JP3787763B2 - Operation method of heat storage refrigeration cycle apparatus - Google Patents

Operation method of heat storage refrigeration cycle apparatus Download PDF

Info

Publication number
JP3787763B2
JP3787763B2 JP2001325737A JP2001325737A JP3787763B2 JP 3787763 B2 JP3787763 B2 JP 3787763B2 JP 2001325737 A JP2001325737 A JP 2001325737A JP 2001325737 A JP2001325737 A JP 2001325737A JP 3787763 B2 JP3787763 B2 JP 3787763B2
Authority
JP
Japan
Prior art keywords
circuit
compressor
heat exchanger
liquid refrigerant
cooling operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001325737A
Other languages
Japanese (ja)
Other versions
JP2003130421A (en
Inventor
広有 柴
守也 宮本
康文 畑村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001325737A priority Critical patent/JP3787763B2/en
Publication of JP2003130421A publication Critical patent/JP2003130421A/en
Application granted granted Critical
Publication of JP3787763B2 publication Critical patent/JP3787763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱式冷凍サイクル装置の運転方法に関し、特に圧縮機と液冷媒搬送手段が搬送する冷媒が負荷側熱交換器で合流する回路を形成し、運転モードを切替える場合に、冷媒搬送が安定的に行われるようにした蓄熱式冷凍サイクル装置の運転方法に関する。
【0002】
【従来の技術】
圧縮機と液冷媒搬送手段が搬送する冷媒が負荷側熱交換器で合流する従来の蓄熱式冷凍サイクル装置として、例えば例えば特開平5−157297公報に掲載されているものがあり、図15はこの従来の蓄熱式冷凍サイクル装置を示す冷媒回路図である。図において、1は圧縮機、2は熱源側熱交換器である凝縮器、15は第一の減圧機構、3は負荷側熱交換機である蒸発器、16はアキュムレータ、7は蓄熱媒体、6は蓄熱槽、5は蓄熱用熱交換器、17は蓄熱用バイパス回路、18〜25は開閉装置、26は第二の減圧機構、27は冷媒液搬送手段を示す。
【0003】
次に動作について説明する。昼間における冷房負荷が所定の値以上のときは図に示すように開閉装置25、21を閉じ、開閉装置18〜20、22〜24を開き、圧縮機1、冷媒液搬送手段27を両方とも運転する。
その場合、圧縮機1と、凝縮器2と、第一の減圧機構15と、蒸発器3と、を順次環状に接続して冷房運転を行う一般冷房運転と、液冷媒搬送手段27と、第二の減圧機構26と、蒸発器3と、蓄熱用熱交換器5と、を順次環状に接続して冷房運転を行う放冷冷房運転とを同時に行う合流冷房運転となり、蒸発器3では、一般冷房運転のみや放冷運転のみを行ったときの合計冷媒流量となる。
【0004】
この運転により昼間の冷房負荷に対する蓄熱依存率50%以上と高くなるとともに、液冷媒搬送手段27は同一冷房負荷に対して圧縮機より運転消費電力を大幅に低減することができるので、全体の運転効率を向上させることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、以上のような従来例の装置では、圧縮機1と液冷媒搬送手段27が搬送する冷媒が負荷側熱交換器である蒸発器3で合流するという作用については明確に示しているが、その運転手順については触れていない。
【0006】
従って、運転手順によっては、液冷媒搬送手段27は吸入口に供給される液冷媒が液切れを起こしたり、吐出口に逆圧がかかると、冷媒搬送できなくなり、さらに一度、搬送不可状態に陥ると、運転を継続しながら復帰するのが容易でない等、液冷媒搬送手段27の起動や合流冷房運転への切替えが不安定であるという問題があった。このように、液冷媒搬送手段27を安定的に起動、運転するための運転方法は、この合流運転において重要な技術であるが、示されていないという問題があった。
【0007】
この発明は、以上のような問題点を解消するためになされたもので、液冷媒搬送手段を安定的に起動、運転を行い、合流冷房運転以外の冷房運転モードから合流冷房運転への切替えを安定的に行うことができる蓄熱式冷凍サイクル装置の運転方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
第1の発明は、液冷媒搬送手段、減圧手段、負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、圧縮機、熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記第四回路での運転において、前記液冷媒搬送手段の起動時あるいは運転時に、前記液冷媒搬送手段の吸入口に供給される液冷媒を確保するとともに、前記液冷媒搬送手段の吐出口に逆圧がかからないように運転を行うものである。
【0009】
第2の発明に係る蓄熱式冷凍サイクル装置の運転方法は、圧縮機、熱源側熱交換器、蓄熱用熱交換器、減圧手段及び負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して過冷却冷房運転を行う第一回路と、液冷媒搬送手段、前記減圧手段、前記負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記第一回路による過冷却冷房運転から前記第四回路による前記合流冷房運転に切替えるときに、まず、前記第一回路のまま前記液冷媒搬送手段を起動し、次に、前記圧縮機を停止すると同時に、前記第二回路を形成して、前記放冷冷房運転を行い、次に、前記第四回路に切替えて前記合流冷房運転を行うものである。
【0010】
第3の発明に係る蓄熱式冷凍サイクル装置の運転方法は、圧縮機、熱源側熱交換器、蓄熱用熱交換器、減圧手段及び負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して過冷却冷房運転を行う第一回路と、液冷媒搬送手段、前記減圧手段、前記負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記第一回路による過冷却冷房運転から前記第四回路による前記合流冷房運転に切替えるときに、まず、前記第一回路を形成して過冷却を行っている前記圧縮機を停止し、次に、前記第二回路に切替え、前記液冷媒搬送手段を起動し、次に、前記第四回路に切替えて圧縮機を起動して前記圧縮機と前記液冷媒搬送手段により前記合流冷房運転を行うものである。
【0011】
第4の発明に係る蓄熱式冷凍サイクル装置の運転方法は、圧縮機、熱源側熱交換器、蓄熱用熱交換器、減圧手段及び負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して過冷却冷房運転を行う第一回路と、液冷媒搬送手段、前記減圧手段、前記負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記第一回路による過冷却冷房運転から前記第四回路による前記合流冷房運転に切替えるときに、まず、前記第一回路の圧縮機を運転したまま、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続した前記第三回路を形成し、前記圧縮機のみを運転して蓄冷熱を利用しない前記通常冷房運転を行い、次に、前記第三回路と合流しないように前記液冷媒搬送手段を含めた環状の第A回路を形成し、次に、前記液冷媒搬送手段を起動し、次に、前記第三回路と前記第A回路の合流分岐点の第一の圧力と、前記液冷媒搬送手段の吐出口の第二の圧力を所定時間毎に検出し、前記第一の圧力と前記第二の圧力が等しいか、或いは前記第二の圧力が前記第一の圧力より大きくなったときに、前記第四回路に切替えるものである。
【0012】
第5の発明に係る蓄熱式冷凍サイクル装置の運転方法は、圧縮機、熱源側熱交換器、蓄熱用熱交換器、減圧手段及び負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して過冷却冷房運転を行う第一回路と、液冷媒搬送手段、前記減圧手段、前記負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記圧縮機と液冷媒搬送手段がともに停止している状態から、前記第四回路による前記合流冷房運転に切替えるときに、まず、前記第一回路を形成して蓄冷熱を利用する冷房運転を所定時間行い、次に請求項1〜3に記載されたいずれかの方法で前記第四回路を形成して前記合流冷房運転に切替えるものである。
【0013】
第6の発明に係る蓄熱式冷凍サイクル装置の運転方法は、液冷媒搬送手段を起動する前に、蓄熱用熱交換器内に所定量以上の液冷媒を滞留してから前記液冷媒搬送手段を起動するものである。
【0014】
の発明に係る蓄熱式冷凍サイクル装置の運転方法は、液冷媒搬送手段の吸入口に液溜を備え、前記液冷媒搬送手段を起動する前に、前記液溜に所定量以上の液冷媒を滞留してから前記液冷媒搬送手段を起動するものである。
【0015】
第8の発明に係る蓄熱式冷凍サイクル装置の運転方法は、液冷媒搬送手段、減圧手段、負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、圧縮機、熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記第二回路を形成し、前記液冷媒搬送手段のみを運転して放冷冷房運転から、前記第四回路を形成して前記合流冷房運転に切替えるときに、まず、前記第四回路を形成し、次に、前記圧縮機を低周波数で起動するものである。
【0016】
の発明に係る蓄熱式冷凍サイクル装置の運転方法は、液冷媒搬送手段、減圧手段、負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、圧縮機、熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記第二回路を形成し、前記液冷媒搬送手段のみを運転する放冷冷房運転から、前記第四回路を形成して前記合流冷房運転に切替えるときに、まず、前記第二回路と合流しないように前記圧縮機を含めた環状の第B回路を形成し、次に、前記圧縮機を起動し、次に、前記第二回路の前記液冷媒搬送手段の吐出口の第二の冷媒圧力、前記熱源側熱交換器と前記負荷側熱交換器の間にあって、前記液冷媒搬送手段の吐出口と合流分岐する液合流分岐点に最も近くに位置する前記B回路の第三の冷媒圧力、前記負荷側熱交換器と前記圧縮機の間にあって、前記蓄熱用熱交換器の一端と合流分岐するガス合流分岐点の第四の冷媒圧力及び前記B回路の前記ガス合流分岐点に最も近くに位置する第五の冷媒圧力を所定時間毎に検出し、前記第二の冷媒圧力が前記第三の冷媒圧力以上で、かつ、前記第四と第五の冷媒圧力が等しくなったときに、前記第四回路に切替えるものである。
【0017】
10の発明に係る蓄熱式冷凍サイクル装置の運転方法は、圧縮機を運転中に液冷媒搬送手段を起動及び運転するときに、前記液冷媒搬送手段の吐出口に減圧手段を備え、常時、前記液冷媒搬送手段の吐出口に、前記圧縮機が搬送する冷媒から逆圧がかからないようにしたものである。
【0018】
第11の発明に係る蓄熱式冷凍サイクル装置の運転方法は、液冷媒搬送手段を運転中に圧縮機を起動するときに、起動後所定時間は、前記圧縮機の周波数を所定周波数に固定するものである。
【0019】
【発明の実施の形態】
実施の形態1.
図1は実施の形態1を示す蓄熱式冷凍サイクル装置の冷媒回路図、図2は各冷房運転の種類を示す冷媒回路図、図3は過冷却冷房運転、図4は放冷冷房運転、図5は通常冷房運転、図6は合流冷房運転の冷凍サイクル状態図である。図7は1日の蓄冷、冷房運転例を示す図、図8は冷媒負荷と冷媒搬送運転例を示す図である。
図1において、1は圧縮機1、2は熱源側熱交換器、3は負荷側熱交換器、4は液冷媒搬送手段、5は蓄熱用熱交換器、6は蓄熱槽、7は蓄熱媒体、8は減圧手段、9は開閉弁である。
【0020】
次に、蓄冷熱を利用した冷房運転の基本的な動作を図2、図3〜図6を用いて説明する。図2(a)は過冷却冷房運転を行う第一回路、図2(b)は放冷冷房運転を行う第二回路、図2(c)は通常冷房運転を行う第三回路、図2(d)は合流冷房運転を行う第4回路を示す。なお、蓄熱媒体7は何らかの方法で蓄冷されているとする。
また、熱源側熱交換器2と負荷側熱交換器の間にあって、液冷媒搬送手段4の吐出口と合流分岐する点を液合流分岐点LP、負荷側熱交換器と圧縮機1の間にあって、蓄蓄熱用熱交換器5の入力端と合流分岐する点をガス合流分岐点GPと呼ぶことにする。
【0021】
まず、圧縮機1と、熱源側熱交換器2と、蓄蓄熱用熱交換器5と、減圧手段と、負荷側熱交換器と、を順次環状に接続した第一回路を形成し、圧縮機1のみを運転して蓄冷熱を過冷却利用する冷房運転について図2(a)、図3を用いて説明する。
まず、開閉弁9a、9b、9dを開、9cを閉とする。減圧手段8aは調整開度とし、8bは全開、8cは全閉とする。そして、圧縮機1を運転して液冷媒搬送手段4を停止する。圧縮機1により圧縮され(図3の1)、吐出した高圧ガス冷媒は熱源側熱交換器2に流入し、ここで冷媒より低温の周囲空気と熱交換して冷媒は凝縮(図3の2)し、高圧液或いは二相冷媒となって流出する。そして開閉弁9dを介して蓄熱用熱交換器5に流入し、ここで冷媒より低温の周囲の蓄冷媒体7と熱交換して冷媒はさらに凝縮(図3の5)、高圧低温液冷媒となって流出する。その後、全開で圧力損失をほとんど生じない開閉弁9bを介して開閉弁8aに流入し、ここで減圧されて(図3の8a)、低圧二相冷媒となる。そして負荷側熱交換器3に流入し、ここで冷媒より高温の周囲空気と熱交換して冷媒は蒸発(図3の3)し、低圧ガス冷媒となって流出する。その後、開閉弁9b、9aを介して圧縮機1の吸入口に戻る。
【0022】
この運転は、蓄冷熱を高圧冷媒の過冷却に利用しているので、以降、過冷却冷房運転と呼ぶ。
【0023】
次に、図2(b)に示すように、液冷媒搬送手段4と、減圧手段と、負荷側熱交換3と、蓄蓄熱用熱交換器5と、を順次環状に接続した第二回路を形成し、液冷媒搬送手段4のみを運転して蓄冷熱を冷媒の凝縮を利用する冷房運転について図2(b)、図4を用いて説明する。
まず、開閉弁9b、9cを開、9a、9dを閉とする。減圧手段8aは調整開度とし、8b、8cは全閉とする。そして、圧縮機1を停止して液冷媒搬送手段4を運転する。液冷媒搬送手段4で圧縮され(図4の4)、吐出した中圧液冷媒は減圧手段8aを介して低圧液或いは二相冷媒となって(図4の8a)、負荷側熱交換器3に流入する。ここで冷媒より高温の周囲空気と熱交換して冷媒は蒸発し(図4の3)、低圧ガス冷媒となって流出する。その後、開閉弁9b、9cを介して蓄熱用熱交換器5に流入する。ここで冷媒より低温の周囲の蓄冷媒体7と熱交換して冷媒は凝縮(図4の5)し、低圧液冷媒となって液冷媒搬送手段1の吸入口に戻る。
【0024】
この運転は、蓄熱槽6の蓄冷熱を冷媒の凝縮に利用している。以降、この運転を放冷冷房運転と呼ぶ。
【0025】
次に、図2(c)に示すように、圧縮機1と、熱源側熱交換器2と、減圧手段と、負荷側熱交換3と、を順次環状に接続した第三回路を形成し、圧縮機1のみを運転して蓄冷熱を利用しない冷房運転について図2(c)、図5により設明する。
まず、開閉弁9a、9bを開、9c、9dを閉とする。減圧手段8aは調整開度とし、8bは全閉、8cは全開とする。また液冷媒搬送手段4内部は冷媒が逆流できないものとする。そして、圧縮機1を運転して液冷媒搬送手段4を停止する。圧縮機1で圧縮され(図5の1)、吐出した高圧ガス冷媒は熱源側熱交換器2に流入し、ここで冷媒より低温の周囲空気と熱交換して冷媒は凝縮し(図5の2)、高圧液或いは二相冷媒となって流出する。そして減圧手段8cを介して減圧手段8aに流入し、ここで減圧されて(図5の8a)低圧二相冷媒となる。そして、負荷側熱交換器3に流入し、ここで冷媒より高温の周囲空気と熱交換して冷媒は蒸発(図5の3)し、低圧ガス冷媒となって流出する。その後、開閉弁9b、9aを介して圧縮機1の吸入口に戻る。
【0026】
この運転は蓄冷熱を利用しない。以降、この運転を通常冷房運転と呼ぶ。
【0027】
次に、図2(d)に示すように、圧縮機1と、熱源側熱交換器2と、減圧手段と、負荷側熱交換3と、を順次環状に接続して圧縮機1の冷媒循環回路を形成する一方、液冷媒搬送手段4と、負荷側熱交換3と、蓄蓄熱用熱交換器5を順に環状に接続して液冷媒搬送手段4の冷媒循環回路を形成して、負荷側熱交換3で冷媒が合流する第四回路を形成し、圧縮機1と液冷媒搬送手段4を両方運転して、蓄熱槽6の蓄冷熱を液冷媒搬送手段4が搬送する冷媒の凝縮作用を利用する冷房運転について図2(d)、図6を用いて説明する。
【0028】
まず、開閉弁9a、9b、9cを開、9dを閉とする。減圧手段8a、8cは調整開度とし、8bは全閉とする。そして、圧縮機1、液冷媒搬送手段4ともに運転する。圧縮機1で圧縮され(図6の1)、吐出した高圧ガス冷媒は熱源側熱交換器2に流入し、ここで冷媒より温度の低い周囲空気と熱交換して冷媒は凝縮し(図6の2)、高圧液冷媒となって流出する。そして、減圧手段8cで減圧して(図6の8c)、中圧の液或いは二相冷媒となる。ここで液冷媒搬送手段4が搬送する冷媒と合流した後、減圧手段8aに流通して減圧されて(図6の8a)、低圧二相冷媒となって負荷側熱交換器3に流入する。ここで冷媒より温度の高い周囲空気と熱交換して冷媒は蒸発し(図6の3)、低圧ガス冷媒となって流出する。そして開閉弁9bを流通後、冷媒は圧縮機1へ戻る分と液冷媒搬送手段4に戻る分に分岐される。圧縮機1へ戻る分は、その後開閉弁9aを介して圧縮機1の吸入口に戻る。
