rising on the lens.
5A is a plan view showing an illumination area on a lens used for comparison calculation in a second calculation example for showing the aberration improvement effect of the embodiment of FIG. 1, and FIG. It is a figure which shows the calculation result of the temperature distribution after the raise on a lens.
6A is a plan view showing an illumination area on a lens used in the second calculation example, and FIG. 6B is a view showing a calculation result of a temperature distribution after rising on the lens.
FIG. 7 is a schematic configuration diagram showing a modification of the first example of the embodiment of the present invention.
8A is a schematic configuration diagram showing a third example of the embodiment of the present invention, and FIG. 8B is a plan view showing the light shielding plate of FIG. 8A.
9A is a diagram showing the vignetting state of the illumination light by the light shielding plate when there is a gap between the light shielding plate and the wafer in the example of the embodiment of FIG. 8, and FIG. It is a figure which shows the example of the member arrange | positioned in a reticle or a conjugate position with a reticle.
[Explanation of symbols]
1 Light source (for exposure)
2 Illumination optics
3A, 3B Light source (non-exposure)
IL1 Illumination light (for exposure)
IL2A, IL2B Illumination light (for non-exposure)
4 Reticles
6 Projection optical system
7 Wafer
8 Wafer stage
11A, 11B reticle mark
12A, 12B Wafer mark
13A, 13B alignment sensor
17, 17A, 19, 19A Illumination area on the reticle (non-exposure area)
18 Illumination area on the reticle (exposure area)
20 Effective exposure area on wafer
21 Exposure area on wafer
22, 23 Illumination area on wafer (non-exposure area)
42 Polarizing beam splitter
43, 45 1/4 wave plate
48, 48A Field stop
49, 50, 51, 49A, 50A, 51A Optical filter
71 Shading plate
73 Transmission area

Claims (6)