【0029】
一方、液冷媒搬送手段4で圧縮され(図6の4)、吐出した中圧液冷媒は、途中圧縮機1が搬送する液冷媒と合流した後、減圧手段8aに流通して減圧されて(図6の8a)、低圧二相冷媒となって負荷側熱交換器3に流入する。ここで冷媒より温度の高い周囲空気と熱交換して冷媒は蒸発し(図6の3)、低圧ガス冷媒となって流出する。そして開閉弁9bを流通後、冷媒は圧縮機1へ戻る分と液冷媒搬送手段4に戻る分に分岐される。液冷媒搬送手段4に戻る分は開閉弁9cを介して蓄蓄熱用熱交換器5に流入し、ここで冷媒より温度の低い蓄熱媒体7と熱交換して冷媒は凝縮(図6の5)し、低圧液冷媒として液冷媒搬送手段4の吸入口に戻る。
【0030】
このように、圧縮機1が搬送する冷媒と、液冷媒搬送手段4が搬送する冷媒は、減圧手段8aと、負荷側熱交換器3を流通するときに合流する。
【0031】
この運転は、液冷媒搬送手段4が蓄熱槽6の蓄冷熱を冷媒搬送して冷房する放冷冷房運転する一方、圧縮機1は熱源側熱交換器2を用いて一般の冷房運転している。以降、この運転を合流冷房運転と呼ぶ。
【0032】
次に、上述したそれぞれの冷房運転の一日のタイムスケジュール例を、図7を用いて説明する。
夜22時から朝8時までは、何らかの方法で蓄熱槽6に満たされた蓄冷媒体7に蓄冷し、朝の9時から昼の13時と、夕方16時から19時は第一回路を形成して過冷却冷房運転を行う。次に、昼間のピークカット時間帯である13時から16時は第四回路を形成して合流冷房運転を行うか、第二回路を形成して放冷冷房運転を行う。そして、蓄熱槽6に蓄冷熱がなくなった場合は、第三回路を形成して通常冷房運転を行う。
【0033】
このとき、過冷却冷房における蓄冷熱利用割合は20〜30%。放冷冷房における蓄冷熱利用割合は100%。合流運転による蓄冷熱利用割合は50〜100%とする。
【0034】
昼間のピークカット時間帯の冷房運転方法は、冷房負荷によって切替える。
この、冷房負荷に応じた各運転方法における冷媒搬送手段の運転方法例を図8に示す。
冷房負荷が所定値L以下の場合は、放冷冷房運転を行う。負荷変動に対しては、液冷媒搬送手段4の冷媒搬送量を変化させて対応する。変化方法例として、液冷媒搬送手段4の搬送部回転数を要求冷媒搬送量に合わせて変動する方法があげられる。
一方、冷房負荷が所定値L以上の場合は、合流冷房運転を行う。負荷変動に対しては、液冷媒搬送手段4の冷媒搬送量は所定値一定にして、圧縮機1の冷媒搬送量を変化させて対応する。変化方法例として、圧縮機1の運転周波数を要求冷媒搬送量に合わせて変動する方法があげられる。
【0035】
ところで液冷媒搬送手段4の安定運転を確保するための条件が2つあり、次に説明する。
(条件1)起動或いは運転中に、液冷媒搬送手段4の吸入口に供給する液冷媒が不足しないようにすること。理由はガス冷媒が混入すると、液冷媒搬送手段4内の搬送部において、高圧と低圧を遮断するシールの役目をはたす液冷媒が不足し、圧力差を生じさせることができず、結果的に冷媒搬送ができなくなるからである。
【0036】
(条件2)起動或いは運転中に、液冷媒搬送手段4の吐出口に逆圧がかからないようにすること。
この理由は、吐出口に逆圧がかかると、液冷媒搬送手段4の吐出口に、圧縮機1で循環している冷媒が逆流してくる現象が生じる。そして液冷媒搬送手段4内の搬送部において、液冷媒が高圧と低圧を遮断するシールの役目をはたさなくなり、圧力差を生じさせることができず、結果的に液冷媒搬送手段4が冷媒搬送できなくなるからである。
【0037】
液冷媒搬送手段4は起動時や大きな負荷変動が生じた時に、液冷媒搬送手段4の吸入口への液冷媒供給が不安定になりやすく、一度、内部で圧力差がなくなって冷媒搬送ができなくなると、何らかの手段を講じないと冷媒搬送作用の回復は難しい。
一方、吐出口への逆圧現象が生じると、内部で圧力差がなくなって冷媒搬送ができなくなる。そして何らかの手段を講じないと冷媒搬送作用の回復は難しい。
以上にあげた現象を回避して液冷媒搬送手段4の冷媒搬送の安定性を確保するための制御が必要である。
【0038】
次に、過冷却冷房運転から合流冷房運転に切替えるときの手順について図2を用いて説明する。
手順を以下に示す。
[STEP1] 第一回路(図2(a))を形成し、圧縮機1の運転により過冷却冷房
運転を行う。
[STEP2] 液冷媒搬送手段4を起動し、同時に減圧手段8bを全閉とする。
[STEP3] 圧縮機1停止。同時に第二回路(図2(b))を形成し、液冷媒搬送
手段4の運転により放冷運転を行う。
[STEP4] 第四回路(図2(d))を形成し、圧縮機1を起動し、圧縮機1と液
冷媒搬送手段4の運転により合流冷房運転を行う。
【0039】
STEP2において、蓄蓄熱用熱交換器5内はほぼ液冷媒で満たされている。
これは、過冷却利用冷房運転により、液冷媒搬送手段を起動する前に、蓄蓄熱用熱交換器5内に所定量以上の液冷媒を滞留してから液冷媒搬送手段4を起動していることになる。
また、液冷媒搬送手段4の吸入口には、圧縮機1により強制的に液冷媒が供給されるので、液冷媒搬送手段4の起動はスムーズに行われる。
STEP2の運転状態は、液冷媒搬送手段4の安定起動条件1を満たしている。
【0040】
STEP3において、第二回路に切替えると、冷媒回路内の圧力低下により、直後は液冷媒搬送手段4の吸入口の過冷却度が急減、或いはガス冷媒が混入しはじめる。ただし、第二回路内の冷媒量は、STEP1の蓄蓄熱用熱交換器5内がほぼ液冷媒であるなど、元来多いので、状態が安定すれば、液冷媒搬送手段4の吸入口に液冷媒を安定的に供給し、かつ蓄蓄熱用熱交換器5内に液冷媒を多く滞留する冷凍サイクル状態になる。
【0041】
STEP3とSTEP4の間は圧縮機1の再起動の信頼性を確保できる時間をとる。一例として3分としている。
【0042】
STEP2において、液冷媒搬送手段4を起動するときには、減圧手段8cを全閉しているので、起動時に液冷媒搬送手段4の吐出口に逆圧をかけることがない。これは液冷媒搬送手段4の安定起動条件2を満たしている。
また、STEP4で圧縮機1を起動した後に、圧縮機1の冷媒搬送量を少しづつ増加させながら減圧手段8cを調整すれば、液冷媒搬送手段4の吐出口に逆圧をかけないようにすることができる。これも液冷媒搬送手段4の安定起動条件2を満たしている。
【0043】
従って、本手順を実行すれば、液冷媒搬送手段4の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0044】
以上のように、実施の形態1によれば、第一回路を形成し、圧縮機1のみを運転して蓄冷熱を利用する過冷却冷房運転から、第四回路を形成し、圧縮機1と液冷媒搬送手段4の両方を運転して負荷側熱交換3で冷媒を合流し、蓄冷熱を利用する合流冷房運転に切替えるときに、まず、第一回路の過冷却冷房運転を行ったまま液冷媒搬送手段4を起動し、次に、圧縮機1を停止すると同時に、第二回路を形成して、液冷媒搬送手段4のみを運転して蓄冷熱を利用した放冷冷房運転を行い、次に第四回路に切替えて圧縮機1を起動するので、液冷媒搬送手段4の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0045】
なお、図9の冷媒回路図に示すように、液冷媒搬送手段4の吸入口に液溜10を備え、STEP1の過冷却冷房時に液溜入口開閉弁9xを開、液溜出口開閉弁9yを閉にして液冷媒を滞留し、STEP2で液冷媒搬送手段4を起動するときに開閉弁9xを閉、開閉弁9yを開にして、液冷媒搬送手段4の吸入口に液切れしないように液冷媒を供給するようにすると、より液冷媒搬送手段4の運転安定性がよくなる。
【0046】
また、蓄熱媒体7に温熱蓄熱した場合も、起動方法の思想は同様である。
【0047】
実施の形態2.
実施の形態2における蓄熱式冷凍サイクル装置の構成及び使用する冷房運転の回路とモードは実施の形態1と同様なので説明を省略し、運転方法について図2を用いて説明する。
【0048】
第一回路による過冷却冷房運転から、第回路の合流冷房運転に切替えるときの別の手順について説明する。
手順を以下に示す。
[STEP1] 第一回路(図2(a))を形成し、圧縮機1の運転により過冷却冷房
運転を行う。
[STEP2] 圧縮機1を停止する。
[STEP3] 第二回路(図2(b))形成する。
[STEP4] 液冷媒搬送手段4を起動する。
[STEP5] 第四回路(図2(d))形成して圧縮機1を起動し、圧縮機1と液冷
媒搬送手段4の運転により合流冷房運転を行う。
【0049】
STEP2において、蓄蓄熱用熱交換器5内はほぼ液冷媒で満たされている。これは、過冷却利用冷房運転により、液冷媒搬送手段4を起動する前に、蓄蓄熱用熱交換器5内に所定量以上の液冷媒を滞留してから液冷媒搬送手段4を起動していることになる。
【0050】
また、STEP2とSTEP3をほとんど間を置かずに切替えると、蓄蓄熱用熱交換器5内はほぼ液冷媒で満たされた状態を維持できる。
【0051】
STEP4において、液冷媒搬送手段4を起動すると、冷媒回路内の圧力低下により、直後は液冷媒搬送手段4の吸入口の過冷却度が急減、或いはガス冷媒が混入しはじめる。ただし、第二回路内の冷媒量は、STEP1の蓄蓄熱用熱交換器5内がほぼ液冷媒である状態をほぼ維持できていて、元来多いので、状態が安定すれば、液冷媒搬送手段4の吸入口に液冷媒を安定的に供給し、かつ蓄蓄熱用熱交換器5内に液冷媒を多く滞留する冷凍サイクル状態になる。この段階で液冷媒搬送手段4の安定起動条件1を満たしている。
【0052】
STEP4において、液冷媒搬送手段4を起動するときには圧縮機1は停止しているので、起動時に液冷媒搬送手段4の吐出口に逆圧をかけることがない。これは液冷媒搬送手段4の安定起動条件2を満たしている。
また、STEP5で圧縮機1を起動した後に、圧縮機1の冷媒搬送量を少しづつ増加させながら減圧手段8cを調整すれば、液冷媒搬送手段4の吐出口に逆圧をかけないようにすることができる。これも液冷媒搬送手段4の安定起動条件2を満たしている。
【0053】
従って、本手順を実行すれば、液冷媒搬送手段4の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0054】
また、実施の形態1の回路図9のように、液冷媒搬送手段4の吸入口に液溜10を備え、STEP1の過冷却冷房時に液溜入口開閉弁9xを開、液溜出口開閉弁9yを閉にして液冷媒を滞留し、STEP2、3では開閉弁9x、9yを閉にして、STEP4で液冷媒搬送手段4を起動するときに開閉弁9xを閉、開閉弁9yを開にして、液冷媒搬送手段4の吸入口に液切れしないように液冷媒を供給するようにすると、より液冷媒搬送手段4の運転安定性がよくなる。
【0055】
以上のように、実施の形態2によれば、第一回路を形成し、圧縮機1のみを運転して蓄冷熱を利用する冷房運転から、第四回路を形成し、圧縮機1と液冷媒搬送手段4の両方を運転して負荷側熱交換3で冷媒を合流し、蓄冷熱を利用する冷房運転に切替えるときに、まず、第一回路を形成して過冷却冷房を行っている圧縮機1を停止し、次に第二回路に切替え、次に液冷媒搬送手段4を起動し、次に第四回路に切替えて圧縮機1を起動するので、液冷媒搬送手段4の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0056】
実施の形態3.
図10は実施の形態3を示す蓄熱式冷凍サイクル装置の冷媒回路図である。図において実施の形態1の図1と同一または相当部分には同一の符号を付し説明を省略する。9eは図1に対して液冷媒搬送手段4と蓄蓄熱用熱交換器5の間に付加された開閉弁、9fは液冷媒搬送手段4と液合流分岐点の間に付加された開閉弁である。
【0057】
使用する冷房運転の回路とモードは実施の形態1と同様なので説明を省略し、付加した開閉弁の作用について以下説明する。過冷却利用冷房運転の時は9e、9fとも開、合流冷房運転の時は9e、9fとも開、放冷冷房運転の時は9e、9fとも開、通常冷房運転の時は9eは任意、9fは閉とする。
【0058】
次に、過冷却冷房運転から合流冷房運転に切替えるときの別の手順について説明する。
手順を以下に示す。
[STEP1] 第一回路(図2(a))を形成し、過冷却冷房運転を行う。
[STEP2] 開閉弁9fを閉じ、同時に第四回路(図2(d))を形成して通常冷房運転を行う。
[STEP3] 開閉弁9eを閉じ、9fを閉じたままとして液冷媒搬送手段4と減圧手段8bを順次環状に接続した第A回路形成する。
[STEP4] 液冷媒搬送手段4を起動する。
[STEP5] 液合流分岐点の第一の冷媒圧力P1が液冷媒搬送手段4の吐出口の第ニの冷媒圧力P2と同等になるように減圧手段8cを調整する。
[STEP6] 所定時間毎に第一の第一の冷媒圧力P1と第二の冷媒圧力P2を検出する。
[STEP7] 圧力検出時に第一の第一の冷媒圧力P1と第二の冷媒圧力P2が等しいか、或いは第二の冷媒圧力P2が第一の冷媒圧力P1より大きくなったと判断したら、第四回路(図2(d))に切替えて合流冷房運転を行う。
【0059】
STEP2からSTEP3に切替えるとき、蓄蓄熱用熱交換器5の両端の開閉弁9cを閉じたままとして、開閉弁9d、9eを閉じると、蓄蓄熱用熱交換器5内において、液冷媒が多い状態を保持できる。これは、過冷却利用冷房運転により、液冷媒搬送手段4を起動する前に、蓄蓄熱用熱交換器5内に所定量以上の液冷媒を滞留してから液冷媒搬送手段4を起動していることになる。そして液切れすることなく液冷媒搬送手段4の吸入口に液冷媒を供給することができる。
また、開閉弁9fも閉じるので、開閉弁9eと9fの間の第A回路内を液冷媒で満たすことができ、STEP4の液冷媒搬送手段4の起動時の、液切れすることなく液冷媒搬送手段4の吸入口に液冷媒を供給することができる。これは液冷媒搬送手段4の安定起動条件1を満たしている。
【0060】
STEP2において、使用電力の上限値が決められている場合や、目標使用電力が与えられている場合、その値以下で運転するように制御する。具体的には、圧縮機1運転周波数を低減して消費電力と冷房能力を低減する運転状態にする。
【0061】
STEP4において、第A回路内冷媒はほぼ飽和液状態である。液冷媒搬送手段4を起動すると、液冷媒搬送手段4の消費電力の一部は熱の形で、第A回路を循環する冷媒に与えられるため、冷媒温度が上昇し、冷媒の一部が蒸発してガス冷媒が混入しはじめる。その結果、液冷媒搬送手段4の吸入口で液切れを生じる可能性があるので、STEP4からSTEP7までできるだけ早く進むのが望ましい。ただし、第A回路内は圧損がほとんどないので消費電力が少ないので、STEP4からSTEP7までの所要時間が10分くらいであれば問題はない。
【0062】
具体例を以下に示す。
条件を冷媒種類がR407C、初期冷媒温度Trfが25℃、冷媒圧力Pが1.188[MPa]、冷媒流量Gr=1000[kg/h]、消費電力W=1000[W]、STEP4の運転時間10分として、10分後の冷媒温度を求めると、
冷媒の比エンタルピ増加分Δh=(W×0.86×4.186)÷Gr÷6=0.60[kJ/kg]
となる。これは0.2℃上昇に値する。
【0063】
STEP5において、液合流分岐点を中間圧にする。その理由は、液冷媒搬送手段4の吐出圧力が、中間圧よりも低くなることにより、液冷媒搬送手段4の吐出口に逆圧が生じて、その結果圧縮機1が搬送する循環冷媒が液冷媒搬送手段4に流入して、液冷媒搬送手段4が冷媒を搬送できなくなる状態を回避するためである。これは液冷媒搬送手段4の安定起動条件2を満たしている。
【0064】
STEP6において、所定時間は、減圧手段の開度変更に伴う冷凍サイクル系の時間遅れを考慮する必要がある。例としては約1〜3分位である。
【0065】
従って、本手順を実行すれば、液冷媒搬送手段4の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0066】
液冷媒搬送手段4の吐出口に逆圧がかからないように、また圧縮機1が搬送する冷媒が逆流しないようにする一方法として、図11に示すように液冷媒搬送手段4の吐出口に減圧手段8dを設置することがあげられる。
この場合、新たに追加した減圧手段8dは、減圧手段8cとともに調整して、液合流分岐点の第一の冷媒圧力P1と液冷媒搬送手段4の吐出口の第二の冷媒圧P2の関係がP2=P1+αを満たすとともに、P2が所定の目標圧力になるように調整する。例えばαは0.2MPa、P2の目標値は1.5MPa等とする。
【0067】
また、第A回路の別の回路を図12に示す。第A回路は図11に対して開閉弁9g、9hを付加している。この第A回路は途中蓄冷された蓄熱槽6内に浸した配管を流通するので、第A回路内を過冷却状態に保持することができる。それゆえに液冷媒搬送手段4の吸入口に液切れすることなく液冷媒を供給できる効果が得られる。
【0068】
また、図13に示すように、液冷媒搬送手段4の吸入口に液溜10を備え、STEP1の過冷却冷房時に液溜入口開閉弁9xを開、液溜出口開閉弁9yを閉にして液冷媒を滞留し、STEP2、3では開閉弁9x、9yを閉じて、STEP4で液冷媒搬送手段4を起動するときに開閉弁9xを閉、開閉弁9yを開にして、液冷媒搬送手段4の吸入口に液切れしないように液冷媒を供給するようにすると、より液冷媒搬送手段4の運転安定性がよくなる。
【0069】
以上のように、実施の形態3によれば、第一回路を形成し、圧縮機1のみを運転して蓄冷熱を利用する冷房運転から、第四回路を形成し、圧縮機1と液冷媒搬送手段4の両方を運転して負荷側熱交換3で冷媒を合流し、蓄冷熱を利用する冷房運転に切替えるときに、まず、圧縮機1を運転したまま、圧縮機1と、熱源側熱交換器2と、減圧手段8c、8aと、負荷側熱交換3と、を順次接続した第三回路を形成し、圧縮機1のみを運転して蓄冷熱を利用しない冷房運転を行い、
次に、第三回路と合流しないように液冷媒搬送手段4を含めた環状の第A回路を形成し、次に、液冷媒搬送手段4を起動し、第三回路と第A回路の合流分岐点の第一の冷媒圧力P1と、液冷媒搬送手段4の吐出口の第二の冷媒圧力P2を所定時間毎に検出し、第一の冷媒圧力P1と第二の冷媒圧力P2が等しいか、或いは第二の冷媒圧力P2が第一の冷媒圧力P1より大きくなったときに、第四回路に切替えるので、液冷媒搬送手段4の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0070】
実施の形態4.
実施の形態4における蓄熱式冷凍サイクル装置の構成及び使用する冷房運転の回路とモードは実施の形態1と同様なので説明を省略し、運転方法について図2を用いて説明する。
【0071】
本実施の形態は、停止状態から合流冷房運転に切替える運転方法であり、以下の手順で行う。
[STEP1] 第一回路(図2(a))を形成し、圧縮機1の運転により過冷却冷房
運転を行う。
[STEP2] 液冷媒搬送手段4を起動し、同時に減圧手段8bを全閉とする。
[STEP3] 圧縮機1停止。同時に第二回路(図2(b))を形成し、液冷媒搬送
手段4の運転により放冷運転を行う。
[STEP4] 第四回路(図2(d))を形成し、圧縮機1を起動し、圧縮機1と液
冷媒搬送手段4の運転により合流冷房運転を行う。
これは実施の形態1と同じ手順である。
【0072】
或いは、以下の手順で行う。
[STEP1] 第一回路(図2(a))を形成し、圧縮機1の運転により過冷却冷房運転を行う。
[STEP2] 圧縮機1を停止する。
[STEP3] 第二回路(図2(b))形成する。
[STEP4] 液冷媒搬送手段4を起動する。
[STEP5] 第四回路(図2(d))形成して圧縮機1を起動し、圧縮機1と液冷媒搬送手段4の運転により合流冷房運転を行う。
これは実施の形態2と同じ手順である。
【0073】
或いは、以下の手順で行う。
[STEP1] 第一回路(図2(a))を形成し、過冷却冷房運転を行う。
[STEP2] 開閉弁9fを閉じ、同時に第四回路(図2(d))を形成して通常冷房運転を行う。
[STEP3] 開閉弁9eを閉じ、9fを閉じたままとして液冷媒搬送手段4と減圧手段8bを順次環状に接続した第A回路形成する。
[STEP4] 液冷媒搬送手段4を起動する。
[STEP5] 液合流分岐点の第一の冷媒圧力P1が液冷媒搬送手段4の吐出口の第ニの冷媒圧力P2と同等になるように減圧手段8cを調整する。
[STEP6] 所定時間毎に第一の冷媒圧力P1と第二の冷媒圧力P2を検出する。
[STEP7] 圧力検出時に第一の冷媒圧力P1と第二の冷媒圧力P2が等しいか、或いは第二の冷媒圧力P2が第一の冷媒圧力P1より大きくなったと判断したら、第四回路(図2(d))に切替えて合流冷房運転を行う。
これは実施の形態3と同じ手順である。
【0074】
つまり、停止状態から合流冷房運転を実施するときに、まず過冷却冷房運転を実施する。その理由は、過冷却利用冷房運転により、液冷媒搬送手段4を起動する前に、蓄蓄熱用熱交換器5内に所定量以上の液冷媒を滞留してから液冷媒搬送手段4を起動するためである。そして液冷媒搬送手段4の吸入口に液切れすることなく液冷媒を供給するためである。これは液冷媒搬送手段4の安定起動条件1を満たしている。
【0075】
過冷却冷房運転以降の手順については実施の形態1〜3と同様なので説明を省略する。
【0076】
従って、本手順を実行すれば、液冷媒搬送手段4の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0077】
また、回路図9のように、液冷媒搬送手段4の吸入口に液溜10を備え、STEP1の過冷却冷房時に液溜入口開閉弁9xを開、液溜出口開閉弁9yを閉にして液冷媒を滞留し、液冷媒搬送手段4を起動するまでは開閉弁9x、9yを閉じて、液冷媒搬送手段4を起動するときに開閉弁9xを閉、開閉弁9yを開にして、液冷媒搬送手段4の吸入口に液切れしないように液冷媒を供給するようにすると、より液冷媒搬送手段4の運転安定性がよくなる。
【0078】
以上のように、実施の形態4によれば、圧縮機1と液冷媒搬送手段4がともに停止している状態から、第四回路を形成し、圧縮機1と液冷媒搬送手段4の両方を運転して負荷側熱交換3で冷媒を合流し、蓄冷熱を利用する冷房運転に切替えるときに、まず、第一回路を形成して蓄冷熱を過冷却利用する冷房運転を所定時間行うので、液冷媒搬送手段4の冷媒搬送安定性を保持しながら、停止から合流冷房運転を開始することができる。
【0079】
実施の形態5.
実施の形態5における蓄熱式冷凍サイクル装置の構成及び使用する冷房運転の回路とモードは実施の形態1と同様なので説明を省略し、運転方法について図2を用いて説明する。
【0080】
本実施の形態は、放冷冷房運転から合流冷房運転に切替える運転方法であり、以下の手順で行う。
[STEP1] 第二回路(図2(b))を形成し、放冷冷房運転を行う。
[STEP2] 第四回路(図2(d))を形成する。
[STEP3] 圧縮機1を起動する。
【0081】
STEP2とSTEP3をほとんど間を置かずに切替えると、蓄蓄熱用熱交換器5内はほぼ液冷媒で満たされた状態を維持できる。
【0082】
また、圧縮機1は低運転周波数で起動する。起動時から圧縮機1の運転周波数を大きくすると、圧縮機1吐出圧力が高くなり、その結果、液合流分岐点の冷媒圧力が液冷媒搬送手段4の吐出口の圧力より高くなって、液冷媒搬送手段4の吐出口に冷媒が逆流する現象が生じる可能性が高い。それを回避するためである。
これは、液冷媒搬送手段4の安定起動条件2を満たしている。
【0083】
また、起動時から圧縮機1の運転周波数を大きくすると、圧縮機1吸入圧力が低くなり、その結果、ガス合流分岐点の冷媒が圧力の低い圧縮機1の方へより多く流れるようになる。すると、蓄蓄熱用熱交換器5において、流入する冷媒流量が流出する冷媒流量より少なくなり、滞留冷媒量が減少する。流量差が大きいと必要滞留冷媒量を確保できなくなり、液冷媒搬送手段4の吸入口で液切れが生じる原因となる。低周波数の場合は、流量差を小さくできるので、滞留冷媒量の減り方がゆるやかであり、最低必要滞留冷媒量に達する前に、冷凍サイクルが安定するため、液冷媒搬送手段4の吸入口で液切れが生じることを回避できる。これは液冷媒搬送手段4の安定起動条件1を満たしている。
【0084】
従って、本手順を実行すれば、液冷媒搬送手段4の冷媒搬送安定性を保持しながら、冷房運転モードを放冷冷房から合流冷房に切替えることができる。
【0085】
さらに、液冷媒搬送手段4の吐出口と、液合流分岐点の間に、減圧手段を備えた回路であれば、圧縮機1を起動した場合に、液合流分岐点の第一の冷媒圧力P1と液冷媒搬送手段4の吐出口の冷媒圧力P2が常時
P2=P1+α 或いは P2≧P1
となるように減圧手段8cと8dを調整しながら運転すれば、液冷媒搬送手段4の吐出口に冷媒が逆流する現象を回避することができる。これは液冷媒搬送手段4の安定起動条件2を満たしている。
【0086】
従って、本手順を実行すれば、液冷媒搬送手段4の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0087】
以上のように、実施の形態5によれば、第二回路を形成し、液冷媒搬送手段4のみを運転して蓄冷熱を利用した冷房運転から、第四回路を形成して蓄冷熱を利用した冷房運転に切替えるときに、まず、第四回路を形成し、次に圧縮機1を低周波数で起動するので、液冷媒搬送手段4の冷媒搬送安定性を保持しながら、放冷冷房運転から合流冷房運転に切替えることができる。
【0088】
実施の形態6.
図14は実施の形態6を示す蓄熱式冷凍サイクル装置の冷媒回路図である。図において実施の形態1の図1と同一または相当部分には同一の符号を付し説明を省略する。図において9iは開閉弁9aと圧縮機1の間と熱源側熱交換器2と減圧手段8cとの間を接続するバイパス管の途中に付加された開閉弁である。
【0089】
使用する冷房運転の回路とモードは実施の形態1と同様なので説明を省略する。
尚、付加した開閉弁9iは、過冷却冷房運転、合流冷房運転、放冷冷房運転、通常冷房運転ともに閉である。
【0090】
次に、放冷冷房運転から合流冷房運転に切替えるときの手順を図2、図14により説明する。
手順を以下に示す。
[STEP1] 第二回路(図2(b))を形成し、放冷冷房運転を行う。
[STEP2] 圧縮機1、熱源側熱交換機2、開閉弁9iを環状に接続した第B回路(図14)を形成する。
[STEP3] 圧縮機1を起動する。
[STEP4] 第二回路の液冷媒搬送手段4の吐出口の第二の冷媒圧力P2と、第B回路の液合流分岐点に最も近い箇所の第三の冷媒圧力P3を所定時間毎に検出する。また、同時に、第二回路のガス合流分岐点の冷媒圧第4の冷媒圧力P4と、第B回路のガス合流分岐点に最も近い箇所の第5の冷媒圧力P5も所定時間毎に検出する。
[STEP5] 圧力検出時に第二の冷媒圧力P2と第三の冷媒圧力P3が等しいか、或いは第二の冷媒圧力P2が第三の冷媒圧力P3より大きくなったと判断でき、かつ、第四の冷媒圧力P4と第五の冷媒圧力P5が等しくなったら第四回路(図2(d))に切替えて合流冷房運転を行う。
【0091】
STEP3において、第B回路は蒸発器がない冷凍サイクル運転となる。第B回路内の冷媒量によって液リッチ回路かガスリッチ回路かが決まる。
【0092】
STEP3において、圧縮機1は低運転周波数で起動する。起動時から圧縮機1の運転周波数を大きくすると、圧縮機1吐出圧力が高くなり、その結果、液冷媒搬送手段4の吐出口の冷媒圧力より高くなって、次の手順に進めなくなる可能性がある。
【0093】
本手順を実行すれば、液冷媒搬送手段4の冷媒搬送安定性を保持しながら、冷房運転モードを放冷冷房から合流冷房に切替えることができる。
【0094】
さらに、液冷媒搬送手段4の吐出口と、液合流分岐点の間に、減圧手段を備えた回路であれば、STEP5で合流冷房運転に切替えてから、液合流分岐点の第一の冷媒圧力P1と液冷媒搬送手段4の吐出口の第二冷媒圧力P2が常時、
P2=P1+α 或いは P2≧P1
となるように減圧手段8cと8dを調整しながら運転できるので、液冷媒搬送手段4の吐出口に冷媒が逆流する現象を回避することができる。これは、液冷媒搬送手段4の安定起動条件2を満たしている。
【0095】
以上のように、実施の形態6によれば、第二回路を形成し、液冷媒搬送手段4のみを運転して蓄冷熱を利用した冷房運転から、第四回路を形成して蓄冷熱を利用した冷房運転に切替えるときに、まず、第二回路と合流しないように圧縮機1を含めた環状の第B回路を形成し、次に圧縮機1を起動し、液冷媒搬送手段4の吐出口の第二の冷媒圧力P2、B回路の第三の冷媒圧力P3、第四の冷媒圧力P4及び第五の冷媒圧力P5を所定時間毎に検出し、第二の冷媒圧力P2が第三の冷媒圧力P3以上で、かつ、第四と第五の冷媒圧力P4、第五の冷媒圧力P5が等しくなったときに、第四回路に切替えるので、液冷媒搬送手段4の冷媒搬送安定性を保持しながら、放冷冷房運転から合流冷房運転に切替えることができる。
【0096】
【発明の効果】
以上説明したように、第1の発明は、液冷媒搬送手段、減圧手段、負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、圧縮機、熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記第四回路での運転において、前記液冷媒搬送手段の起動時あるいは運転時に、前記液冷媒搬送手段の吸入口に供給される液冷媒を確保するとともに、前記液冷媒搬送手段の吐出口に逆圧がかからないように運転を行うので、液冷媒搬送手段の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0097】
の発明に係る蓄熱式冷凍サイクル装置の運転方法によれば、圧縮機、熱源側熱交換器、蓄熱用熱交換器、減圧手段及び負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して過冷却冷房運転を行う第一回路と、液冷媒搬送手段、前記減圧手段、前記負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記第一回路による過冷却冷房運転から前記第四回路による前記合流冷房運転に切替えるときに、まず、前記第一回路のまま前記液冷媒搬送手段を起動し、次に、前記圧縮機を停止すると同時に、前記第二回路を形成して、前記放冷冷房運転を行い、次に、前記第四回路に切替えて前記合流冷房運転を行うので、液冷媒搬送手段の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0098】
の発明に係る蓄熱式冷凍サイクル装置の運転方法によれば、圧縮機、熱源側熱交換器、蓄熱用熱交換器、減圧手段及び負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して過冷却冷房運転を行う第一回路と、液冷媒搬送手段、前記減圧手段、前記負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記第一回路による過冷却冷房運転から前記第四回路による前記合流冷房運転に切替えるときに、まず、前記第一回路を形成して過冷却を行っている前記圧縮機を停止し、次に、前記第二回路に切替え、前記液冷媒搬送手段を起動し、次に、前記第四回路に切替えて圧縮機を起動して前記圧縮機と前記液冷媒搬送手段により前記合流冷房運転を行うので、液冷媒搬送手段の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0099】
の発明に係る蓄熱式冷凍サイクル装置の運転方法によれば、圧縮機、熱源側熱交換器、蓄熱用熱交換器、減圧手段及び負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して過冷却冷房運転を行う第一回路と、液冷媒搬送手段、前記減圧手段、前記負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記第一回路による過冷却冷房運転から前記第四回路による前記合流冷房運転に切替えるときに、まず、前記第一回路の圧縮機を運転したまま、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続した前記第三回路を形成し、前記圧縮機のみを運転して蓄冷熱を利用しない前記通常冷房運転を行い、次に、前記第三回路と合流しないように前記液冷媒搬送手段を含めた環状の第A回路を形成し、次に、前記液冷媒搬送手段を起動し、次に、前記第三回路と前記第A回路の合流分岐点の第一の圧力と、前記液冷媒搬送手段の吐出口の第二の圧力を所定時間毎に検出し、前記第一の圧力と前記第二の圧力が等しいか、或いは前記第二の圧力が前記第一の圧力より大きくなったときに、前記第四回路に切替えるので、液冷媒搬送手段の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0100】
の発明に係る蓄熱式冷凍サイクル装置の運転方法によれば、圧縮機、熱源側熱交換器、蓄熱用熱交換器、減圧手段及び負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して過冷却冷房運転を行う第一回路と、液冷媒搬送手段、前記減圧手段、前記負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記圧縮機と液冷媒搬送手段がともに停止している状態から、前記第四回路による前記合流冷房運転に切替えるときに、まず、前記第一回路を形成して蓄冷熱を利用する冷房運転を所定時間行い、次に請求項1〜3に記載されたいずれかの方法で前記第四回路を形成して前記合流冷房運転に切替えるので、液冷媒搬送手段の冷媒搬送安定性を保持しながら、停止から合流冷房に切替えることができる。
【0101】
の発明に係る蓄熱式冷凍サイクル装置の運転方法によれば、液冷媒搬送手段を起動する前に、蓄熱用熱交換器内に所定量以上の液冷媒を滞留してから前記液冷媒搬送手段を起動するので、液冷媒搬送手段の冷媒搬送安定性を保持しながら、冷房運転モードを放冷冷房から合流冷房に切替えることができる。
【0102】
の発明に係る蓄熱式冷凍サイクル装置の運転方法によれば、液冷媒搬送手段の吸入口に液溜を備え、前記液冷媒搬送手段を起動する前に、前記液溜に所定量以上の液冷媒を滞留してから前記液冷媒搬送手段を起動するので、液冷媒搬送手段の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0103】
の発明に係る蓄熱式冷凍サイクル装置の運転方法によれば、液冷媒搬送手段、減圧手段、負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、圧縮機、熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記第二回路を形成し、前記液冷媒搬送手段のみを運転して放冷冷房運転から、前記第四回路を形成して前記合流冷房運転に切替えるときに、まず、前記第四回路を形成し、次に、前記圧縮機を低周波数で起動するので、液冷媒搬送手段の冷媒搬送安定性を保持しながら、冷房運転モードを放冷冷房から合流冷房に切替えることができる。
【0104】
の発明に係る蓄熱式冷凍サイクル装置の運転方法によれば、液冷媒搬送手段、減圧手段、負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、圧縮機、熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、前記第二回路を形成し、前記液冷媒搬送手段のみを運転する放冷冷房運転から、前記第四回路を形成して前記合流冷房運転に切替えるときに、まず、前記第二回路と合流しないように前記圧縮機を含めた環状の第B回路を形成し、次に、前記圧縮機を起動し、次に、前記第二回路の前記液冷媒搬送手段の吐出口の第二の冷媒圧力、前記熱源側熱交換器と前記負荷側熱交換器の間にあって、前記液冷媒搬送手段の吐出口と合流分岐する液合流分岐点に最も近くに位置する前記B回路の第三の冷媒圧力、前記負荷側熱交換器と前記圧縮機の間にあって、前記蓄熱用熱交換器の一端と合流分岐するガス合流分岐点の第四の冷媒圧力及び前記B回路の前記ガス合流分岐点に最も近くに位置する第五の冷媒圧力を所定時間毎に検出し、前記第二の冷媒圧力が前記第三の冷媒圧力以上で、かつ、前記第四と第五の冷媒圧力が等しくなったときに、前記第四回路に切替えるので、液冷媒搬送手段の冷媒搬送安定性を保持しながら、冷房運転モードを放冷冷房から合流冷房に切替えることができる。
【0105】
10の発明に係る蓄熱式冷凍サイクル装置の運転方法によれば、圧縮機を運転中に液冷媒搬送手段を起動及び運転するときに、前記液冷媒搬送手段の吐出口に減圧手段を備え、常時、前記液冷媒搬送手段の吐出口に、前記圧縮機が搬送する冷媒から逆圧がかからないようにしたので、液冷媒搬送手段の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【0106】
11の発明に係る蓄熱式冷凍サイクル装置の運転方法によれば、液冷媒搬送手段を運転中に圧縮機を起動するときに、起動後所定時間は、前記圧縮機の周波数を所定周波数に固定するので、液冷媒搬送手段の冷媒搬送安定性を保持しながら、冷房運転モードを過冷却冷房から合流冷房に切替えることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を示す蓄熱式冷凍サイクル装置の冷媒回路図である。
【図2】 この発明の実施の形態1を示す蓄熱式冷凍サイクル装置の冷房運転の種類を示す冷媒回路図である。
【図3】 この発明の実施の形態1を示す蓄熱式冷凍サイクル装置の過冷却冷房運転の冷凍サイクル状態図である。
【図4】 この発明の実施の形態1を示す蓄熱式冷凍サイクル装置の放冷冷房運転の冷凍サイクル状態図である。
【図5】 この発明の実施の形態1を示す蓄熱式冷凍サイクル装置の通常冷房運転の冷凍サイクル状態図である。
【図6】 この発明の実施の形態1を示す蓄熱式冷凍サイクル装置の合流冷房運転の冷凍サイクル状態図である。
【図7】 この発明の実施の形態1を示す蓄熱式冷凍サイクル装置の1日の蓄冷、冷房運転例を示す図である。
【図8】 この発明の実施の形態1を示す蓄熱式冷凍サイクル装置の冷房負荷と冷媒搬送運転例を示す図である。
【図9】 この発明の実施の形態1を示す蓄熱式冷凍サイクル装置の冷媒回路図である。
【図10】 この発明の実施の形態3を示す蓄熱式冷凍サイクル装置の冷媒回路図である。
【図11】 この発明の実施の形態3を示す蓄熱式冷凍サイクル装置の冷媒回路図である。
【図12】 この発明の実施の形態3を示す蓄熱式冷凍サイクル装置の冷媒回路図である。
【図13】 この発明の実施の形態3を示す蓄熱式冷凍サイクル装置の冷媒回路図である。
【図14】 この発明の実施の形態6を示す蓄熱式冷凍サイクル装置の冷媒回路図である。
【図15】 従来の蓄熱式冷凍サイクル装置の冷媒回路図である。
【符号の説明】
1 圧縮機1、2 熱源側熱交換器、3 負荷側熱交換器、4 液冷媒搬送手段、5 蓄熱用熱交換器、6 蓄熱槽、7 蓄熱媒体、8a、8b、8c、8d 減圧手段、9a、b9b、9c、9d 開閉弁、10 液溜。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operation method of a regenerative refrigerating cycle device, and in particular, when a refrigerant and a refrigerant transported by a compressor join a load-side heat exchanger to form a circuit and the operation mode is switched, The present invention relates to a method for operating a heat storage refrigeration cycle apparatus that is stably performed.
[0002]
[Prior art]
As a conventional heat storage type refrigeration cycle apparatus in which the refrigerant conveyed by the compressor and the liquid refrigerant conveying means merges at the load-side heat exchanger, for example, there is one disclosed in JP-A-5-157297, and FIG. It is a refrigerant circuit diagram which shows the conventional heat storage type refrigerating cycle apparatus. In the figure, 1 is a compressor, 2 is a condenser which is a heat source side heat exchanger, 15 is a first pressure reducing mechanism, 3 is an evaporator which is a load side heat exchanger, 16 is an accumulator, 7 is a heat storage medium, and 6 is A heat storage tank, 5 is a heat storage heat exchanger, 17 is a heat storage bypass circuit, 18 to 25 are switchgears, 26 is a second decompression mechanism, and 27 is a refrigerant liquid conveying means.
[0003]
Next, the operation will be described. When the cooling load during the daytime is a predetermined value or more, as shown in the figure, the switchgears 25 and 21 are closed, the switchgears 18 to 20 and 22 to 24 are opened, and both the compressor 1 and the refrigerant liquid conveying means 27 are operated. To do.
In that case, the general cooling operation in which the compressor 1, the condenser 2, the first pressure reducing mechanism 15, and the evaporator 3 are sequentially connected in an annular manner to perform the cooling operation, the liquid refrigerant transfer means 27, the first The second decompression mechanism 26, the evaporator 3, and the heat storage heat exchanger 5 are sequentially connected in a circular manner to perform a combined cooling operation in which the cooling operation is performed simultaneously. This is the total refrigerant flow when only cooling operation or cooling operation is performed.
[0004]
As a result of this operation, the heat storage dependence rate with respect to the daytime cooling load becomes as high as 50% or more, and the liquid refrigerant transport means 27 can significantly reduce the operation power consumption from the compressor for the same cooling load, so that the entire operation Efficiency can be improved.
[0005]
[Problems to be solved by the invention]
However, in the apparatus of the conventional example as described above, although the refrigerant conveyed by the compressor 1 and the liquid refrigerant conveying means 27 is clearly shown in the operation in the evaporator 3 which is a load side heat exchanger, The operation procedure is not mentioned.
[0006]
Therefore, depending on the operation procedure, when the liquid refrigerant supplied to the suction port runs out of liquid or reverse pressure is applied to the discharge port, the liquid refrigerant transport unit 27 cannot transport the refrigerant, and once again enters a state where the transport is impossible. In other words, it is not easy to return while continuing the operation, and there is a problem that activation of the liquid refrigerant transfer means 27 and switching to the combined cooling operation are unstable. As described above, the operation method for stably starting and operating the liquid refrigerant transport means 27 is an important technique in the merge operation, but has a problem that it is not shown.
[0007]
The present invention has been made to solve the above-described problems, and stably starts and operates the liquid refrigerant conveying means, and switches from a cooling operation mode other than the combined cooling operation to the combined cooling operation. An object of the present invention is to provide a method for operating a heat storage refrigeration cycle apparatus that can be stably performed.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, a liquid refrigerant conveying means, a pressure reducing means, a load side heat exchanger, and a heat storage heat exchanger are sequentially connected in an annular manner, and only the liquid refrigerant conveying means is operated to perform a cooling and cooling operation. A second circuit, a compressor, a heat source side heat exchanger, the pressure reducing means and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated to perform a normal cooling operation; In the regenerative refrigerating cycle apparatus, the second circuit and the third circuit share the load-side heat exchanger, and the fourth circuit performs the combined cooling operation by operating the compressor and the liquid refrigerant transfer means. ,in front In the operation in the fourth circuit, when starting or operating the liquid refrigerant transfer means, the liquid refrigerant supplied to the suction port of the liquid refrigerant transfer means is secured and reverse to the discharge port of the liquid refrigerant transfer means. The operation is performed so that no pressure is applied.
[0009]
Second The operation method of the regenerative refrigeration cycle apparatus according to the invention is such that a compressor, a heat source side heat exchanger, a heat storage heat exchanger, a pressure reducing means, and a load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated. The first circuit that performs the supercooling cooling operation, the liquid refrigerant conveying means, the pressure reducing means, the load side heat exchanger, and the heat storage heat exchanger are sequentially connected in an annular manner, and only the liquid refrigerant conveying means is operated. The second circuit that performs the cooling and cooling operation, the compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated normally. A fourth circuit for performing a cooling operation, a second circuit and the third circuit share the load-side heat exchanger, and operate the compressor and the liquid refrigerant transfer means to perform a combined cooling operation. A heat storage refrigeration cycle apparatus comprising a circuit, When switching from the rejection cooling operation to the combined cooling operation by the fourth circuit, first, the liquid refrigerant conveying means is started in the first circuit, and then the compressor is stopped, and at the same time, the second circuit Are formed, and the cool-down cooling operation is performed, and then the combined cooling operation is performed by switching to the fourth circuit.
[0010]
Third The operation method of the regenerative refrigeration cycle apparatus according to the invention is such that a compressor, a heat source side heat exchanger, a heat storage heat exchanger, a pressure reducing means, and a load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated. The first circuit that performs the supercooling cooling operation, the liquid refrigerant conveying means, the pressure reducing means, the load side heat exchanger, and the heat storage heat exchanger are sequentially connected in an annular manner, and only the liquid refrigerant conveying means is operated. The second circuit that performs the cooling and cooling operation, the compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated normally. A fourth circuit for performing a cooling operation, a second circuit and the third circuit share the load-side heat exchanger, and operate the compressor and the liquid refrigerant transfer means to perform a combined cooling operation. A heat storage refrigeration cycle apparatus comprising a circuit, When switching from the rejection cooling operation to the combined cooling operation by the fourth circuit, first, the compressor that forms the first circuit and performs supercooling is stopped, and then switched to the second circuit. Then, the liquid refrigerant conveying means is started, and then the fourth circuit is switched to start the compressor, and the combined cooling operation is performed by the compressor and the liquid refrigerant conveying means.
[0011]
4th The operation method of the regenerative refrigeration cycle apparatus according to the invention is such that a compressor, a heat source side heat exchanger, a heat storage heat exchanger, a pressure reducing means, and a load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated. The first circuit that performs the supercooling cooling operation, the liquid refrigerant conveying means, the pressure reducing means, the load side heat exchanger, and the heat storage heat exchanger are sequentially connected in an annular manner, and only the liquid refrigerant conveying means is operated. The second circuit that performs the cooling and cooling operation, the compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated normally. A fourth circuit for performing a cooling operation, a second circuit and the third circuit share the load-side heat exchanger, and operate the compressor and the liquid refrigerant transfer means to perform a combined cooling operation. A heat storage refrigeration cycle apparatus comprising a circuit, When switching from rejection cooling operation to the combined cooling operation by the fourth circuit, the compressor, the heat source side heat exchanger, the pressure reducing means, and the load side are first operated while the compressor of the first circuit is operated. Forming the third circuit in which the heat exchangers are sequentially connected in an annular form, performing the normal cooling operation without operating the regenerative heat by operating only the compressor, and then not merging with the third circuit Forming an annular A circuit including the liquid refrigerant conveying means, then activating the liquid refrigerant conveying means, and then a first pressure at a junction branch point of the third circuit and the A circuit; The second pressure at the discharge port of the liquid refrigerant transport means is detected every predetermined time, and the first pressure is equal to the second pressure, or the second pressure is greater than the first pressure. When it becomes larger, it switches to the fourth circuit.
[0012]
5th The operation method of the regenerative refrigeration cycle apparatus according to the invention is such that a compressor, a heat source side heat exchanger, a heat storage heat exchanger, a pressure reducing means, and a load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated. The first circuit that performs the supercooling cooling operation, the liquid refrigerant conveying means, the pressure reducing means, the load side heat exchanger, and the heat storage heat exchanger are sequentially connected in an annular manner, and only the liquid refrigerant conveying means is operated. The second circuit that performs the cooling and cooling operation, the compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated normally. A fourth circuit for performing a cooling operation, a second circuit and the third circuit share the load-side heat exchanger, and operate the compressor and the liquid refrigerant transfer means to perform a combined cooling operation. A regenerative cycle apparatus comprising a circuit, and the compressor and the liquid refrigerant carrier When switching from the state where both means are stopped to the combined cooling operation by the fourth circuit, first, the cooling operation using the stored heat is performed for a predetermined time by forming the first circuit, and The fourth circuit is formed by any of the methods described in 1 to 3 and switched to the combined cooling operation.
[0013]
6th In the operation method of the regenerative refrigerating cycle device according to the invention, before starting the liquid refrigerant conveying means, a predetermined amount or more of liquid refrigerant is retained in the heat storage heat exchanger and then the liquid refrigerant conveying means is activated. Is.
[0014]
First 7 The operation method of the regenerative refrigeration cycle apparatus according to the invention comprises a liquid reservoir at the suction port of the liquid refrigerant transport means, and a predetermined amount or more of liquid refrigerant is retained in the liquid reservoir before starting the liquid refrigerant transport means. Then, the liquid refrigerant conveying means is activated.
[0015]
8th The operation method of the regenerative refrigerating cycle apparatus according to the invention is such that only the liquid refrigerant conveying means is operated by sequentially connecting the liquid refrigerant conveying means, the pressure reducing means, the load side heat exchanger and the heat storage heat exchanger in an annular shape. The second circuit that performs the cooling and cooling operation, the compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated to perform a normal cooling operation. A third circuit to perform, and a second circuit in which the second circuit and the third circuit share the load-side heat exchanger, operate the compressor and the liquid refrigerant transfer means, and perform a combined cooling operation. In the heat storage type refrigeration cycle apparatus provided, when the second circuit is formed and only the liquid refrigerant transfer means is operated to cool the cooling cooling operation, the fourth circuit is formed and switched to the combined cooling operation. First, the fourth circuit is formed, and then the compressor is operated at a low frequency. It is intended to start in a few.
[0016]
First 9 The operation method of the regenerative refrigerating cycle apparatus according to the invention is such that only the liquid refrigerant conveying means is operated by sequentially connecting the liquid refrigerant conveying means, the pressure reducing means, the load side heat exchanger and the heat storage heat exchanger in an annular shape. The second circuit that performs the cooling and cooling operation, the compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated to perform a normal cooling operation. A third circuit to perform, and a second circuit in which the second circuit and the third circuit share the load-side heat exchanger, operate the compressor and the liquid refrigerant transfer means, and perform a combined cooling operation. In the heat storage type refrigeration cycle apparatus provided, the second circuit is formed and only the liquid refrigerant conveying means is operated. Do When the fourth circuit is formed and switched to the combined cooling operation from the cooling cooling operation, first, an annular B circuit including the compressor is formed so as not to join the second circuit. The compressor is started, and then the second refrigerant pressure at the discharge port of the liquid refrigerant conveying means of the second circuit, between the heat source side heat exchanger and the load side heat exchanger, The third refrigerant pressure of the B circuit located closest to the liquid junction branching point that joins and branches with the discharge port of the liquid refrigerant transport means is between the load side heat exchanger and the compressor, and the heat storage heat exchange Detecting a fourth refrigerant pressure at a gas merging branch point that merges and branches with one end of the vessel and a fifth refrigerant pressure closest to the gas merging branch point of the B circuit at predetermined time intervals; The refrigerant pressure is greater than or equal to the third refrigerant pressure, and the fourth and fifth cold pressures. When the pressure becomes equal, but to switch to the fourth circuit.
[0017]
First 10 The operation method of the regenerative refrigeration cycle apparatus according to the invention is such that when the liquid refrigerant conveying means is activated and operated while the compressor is in operation, the discharge port of the liquid refrigerant conveying means is provided with a pressure reducing means, and the liquid refrigerant conveying means is always The discharge port of the refrigerant conveying means is not subjected to reverse pressure from the refrigerant conveyed by the compressor.
[0018]
11th In the operation method of the regenerative refrigerating cycle device according to the invention, when the compressor is started during operation of the liquid refrigerant transfer means, the frequency of the compressor is fixed at a predetermined frequency for a predetermined time after the start. .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a refrigerant circuit diagram of the regenerative refrigerating cycle apparatus showing Embodiment 1, FIG. 2 is a refrigerant circuit diagram showing the type of each cooling operation, FIG. 3 is a supercooling cooling operation, FIG. 4 is a cooling cooling operation, FIG. 5 is a normal cooling operation, and FIG. 6 is a refrigeration cycle state diagram of the combined cooling operation. FIG. 7 is a diagram showing an example of cold storage and cooling operation for one day, and FIG. 8 is a diagram showing an example of refrigerant load and refrigerant conveyance operation.
In FIG. 1, 1 is a compressor 1, 2 is a heat source side heat exchanger, 3 is a load side heat exchanger, 4 is a liquid refrigerant conveying means, 5 is a heat exchanger for heat storage, 6 is a heat storage tank, and 7 is a heat storage medium. , 8 is a pressure reducing means, and 9 is an on-off valve.
[0020]
Next, the basic operation of the cooling operation using cold storage heat will be described with reference to FIGS. 2 and 3 to 6. 2A is a first circuit that performs a supercooling cooling operation, FIG. 2B is a second circuit that performs a cooling cooling operation, FIG. 2C is a third circuit that performs a normal cooling operation, and FIG. d) shows the 4th circuit which performs combined cooling operation. It is assumed that the heat storage medium 7 is stored cold by some method.
Further, between the heat source side heat exchanger 2 and the load side heat exchanger, a point where the junction of the liquid refrigerant transport means 4 joins and branches is located between the liquid junction branch point LP and the load side heat exchanger and the compressor 1. The point that merges and branches with the input end of the heat storage and storage heat exchanger 5 is called a gas merge branch point GP.
[0021]
First, a first circuit is formed in which the compressor 1, the heat source side heat exchanger 2, the heat storage and storage heat exchanger 5, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular shape. A cooling operation in which only 1 is operated and the regenerative heat is supercooled will be described with reference to FIGS.
First, the on-off valves 9a, 9b and 9d are opened and 9c is closed. The decompression means 8a has an adjusted opening, 8b is fully open, and 8c is fully closed. And the compressor 1 is drive | operated and the liquid refrigerant conveyance means 4 is stopped. The high-pressure gas refrigerant that has been compressed by the compressor 1 (1 in FIG. 3) flows into the heat source side heat exchanger 2, where the refrigerant is condensed by exchanging heat with ambient air at a temperature lower than that of the refrigerant (2 in FIG. 3). ) And flows out as a high-pressure liquid or a two-phase refrigerant. Then, the refrigerant flows into the heat storage heat exchanger 5 through the on-off valve 9d, where heat is exchanged with the surrounding refrigerant body 7 having a temperature lower than that of the refrigerant, and the refrigerant is further condensed (5 in FIG. 3) to become a high-pressure low-temperature liquid refrigerant. Leaked. After that, it flows into the on-off valve 8a via the on-off valve 9b that is almost fully open and causes no pressure loss, and is decompressed here (8a in FIG. 3) to become a low-pressure two-phase refrigerant. Then, the refrigerant flows into the load-side heat exchanger 3, where it exchanges heat with ambient air having a temperature higher than that of the refrigerant, the refrigerant evaporates (3 in FIG. 3), and flows out as low-pressure gas refrigerant. Then, it returns to the suction port of the compressor 1 through the on-off valves 9b and 9a.
[0022]
This operation is hereinafter referred to as a supercooling cooling operation because cold storage heat is used for supercooling the high-pressure refrigerant.
[0023]
Next, as shown in FIG. 2 (b), a second circuit in which the liquid refrigerant conveying means 4, the pressure reducing means, the load-side heat exchange 3, and the heat storage and heat exchanger 5 are sequentially connected in an annular manner. A cooling operation in which only the liquid refrigerant conveying means 4 is formed and the regenerative heat is used to utilize the condensation of the refrigerant will be described with reference to FIGS.
First, the on-off valves 9b and 9c are opened, and 9a and 9d are closed. The decompression means 8a has an adjusted opening, and 8b and 8c are fully closed. Then, the compressor 1 is stopped and the liquid refrigerant transport means 4 is operated. The medium-pressure liquid refrigerant compressed and discharged by the liquid refrigerant conveying means 4 (4 in FIG. 4) becomes a low-pressure liquid or a two-phase refrigerant (8a in FIG. 4) via the pressure-reducing means 8a (8a in FIG. 4). Flow into. Here, the refrigerant exchanges heat with ambient air having a temperature higher than that of the refrigerant, and the refrigerant evaporates (3 in FIG. 4), and flows out as a low-pressure gas refrigerant. Thereafter, the refrigerant flows into the heat storage heat exchanger 5 through the on-off valves 9b and 9c. Here, heat is exchanged with the surrounding refrigerant storage body 7 having a temperature lower than that of the refrigerant, and the refrigerant condenses (5 in FIG. 4) to return to the suction port of the liquid refrigerant transport means 1 as low-pressure liquid refrigerant.
[0024]
In this operation, the cold storage heat of the heat storage tank 6 is used for the condensation of the refrigerant. Hereinafter, this operation is referred to as “cooling and cooling operation”.
[0025]
Next, as shown in FIG. 2 (c), a third circuit is formed in which the compressor 1, the heat source side heat exchanger 2, the pressure reducing means, and the load side heat exchange 3 are sequentially connected in an annular shape. The cooling operation in which only the compressor 1 is operated and the regenerative heat is not used will be described with reference to FIGS.
First, the on-off valves 9a and 9b are opened, and 9c and 9d are closed. The decompression means 8a has an adjusted opening, 8b is fully closed, and 8c is fully open. In addition, it is assumed that the refrigerant cannot flow backward in the liquid refrigerant conveying means 4. And the compressor 1 is drive | operated and the liquid refrigerant conveyance means 4 is stopped. The high-pressure gas refrigerant that has been compressed by the compressor 1 (1 in FIG. 5) flows into the heat source side heat exchanger 2, where the refrigerant is condensed by exchanging heat with ambient air at a temperature lower than that of the refrigerant (see FIG. 5). 2) It flows out as a high-pressure liquid or a two-phase refrigerant. Then, it flows into the decompression means 8a via the decompression means 8c, where it is decompressed (8a in FIG. 5) to become a low-pressure two-phase refrigerant. Then, the refrigerant flows into the load-side heat exchanger 3, where it exchanges heat with ambient air having a temperature higher than that of the refrigerant, and the refrigerant evaporates (3 in FIG. 5), and flows out as a low-pressure gas refrigerant. Then, it returns to the suction port of the compressor 1 through the on-off valves 9b and 9a.
[0026]
This operation does not use cold storage heat. Hereinafter, this operation is referred to as normal cooling operation.
[0027]
Next, as shown in FIG. 2 (d), the compressor 1, the heat source side heat exchanger 2, the pressure reducing means, and the load side heat exchange 3 are sequentially connected in an annular manner to circulate the refrigerant in the compressor 1. While forming a circuit, the liquid refrigerant transfer means 4, the load side heat exchange 3, and the heat storage heat exchanger 5 are connected in an annular fashion in order to form a refrigerant circulation circuit of the liquid refrigerant transfer means 4, and the load side A fourth circuit in which the refrigerant merges in the heat exchange 3 is formed, and both the compressor 1 and the liquid refrigerant transport means 4 are operated, and the refrigerant condensing action that the liquid refrigerant transport means 4 transports the cold storage heat of the heat storage tank 6 is performed. The cooling operation to be used will be described with reference to FIGS.
[0028]
First, the on-off valves 9a, 9b and 9c are opened and 9d is closed. The decompression means 8a and 8c are adjusted opening degrees, and 8b is fully closed. Then, both the compressor 1 and the liquid refrigerant transport means 4 are operated. The high-pressure gas refrigerant that has been compressed by the compressor 1 (1 in FIG. 6) flows into the heat source side heat exchanger 2, where the refrigerant is condensed by exchanging heat with ambient air having a temperature lower than that of the refrigerant (FIG. 6). 2), it flows out as a high-pressure liquid refrigerant. And it decompresses with the decompression means 8c (8c of FIG. 6), and becomes a medium pressure liquid or a two-phase refrigerant. Here, after merging with the refrigerant conveyed by the liquid refrigerant conveyance means 4, the refrigerant is circulated through the decompression means 8 a and decompressed (8 a in FIG. 6), and becomes a low-pressure two-phase refrigerant and flows into the load-side heat exchanger 3. Here, heat is exchanged with ambient air having a temperature higher than that of the refrigerant, and the refrigerant evaporates (3 in FIG. 6), and flows out as a low-pressure gas refrigerant. Then, after flowing through the on-off valve 9b, the refrigerant is branched into an amount returning to the compressor 1 and an amount returning to the liquid refrigerant conveying means 4. The amount returned to the compressor 1 is then returned to the suction port of the compressor 1 via the on-off valve 9a.
[0029]
On the other hand, the medium-pressure liquid refrigerant compressed and discharged by the liquid refrigerant conveying means 4 (4 in FIG. 6) joins the liquid refrigerant conveyed by the compressor 1 in the middle, and then flows to the pressure reducing means 8a and is depressurized ( 6a) of FIG. 6, it becomes a low-pressure two-phase refrigerant and flows into the load-side heat exchanger 3. Here, heat is exchanged with ambient air having a temperature higher than that of the refrigerant, and the refrigerant evaporates (3 in FIG. 6), and flows out as a low-pressure gas refrigerant. Then, after flowing through the on-off valve 9b, the refrigerant is branched into an amount returning to the compressor 1 and an amount returning to the liquid refrigerant conveying means 4. The amount returned to the liquid refrigerant transfer means 4 flows into the heat storage heat exchanger 5 through the on-off valve 9c, where heat is exchanged with the heat storage medium 7 having a temperature lower than that of the refrigerant, and the refrigerant condenses (5 in FIG. 6). Then, it returns to the suction port of the liquid refrigerant transport means 4 as a low-pressure liquid refrigerant.
[0030]
As described above, the refrigerant conveyed by the compressor 1 and the refrigerant conveyed by the liquid refrigerant conveying means 4 merge when flowing through the decompression means 8a and the load side heat exchanger 3.
[0031]
In this operation, the liquid refrigerant transfer means 4 performs a cooling cooling operation in which the cold storage heat of the heat storage tank 6 is transferred to the refrigerant to cool it, while the compressor 1 performs a general cooling operation using the heat source side heat exchanger 2. . Hereinafter, this operation is referred to as a combined cooling operation.
[0032]
Next, an example of a time schedule for each cooling operation described above will be described with reference to FIG.
From 22 o'clock to 8 o'clock in the morning, cold storage is performed in the heat storage tank 7 filled in the heat storage tank 6 by some method, and the first circuit is formed from 9 o'clock in the morning to 13 o'clock in the noon and 16 o'clock in the evening Then, supercooling cooling operation is performed. Next, during the daytime peak cut time zone from 13:00 to 16:00, the fourth circuit is formed to perform the combined cooling operation, or the second circuit is formed to perform the cooling cooling operation. And when the cool storage heat is lost in the heat storage tank 6, the third circuit is formed and the normal cooling operation is performed.
[0033]
At this time, the utilization rate of the regenerative heat in the supercooling cooling is 20-30%. The rate of use of regenerative heat in air cooling is 100%. The cold storage heat utilization ratio by the combined operation is 50 to 100%.
[0034]
The cooling operation method during the daytime peak cut time depends on the cooling load. switching Yeah.
The refrigerant conveying means in each operation method according to the cooling load 4 An example of the driving method is shown in FIG.
When the cooling load is equal to or less than the predetermined value L, the cooling cooling operation is performed. The load fluctuation is dealt with by changing the refrigerant conveyance amount of the liquid refrigerant conveyance means 4. As an example of the change method, there is a method in which the rotation speed of the transfer section of the liquid refrigerant transfer means 4 is changed in accordance with the required refrigerant transfer amount.
On the other hand, when the cooling load is equal to or greater than the predetermined value L, the combined cooling operation is performed. The load fluctuation is dealt with by changing the refrigerant conveyance amount of the compressor 1 while keeping the refrigerant conveyance amount of the liquid refrigerant conveyance means 4 constant at a predetermined value. As an example of the change method, there is a method of changing the operation frequency of the compressor 1 in accordance with the required refrigerant conveyance amount.
[0035]
There are two conditions for ensuring the stable operation of the liquid refrigerant transport means 4, which will be described next.
(Condition 1) The liquid refrigerant supplied to the suction port of the liquid refrigerant transport means 4 should not be insufficient during startup or operation. The reason is that when the gas refrigerant is mixed, in the transfer part in the liquid refrigerant transfer means 4, there is not enough liquid refrigerant to act as a seal for blocking high pressure and low pressure, so that a pressure difference cannot be generated, resulting in the refrigerant. This is because the conveyance becomes impossible.
[0036]
(Condition 2) No reverse pressure is applied to the discharge port of the liquid refrigerant transport means 4 during startup or operation.
The reason for this is that when a reverse pressure is applied to the discharge port, the refrigerant circulating in the compressor 1 flows back to the discharge port of the liquid refrigerant transport means 4. And in the conveyance part in the liquid refrigerant conveyance means 4, the liquid refrigerant does not play the role of the seal which interrupts | blocks a high voltage | pressure and a low pressure, A pressure difference cannot be produced, As a result, the liquid refrigerant conveyance means 4 becomes a refrigerant | coolant. It is because it becomes impossible to convey.
[0037]
When the liquid refrigerant conveying means 4 starts up or a large load fluctuation occurs, the liquid refrigerant supply to the suction port of the liquid refrigerant conveying means 4 tends to become unstable, and once the internal pressure difference disappears, the refrigerant can be conveyed. When it disappears, it is difficult to recover the refrigerant conveying action unless some means is taken.
On the other hand, when a reverse pressure phenomenon to the discharge port occurs, there is no pressure difference inside, and refrigerant conveyance becomes impossible. And it is difficult to recover the refrigerant conveying action unless some measures are taken.
Control for avoiding the above-described phenomenon and ensuring the stability of the refrigerant conveyance of the liquid refrigerant conveyance means 4 is necessary.
[0038]
Next, the procedure for switching from the supercooling cooling operation to the combined cooling operation will be described with reference to FIG.
The procedure is shown below.
[STEP 1] The first circuit (FIG. 2A) is formed, and the supercooling cooling is performed by operating the compressor 1.
Do the driving.
[STEP2] Liquid refrigerant conveying means 4 At the same time, the decompression means 8b is fully closed.
[STEP3] Compressor 1 stopped. At the same time, the second circuit (Fig. 2 (b)) is formed and the liquid refrigerant is conveyed.
The cooling operation is performed by the operation of the means 4.
[STEP 4] A fourth circuit (FIG. 2 (d)) is formed, the compressor 1 is started, and the compressor 1 and liquid
The combined cooling operation is performed by the operation of the refrigerant conveying means 4.
[0039]
In STEP2, the heat exchanger 5 for storing and storing heat is almost filled with liquid refrigerant.
This is because the liquid refrigerant transfer means by the cooling operation using supercooling 4 The liquid refrigerant transport means 4 is activated after a predetermined amount or more of liquid refrigerant has accumulated in the heat storage / storage heat exchanger 5.
Further, since the liquid refrigerant is forcibly supplied to the suction port of the liquid refrigerant conveying means 4 by the compressor 1, the liquid refrigerant conveying means 4 is started up smoothly.
The operation state of STEP 2 satisfies the stable start condition 1 of the liquid refrigerant transport means 4.
[0040]
In STEP 3, when the second circuit is switched, due to the pressure drop in the refrigerant circuit, immediately after that, the degree of supercooling of the suction port of the liquid refrigerant conveying means 4 is suddenly reduced or gas refrigerant starts to be mixed. However, since the amount of refrigerant in the second circuit is originally large, such as the inside of the heat storage and heat storage heat exchanger 5 in STEP 1 is almost liquid refrigerant, if the state becomes stable, the amount of refrigerant in the suction port of the liquid refrigerant conveying means 4 A refrigeration cycle state in which a large amount of liquid refrigerant stays in the heat exchanger 5 for storing and storing heat is stably supplied.
[0041]
Between STEP 3 and STEP 4, time is taken to ensure the reliability of restarting the compressor 1. An example is 3 minutes.
[0042]
In STEP 2, when the liquid refrigerant conveying means 4 is activated, the decompression means 8 c is fully closed, so that no reverse pressure is applied to the discharge port of the liquid refrigerant conveying means 4 at the time of activation. This satisfies the stable start condition 2 of the liquid refrigerant transport means 4.
Further, after starting the compressor 1 in STEP 4, if the decompression means 8c is adjusted while gradually increasing the refrigerant conveyance amount of the compressor 1, no reverse pressure is applied to the discharge port of the liquid refrigerant conveyance means 4. be able to. This also satisfies the stable start condition 2 of the liquid refrigerant transport means 4.
[0043]
Therefore, if this procedure is executed, the cooling operation mode can be switched from the supercooling cooling to the combined cooling while maintaining the refrigerant conveyance stability of the liquid refrigerant conveyance means 4.
[0044]
As described above, according to the first embodiment, the first circuit is formed, and only the compressor 1 is operated to use the regenerative heat. Supercooling From the cooling operation, a fourth circuit is formed, both the compressor 1 and the liquid refrigerant transport means 4 are operated, the refrigerant is merged in the load side heat exchange 3, and the cold storage heat is used. Confluence When switching to the cooling operation, first, the liquid refrigerant conveying means 4 is started while the first circuit is performing the supercooling cooling operation, then the compressor 1 is stopped, and at the same time, the second circuit is formed, Since only the refrigerant conveying means 4 is operated to perform the cooling and cooling operation using the regenerative heat, and then the compressor 1 is started by switching to the fourth circuit, so that the refrigerant conveying stability of the liquid refrigerant conveying means 4 is maintained. However, the cooling operation mode can be switched from the supercooling cooling to the combined cooling.
[0045]
As shown in the refrigerant circuit diagram of FIG. 9, a liquid reservoir 10 is provided at the suction port of the liquid refrigerant transport means 4, and the liquid reservoir inlet on-off valve 9x is opened and the liquid reservoir outlet on-off valve 9y is opened during the supercooling cooling of STEP1. The liquid refrigerant stays closed, and when the liquid refrigerant transport means 4 is started in STEP 2, the on-off valve 9 x is closed and the on-off valve 9 y is opened so that the liquid refrigerant does not run out of the suction port of the liquid refrigerant transport means 4. When the refrigerant is supplied, the operation stability of the liquid refrigerant transport means 4 is improved.
[0046]
Further, the idea of the starting method is the same when the heat storage medium 7 stores heat.
[0047]
Embodiment 2. FIG.
The configuration of the heat storage type refrigeration cycle apparatus in Embodiment 2 and the cooling operation circuit and mode to be used are the same as those in Embodiment 1, so the description thereof will be omitted and the operation method will be described with reference to FIG.
[0048]
From supercooling cooling operation by the first circuit, Four Another procedure when switching to the combined cooling operation of the circuit will be described.
The procedure is shown below.
[STEP 1] The first circuit (FIG. 2A) is formed, and the supercooling cooling is performed by operating the compressor 1.
Do the driving.
[STEP2] The compressor 1 is stopped.
[STEP 3] A second circuit (FIG. 2B) is formed.
[STEP 4] The liquid refrigerant transport means 4 is activated.
[STEP 5] The fourth circuit (FIG. 2 (d)) is formed, the compressor 1 is started, and the compressor 1 and the liquid cooling are started.
The combined cooling operation is performed by the operation of the medium conveying means 4.
[0049]
In STEP2, the heat exchanger 5 for storing and storing heat is almost filled with liquid refrigerant. This is because the liquid refrigerant transporting means 4 is activated after a predetermined amount or more of liquid refrigerant has accumulated in the heat storage heat storage heat exchanger 5 before starting the liquid refrigerant transporting means 4 by the cooling operation using supercooling. Will be.
[0050]
Further, when switching between STEP2 and STEP3 with almost no space between them, the heat storage heat exchanger 5 can be maintained in a state almost filled with liquid refrigerant.
[0051]
In STEP 4, when the liquid refrigerant transport unit 4 is activated, the supercooling degree of the suction port of the liquid refrigerant transport unit 4 rapidly decreases or gas refrigerant begins to be mixed immediately after the pressure drop in the refrigerant circuit. However, the amount of refrigerant in the second circuit can be maintained substantially in the state where the heat storage heat storage heat exchanger 5 of STEP 1 is almost liquid refrigerant and is inherently large. Thus, a liquid refrigerant is stably supplied to the suction port 4 and a refrigeration cycle state in which a large amount of the liquid refrigerant stays in the heat storage heat storage heat exchanger 5 is achieved. At this stage, the stable start condition 1 of the liquid refrigerant transport means 4 is satisfied.
[0052]
In STEP 4, since the compressor 1 is stopped when the liquid refrigerant conveying means 4 is activated, no reverse pressure is applied to the discharge port of the liquid refrigerant conveying means 4 at the time of activation. This satisfies the stable start condition 2 of the liquid refrigerant transport means 4.
Further, after starting the compressor 1 in STEP 5, if the decompression means 8c is adjusted while gradually increasing the refrigerant conveyance amount of the compressor 1, a reverse pressure is not applied to the discharge port of the liquid refrigerant conveyance means 4. be able to. This also satisfies the stable start condition 2 of the liquid refrigerant transport means 4.
[0053]
Therefore, if this procedure is executed, the cooling operation mode can be switched from the supercooling cooling to the combined cooling while maintaining the refrigerant conveyance stability of the liquid refrigerant conveyance means 4.
[0054]
Further, as shown in the circuit diagram 9 of the first embodiment, a liquid reservoir 10 is provided at the suction port of the liquid refrigerant transfer means 4, and the liquid reservoir inlet on-off valve 9x is opened and the liquid reservoir outlet on-off valve 9y is opened during the subcooling cooling of STEP1. To close the on-off valves 9x and 9y in STEP2 and 3, close the on-off valve 9x and open the on-off valve 9y when starting the liquid refrigerant transport means 4 in STEP4, If the liquid refrigerant is supplied to the suction port of the liquid refrigerant transport unit 4 so as not to run out of liquid, the operation stability of the liquid refrigerant transport unit 4 is further improved.
[0055]
As described above, according to the second embodiment, the first circuit is formed, the fourth circuit is formed from the cooling operation in which only the compressor 1 is operated and the cold storage heat is used, and the compressor 1 and the liquid refrigerant are formed. Compressor which performs supercooling cooling by first forming a first circuit when operating both conveying means 4 to merge refrigerants in load side heat exchange 3 and switching to cooling operation using cold storage heat 1 is then switched to the second circuit, then the liquid refrigerant transport means 4 is started, and then the fourth circuit is switched to start the compressor 1, so that the refrigerant transport stability of the liquid refrigerant transport means 4 is The cooling operation mode can be switched from the supercooling cooling to the combined cooling.
[0056]
Embodiment 3 FIG.
FIG. 10 is a refrigerant circuit diagram of the regenerative refrigerating cycle apparatus showing the third embodiment. In the figure, the same or corresponding parts as in FIG. 1 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. 9e is an open / close valve added between the liquid refrigerant transfer means 4 and the heat storage heat exchanger 5 with respect to FIG. 1, and 9f is an open / close valve added between the liquid refrigerant transfer means 4 and the liquid junction branch point. is there.
[0057]
Since the circuit and mode of the cooling operation to be used are the same as those in the first embodiment, the description thereof will be omitted, and the operation of the added on-off valve will be described below. 9e and 9f are both open during the supercooling cooling operation, 9e and 9f are both open during the combined cooling operation, 9e and 9f are both open during the cooling cooling operation, and 9e is optional during the normal cooling operation. Is closed.
[0058]
Next, another procedure for switching from the supercooling cooling operation to the combined cooling operation will be described.
The procedure is shown below.
[STEP 1] A first circuit (FIG. 2A) is formed, and a supercooling cooling operation is performed.
[STEP 2] The on-off valve 9f is closed, and at the same time, a fourth circuit (FIG. 2 (d)) is formed to perform the normal cooling operation.
[STEP 3] The on-off valve 9e is closed and the liquid refrigerant conveying means 4 and the pressure reducing means 8b are sequentially connected in an annular shape with the 9f kept closed.
[STEP 4] The liquid refrigerant transport means 4 is activated.
[STEP 5] The decompression means 8c is adjusted so that the first refrigerant pressure P1 at the liquid junction branch point is equal to the second refrigerant pressure P2 at the discharge port of the liquid refrigerant transport means 4.
[STEP 6] The first first refrigerant pressure P1 and the second refrigerant pressure P2 are detected every predetermined time.
[STEP 7] If it is determined at the time of pressure detection that the first refrigerant pressure P1 and the second refrigerant pressure P2 are equal or the second refrigerant pressure P2 is greater than the first refrigerant pressure P1, the fourth circuit Switching to (FIG. 2 (d)), the combined cooling operation is performed.
[0059]
When switching from STEP2 to STEP3, when the on-off valves 9d and 9e are closed while the on-off valves 9c at both ends of the heat storage heat exchanger 5 are closed, the liquid heat storage heat exchanger 5 has a large amount of liquid refrigerant. Can be held. This is because the liquid refrigerant transporting means 4 is activated after a predetermined amount or more of liquid refrigerant has accumulated in the heat storage heat storage heat exchanger 5 before starting the liquid refrigerant transporting means 4 by the cooling operation using supercooling. Will be. The liquid refrigerant can be supplied to the suction port of the liquid refrigerant transport means 4 without running out of liquid.
Further, since the on-off valve 9f is also closed, the circuit A between the on-off valves 9e and 9f can be filled with the liquid refrigerant, and the liquid refrigerant is conveyed without running out of liquid when the liquid refrigerant conveying means 4 in STEP 4 is started. Liquid refrigerant can be supplied to the suction port of the means 4. This satisfies the stable start condition 1 of the liquid refrigerant transport means 4.
[0060]
In STEP2, when the upper limit value of the used power is determined or when the target used power is given, control is performed so that the operation is performed at or below the value. Specifically, the operating frequency is set to reduce the power consumption and cooling capacity by reducing the operating frequency of the compressor 1.
[0061]
In STEP 4, the refrigerant in the A-th circuit is almost in a saturated liquid state. When the liquid refrigerant transport means 4 is activated, a part of the power consumption of the liquid refrigerant transport means 4 is given in the form of heat to the refrigerant circulating in the Ath circuit, so that the refrigerant temperature rises and a part of the refrigerant evaporates. Then gas refrigerant begins to mix. As a result, there is a possibility that liquid may run out at the suction port of the liquid refrigerant transport means 4, so that STEP 4 to STEP 7 can be performed. As soon as possible It is desirable to proceed. However, since there is almost no pressure loss in the A-th circuit, the power consumption is small, so there is no problem if the required time from STEP 4 to STEP 7 is about 10 minutes.
[0062]
Specific examples are shown below.
The conditions are refrigerant type R407C, initial refrigerant temperature Trf of 25 ° C., refrigerant pressure P of 1.188 [MPa], refrigerant flow rate Gr = 1000 [kg / h], power consumption W = 1000 [W], and operation time of STEP4 Assuming that the refrigerant temperature after 10 minutes is 10 minutes,
Increase in specific enthalpy of refrigerant Δh = (W × 0.86 × 4.186) ÷ Gr ÷ 6 = 0.60 [kJ / kg]
It becomes. This is worth a 0.2 ° C increase.
[0063]
In STEP 5, the liquid junction branch point is set to an intermediate pressure. The reason is that the discharge pressure of the liquid refrigerant conveying means 4 is lower than the intermediate pressure, so that a reverse pressure is generated at the discharge port of the liquid refrigerant conveying means 4, and as a result, the circulating refrigerant conveyed by the compressor 1 is liquid. This is for avoiding a state in which the liquid refrigerant transport unit 4 cannot transport the refrigerant by flowing into the refrigerant transport unit 4. This satisfies the stable start condition 2 of the liquid refrigerant transport means 4.
[0064]
In STEP 6, the predetermined time needs to take into account the time delay of the refrigeration cycle system accompanying the change in the opening of the decompression means. An example is about 1 to 3 minutes.
[0065]
Therefore, if this procedure is executed, the cooling operation mode can be switched from the supercooling cooling to the combined cooling while maintaining the refrigerant conveyance stability of the liquid refrigerant conveyance means 4.
[0066]
As a method for preventing a reverse pressure from being applied to the discharge port of the liquid refrigerant transport means 4 and preventing the refrigerant transported by the compressor 1 from flowing back, the pressure at the discharge port of the liquid refrigerant transport means 4 is reduced as shown in FIG. It is possible to install means 8d.
In this case, the newly added decompression means 8d is adjusted together with the decompression means 8c so that the relationship between the first refrigerant pressure P1 at the liquid junction branch point and the second refrigerant pressure P2 at the discharge port of the liquid refrigerant transport means 4 is established. P2 = P1 + α is satisfied, and adjustment is performed so that P2 becomes a predetermined target pressure. For example, α is 0.2 MPa, and the target value of P2 is 1.5 MPa.
[0067]
FIG. 12 shows another circuit of the Ath circuit. In the A circuit, on-off valves 9g and 9h are added to FIG. Since this A circuit distribute | circulates the piping immersed in the thermal storage tank 6 by which cold storage was carried out on the way, the inside of A circuit can be hold | maintained in a supercooled state. As a result, the liquid refrigerant can be supplied to the suction port of the liquid refrigerant transport means 4 without running out of liquid.
[0068]
Further, as shown in FIG. 13, a liquid reservoir 10 is provided at the suction port of the liquid refrigerant transport means 4, and the liquid reservoir inlet on-off valve 9x is opened and the liquid outlet outlet on-off valve 9y is closed during the subcooling cooling of STEP1. In steps 2 and 3, the refrigerant is retained, and the on-off valves 9x and 9y are closed. When the liquid refrigerant transport means 4 is started in STEP 4, the on-off valve 9x is closed and the on-off valve 9y is opened. If the liquid refrigerant is supplied to the suction port so that the liquid does not run out, the operation stability of the liquid refrigerant transport means 4 is further improved.
[0069]
As described above, according to the third embodiment, the first circuit is formed, the fourth circuit is formed from the cooling operation in which only the compressor 1 is operated and the cold storage heat is used, and the compressor 1 and the liquid refrigerant are formed. When both the transporting means 4 are operated and the refrigerant is merged in the load-side heat exchange 3 to switch to the cooling operation using the cold storage heat, first, the compressor 1 and the heat source side heat are kept while the compressor 1 is operated. A third circuit is formed by sequentially connecting the exchanger 2, the decompression means 8 c and 8 a, and the load side heat exchange 3, and only the compressor 1 is operated to perform a cooling operation that does not use cold storage heat,
Next, an annular A circuit including the liquid refrigerant conveying means 4 is formed so as not to merge with the third circuit, and then the liquid refrigerant conveying means 4 is activated to join and divide the third circuit and the A circuit. The first refrigerant pressure P1 at the point and the second refrigerant pressure P2 at the discharge port of the liquid refrigerant conveying means 4 are detected every predetermined time, and the first refrigerant pressure P1 and the second refrigerant pressure P2 are equal, Alternatively, when the second refrigerant pressure P2 becomes larger than the first refrigerant pressure P1, the fourth circuit is switched, so that the cooling operation mode is set to the supercooling cooling mode while maintaining the refrigerant conveyance stability of the liquid refrigerant conveyance means 4. Can be switched to confluence cooling.
[0070]
Embodiment 4 FIG.
The configuration of the heat storage type refrigeration cycle apparatus in Embodiment 4 and the circuit and mode of the cooling operation to be used are the same as those in Embodiment 1, so the description thereof will be omitted and the operation method will be described with reference to FIG.
[0071]
The present embodiment is an operation method for switching from the stopped state to the combined cooling operation, and is performed according to the following procedure.
[STEP 1] The first circuit (FIG. 2A) is formed, and the supercooling cooling is performed by operating the compressor 1.
Do the driving.
[STEP2] Liquid refrigerant conveying means 4 At the same time, the decompression means 8b is fully closed.
[STEP3] Compressor 1 stopped. At the same time, the second circuit (Fig. 2 (b)) is formed and the liquid refrigerant is conveyed.
The cooling operation is performed by the operation of the means 4.
[STEP 4] A fourth circuit (FIG. 2 (d)) is formed, the compressor 1 is started, and the compressor 1 and liquid
The combined cooling operation is performed by the operation of the refrigerant conveying means 4.
This is the same procedure as in the first embodiment.
[0072]
Alternatively, the following procedure is used.
[STEP 1] The first circuit (FIG. 2A) is formed, and the supercooling cooling operation is performed by the operation of the compressor 1.
[STEP2] The compressor 1 is stopped.
[STEP 3] A second circuit (FIG. 2B) is formed.
[STEP 4] The liquid refrigerant transport means 4 is activated.
[STEP 5] The fourth circuit (FIG. 2 (d)) is formed, the compressor 1 is started, and the combined cooling operation is performed by the operation of the compressor 1 and the liquid refrigerant transfer means 4.
This is the same procedure as in the second embodiment.
[0073]
Alternatively, the following procedure is used.
[STEP 1] A first circuit (FIG. 2A) is formed, and a supercooling cooling operation is performed.
[STEP 2] The on-off valve 9f is closed, and at the same time, a fourth circuit (FIG. 2 (d)) is formed to perform the normal cooling operation.
[STEP 3] The on-off valve 9e is closed and the liquid refrigerant conveying means 4 and the pressure reducing means 8b are sequentially connected in an annular shape with the 9f kept closed.
[STEP 4] The liquid refrigerant transport means 4 is activated.
[STEP 5] The decompression means 8c is adjusted so that the first refrigerant pressure P1 at the liquid junction branch point is equal to the second refrigerant pressure P2 at the discharge port of the liquid refrigerant transport means 4.
[STEP 6] The first refrigerant pressure P1 and the second refrigerant pressure P2 are detected every predetermined time.
[STEP 7] If it is determined that the first refrigerant pressure P1 and the second refrigerant pressure P2 are equal or the second refrigerant pressure P2 is greater than the first refrigerant pressure P1 when the pressure is detected, the fourth circuit (FIG. 2). Switch to (d)) and perform the combined cooling operation.
This is the same procedure as in the third embodiment.
[0074]
That is, when the combined cooling operation is performed from the stopped state, the supercooling cooling operation is first performed. The reason is that the liquid refrigerant conveying means 4 is activated after a predetermined amount or more of liquid refrigerant has accumulated in the heat storage heat exchanger 5 before the liquid refrigerant conveying means 4 is activated by the cooling operation using supercooling. Because. This is because the liquid refrigerant is supplied to the suction port of the liquid refrigerant conveying means 4 without running out of liquid. This satisfies the stable start condition 1 of the liquid refrigerant transport means 4.
[0075]
Since the procedure after the supercooling cooling operation is the same as in the first to third embodiments, the description thereof is omitted.
[0076]
Therefore, if this procedure is executed, the cooling operation mode can be switched from the supercooling cooling to the combined cooling while maintaining the refrigerant conveyance stability of the liquid refrigerant conveyance means 4.
[0077]
Further, as shown in the circuit diagram 9, a liquid reservoir 10 is provided at the suction port of the liquid refrigerant transport means 4, and the liquid reservoir inlet opening / closing valve 9x is opened and the liquid reservoir outlet opening / closing valve 9y is closed during the subcooling cooling of STEP1. Until the liquid refrigerant conveying means 4 is activated, the on-off valves 9x and 9y are closed. When the liquid refrigerant conveying means 4 is activated, the on-off valve 9x is closed and the on-off valve 9y is opened. If the liquid refrigerant is supplied to the suction port of the transport unit 4 so that the liquid does not run out, the operation stability of the liquid refrigerant transport unit 4 is further improved.
[0078]
As described above, according to the fourth embodiment, the fourth circuit is formed from the state where both the compressor 1 and the liquid refrigerant conveying means 4 are stopped, and both the compressor 1 and the liquid refrigerant conveying means 4 are connected. When switching to the cooling operation using the cold storage heat by operating the refrigerant in the load side heat exchange 3, first, the cooling operation using the cold storage heat is performed for a predetermined time by forming the first circuit. While maintaining the refrigerant conveyance stability of the liquid refrigerant conveyance means 4, the combined cooling operation can be started from the stop.
[0079]
Embodiment 5. FIG.
The configuration of the heat storage type refrigeration cycle apparatus and the cooling operation circuit and mode used in the fifth embodiment are the same as those in the first embodiment, so that the description thereof will be omitted and the operation method will be described with reference to FIG.
[0080]
The present embodiment is an operation method for switching from the cooling-to-cooling operation to the combined cooling operation, and is performed according to the following procedure.
[STEP 1] A second circuit (FIG. 2B) is formed, and the cooling and cooling operation is performed.
[STEP2] A fourth circuit (FIG. 2D) is formed.
[STEP 3] The compressor 1 is started.
[0081]
By switching between STEP2 and STEP3 with almost no gap between them, the heat storage heat exchanger 5 can be maintained almost filled with liquid refrigerant.
[0082]
The compressor 1 starts at a low operating frequency. When the operating frequency of the compressor 1 is increased from the time of startup, the discharge pressure of the compressor 1 increases, and as a result, the refrigerant pressure at the liquid junction branch point becomes higher than the pressure at the discharge port of the liquid refrigerant transport means 4, and the liquid refrigerant There is a high possibility that the refrigerant will flow back to the discharge port of the transport means 4. This is to avoid it.
This satisfies the stable start condition 2 of the liquid refrigerant transport means 4.
[0083]
Further, when the operating frequency of the compressor 1 is increased from the time of startup, the compressor 1 suction pressure decreases, and as a result, the refrigerant at the gas merging branch point flows more toward the compressor 1 having a lower pressure. Then, in the heat storage and storage heat exchanger 5, the flow rate of the refrigerant flowing in becomes smaller than the flow rate of the refrigerant flowing out, so that the amount of staying refrigerant decreases. If the flow rate difference is large, it is impossible to secure the necessary amount of refrigerant that remains, causing the liquid refrigerant to run out at the suction port of the liquid refrigerant transport means 4. In the case of a low frequency, the flow rate difference can be reduced, so that the amount of staying refrigerant is reduced gradually, and the refrigeration cycle is stabilized before reaching the minimum required amount of staying refrigerant. It is possible to avoid running out of liquid. This satisfies the stable start condition 1 of the liquid refrigerant transport means 4.
[0084]
Therefore, if this procedure is executed, the cooling operation mode can be switched from the cool-down cooling to the combined cooling while maintaining the refrigerant transfer stability of the liquid refrigerant transfer means 4.
[0085]
Furthermore, if the circuit is provided with a pressure reducing means between the discharge port of the liquid refrigerant transport means 4 and the liquid junction branch point, the first refrigerant pressure P1 at the liquid junction branch point when the compressor 1 is started. And the refrigerant pressure P2 at the discharge port of the liquid refrigerant conveying means 4 is always
P2 = P1 + α or P2 ≧ P1
If the pressure reducing means 8c and 8d are adjusted so as to be operated, it is possible to avoid the phenomenon that the refrigerant flows back to the discharge port of the liquid refrigerant conveying means 4. This satisfies the stable start condition 2 of the liquid refrigerant transport means 4.
[0086]
Therefore, if this procedure is executed, the cooling operation mode can be switched from the supercooling cooling to the combined cooling while maintaining the refrigerant conveyance stability of the liquid refrigerant conveyance means 4.
[0087]
As described above, according to the fifth embodiment, the fourth circuit is formed and the cold storage heat is used from the cooling operation in which the second circuit is formed and only the liquid refrigerant transfer means 4 is operated to use the cold storage heat. When switching to the cooling operation, the first circuit is formed first, and then the compressor 1 is started at a low frequency, so that the refrigerant cooling stability of the liquid refrigerant transfer means 4 is maintained and the cooling cooling operation is started. It can be switched to the combined cooling operation.
[0088]
Embodiment 6 FIG.
FIG. 14 is a refrigerant circuit diagram of a heat storage type refrigeration cycle apparatus showing a sixth embodiment. In the figure, the same or corresponding parts as in FIG. 1 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In the figure, reference numeral 9i denotes an on-off valve added in the middle of a bypass pipe connecting the on-off valve 9a and the compressor 1, and between the heat source side heat exchanger 2 and the pressure reducing means 8c.
[0089]
Since the circuit and mode of the cooling operation to be used are the same as those in the first embodiment, description thereof is omitted.
The added on-off valve 9i is closed for the supercooling cooling operation, the combined cooling operation, the cooling cooling operation, and the normal cooling operation.
[0090]
Next, the procedure for switching from the cooling-to-cooling operation to the combined cooling operation will be described with reference to FIGS.
The procedure is shown below.
[STEP 1] A second circuit (FIG. 2B) is formed, and the cooling and cooling operation is performed.
[STEP 2] A B-th circuit (FIG. 14) is formed in which the compressor 1, the heat source side heat exchanger 2, and the on-off valve 9i are connected in an annular shape.
[STEP 3] The compressor 1 is started.
[STEP 4] The second refrigerant pressure P2 at the discharge port of the liquid refrigerant conveying means 4 in the second circuit and the third refrigerant pressure P3 closest to the liquid junction branch point in the B circuit are detected every predetermined time. . At the same time, the fourth refrigerant pressure P4 at the gas junction branch point of the second circuit and the fifth refrigerant pressure P5 closest to the gas junction branch point of the B circuit are also detected every predetermined time.
[STEP 5] At the time of pressure detection, it can be determined that the second refrigerant pressure P2 and the third refrigerant pressure P3 are equal, or the second refrigerant pressure P2 is greater than the third refrigerant pressure P3, and the fourth refrigerant. When the pressure P4 and the fifth refrigerant pressure P5 become equal, the fourth circuit (FIG. 2 (d)) is switched to perform the combined cooling operation.
[0091]
In STEP3, the B-th circuit is a refrigeration cycle operation without an evaporator. The liquid rich circuit or the gas rich circuit is determined by the amount of refrigerant in the B-th circuit.
[0092]
In STEP 3, the compressor 1 is started at a low operating frequency. If the operating frequency of the compressor 1 is increased from the time of start-up, the discharge pressure of the compressor 1 becomes higher, and as a result, it becomes higher than the refrigerant pressure at the discharge port of the liquid refrigerant transport means 4 and may not proceed to the next procedure. is there.
[0093]
If this procedure is executed, the cooling operation mode can be switched from the cool-down cooling to the combined cooling while maintaining the refrigerant transfer stability of the liquid refrigerant transfer means 4.
[0094]
Further, if the circuit is provided with a pressure reducing means between the discharge port of the liquid refrigerant transport means 4 and the liquid junction branch point, the first refrigerant pressure at the liquid junction branch point is selected after switching to the junction cooling operation in STEP 5. P1 and the second refrigerant pressure P2 at the discharge port of the liquid refrigerant conveying means 4 are always
P2 = P1 + α or P2 ≧ P1
Since the decompression means 8c and 8d can be adjusted so as to become, it is possible to avoid the phenomenon that the refrigerant flows back to the discharge port of the liquid refrigerant transport means 4. This satisfies the stable start condition 2 of the liquid refrigerant transport means 4.
[0095]
As described above, according to the sixth embodiment, the second circuit is formed and the fourth circuit is formed and the cold storage heat is used from the cooling operation using only the liquid refrigerant transport means 4 and using the cold storage heat. When switching to the cooling operation, first, an annular B circuit including the compressor 1 is formed so as not to merge with the second circuit, then the compressor 1 is started, and the discharge port of the liquid refrigerant conveying means 4 The second refrigerant pressure P2, the third refrigerant pressure P3 of the B circuit, the fourth refrigerant pressure P4, and the fifth refrigerant pressure P5 are detected every predetermined time, and the second refrigerant pressure P2 is detected as the third refrigerant pressure P2. When the pressure is equal to or higher than the pressure P3 and the fourth and fifth refrigerant pressures P4 and P5 are equal, the fourth circuit is switched to maintain the refrigerant conveyance stability of the liquid refrigerant conveyance means 4. However, it is possible to switch from the cooling cooling operation to the combined cooling operation.
[0096]
【The invention's effect】
As described above, according to the first aspect of the present invention, the liquid refrigerant conveying means, the pressure reducing means, the load side heat exchanger, and the heat storage heat exchanger are sequentially connected in an annular manner, and only the liquid refrigerant conveying means is operated and released. A second circuit for performing cooling and cooling operation, a compressor, a heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated to perform normal cooling operation. A third circuit, the second circuit and the third circuit share the load-side heat exchanger, and a fourth circuit that operates the compressor and the liquid refrigerant transfer means to perform a combined cooling operation. In heat storage refrigeration cycle equipment ,in front In the operation in the fourth circuit, when starting or operating the liquid refrigerant transfer means, the liquid refrigerant supplied to the suction port of the liquid refrigerant transfer means is secured and reverse to the discharge port of the liquid refrigerant transfer means. Since the operation is performed so that no pressure is applied, the cooling operation mode can be switched from the supercooling cooling to the combined cooling while maintaining the refrigerant conveyance stability of the liquid refrigerant conveyance means.
[0097]
First 2 According to the operation method of the heat storage type refrigeration cycle apparatus according to the invention, the compressor, the heat source side heat exchanger, the heat storage heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor A first circuit that performs supercooling and cooling operation by operating the liquid refrigerant, the liquid refrigerant conveying means, the pressure reducing means, the load-side heat exchanger, and the heat storage heat exchanger are sequentially connected in an annular manner, and only the liquid refrigerant conveying means The second circuit for performing the cooling and cooling operation by operating the compressor, the compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated. The third circuit that performs normal cooling operation, the second circuit, and the third circuit share the load-side heat exchanger, and operate the compressor and the liquid refrigerant transfer means to perform the combined cooling operation. In the heat storage refrigeration cycle apparatus comprising the fourth circuit, the first circuit When switching from the supercooling cooling operation to the combined cooling operation by the fourth circuit, first, the liquid refrigerant conveying means is started in the first circuit, and then the compressor is stopped, Forming two circuits, performing the cooling and cooling operation, and then switching to the fourth circuit and performing the combined cooling operation, so that the cooling operation mode is maintained while maintaining the refrigerant conveyance stability of the liquid refrigerant conveyance means. Can be switched from supercooling cooling to combined cooling.
[0098]
First 3 According to the operation method of the heat storage type refrigeration cycle apparatus according to the invention, the compressor, the heat source side heat exchanger, the heat storage heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor A first circuit that performs supercooling and cooling operation by operating the liquid refrigerant, the liquid refrigerant conveying means, the pressure reducing means, the load-side heat exchanger, and the heat storage heat exchanger are sequentially connected in an annular manner, and only the liquid refrigerant conveying means The second circuit for performing the cooling and cooling operation by operating the compressor, the compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated. The third circuit that performs normal cooling operation, the second circuit, and the third circuit share the load-side heat exchanger, and operate the compressor and the liquid refrigerant transfer means to perform the combined cooling operation. In the heat storage refrigeration cycle apparatus comprising the fourth circuit, the first circuit When switching from the supercooling cooling operation to the combined cooling operation by the fourth circuit, first, the compressor that forms the first circuit and performs supercooling is stopped, and then the second circuit And the liquid refrigerant conveying means is activated, and then the fourth circuit is switched to activate the compressor to perform the combined cooling operation by the compressor and the liquid refrigerant conveying means. The cooling operation mode can be switched from the supercooling cooling to the combined cooling while maintaining the refrigerant conveyance stability.
[0099]
First 4 According to the operation method of the heat storage type refrigeration cycle apparatus according to the invention, the compressor, the heat source side heat exchanger, the heat storage heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor A first circuit that performs supercooling and cooling operation by operating the liquid refrigerant, the liquid refrigerant conveying means, the pressure reducing means, the load-side heat exchanger, and the heat storage heat exchanger are sequentially connected in an annular manner, and only the liquid refrigerant conveying means The second circuit for performing the cooling and cooling operation by operating the compressor, the compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated. The third circuit that performs normal cooling operation, the second circuit, and the third circuit share the load-side heat exchanger, and operate the compressor and the liquid refrigerant transfer means to perform the combined cooling operation. In the heat storage refrigeration cycle apparatus comprising the fourth circuit, the first circuit When switching from the supercooling cooling operation to the combined cooling operation by the fourth circuit, first, the compressor, the heat source side heat exchanger, the decompression means, and the Form the third circuit in which load side heat exchangers are sequentially connected in an annular manner, operate only the compressor, perform the normal cooling operation without using cold storage heat, and then do not merge with the third circuit Forming the annular A circuit including the liquid refrigerant conveying means, and then starting the liquid refrigerant conveying means, and then the first junction branch point of the third circuit and the A circuit The pressure and the second pressure at the discharge port of the liquid refrigerant conveying means are detected every predetermined time, and the first pressure is equal to the second pressure or the second pressure is equal to the first pressure When the pressure becomes larger than the pressure, the liquid refrigerant is switched to the fourth circuit. While maintaining the refrigerant conveying stability of feed means, it is possible to switch the cooling operation mode to the merging cooling supercooled cooling.
[0100]
First 5 According to the operation method of the heat storage type refrigeration cycle apparatus according to the invention, the compressor, the heat source side heat exchanger, the heat storage heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor A first circuit that performs supercooling and cooling operation by operating the liquid refrigerant, the liquid refrigerant conveying means, the pressure reducing means, the load-side heat exchanger, and the heat storage heat exchanger are sequentially connected in an annular manner, and only the liquid refrigerant conveying means The second circuit for performing the cooling and cooling operation by operating the compressor, the compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated. The third circuit that performs normal cooling operation, the second circuit, and the third circuit share the load-side heat exchanger, and operate the compressor and the liquid refrigerant transfer means to perform the combined cooling operation. In the heat storage type refrigeration cycle apparatus comprising a fourth circuit, the compressor and the liquid When switching from the state where both the medium conveying means are stopped to the combined cooling operation by the fourth circuit, first, the cooling operation using the regenerative heat by forming the first circuit is performed for a predetermined time, and then Since the fourth circuit is formed and switched to the combined cooling operation by any one of the methods described in claims 1 to 3, the suspension is switched from the stop to the combined cooling while maintaining the refrigerant transfer stability of the liquid refrigerant transfer means. be able to.
[0101]
First 6 According to the operation method of the heat storage type refrigeration cycle apparatus according to the invention, before starting the liquid refrigerant transport means, a predetermined amount or more of liquid refrigerant is retained in the heat storage heat exchanger, and then the liquid refrigerant transport means is used. Thus, the cooling operation mode can be switched from the cool-down cooling to the combined cooling while maintaining the refrigerant transfer stability of the liquid refrigerant transfer means.
[0102]
First 7 According to the operation method of the heat storage type refrigeration cycle apparatus according to the invention, the liquid refrigerant is provided in the suction port of the liquid refrigerant transport means, and before starting the liquid refrigerant transport means, a predetermined amount or more of liquid refrigerant is stored in the liquid reservoir. Since the liquid refrigerant conveying means is started after the air is retained, the cooling operation mode can be switched from the supercooling cooling to the combined cooling while maintaining the refrigerant conveyance stability of the liquid refrigerant conveying means.
[0103]
First 8 According to the operation method of the regenerative refrigeration cycle apparatus according to the invention, the liquid refrigerant conveying means, the pressure reducing means, the load side heat exchanger, and the heat storage heat exchanger are sequentially connected in an annular shape, and only the liquid refrigerant conveying means is provided. The second circuit that performs the cooling and cooling operation and the compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated to perform normal cooling. A fourth circuit for performing a combined cooling operation by operating the compressor and the liquid refrigerant conveying means by sharing the load-side heat exchanger with the third circuit performing the operation, and the second circuit and the third circuit sharing the load-side heat exchanger In the heat storage type refrigeration cycle apparatus comprising the above, when the second circuit is formed and only the liquid refrigerant transfer means is operated to switch from the cooling cooling operation to the combined cooling operation by forming the fourth circuit First, the fourth circuit is formed, and then the compressor Since start at low frequencies, while maintaining the refrigerant conveying stability of the liquid refrigerant carrying means, it is possible to switch the cooling operation mode from the cool cooling the merging cooling.
[0104]
First 9 According to the operation method of the regenerative refrigeration cycle apparatus according to the invention, the liquid refrigerant conveying means, the pressure reducing means, the load side heat exchanger, and the heat storage heat exchanger are sequentially connected in an annular shape, and only the liquid refrigerant conveying means is provided. The second circuit that performs the cooling and cooling operation and the compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in an annular manner, and only the compressor is operated to perform normal cooling. A fourth circuit for performing a combined cooling operation by operating the compressor and the liquid refrigerant conveying means by sharing the load-side heat exchanger with the third circuit performing the operation, and the second circuit and the third circuit sharing the load-side heat exchanger In the heat storage type refrigeration cycle apparatus comprising the above, when the second circuit is formed and the cooling cooling operation in which only the liquid refrigerant transport means is operated is switched to the combined cooling operation by forming the fourth circuit First, the compression so that it does not merge with the second circuit Is formed, and then the compressor is started. Next, the second refrigerant pressure at the discharge port of the liquid refrigerant conveying means of the second circuit, the heat source side heat exchange The third refrigerant pressure of the B circuit located between the condenser and the load side heat exchanger and located closest to the liquid junction branch point where it merges and branches with the discharge port of the liquid refrigerant transfer means, the load side heat exchanger And the fifth refrigerant pressure located closest to the gas junction branch point of the B circuit and the fourth refrigerant pressure at the gas junction branch point joining and branching with one end of the heat storage heat exchanger The pressure is detected every predetermined time, and when the second refrigerant pressure is equal to or higher than the third refrigerant pressure and the fourth and fifth refrigerant pressures are equal, the fourth circuit is switched. The cooling operation mode is maintained while maintaining the refrigerant conveyance stability of the liquid refrigerant conveyance means. It is possible to switch from cold air conditioning to the confluence cooling.
[0105]
First 10 According to the operation method of the heat storage type refrigeration cycle apparatus according to the invention, when starting and operating the liquid refrigerant conveying means during operation of the compressor, the discharge port of the liquid refrigerant conveying means is provided with a pressure reducing means, The discharge port of the liquid refrigerant conveying means is not subjected to reverse pressure from the refrigerant conveyed by the compressor, so the cooling operation mode is merged from the supercooling cooling while maintaining the refrigerant conveyance stability of the liquid refrigerant conveying means. It can be switched to cooling.
[0106]
First 11 According to the operation method of the heat storage type refrigeration cycle apparatus according to the invention, when the compressor is started during operation of the liquid refrigerant transfer means, the frequency of the compressor is fixed at the predetermined frequency for a predetermined time after the start. The cooling operation mode can be switched from the supercooling cooling to the combined cooling while maintaining the refrigerant conveyance stability of the liquid refrigerant conveyance means.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of a heat storage type refrigeration cycle apparatus showing Embodiment 1 of the present invention.
FIG. 2 is a refrigerant circuit diagram showing types of cooling operation of the regenerative refrigeration cycle apparatus showing Embodiment 1 of the present invention.
FIG. 3 is a refrigeration cycle state diagram of the supercooling cooling operation of the regenerative refrigeration cycle apparatus showing Embodiment 1 of the present invention.
FIG. 4 is a refrigeration cycle state diagram of a cool-down cooling operation of the regenerative refrigeration cycle apparatus showing Embodiment 1 of the present invention.
FIG. 5 is a refrigeration cycle state diagram of normal cooling operation of the regenerative refrigeration cycle apparatus showing Embodiment 1 of the present invention.
FIG. 6 is a refrigeration cycle state diagram of the combined cooling operation of the regenerative refrigeration cycle apparatus showing Embodiment 1 of the present invention.
FIG. 7 is a diagram showing an example of a one-day cold storage and cooling operation of the heat storage type refrigeration cycle apparatus showing Embodiment 1 of the present invention.
FIG. 8 is a diagram showing a cooling load and an example of refrigerant conveyance operation of the regenerative refrigeration cycle apparatus showing Embodiment 1 of the present invention.
FIG. 9 is a refrigerant circuit diagram of a heat storage refrigeration cycle apparatus showing Embodiment 1 of the present invention.
FIG. 10 is a refrigerant circuit diagram of a heat storage type refrigeration cycle apparatus showing Embodiment 3 of the present invention.
FIG. 11 is a refrigerant circuit diagram of a heat storage refrigeration cycle apparatus showing Embodiment 3 of the present invention.
FIG. 12 is a refrigerant circuit diagram of a heat storage refrigeration cycle apparatus showing Embodiment 3 of the present invention.
FIG. 13 is a refrigerant circuit diagram of a heat storage refrigeration cycle apparatus showing Embodiment 3 of the present invention.
FIG. 14 is a refrigerant circuit diagram of a heat storage refrigeration cycle apparatus showing Embodiment 6 of the present invention.
FIG. 15 is a refrigerant circuit diagram of a conventional heat storage refrigeration cycle apparatus.
[Explanation of symbols]
1 Compressor 1, 2 Heat source side heat exchanger, 3 Load side heat exchanger, 4 Liquid refrigerant carrier Step, 5 heat storage heat exchanger, 6 heat storage tank, 7 heat storage medium, 8a, 8b, 8c, 8d decompression means, 9a, b9b, 9c, 9d on-off valve, 10 liquid reservoir.

Claims (11)

液冷媒搬送手段、減圧手段、負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、圧縮機、熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において
記第四回路での運転において、前記液冷媒搬送手段の起動時あるいは運転時に、前記液冷媒搬送手段の吸入口に供給される液冷媒を確保するとともに、前記液冷媒搬送手段の吐出口に逆圧がかからないように運転を行うことを特徴とする蓄熱式冷凍サイクル装置の運転方法。
A second circuit for connecting the liquid refrigerant conveying means, the pressure reducing means, the load-side heat exchanger and the heat storage heat exchanger in an annular manner in order, and operating only the liquid refrigerant conveying means to perform a cooling and cooling operation; and a compressor A third circuit that sequentially connects the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger in an annular manner, and operates only the compressor to perform a normal cooling operation; the second circuit; and the third circuit In the heat storage refrigeration cycle apparatus, the circuit shares the load-side heat exchanger, and includes a fourth circuit that operates the compressor and the liquid refrigerant transfer means to perform a combined cooling operation .
In operation before Symbol fourth circuit, startup or during operation of the liquid refrigerant carrying means, along with ensuring the liquid refrigerant supplied to the inlet of the liquid refrigerant carrying means, the discharge port of the liquid refrigerant carrying means An operation method for a regenerative refrigerating cycle apparatus, wherein the operation is performed so that no reverse pressure is applied.
圧縮機、熱源側熱交換器、蓄熱用熱交換器、減圧手段及び負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して過冷却冷房運転を行う第一回路と、液冷媒搬送手段、前記減圧手段、前記負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、
前記第一回路による過冷却冷房運転から前記第四回路による前記合流冷房運転に切替えるときに、
まず、前記第一回路のまま前記液冷媒搬送手段を起動し、
次に、前記圧縮機を停止すると同時に、前記第二回路を形成して、前記放冷冷房運転を行い、
次に、前記第四回路に切替えて前記合流冷房運転を行うことを特徴とする蓄熱式冷凍サイクル装置の運転方法。
A compressor, a heat source side heat exchanger, a heat storage heat exchanger, a pressure reducing means, and a load side heat exchanger are sequentially connected in an annular manner, and the liquid is cooled only by operating only the compressor. A second circuit that sequentially connects the refrigerant conveying means, the pressure reducing means, the load-side heat exchanger, and the heat storage heat exchanger in an annular manner, and operates only the liquid refrigerant conveying means to perform a cooling and cooling operation; A compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in a ring, and a third circuit that operates only the compressor and performs a normal cooling operation; and the second circuit; In the heat storage refrigeration cycle apparatus, the third circuit shares the load-side heat exchanger, and includes a fourth circuit that operates the compressor and the liquid refrigerant transfer means to perform a combined cooling operation.
When switching from the supercooling cooling operation by the first circuit to the combined cooling operation by the fourth circuit,
First, the liquid refrigerant transfer means is started with the first circuit,
Next, at the same time that the compressor is stopped, the second circuit is formed, and the cooling and cooling operation is performed.
Next, the operation method of the regenerative refrigerating cycle apparatus, wherein the combined cooling operation is performed by switching to the fourth circuit.
圧縮機、熱源側熱交換器、蓄熱用熱交換器、減圧手段及び負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して過冷却冷房運転を行う第一回路と、液冷媒搬送手段、前記減圧手段、前記負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して減流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、
前記第一回路による過冷却冷房運転から前記第四回路による合流冷房運転に切替えるときに、
まず、前記第一回路を形成して過冷却を行っている前記圧縮機を停止し、
次に、前記第二回路に切替え、前記液冷媒搬送手段を起動し、
次に、前記第四回路に切替えて圧縮機を起動して前記圧縮機と前記液冷媒搬送手段により前記合流冷房運転を行うことを特徴とする蓄熱式冷凍サイクル装置の運転方法。
A compressor, a heat source side heat exchanger, a heat storage heat exchanger, a pressure reducing means, and a load side heat exchanger are sequentially connected in an annular manner, and the liquid is cooled only by operating only the compressor. A second circuit that sequentially connects the refrigerant conveying means, the pressure reducing means, the load-side heat exchanger, and the heat storage heat exchanger in an annular manner, and operates only the liquid refrigerant conveying means to perform a cooling and cooling operation; A compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in a ring, and a third circuit that operates only the compressor and performs a normal cooling operation; and the second circuit; In the heat storage refrigeration cycle apparatus, the third circuit shares the load-side heat exchanger, and includes a fourth circuit that operates the compressor and the liquid refrigerant transfer means to perform a reduced flow cooling operation.
When switching from the supercooling cooling operation by the first circuit to the combined cooling operation by the fourth circuit,
First, the compressor that forms the first circuit and performs supercooling is stopped,
Next, switch to the second circuit, start the liquid refrigerant transport means,
Next, the operation method of the regenerative refrigeration cycle apparatus is characterized in that the compressor is started by switching to the fourth circuit and the combined cooling operation is performed by the compressor and the liquid refrigerant transfer means.
圧縮機、熱源側熱交換器、蓄熱用熱交換器、減圧手段及び負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して過冷却冷房運転を行う第一回路と、液冷媒搬送手段、前記減圧手段、前記負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、
前記第一回路による過冷却冷房運転から前記第四回路による前記合流冷房運転に切替えるときに、
まず、前記第一回路の圧縮機を運転したまま、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続した前記第三回路を形成し、前記圧縮機のみを運転して蓄冷熱を利用しない前記通常冷房運転を行い、
次に、前記第三回路と合流しないように前記液冷媒搬送手段を含めた環状の第A回路を形成し、
次に、前記液冷媒搬送手段を起動し、
次に、前記第三回路と前記第A回路の合流分岐点の第一の圧力と、前記液冷媒搬送手段の吐出口の第二の圧力を所定時間毎に検出し、
前記第一の圧力と前記第二の圧力が等しいか、或いは前記第二の圧力が前記第一の圧力より大きくなったときに、前記第四回路に切替えることを特徴とする蓄熱式冷凍サイクル装置の運転方法。
A compressor, a heat source side heat exchanger, a heat storage heat exchanger, a pressure reducing means, and a load side heat exchanger are sequentially connected in an annular manner, and the liquid is cooled only by operating only the compressor. A second circuit that sequentially connects the refrigerant conveying means, the pressure reducing means, the load-side heat exchanger, and the heat storage heat exchanger in an annular manner, and operates only the liquid refrigerant conveying means to perform a cooling and cooling operation; A compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in a ring, and a third circuit that operates only the compressor and performs a normal cooling operation; and the second circuit; In the heat storage refrigeration cycle apparatus, the third circuit shares the load-side heat exchanger, and includes a fourth circuit that operates the compressor and the liquid refrigerant transfer means to perform a combined cooling operation.
When switching from the supercooling cooling operation by the first circuit to the combined cooling operation by the fourth circuit,
First, while operating the compressor of the first circuit, forming the third circuit in which the compressor, the heat source side heat exchanger, the pressure reducing means and the load side heat exchanger are sequentially connected in an annular manner, Performing the normal cooling operation without operating the regenerative heat by operating only the compressor,
Next, an annular A circuit including the liquid refrigerant conveying means is formed so as not to merge with the third circuit,
Next, the liquid refrigerant transfer means is activated,
Next, the first pressure of the junction branch point of the third circuit and the A circuit and the second pressure of the discharge port of the liquid refrigerant transport means are detected every predetermined time,
When the first pressure and the second pressure are equal, or when the second pressure becomes higher than the first pressure, the heat storage type refrigeration cycle apparatus is switched to the fourth circuit. Driving method.
圧縮機、熱源側熱交換器、蓄熱用熱交換器、減圧手段及び負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して過冷却冷房運転を行う第一回路と、液冷媒搬送手段、前記減圧手段、前記負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、前記圧縮機、前記熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、
前記圧縮機と液冷媒搬送手段がともに停止している状態から、前記第四回路による前記合流冷房運転に切替えるときに、
まず、前記第一回路を形成して蓄冷熱を利用する冷房運転を所定時間行い、次に請求項1〜4に記載されたいずれかの方法で前記第四回路を形成して前記合流冷房運転に切替えることを特徴とする蓄熱式冷凍サイクル装置の運転方法。
A compressor, a heat source side heat exchanger, a heat storage heat exchanger, a pressure reducing means, and a load side heat exchanger are sequentially connected in an annular manner, and the liquid is cooled only by operating only the compressor. A second circuit that sequentially connects the refrigerant conveying means, the pressure reducing means, the load-side heat exchanger, and the heat storage heat exchanger in an annular manner, and operates only the liquid refrigerant conveying means to perform a cooling and cooling operation; A compressor, the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger are sequentially connected in a ring, and a third circuit that operates only the compressor and performs a normal cooling operation; and the second circuit; In the heat storage refrigeration cycle apparatus, the third circuit shares the load-side heat exchanger, and includes a fourth circuit that operates the compressor and the liquid refrigerant transfer means to perform a combined cooling operation.
When switching from the state where both the compressor and the liquid refrigerant conveying means are stopped to the combined cooling operation by the fourth circuit,
First, the first circuit is formed to perform a cooling operation using regenerative heat for a predetermined time, and then the fourth circuit is formed by any of the methods described in claims 1 to 4 to form the combined cooling operation. The operation method of the regenerative cycle refrigeration cycle apparatus characterized by switching to
液冷媒搬送手段を起動する前に、蓄熱用熱交換器内に所定量以上の液冷媒を滞留してから前記液冷媒搬送手段を起動することを特徴とする請求項1〜5のいずれかに記載の蓄熱式冷凍サイクル装置の運転方法。  6. The liquid refrigerant conveying means is activated after a predetermined amount or more of liquid refrigerant is retained in the heat storage heat exchanger before the liquid refrigerant conveying means is activated. The operation method of the regenerative refrigerating cycle apparatus described. 液冷媒搬送手段の吸入口に液溜を備え、
前記液冷媒搬送手段を起動する前に、前記液溜に所定量以上の液冷媒を滞留してから前記液冷媒搬送手段を起動することを特徴とする請求項1〜5のいずれかに記載の蓄熱式冷凍サイクル装置の運転方法。
A liquid reservoir is provided at the suction port of the liquid refrigerant transfer means,
6. The liquid refrigerant conveying means is activated after the liquid refrigerant of a predetermined amount or more is retained in the liquid reservoir before the liquid refrigerant conveying means is activated. A method for operating the regenerative refrigeration cycle apparatus.
液冷媒搬送手段、減圧手段、負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、圧縮機、熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、
前記第二回路を形成し、前記液冷媒搬送手段のみを運転する放冷冷房運転から、前記第四回路を形成して前記合流冷房運転に切替えるときに、
まず、前記第四回路を形成し、
次に、前記圧縮機を低周波数で起動することを特徴とする蓄熱式冷凍サイクル装置の運転方法。
A second circuit for connecting the liquid refrigerant conveying means, the pressure reducing means, the load-side heat exchanger and the heat storage heat exchanger in an annular manner in order, and operating only the liquid refrigerant conveying means to perform a cooling and cooling operation; and a compressor A third circuit that sequentially connects the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger in an annular manner, and operates only the compressor to perform a normal cooling operation; the second circuit; and the third circuit In the heat storage refrigeration cycle apparatus, the circuit shares the load-side heat exchanger, and includes a fourth circuit that operates the compressor and the liquid refrigerant transfer means to perform a combined cooling operation.
When the second circuit is formed and switched from the cooling cooling operation in which only the liquid refrigerant conveying means is operated to the combined cooling operation by forming the fourth circuit,
First, form the fourth circuit,
Next, the operation method of the regenerative refrigerating cycle apparatus, wherein the compressor is started at a low frequency.
液冷媒搬送手段、減圧手段、負荷側熱交換器及び蓄熱用熱交換器を順次環状に接続して、前記液冷媒搬送手段のみを運転して放冷冷房運転を行う第二回路と、圧縮機、熱源側熱交換器、前記減圧手段及び前記負荷側熱交換器を順次環状に接続し、前記圧縮機のみを運転して通常冷房運転を行う第三回路と、前記第二回路と前記第三回路が前記負荷側熱交換器を共有し、前記圧縮機と前記液冷媒搬送手段とを運転して合流冷房運転を行う第四回路とを備えた蓄熱式冷凍サイクル装置において、
前記第二回路を形成し、前記液冷媒搬送手段のみを運転する放冷冷房運転から、前記第四回路を形成して前記合流冷房運転に切替えるときに、
まず、前記第二回路と合流しないように前記圧縮機を含めた環状の第B回路を形成し、
次に、前記圧縮機を起動し、
次に、前記第二回路の前記液冷媒搬送手段の吐出口の第二の冷媒圧力、前記熱源側熱交換器と前記負荷側熱交換器の間にあって、前記液冷媒搬送手段の吐出口と合流分岐する液合流分岐点に最も近くに位置する前記B回路の第三の冷媒圧力、前記負荷側熱交換器と前記圧縮機の間にあって、前記蓄熱用熱交換器の一端と合流分岐するガス合流分岐点の第四の冷媒圧力及び前記B回路の前記ガス合流分岐点に最も近くに位置する第五の冷媒圧力を所定時間毎に検出し、
前記第二の冷媒圧力が前記第三の冷媒圧力以上で、かつ、前記第四と第五の冷媒圧力が等しくなったときに、前記第四回路に切替えることを特徴とする蓄熱式冷凍サイクル装置の運転方法。
A second circuit for connecting the liquid refrigerant conveying means, the pressure reducing means, the load-side heat exchanger and the heat storage heat exchanger in an annular manner in order, and operating only the liquid refrigerant conveying means to perform a cooling and cooling operation; and a compressor A third circuit that sequentially connects the heat source side heat exchanger, the pressure reducing means, and the load side heat exchanger in an annular manner, and operates only the compressor to perform a normal cooling operation; the second circuit; and the third circuit In the heat storage refrigeration cycle apparatus, the circuit shares the load-side heat exchanger, and includes a fourth circuit that operates the compressor and the liquid refrigerant transfer means to perform a combined cooling operation.
When the second circuit is formed and switched from the cooling cooling operation in which only the liquid refrigerant conveying means is operated to the combined cooling operation by forming the fourth circuit,
First, an annular B circuit including the compressor is formed so as not to merge with the second circuit,
Next, start the compressor,
Next, the second refrigerant pressure at the discharge port of the liquid refrigerant transfer means of the second circuit is between the heat source side heat exchanger and the load side heat exchanger, and merges with the discharge port of the liquid refrigerant transfer means. The third refrigerant pressure of the B circuit located closest to the branch point of the liquid merge branch, the gas merge between the load-side heat exchanger and the compressor and merged with one end of the heat storage heat exchanger Detecting a fourth refrigerant pressure at a branch point and a fifth refrigerant pressure located closest to the gas junction branch point of the B circuit at predetermined time intervals;
When the second refrigerant pressure is equal to or higher than the third refrigerant pressure and the fourth and fifth refrigerant pressures are equal to each other, the heat storage type refrigeration cycle apparatus is switched to the fourth circuit. Driving method.
圧縮機を運転中に液冷媒搬送手段を起動及び運転するときに、
前記液冷媒搬送手段の吐出口に減圧手段を備え、
常時、前記液冷媒搬送手段の吐出口に、前記圧縮機が搬送する冷媒から逆圧がかからないようにしたことを特徴とする請求項4、5、8、9のいずれかに記載の蓄熱式冷凍サイクル装置の運転方法。
When starting and operating the liquid refrigerant conveying means during operation of the compressor,
A pressure reducing means is provided at the discharge port of the liquid refrigerant conveying means,
The regenerative refrigeration according to any one of claims 4, 5, 8, and 9, wherein a reverse pressure is not constantly applied to a discharge port of the liquid refrigerant conveying means from the refrigerant conveyed by the compressor. How to operate the cycle device.
液冷媒搬送手段を運転中に圧縮機を起動するときに、
起動後所定時間は、前記圧縮機の周波数を所定周波数に固定することを特徴とする請求項8または9記載の蓄熱式冷凍サイクル装置の運転方法。
When starting the compressor while operating the liquid refrigerant transfer means,
The operation method of the regenerative refrigerating cycle apparatus according to claim 8 or 9, wherein the frequency of the compressor is fixed to a predetermined frequency for a predetermined time after the start-up.
JP2001325737A 2001-10-24 2001-10-24 Operation method of heat storage refrigeration cycle apparatus Expired - Lifetime JP3787763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325737A JP3787763B2 (en) 2001-10-24 2001-10-24 Operation method of heat storage refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325737A JP3787763B2 (en) 2001-10-24 2001-10-24 Operation method of heat storage refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2003130421A JP2003130421A (en) 2003-05-08
JP3787763B2 true JP3787763B2 (en) 2006-06-21

Family

ID=19142239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325737A Expired - Lifetime JP3787763B2 (en) 2001-10-24 2001-10-24 Operation method of heat storage refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP3787763B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004021621D1 (en) * 2003-10-15 2009-07-30 Ice Energy Inc COOLER
KR20060117775A (en) * 2005-05-13 2006-11-17 엘지전자 주식회사 Air conditioner with cooler and ice-storage, and method of controlling it
KR101493783B1 (en) * 2011-12-30 2015-02-17 진흥설비 주식회사 Refrigerant supercooling type air conditioner
CN110425780A (en) * 2018-05-08 2019-11-08 约克(无锡)空调冷冻设备有限公司 Refrigeration system and method for controlling refrigeration system
JP7444189B2 (en) * 2022-03-29 2024-03-06 株式会社富士通ゼネラル air conditioner

Also Published As

Publication number Publication date
JP2003130421A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
EP1106943B1 (en) Refrigerator
AU749518B2 (en) Refrigerating device
JP2010071614A (en) Refrigerating device
KR20080106311A (en) Freezing apparatus
JP2009103452A (en) Refrigeration equipment
JP5842310B2 (en) Refrigeration apparatus and defrost method for load cooler
JP2016125721A (en) Heat storage type air conditioner
JP2010112579A (en) Refrigerating device
JP5972024B2 (en) Refrigeration equipment
JP2009204266A (en) Refrigerating device
JP3787763B2 (en) Operation method of heat storage refrigeration cycle apparatus
JP2013204851A (en) Heat pump heating device
JP2008134045A (en) Heat pump system
CN100507398C (en) Refrigeration equipment
KR102477314B1 (en) A method for reducing the temperature of the coolant in the receiver of the refrigeration cycle system and improving the cooling performance of the evaporator
JP2015102319A (en) Refrigeration cycle device
JP2004257627A (en) Heat pump device
JPH1144461A (en) Refrigerating machine
KR100785118B1 (en) Refrigerator
JPS63161333A (en) Cooling and heating thermal accumulation air conditioner system
JP2014074525A (en) Heat pump device
JP2002295912A (en) Freezing cycle apparatus, and its operation method
JP2009192187A (en) Ice storage type refrigeration system
JP2001248925A (en) Method of operating refrigerating cycle device, and refrigerating cycle device
JPH0794927B2 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060316

R150 Certificate of patent or registration of utility model

Ref document number: 3787763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term