マスクに形成された所定の転写用パターンを感光性基板上に投影する投影光学系と、
前記投影光学系の光軸と前記感光性基板の被露光面とが交わる第1の点に対して回転対称な所定の円形露光領域内において、前記第1の点に対し回転非対称な露光照明領域を形成して回転非対称なマスクパターン像を前記感光性基板上に転写するために、前記感光性基板を感光させる波長を持つ第1照明光を供給し、前記投影光学系の光軸と前記マスクのパターン面とが交わる第2の点に対して前記マスクのパターン面内で回転非対称な露光照明領域を形成する第1の照明系と、
前記投影光学系を介して前記感光性基板に向けて非感光性の波長を持つ第2照明光を供給し、前記第1照明光を伴って前記所定の円形露光領域内のほぼ全体を照明するように、前記感光性基板の被露光面内での前記回転非対称な露光照明領域を補完する非露光照明領域を前記所定の円形露光領域内に形成する第2照明系と、を有することを特徴とする投影露光装置。
A projection optical system that projects a predetermined transfer pattern formed on the mask onto the photosensitive substrate;
An exposure illumination area that is rotationally asymmetric with respect to the first point in a predetermined circular exposure area that is rotationally symmetric with respect to the first point at which the optical axis of the projection optical system and the exposed surface of the photosensitive substrate intersect. In order to transfer the rotationally asymmetric mask pattern image onto the photosensitive substrate, first illumination light having a wavelength for exposing the photosensitive substrate is supplied, and the optical axis of the projection optical system and the mask are supplied. A first illumination system that forms a rotationally asymmetric exposure illumination region within the pattern surface of the mask with respect to a second point that intersects the pattern surface;
Second illumination light having a non-photosensitive wavelength is supplied to the photosensitive substrate via the projection optical system, and substantially the whole of the predetermined circular exposure region is illuminated with the first illumination light. And a second illumination system for forming a non-exposure illumination area in the predetermined circular exposure area that complements the rotationally asymmetric exposure illumination area in the exposed surface of the photosensitive substrate. Projection exposure apparatus.
マスクに形成された所定の転写用パターンを感光性基板上に投影する投影光学系と、
前記感光性基板を感光させる波長を持つ第1照明光を供給する第1光源部と、
前記感光性基板に対して非感光性の波長を持つ第2照明光を供給する第2光源部と、
前記第1照明光と前記第2照明光とを合成して前記マスクへ導く合成系と、
該合成系と前記マスクとの間の光路上で、前記マスクのパターン面と実質的に共役となる位置に配置された視野絞りと、を設け、
前記視野絞りは、前記第1照明光を透過させる第1の透過部と前記第2照明光を透過させる第2の透過部とを有し、
前記第1の透過部は、前記投影光学系の光軸と前記マスクのパターン面とが交わる所定の点に対して回転対称な所定の円形領域内において、前記所定の点に対し回転非対称な露光照明領域としての第1の領域と共役であり、
前記第2の透過領域は、前記第1照明光を伴うことによって前記回転対称な所定の円形領域内のほぼ全体を照明するように、前記回転非対称な第1の領域を補完する被露光照明領域としての第2の領域と共役であることを特徴とする投影露光装置。
A projection optical system that projects a predetermined transfer pattern formed on the mask onto the photosensitive substrate;
A first light source unit for supplying first illumination light having a wavelength for exposing the photosensitive substrate;
A second light source unit that supplies second illumination light having a non-photosensitive wavelength to the photosensitive substrate;
A synthesis system that synthesizes the first illumination light and the second illumination light and guides them to the mask;
A field stop disposed at a position substantially conjugate with the pattern surface of the mask on the optical path between the synthesis system and the mask; and
The field stop includes a first transmission part that transmits the first illumination light and a second transmission part that transmits the second illumination light,
The first transmission part is a rotationally asymmetric exposure with respect to the predetermined point in a predetermined circular area rotationally symmetric with respect to the predetermined point where the optical axis of the projection optical system intersects with the pattern surface of the mask. Is conjugate with the first region as the illumination region;
The second transmissive region complements the rotationally asymmetric first region so as to illuminate substantially the entire rotationally symmetric predetermined circular region with the first illumination light. A projection exposure apparatus characterized by being conjugate with the second region as described above.
請求項1又は2記載の投影露光装置であって、
前記第2照明光が照明する領域に位置する前記マスク上のマスクマークと前記第2照明光が照明する領域に位置する前記感光性基板上の基板マークとの少なくとも一方からの光を光電的に検出し、双方のマークの内の少なくとも一方のマークの位置を検出するマーク位置検出系を有することを特徴とする投影露光装置。
The projection exposure apparatus according to claim 1 or 2,
Light from at least one of a mask mark on the mask located in an area illuminated by the second illumination light and a substrate mark on the photosensitive substrate located in an area illuminated by the second illumination light is photoelectrically generated. A projection exposure apparatus comprising a mark position detection system for detecting and detecting a position of at least one of both marks.
請求項1、2、又は3記載の投影露光装置であって、
前記回転対称な所定の円形露光領域、又は前記回転対称な所定の円形領域と共役な前記感光性基板上の領域は、前記投影光学系の前記感光性基板側の視野と一致することを特徴とする投影露光装置
The projection exposure apparatus according to claim 1, 2, or 3,
The rotationally symmetric predetermined circular exposure region or the region on the photosensitive substrate conjugate with the rotationally symmetric predetermined circular region coincides with a field of view on the photosensitive substrate side of the projection optical system. Projection exposure apparatus .
マスクに形成された所定の転写用パターンを感光性基板上に投影する投影光学系と、
前記感光性基板を感光させる波長を持つ照明光で前記マスクを照明する照明光学系と、
前記投影光学系と前記感光性基板との間に配置され、所定の光透過部を持つ光制限部材と、を設け、
該光制限部材の光透過部を通過した前記照明光は、前記投影光学系の光軸と前記感光性基板の被露光面とが交わる所定の点に対して回転対称な所定の円形露光領域内において、前記所定の点に対し回転非対称な領域に入射することを特徴とする投影露光装置。
A projection optical system that projects a predetermined transfer pattern formed on the mask onto the photosensitive substrate;
An illumination optical system for illuminating the mask with illumination light having a wavelength for exposing the photosensitive substrate;
A light limiting member disposed between the projection optical system and the photosensitive substrate and having a predetermined light transmitting portion;
The illumination light that has passed through the light transmitting portion of the light limiting member is within a predetermined circular exposure region that is rotationally symmetric with respect to a predetermined point where the optical axis of the projection optical system intersects the exposed surface of the photosensitive substrate. The projection exposure apparatus according to claim 1, wherein the light is incident on a rotationally asymmetric region with respect to the predetermined point.
請求項1乃至5の何れか一項に記載の投影露光装置を用いて、前記マスクに形成された所定の転写用パターンを感光性基板に投影することを特徴とする投影露光方法。6. A projection exposure method using the projection exposure apparatus according to claim 1, wherein a predetermined transfer pattern formed on the mask is projected onto a photosensitive substrate.
JP20826096A 1996-08-07 1996-08-07 Projection exposure method and apparatus Expired - Fee Related JP3790833B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20826096A JP3790833B2 (en) 1996-08-07 1996-08-07 Projection exposure method and apparatus
EP19970113696 EP0823662A2 (en) 1996-08-07 1997-08-07 Projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20826096A JP3790833B2 (en) 1996-08-07 1996-08-07 Projection exposure method and apparatus

Publications (2)

Publication Number Publication Date
JPH1050585A JPH1050585A (en) 1998-02-20
JP3790833B2 true JP3790833B2 (en) 2006-06-28

Family

ID=16553300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20826096A Expired - Fee Related JP3790833B2 (en) 1996-08-07 1996-08-07 Projection exposure method and apparatus

Country Status (1)

Country Link
JP (1) JP3790833B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4307620B2 (en) 1999-03-30 2009-08-05 株式会社サトー Rolled label core holding device for label sticking machine
JP3548464B2 (en) 1999-09-01 2004-07-28 キヤノン株式会社 Exposure method and scanning type exposure apparatus
DE10000191B8 (en) * 2000-01-05 2005-10-06 Carl Zeiss Smt Ag Project exposure system of microlithography
KR100783669B1 (en) * 2000-04-25 2007-12-07 에이에스엠엘 유에스, 인크. Optical Reduction System With Elimination of Reticle Diffraction Induced Bias
WO2005022614A1 (en) 2003-08-28 2005-03-10 Nikon Corporation Exposure method and apparatus, and device manufacturing method
WO2005078774A1 (en) 2004-02-13 2005-08-25 Nikon Corporation Exposure method and system, and device production method
US20080204682A1 (en) * 2005-06-28 2008-08-28 Nikon Corporation Exposure method and exposure apparatus, and device manufacturing method
JP5414968B2 (en) * 2005-11-14 2014-02-12 カール・ツァイス・エスエムティー・ゲーエムベーハー Measuring device and operating method of optical imaging system
US7511799B2 (en) * 2006-01-27 2009-03-31 Asml Netherlands B.V. Lithographic projection apparatus and a device manufacturing method
WO2008116886A1 (en) 2007-03-27 2008-10-02 Carl Zeiss Smt Ag Correction of optical elements by means of correction light emitted in a flat manner
JP2009010131A (en) 2007-06-27 2009-01-15 Canon Inc Exposing apparatus and production method of device
EP2048540A1 (en) 2007-10-09 2009-04-15 Carl Zeiss SMT AG Microlithographic projection exposure apparatus
JP5346985B2 (en) * 2011-05-10 2013-11-20 キヤノン株式会社 Measuring apparatus, exposure apparatus, device manufacturing method and measuring method
JP7062716B2 (en) * 2020-03-27 2022-05-06 キヤノン株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH1050585A (en) 1998-02-20

Similar Documents

Publication Publication Date Title
JP3341269B2 (en) Projection exposure apparatus, exposure method, semiconductor manufacturing method, and projection optical system adjustment method
EP0823662A2 (en) Projection exposure apparatus
US20050243296A1 (en) Position detecting method and apparatus, exposure apparatus and device manufacturing method
JP3790833B2 (en) Projection exposure method and apparatus
US8023103B2 (en) Exposure apparatus, exposure method, and method for producing device
JP2000091209A (en) Aligner and manufacture thereof, and device manufacturing method
JP2007220767A (en) Exposure apparatus and method of manufacturing device
US20030053217A1 (en) Illumination apparatus, exposure apparatus using the same, and device fabricating method
JP2001297980A (en) Projection aligner for microlithography
JPH1064790A (en) Projection aligner
US20040248043A1 (en) Exposure method, exposure apparatus and device manufacturing method
JPH1079337A (en) Projection aligner
JP3774590B2 (en) Projection exposure apparatus and device manufacturing method using the same
TW200809919A (en) Exposure apparatus
WO1999036832A1 (en) Illuminating device and exposure apparatus
JP2005116831A (en) Projection aligner, exposure method, and device manufacturing method
WO2002042728A1 (en) Method and apparatus for measuring aberration of projection optical system, and method and apparatus for exposure
TW403937B (en) Exposure device and method of manufacturing semiconductor device
JPH0784357A (en) Exposure mask and projecting exposure method
JP2006253327A (en) Illumination optical device, exposure device, adjustment method thereof, and manufacturing method of micro device
JPH11238666A (en) X-ray projection aligner
JP2007189079A (en) Illuminating optical system, exposure device having it, and manufacturing method of device
JP2002033276A (en) Projection aligner, exposure method, method for manufacturing semiconductor, and method for adjusting projection optical system
JPH07335516A (en) Scanning type exposing device
JP2004023020A (en) Projection optical system and reduced projection aligner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees