JP3780784B2 - 空調装置および容量可変型圧縮機の制御弁 - Google Patents

空調装置および容量可変型圧縮機の制御弁 Download PDF

Info

Publication number
JP3780784B2
JP3780784B2 JP33427999A JP33427999A JP3780784B2 JP 3780784 B2 JP3780784 B2 JP 3780784B2 JP 33427999 A JP33427999 A JP 33427999A JP 33427999 A JP33427999 A JP 33427999A JP 3780784 B2 JP3780784 B2 JP 3780784B2
Authority
JP
Japan
Prior art keywords
pressure
valve
differential pressure
chamber
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33427999A
Other languages
English (en)
Other versions
JP2001153042A (ja
Inventor
太田  雅樹
健 水藤
亮 松原
浩隆 倉掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP33427999A priority Critical patent/JP3780784B2/ja
Priority to KR1020000046785A priority patent/KR20010050068A/ko
Priority to US09/717,804 priority patent/US6457319B1/en
Priority to EP00125707A priority patent/EP1103721B1/en
Priority to DE60033000T priority patent/DE60033000T2/de
Priority to BR0005558-1A priority patent/BR0005558A/pt
Priority to CN00137180A priority patent/CN1302992A/zh
Publication of JP2001153042A publication Critical patent/JP2001153042A/ja
Application granted granted Critical
Publication of JP3780784B2 publication Critical patent/JP3780784B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/185Discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/07Pressure difference over the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters
    • F04B2207/03External temperature

Description

【0001】
【発明の属する技術分野】
本発明は、凝縮器、減圧装置、蒸発器及び容量可変型圧縮機からなる冷媒循環回路を備えた空調装置に関する。特に容量可変型圧縮機に用いられる制御弁に関する。
【0002】
【従来の技術】
一般に車輌用空調装置の冷房回路は、凝縮器(コンデンサ)、減圧装置としての膨張弁、蒸発器(エバポレータ)及び圧縮機を備えている。圧縮機は蒸発器からの冷媒ガスを吸入して圧縮し、その圧縮ガスを凝縮器に向けて吐出する。蒸発器は冷房回路を流れる冷媒と車室内空気との熱交換を行う。熱負荷又は冷房負荷の大きさに応じて、蒸発器周辺を通過する空気の熱量が蒸発器を流れる冷媒に伝達されるため、蒸発器の出口又は下流側での冷媒ガス圧力は冷房負荷の大きさを反映する。車載用の圧縮機として広く採用されている容量可変型斜板式圧縮機には、蒸発器の出口圧力(吸入圧Psという)を所定の目標値(設定吸入圧という)に維持すべく動作する容量制御機構が組み込まれている。容量制御機構は、冷房負荷の大きさに見合った冷媒流量となるように吸入圧Psを制御指標として圧縮機の吐出容量つまり斜板角度をフィードバック制御する。かかる容量制御機構の典型例は、内部制御弁と呼ばれる容量制御弁である。内部制御弁ではベローズやダイヤフラム等の感圧部材で吸入圧Psを感知し、感圧部材の変位動作を弁体の位置決めに利用して弁開度調節を行うことにより、斜板室(クランク室ともいう)の圧力(クランク圧Pc)を調節して斜板角度を決めている。
【0003】
また、単一の設定吸入圧しか持ち得ない単純な内部制御弁では細やかな空調制御要求に対応できないため、外部からの電気制御によって設定吸入圧を変更可能な設定吸入圧可変型制御弁も存在する。設定吸入圧可変型制御弁は例えば、前述の内部制御弁に電磁ソレノイド等の電気的に付勢力調節可能なアクチュエータを付加し、内部制御弁の設定吸入圧を決めている感圧部材に作用する機械的バネ力を外部制御によって増減変更することにより、設定吸入圧の変更を実現するものである。
【0004】
【発明が解決しようとする課題】
車載用圧縮機は一般に車輌エンジンから動力供給を受けて駆動される。圧縮機はエンジン動力(又はトルク)を最も消費する補機の一つであり、エンジンにとって大きな負荷であることは間違いない。それ故、車輌用空調装置は、車輌の加速時や登坂走行時などエンジン動力を車輌の前進駆動に極力振り向けたい非常時には、圧縮機の吐出容量を最小化することで圧縮機に由来するエンジン負荷を低減するような制御(一時的な負荷低減措置としてのカット制御)を行うようにプログラムされている。前述の設定吸入圧可変弁付き容量可変型圧縮機を用いた空調装置では、制御弁の設定吸入圧を通常の設定吸入圧よりも高い値に変更することで現吸入圧を新設定圧に比して低い値とすることにより、圧縮機の吐出容量を最小化する方向に誘導して実質的なカット制御を実現している。
【0005】
ところが、設定吸入圧可変弁付きの容量可変型圧縮機の動作を詳細に解析したところ、吸入圧Psを指標としたフィードバック制御を介在させる限り、目論見通りのカット制御(つまりエンジン負荷低減)が常に実現するわけではないということが判明した。
【0006】
図17のグラフは、吸入圧Psと圧縮機の吐出容量Vcとの相関関係を概念的に表したものである。このグラフから分かるように、吸入圧Psと吐出容量Vcとの相関曲線(特性線)は一種類ではなく、蒸発器での熱負荷の大きさに応じて複数の相関曲線が存在する。このため、ある圧力Ps1をフィードバック制御の目標値たる設定吸入圧Psetとして与えたとしても、熱負荷の状況によって制御弁の自律動作によって実現される実際の吐出容量には一定幅(グラフではΔVc)のばらつきが生じてしまう。例えば、蒸発器の熱負荷が過大な場合には、設定吸入圧Psetを十分に高くしたつもりでも、実際の吐出容量Vcはエンジンの負荷を低減するところまで落ちきらないという事態が生じ得る。つまり吸入圧Psに依拠した制御では、単に設定吸入圧Psetを高い値に設定変更しても、蒸発器での熱負荷の変化が追従してこなければ、即座に吐出容量を落とせないというジレンマがある。
【0007】
蒸発器での熱負荷を反映する吸入圧Psに基づいて容量可変型圧縮機の吐出容量を調節する制御手法は、車外の寒暖の変化にかかわらず人間の快適感を左右する室温の安定維持を図るという空調装置本来の目的を達成する上では極めて妥当な制御手法であった。しかし、上記カット制御にみられるように、空調装置本来の目的を一時的に放棄してでも、駆動源(エンジン)の事情を最優先して緊急避難的に迅速な吐出容量ダウンを実現するには、吸入圧Psに依拠した制御では十分に対応できないというのが実状である。
【0008】
本発明の目的は、蒸発器での熱負荷状況に影響されることなく、必要時には外部制御によって圧縮機の吐出容量を迅速に変更することができる空調装置を提供することにある。特に、室温の安定維持を図るための圧縮機の吐出容量制御と、緊急避難的な吐出容量の迅速な変更とを両立させることができる容量可変型圧縮機の制御方法および容量可変型圧縮機の制御弁を提供することにある。
【0009】
【課題を解決するための手段】
上記問題点を解決するために、請求項1に記載の発明は、凝縮器、減圧装置、蒸発器及び容量可変型圧縮機からなる冷媒循環回路を備えた空調装置であって、前記圧縮機の冷媒吐出容量を推し量る指標として、前記冷媒循環回路における圧縮機と凝縮器との間に設定された第1の圧力監視点と、蒸発器と圧縮機との間に設定された第2の圧力監視点との間の差圧を検出する差圧検出手段と、前記差圧以外の種々の外部情報を検知する外部情報検知手段と、前記外部情報検知手段から提供される外部情報に基づいて制御目標値たる設定差圧を決定すると共に、その設定差圧に前記差圧検出手段によって検出された差圧が近づくように前記圧縮機の吐出容量をフィードバック制御する吐出容量制御手段とを備え、前記容量可変型圧縮機は、シリンダボア内にピストンを往復動可能に収容する往復ピストン式圧縮機であって、該ピストンと作動連結されたカムプレートを収容するクランク室の内圧を制御することで吐出容量を変更可能なタイプであり、前記吐出容量制御手段は、前記第1及び第2の圧力監視点間の差圧を機械的に検出する前記差圧検出手段を内蔵しその検出差圧に基づいて自律的に弁開度調節可能であり且つその自律的な弁開度調節動作の目標となる設定差圧を外部からの制御によって変更可能な前記クランク室の内圧を調節するための制御弁と、前記外部情報検知手段と電気的に接続されて前記制御弁の設定差圧を可変設定する制御装置とから構成され、当該空調装置は更に、前記制御装置による設定差圧の設定変更に起因して圧縮機の吐出容量が低減されるときに、第1の圧力監視点と第2の圧力監視点との間の差圧の迅速低下を促進する差圧低下促進手段を備えてなることを要旨とする。
【0011】
本件の空調装置では、冷媒循環回路における圧縮機と凝縮器との間に設定された第1の圧力監視点と、蒸発器と圧縮機との間に設定された第2の圧力監視点との間の差圧を圧縮機の冷媒吐出容量を推し量る指標となる直接の制御指標(又は制御パラメータ)としている。吐出容量制御手段は、外部情報検知手段から提供される外部情報に基づいて制御目標値たる設定差圧を決定する。そして、吐出容量制御手段は、差圧検出手段によって逐次検出される第1及び第2の圧力監視点間の差圧が、設定差圧に近づくように圧縮機の吐出容量をフィードバック制御する。つまり、このフィードバック制御では、蒸発器における熱負荷状況を如実に反映する物理量(例えば吸入圧Ps)を直接の制御指標とせず、検出差圧を設定差圧にほぼ一致させるという観点のみで、圧縮機の負荷トルクと相関性を持つ吐出容量の制御が行われる。それ故、必要時(非常時)には、蒸発器での熱負荷状況に影響されることなく圧縮機の吐出容量(ひいては負荷トルク)を短時間に急変させる緊急避難的な容量変更も可能となる。他方、通常時には、外部情報に基づき蒸発器での熱負荷状況を勘案しながら設定差圧を適宜変更することにより圧縮機の吐出容量を時間と共に最適化し、室温の安定維持を図るという空調装置本来の目的を達成することができる。即ち、冷媒循環回路における圧縮機と凝縮器との間に設定された第1の圧力監視点と、蒸発器と圧縮機との間に設定された第2の圧力監視点との間の差圧に基づくフィードバック制御によれば、通常時において室温の安定維持を図るための圧縮機の吐出容量制御と、非常時における緊急避難的な吐出容量の迅速な変更とを両立させることが可能となる。
【0013】
請求項は、前記第1及び第2の圧力監視点間の差圧を機械的に検出する差圧検出手段を用いた場合における吐出容量制御手段の好ましい構成を限定したものである。この構成によれば、クランク室の内圧は、差圧を機械的に検出する差圧検出手段を内蔵した制御弁の自律的な弁開度調節動作によって決定される。つまり制御弁は前記第1及び第2の圧力監視点間の差圧が設定差圧どおりの差圧を実現するようにクランク室の内圧を誘導し、結果的に圧縮機の吐出容量を設定差圧に整合させる。この限りにおいて当該制御弁は、設定差圧に対応した圧縮機の吐出容量制御を自己完結的に実現する自律的な機械要素と言える。制御装置は、かかる制御弁に対して外部情報を参照しながら設定差圧の変更を指令するに過ぎない。設定差圧を外部からの制御で変更できるという意味で、当該制御弁は他律的な性格をも併せ持つ。また、圧縮機の吐出容量を低減するために制御装置によって設定差圧の設定変更がなされるときでも、差圧低下促進手段の作用により、差圧検出手段によって検出される実際の二点間差圧が、設定差圧の変更に対し比較的レスポンス良く追従することが可能となる。従って、特に圧縮機の吐出容量が低い場合において、設定差圧の設定変更に基づく吐出容量の可変調節性や容量変更の応答性が向上する。
【0014】
請求項に記載の発明は、請求項に記載の空調装置において、前記第1の圧力監視点は該圧縮機の吐出室に設定され、第2の圧力監視点は該圧縮機の吸入室に設定されていることを要旨とする。請求項は、前記第1及び第2の圧力監視点の好ましい設定様態を限定したものである。この設定様態によれば、前記差圧検出手段を内蔵した制御弁(請求項3参照)を圧縮機に組み込むことが容易になる。
【0015】
請求項に記載の発明は、請求項1又は2に記載の空調装置において、前記吐出容量制御手段は、外部情報に基づいて通常時又は非常時の判定を行う機能を備え、非常時には前記フィードバック制御を中断して圧縮機の吐出容量を強制的に所定容量に制御することを要旨とする。請求項は、非常時における吐出容量制御の好ましい態様を限定したものである。請求項中の「所定容量」とは、好ましくは圧縮機の負荷トルクを最小又は最大にする最小又は最大の吐出容量である。
【0017】
請求項に記載の発明は、請求項1〜3のいずれか一項に記載の空調装置において、前記第1の圧力監視点は圧縮機の吐出室に設定されており、前記差圧低下促進手段は、該吐出室と前記凝縮器との間に配設された逆止弁を含むことを要旨とする。請求項によれば、かかる逆止弁は、吐出室から凝縮器へ向かう流れのみを許容することから、吐出室の内圧が凝縮器側の圧力よりも低くなることを許容する。故に、逆止弁と凝縮器との間の高圧領域がどれほどの圧力や体積を持とうとも、それらに影響されることなく吐出室の圧力が低下可能となる。よって、圧縮機の吐出容量が低下し又は事実上ゼロとなった場合に、逆止弁が存在しない場合に比して、吐出室の内圧が迅速に低下する。従って、前述のように吐出容量の可変調節性や容量変更の応答性が向上する。
【0018】
請求項に記載の発明は、請求項1〜3のいずれか一項に記載の空調装置において、前記第2の圧力監視点は圧縮機の吸入室に設定されており、前記差圧低下促進手段は、該吸入室と前記蒸発器との間に配設された逆止弁を含むことを要旨とする。請求項によれば、かかる逆止弁は、蒸発器から吸入室へ向かう流れのみを許容することから、吸入室の内圧が蒸発器側の圧力よりも高くなることを許容する。故に、逆止弁と蒸発器との間の領域がどれほど低圧でありどれほどの体積を持とうとも、それらに影響されることなく吸入室の圧力が上昇可能となる。よって、圧縮機の吐出容量が低下し又は事実上ゼロとなった場合に、逆止弁が存在しない場合に比して、吸入室の内圧が迅速に上昇する。従って、前述のように吐出容量の可変調節性や容量変更の応答性が向上する。
【0019】
請求項に記載の発明は、カムプレートを収容するクランク室の内圧を制御することで吐出容量を変更可能な容量可変型圧縮機に用いられる制御弁であって、前記圧縮機の吐出室、クランク室及び吸入室を経由する内部通路の一部を構成すべくバルブハウジング内に区画された弁室と、前記弁室内に移動可能に設けられ該弁室内での位置に応じて前記内部通路の開度を調節する弁体と、前記圧縮機の吐出室と吸入室との間の差圧を検出すると共に、その差圧に基づく荷重を前記弁体に及ぼして弁室内での弁体の位置決めに関与する差圧検出手段と、少なくとも前記差圧検出手段に対し作動連結可能に設けられ、当該差圧検出手段による弁体の位置決め動作の目標となる設定差圧を外部からの制御により変更可能とする設定差圧変更アクチュエータとを備えてなることを要旨とする。
【0020】
請求項の制御弁では、差圧検出手段によって検出される前記圧縮機の吐出室と吸入室との間の差圧に基づく力が弁体に及ぼされて弁室内での弁体の位置決めが行われ、内部通路の開度が内部自律的に調節される。内部通路の開度調節の結果、圧縮機のクランク室内圧が制御され圧縮機の吐出容量が調節(又は変更)される。そのときの吐出容量は、差圧検出手段によって検出される差圧が設定差圧変更アクチュエータを介して外部的に設定される設定差圧をほぼ実現するものとして決まる。つまり、設定差圧変更アクチュエータによって設定差圧が変更されない限り、この制御弁は、前記圧縮機の吐出室と吸入室との間の差圧が設定差圧どおりの差圧を実現するようにクランク室の内圧を誘導し圧縮機の吐出容量を設定差圧に整合させる、いわば自己完結的な内部制御方式の定容量弁として機能する。他方、設定差圧変更アクチュエータを介して外部から設定差圧を変更すれば、それに応じて圧縮機の吐出容量を変化させる。その意味でこの制御弁は、外部制御によって圧縮機の吐出容量を任意調節可能な外部制御方式の容量可変弁として機能する。かかる制御弁を用いれば、通常時において室温の安定維持を図るための圧縮機の吐出容量制御と、非常時における緊急避難的な吐出容量の迅速な変更とを両立させることが可能となる。
【0021】
請求項及びは、請求項の制御弁に内蔵される差圧検出手段の好ましい構成を限定したものである。請求項に記載の発明は、請求項に記載の容量可変型圧縮機の制御弁において、前記差圧検出手段は、前記バルブハウジング内に区画された感圧室と、前記感圧室内を二つの圧力室に区画すると共に該バルブハウジングの軸方向に変位可能な状態で前記弁体と作動連結された区画部材を備えており、前記二つの圧力室にはそれぞれ前記圧縮機の吐出室及び吸入室の圧力が導かれることを要旨とする。請求項に記載の発明は、請求項に記載の容量可変型圧縮機の制御弁において、前記弁体と前記差圧検出手段とは作動ロッドに一体化されており、その作動ロッドの一端で吸入室の圧力を受圧し他端で吐出室の圧力を受圧することを要旨とする。請求項によれば、弁体と一体化された作動ロッドそのものが、吐出室と吸入室との間の差圧を検出する。そのため、該差圧を検出するための区画部材などを別個に設ける必要がない。
【0022】
【発明の実施の形態】
本発明を車輌用空調装置に具体化したいくつかの実施形態を説明する。
(第1実施形態:図1〜図10参照)
図1に示すように容量可変型斜板式圧縮機は、シリンダブロック1と、その前端に接合されたフロントハウジング2と、シリンダブロック1の後端に弁形成体3を介して接合されたリヤハウジング4とを備えている。これら1,2,3及び4は、複数本の通しボルト10(一本のみ図示)により相互に接合固定されて該圧縮機のハウジングを構成する。シリンダブロック1とフロントハウジング2とに囲まれた領域にはクランク室5が区画されている。クランク室5内には駆動軸6が前後一対のラジアル軸受け8A,8Bによって回転可能に支持されている。シリンダブロック1の中央に形成された収容凹部内には、前方付勢バネ7及び後側スラスト軸受け9Bが配設されている。他方、クランク室5において駆動軸6上にはラグプレート11が一体回転可能に固定され、ラグプレート11とフロントハウジング2の内壁面との間には前側スラスト軸受け9Aが配設されている。一体化された駆動軸6及びラグプレート11は、バネ7で前方付勢された後側スラスト軸受け9Bと前側スラスト軸受け9Aとによってスラスト方向(駆動軸軸線方向)に位置決めされている。
【0023】
駆動軸6の前端部は、動力伝達機構PTを介して外部駆動源としての車輌エンジンEに作動連結されている。動力伝達機構PTは、外部からの電気制御によって動力の伝達/遮断を選択可能なクラッチ機構(例えば電磁クラッチ)であってもよく、又は、そのようなクラッチ機構を持たない常時伝達型のクラッチレス機構(例えばベルト/プーリの組合せ)であってもよい。尚、本実施形態では、クラッチレスタイプの動力伝達機構が採用されている。
【0024】
図1に示すように、クランク室5内にはカムプレートたる斜板12が収容されている。斜板12の中央部には挿通孔が貫設され、この挿通孔内に駆動軸6が配置されている。斜板12は、連結案内機構としてのヒンジ機構13を介してラグプレート11及び駆動軸6に作動連結されている。ヒンジ機構13は、ラグプレート11のリヤ面から突設された二つの支持アーム14(一つのみ図示)と、斜板12のフロント面から突設された二本のガイドピン15(一本のみ図示)とから構成されている。支持アーム14とガイドピン15との連係および斜板12の中央挿通孔内での駆動軸6との接触により、斜板12はラグプレート11及び駆動軸6と同期回転可能であると共に駆動軸6の軸方向へのスライド移動を伴いながら駆動軸6に対し傾動可能となっている。なお、斜板12は、駆動軸6を挟んで前記ヒンジ機構13と反対側にカウンタウェイト部12aを有している。
【0025】
ラグプレート11と斜板12との間において駆動軸6の周囲には傾角減少バネ16が設けられている。このバネ16は斜板12をシリンダブロック1に接近する方向(即ち傾角減少方向)に付勢する。又、駆動軸6に固着された規制リング18と斜板12との間において駆動軸6の周囲には復帰バネ17が設けられている。この復帰バネ17は、斜板12が大傾角状態(二点鎖線で示す)にあるときには駆動軸6に単に巻装されるのみで斜板その他の部材に対していかなる付勢作用も及ぼさないが、斜板12が小傾角状態(実線で示す)に移行すると、前記規制リング18と斜板12との間で圧縮されて斜板12をシリンダブロック1から離間する方向(即ち傾角増大方向)に付勢する。なお、斜板12が圧縮機運転時に最小傾角θmin(例えば1〜5°の範囲の角度)に達したときも、復帰バネ17が縮みきらないようにバネ17の自然長及び規制リング18の位置が設定されている。
【0026】
シリンダブロック1には、駆動軸6を取り囲んで複数のシリンダボア1a(一つのみ図示)が形成され、各シリンダボア1aのリヤ側端は前記弁形成体3で閉塞されている。各シリンダボア1aには片頭型のピストン20が往復動可能に収容されており、各ボア1a内にはピストン20の往復動に応じて体積変化する圧縮室が区画されている。各ピストン20の前端部は一対のシュー19を介して斜板12の外周部に係留され、これらのシュー19を介して各ピストン20は斜板12に作動連結されている。このため、斜板12が駆動軸6と同期回転することで、斜板12の回転運動がその傾角θに対応するストロークでのピストン20の往復直線運動に変換される。
【0027】
更に弁形成体3とリヤハウジング4との間には、中心域に位置する吸入室21と、それを取り囲む吐出室22とが区画形成されている。弁形成体3は、吸入弁形成板、ポート形成板、吐出弁形成板およびリテーナ形成板を重合してなるものである。この弁形成体3には各シリンダボア1aに対応して、吸入ポート23及び同ポート23を開閉する吸入弁24、並びに、吐出ポート25及び同ポート25を開閉する吐出弁26が形成されている。吸入ポート23を介して吸入室21と各シリンダボア1aとが連通され、吐出ポート25を介して各シリンダボア1aと吐出室22とが連通される。そして、蒸発器33の出口から吸入室21(吸入圧Psの領域)に導かれた冷媒ガスは、各ピストン20の上死点位置から下死点側への往動により吸入ポート23及び吸入弁24を介してシリンダボア1aに吸入される。シリンダボア1aに吸入された冷媒ガスは、ピストン20の下死点位置から上死点側への復動により所定の圧力にまで圧縮され、吐出ポート25及び吐出弁26を介して吐出室22(吐出圧Pdの領域)に吐出される。吐出室22の高圧冷媒は逆止弁92を経由して凝縮器31に導かれる。
【0028】
この圧縮機では、エンジンEからの動力供給により駆動軸6が回転されると、それに伴い所定角度θに傾斜した斜板12が回転する。その時の角度θは傾角と呼ばれ、一般に駆動軸6に直交する仮想平面と斜板12とがなす角度として把握される。斜板の回転に伴って各ピストン20が傾角θに対応したストロークで往復動され、前述のように各シリンダボア1aでは、冷媒ガスの吸入、圧縮及び吐出が順次繰り返される。
【0029】
斜板12の傾角θは、斜板回転時の遠心力に起因する回転運動のモーメント、傾角減少バネ16(及び復帰バネ17)の付勢作用に起因するバネ力によるモーメント、ピストン20の往復慣性力によるモーメント、ガス圧によるモーメント等の各種モーメントの相互バランスに基づいて決定される。ガス圧によるモーメントとは、シリンダボア内圧と、ピストン背圧にあたるクランク室5の内圧(クランク圧Pc)との相互関係に基づいて発生するモーメントであり、クランク圧Pcに応じて傾角減少方向にも傾角増大方向にも作用する。この圧縮機では、後述する制御弁を用いてクランク圧Pcを調節し前記ガス圧によるモーメントを適宜変更することにより、斜板の傾角θを最小傾角θminと最大傾角θmaxとの間の任意の角度に設定可能としている。なお、最大傾角θmaxは、斜板12のカウンタウェイト部12aがラグプレート11の規制部11aに当接することで規制される。他方、最小傾角θminは、前記ガス圧によるモーメントが傾角減少方向にほぼ最大化した状態のもとでの傾角減少バネ16と復帰バネ17との付勢力バランスを支配的要因として決定される。
【0030】
斜板12の傾角制御に関与するクランク圧Pcを制御するためのクランク圧制御機構は、図1及び図2に示す圧縮機ハウジング内に設けられた抽気通路27及び給気通路28並びに制御弁によって構成される。抽気通路27は吸入室21とクランク室5とを接続する。給気通路28は吐出室22とクランク室5とを接続し、その途中には制御弁が設けられている。制御弁の弁開度を調節することで給気通路28を介したクランク室5への高圧ガスの導入量と抽気通路27を介したクランク室5からのガス導出量とのバランスが制御され、クランク圧Pcが決定される。クランク圧Pcの変更に応じて、ピストン20を介してのクランク圧Pcとシリンダボア1aの内圧との差が変更され、斜板の傾角θが変更される結果、ピストンのストロークすなわち吐出容量が調節される。なお、前記給気通路28および抽気通路27によって、内部通路が構成される。
【0031】
(冷媒循環回路)
図1及び図2に示すように、車輌用空調装置の冷房回路(即ち冷媒循環回路)は上述した圧縮機(逆止弁92を含む)と外部冷媒回路30とから構成される。外部冷媒回路30は例えば、凝縮器(コンデンサ)31、減圧装置としての温度式膨張弁32及び蒸発器(エバポレータ)33を備えている。膨張弁32の開度は、蒸発器33の出口側又は下流側に設けられた感温筒34の検知温度および蒸発圧力(蒸発器33の出口圧力)に基づいてフィードバック制御される。膨張弁32は、熱負荷に見合った液冷媒を蒸発器33に供給して外部冷媒回路30における冷媒流量を調節する。外部冷媒回路30の下流域には、蒸発器33の出口と圧縮機の吸入室21とをつなぐ冷媒ガスの流通管35が設けられている。外部冷媒回路30の上流域には、圧縮機の吐出室22と凝縮器31の入口とをつなぐ冷媒の流通管36が設けられている。圧縮機は外部冷媒回路30の下流域から吸入室21に導かれた冷媒ガスを吸入して圧縮し、圧縮したガスを外部冷媒回路30の上流域と繋がる吐出室22に吐出する。
【0032】
定性的に吐出圧Pdと吸入圧Psとの圧力差は冷媒循環量を増やせば大きくなり、逆に少なくすれば小さくなる。本実施形態では、流通管36の最上流域に当たる吐出室22内に上流側の第1の圧力監視点P1を定めると共に、流通管35の最下流域に当たる吸入室21内に下流側の第2の圧力監視点P2を定めている。即ち、圧縮機と凝縮器31との間の一点と、蒸発器33と圧縮機との間の一点とを二つの圧力監視点としている。そして、前記二つの圧力監視点P1,P2は、圧縮機内部の冷媒循環経路に設定されている。圧力監視点P1でのガス圧Pdを第1の検圧通路37を介して、又、圧力監視点P2でのガス圧Psを第2の検圧通路38を介してそれぞれ制御弁に導いている。その差圧(Pd−Ps)は、圧縮機の吐出容量を推し量る指標として、制御弁によって圧縮機吐出容量のフィードバック制御に利用される。
【0033】
(容量制御弁)
図3に示す容量制御弁は、冷媒循環回路における前記差圧(Pd−Ps)を機械的に検出し、その検出差圧を自己の弁開度調節の機械的入力として直接利用する。
【0034】
図3に示すように制御弁は、その上半部を占める入れ側弁部と、下半部を占めるソレノイド部とを備えている。入れ側弁部は、吐出室22とクランク室5とを繋ぐ給気通路28の開度(絞り量)を調節する。ソレノイド部は、制御弁内に配設された作動ロッド40を外部からの通電制御に基づき付勢制御するための一種の電磁アクチュエータを構成し、これは、設定差圧変更アクチュエータ100として機能する。作動ロッド40は、先端部たる差圧受承部41、連結部42、略中央の弁体部43及び基端部たるガイドロッド部44からなる棒状部材である。弁体部43はガイドロッド部44の一部にあたる。差圧受承部41、連結部42並びにガイドロッド部44(及び弁体部43)の直径をそれぞれd1,d2及びd3とすると、d2<d1<d3の関係が成立している。そして、円周率をπとすると、差圧受承部41の軸直交断面積SBはπ(d1/2)2であり、連結部42の軸直交断面積SCはπ(d2/2)2であり、ガイドロッド部44(及び弁体部43)の軸直交断面積SDはπ(d3/2)2である。
【0035】
制御弁のバルブハウジング45は、キャップ45aと、入れ側弁部の主な外郭を構成する上半部本体45bと、ソレノイド部の主な外郭を構成する下半部本体45cとから構成されている。バルブハウジング45の上半部本体45b内には弁室46及び連通路47が区画され、該上半部本体45bとその上部に挿入固定されたキャップ45aとの間には感圧室48が区画されている。
【0036】
弁室46、連通路47及び感圧室48内には、作動ロッド40が軸方向(図では垂直方向)に移動可能に配設されている。弁室46及び連通路47は作動ロッド40の配置次第で連通可能となる。これに対し連通路47と感圧室48とは、それらの境界に存在する隔壁(バルブハウジング45の一部)によって圧力的に隔絶されている。又、その隔壁に形成された作動ロッド40用のガイド孔49の内径も作動ロッドの差圧受承部41の径d1に一致する。なお、連通路47とガイド孔49とは相互延長の関係にあり、連通路47の内径も作動ロッドの差圧受承部41の径d1に一致する。つまり、連通路47とガイド孔49は共に、前記SBの軸直交断面積(口径面積)を持つ。
【0037】
弁室46の底壁は後記固定鉄心62の上端面によって提供される。弁室46を取り囲むバルブハウジング45の周壁には半径方向に延びるポート51が設けられ、このポート51は給気通路28の上流部を介して弁室46を吐出室22に連通させる。連通路47を取り囲むバルブハウジング45の周壁にも半径方向に延びるポート52が設けられ、このポート52は給気通路28の下流部を介して連通路47をクランク室5に連通させる。従って、ポート51、弁室46、連通路47及びポート52は、制御弁内において吐出室22とクランク室5とを連通させる給気通路28の一部を構成する。
【0038】
弁室46内には作動ロッドの弁体部43が配置される。連通路47の内径d1は、作動ロッドの連結部42の径d2よりも大きく且つガイドロッド部44の径d3よりも小さい。このため、弁室46と連通路47との境界に位置する段差は弁座53として機能し、連通路47は一種の弁孔となる。作動ロッド40が図3の位置(最下動位置)から弁体部43が弁座53に着座する最上動位置へ上動されると、連通路47が遮断される。つまり作動ロッドの弁体部43は、給気通路28の開度を任意調節可能な弁体として機能する。
【0039】
感圧室48内には、区画部材としての可動スプール54が軸方向に移動可能に設けられている。可動スプール54は有底円筒形状をなし、その底壁部は、感圧室48を軸方向に二分し、該感圧室48をP1圧力室(第1圧力室)55とP2圧力室(第2圧力室)56とに区画する。可動スプール54はP1圧力室55とP2圧力室56との間の圧力隔壁の役目を果たし、両圧力室55,56の直接連通を許容しない。なお、可動スプール54の底壁部の軸直交断面積をSAとすると、その断面積SAは連通路47又はガイド孔49の口径面積SBよりも明らかに大きい(SB<SA)。
【0040】
P1圧力室55は、キャップ45aに形成されたP1ポート55a及び第1の検圧通路37を介して上流側の圧力監視点P1たる吐出室22と常時連通する。他方、P2圧力室56は、バルブハウジング45の上半部本体45bに形成されたP2ポート56a及び第2の検圧通路38を介して下流側の圧力監視点P2たる吸入室21と常時連通する。即ち、P1圧力室55には吐出圧Pdが導かれ、P2圧力室56には、吸入圧Psが導かれている。故に、可動スプール54の上面及び下面はそれぞれ圧力Pd,Psに曝される受圧面となる。P2圧力室56内には作動ロッドの差圧受承部41の先端が進入しており、その差圧受承部41の先端面には可動スプール54が結合している。なお、感圧室48、可動スプール54、P1圧力室55及びP2圧力室56は、差圧検出手段を構成する。更にP1圧力室55には、戻しバネ57が配設されている。この戻しバネ57は、可動スプール54をP1圧力室55からP2圧力室56に向けて付勢する。
【0041】
制御弁のソレノイド部(設定差圧変更アクチュエータ100)は、有底円筒状の収容筒61を備えている。収容筒61の上部には固定鉄心62が嵌合され、この嵌合により収容筒61内にはソレノイド室63が区画されている。ソレノイド室63には、プランジャとしての可動鉄心64が軸方向に移動可能に収容されている。固定鉄心62の中心には軸方向に延びるガイド孔65が形成され、そのガイド孔65内には、作動ロッドのガイドロッド部44が軸方向に移動可能に配置されている。なお、ガイド孔65の内壁面と前記ガイドロッド部44との間には若干の隙間(図示略)が確保されており、この隙間を介して弁室46とソレノイド室63とが連通している。つまり、ソレノイド室63には弁室46と同じ吐出圧Pdが及んでいる。
【0042】
ソレノイド室63は作動ロッド40の基端部の収容領域でもある。即ち、ガイドロッド部44の下端は、ソレノイド室63内にあって可動鉄心64の中心に貫設された孔に嵌合されると共にかしめにより嵌着固定されている。従って、可動鉄心64と作動ロッド40とは一体となって上下動する。ソレノイド室63には緩衝バネ66が収容され、該緩衝バネ66は可動鉄心64を固定鉄心62に接近させる方向に作用して可動鉄心64及び作動ロッド40を上方に付勢する。この緩衝バネ66は戻しバネ57よりもバネ力が弱いものが用いられ、このため戻しバネ57は、可動鉄心64及び作動ロッド40を最下動位置(非通電時における初期位置)に戻すための初期化手段として機能する。
【0043】
固定鉄心62及び可動鉄心64の周囲には、これら鉄心62,64を跨ぐ範囲にコイル67が巻回されている。このコイル67には制御装置70の指令に基づき駆動回路72から駆動信号が供給され、コイル67は、その電力供給量に応じた大きさの電磁力Fを発生する。そして、その電磁力Fによって可動鉄心64が固定鉄心62に向かって吸引され作動ロッド40が上動する。なお、コイル67への通電制御は、アナログ的な電流値制御、又は、通電時のデューティ比Dtを適宜変化させるデューティ制御のいずれでもよい。本実施形態ではデューティ制御を採用する。制御弁の構造上、デューティ比Dtを小さくすると弁開度が大きくなり、デューティ比Dtを大きくすると弁開度が小さくなる傾向にある。
【0044】
図3の容量制御弁の弁開度は、弁体部43を含む作動ロッド40の配置如何によって決まる。作動ロッド40の各部に作用する種々の力を総合的に考察することで、この制御弁の動作条件や特性が明らかとなる。図4は、制御弁の各部の面積や、作用する圧力を模式的に示す。
【0045】
図4に示すように、作動ロッド40の差圧受承部41の上端面には、戻しバネ57の下向き付勢力f2によって加勢された可動スプール54の上下差圧に基づく下向き押圧力が作用する。但し、可動スプール54の上面の受圧面積はSAであるが、可動スプール54の下面の受圧面積は(SA−SB)である。また、差圧受承部41の下端面(受圧面積:SB−SC)には、クランク圧Pcによる上向き押圧力が作用する。下向き方向を正方向として差圧受承部41に作用する全ての力ΣF1を整理すると、ΣF1は次の数1式のように表される。
【0046】
(数1式)
ΣF1=Pd・SA−Ps・(SA−SB)−Pc・(SB−SC)+f2
他方、作動ロッド40のガイドロッド部44(弁体部43を含む)には、緩衝バネ66の上向き付勢力f1によって加勢された上向きの電磁付勢力Fが作用する。ここで、弁体部43、ガイドロッド部44及び可動鉄心64の全露出面に作用する圧力を単純化して考察すると、まず弁体部43の上端面は、連通路47の内周面から垂下させた仮想円筒面(二本の垂直破線で示す)によって内側部分と外側部分とに分けられ、前記内側部分(面積:SB−SC)にはクランク圧Pcが下向きに作用し、前記外側部分(面積:SD−SB)には吐出圧Pdが下向きに作用するものとみなすことができる。他方、ソレノイド室63に及んでいる吐出圧Pdは、可動鉄心64の上下面での圧力相殺を考慮すれば、ガイドロッド部44の軸直交断面積SDに相当する面積でもってガイドロッド部44の下端面44aを上向きに押している。上向き方向を正方向として弁体部43及びガイドロッド部44に作用する全ての力ΣF2を整理すると、ΣF2は次の数2式のように表される。
【0047】
Figure 0003780784
尚、上記数2式を整理する過程で、+Pd・SDと、−Pd・SDとが相殺されてPd・SB項のみが残った。つまりこの計算過程は、ガイドロッド部44(弁体部43を含む)の上下面に作用している吐出圧Pdの影響を、該Pdがガイドロッド部44の一面(下面)にのみ集約的に作用するものと仮定して考察するときに、弁体部43を含むガイドロッド部44の吐出圧Pdに関する有効受圧面積がSD−(SD−SB)=SBと表現できることを意味している。つまり吐出圧Pdに関する限り、ガイドロッド部44の有効受圧面積は、ガイドロッド部44の軸直交断面積SDにかかわらず連通路47の口径面積SBに一致する。このように本明細書では、ロッド等の部材の両端に同種の圧力が作用している場合に、その圧力が部材の一方の端部にのみ集約的に作用するものと仮定して考察することを許容するような実質的な受圧面積のことを特に、その圧力に関する「有効受圧面積」と呼ぶことにする。
【0048】
さて、作動ロッド40は差圧受承部41とガイドロッド部44とを連結部42で連結してなる一体物であるから、その配置はΣF1=ΣF2の力学的均衡を充足する位置に決まる。このΣF1=ΣF2の等式を整理する過程で、左右両辺のPc(SB−SC)項が相殺される。前記等式を整理すると、次の数3式及び数4式のようになる。
【0049】
(数3式)
Pd・SA−Ps・(SA−SB)−Pd・SB=F+f1−f2
(数4式)
Pd−Ps=(F+f1−f2)/(SA−SB)
数4式において、f1,f2,SA,SBは機械設計の段階で一義的に決まる確定的なパラメータである。また、吐出圧Pd及び吸入圧Psは圧縮機の運転状況に応じて変化する可変パラメータであり、電磁付勢力Fはコイル67への電力供給量に応じて変化する可変パラメータである。この数4式から次の二つのことが言える。第1に、図3の容量制御弁は、その弁開度調節動作の基準となる二点間差圧(Pd−Ps)の設定値(以後、設定差圧TPDと呼ぶ)を、コイル67へのデューティ制御によって外部から一義的に決定することが可能な構造となっている。つまり制御弁は、外部制御によって設定差圧TPDを変更することが可能な設定差圧可変型の制御弁である。
【0050】
第2に、作動ロッド40の配置を決定する力学関係式(数4式)中には、二点間差圧(Pd−Ps)以外の圧力パラメータ(例えばPcを含む項)が含まれず、従ってクランク圧Pcの絶対値が作動ロッド40の位置決めに影響を及ぼすことがない。換言すれば、前記二点間差圧(Pd−Ps)以外の圧力パラメータは作動ロッド40の変位動作の阻害又は拘束要因とはなり得ず、容量制御弁は、前記二点間差圧(Pd−Ps)と、電磁付勢力F及びバネ力f1,f2との力学的バランスのみに基づいて円滑に作動し得る。
【0051】
このような動作特性を有する容量制御弁によれば、個々の状況下でおよそ次のようにして弁開度が決まる。まず、コイル67への通電がない場合(Dtがゼロ)には、戻しバネ57の作用が支配的となり作動ロッド40は図3に示す最下動位置に配置される。このとき、作動ロッドの弁体部43が弁座53から最も離れて入れ側弁部は全開状態となる。他方、コイル67に対しデューティ比可変範囲の最小デューティの通電があれば、少なくとも上向きの電磁付勢力Fとバネ力f1との和が戻しバネ57の下向き付勢力f2を凌駕する。そして、該電磁付勢力Fとバネ66,57の付勢力との合力(F+f1−f2)が、二点間差圧(Pd−Ps)に基づく下向き押圧力に対向し、その結果、前記数4式を満たすように作動ロッドの弁体部43が弁座53に対して位置決めされ、制御弁の弁開度が決定される。こうして決まった弁開度に応じて、給気通路28を介してのクランク室5へのガス供給量が決まり、前記抽気通路27を介してのクランク室5からのガス放出量との関係でクランク圧Pcが調節される。つまり制御弁の弁開度を調節するということはクランク圧Pcを調節することにほかならない。
【0052】
なお、電磁付勢力Fが変化しない限り、図3の制御弁はそのときの電磁付勢力Fに応じた設定差圧TPDと二点間差圧(Pd−Ps)がほぼ一致するように作動するだけであるが、外部制御によって電磁付勢力Fを変化させ設定差圧TPDを適宜変更することで、二点間差圧(Pd−Ps)を変更することができる。二点間差圧(Pd−Ps)は冷媒循環量に略比例するので本構成によって冷媒循環量を制御することができる。
【0053】
(逆止弁)
図1,図2及び図5に示すように、前記圧縮機の吐出室22と外部冷媒回路30の凝縮器31側の流通管36とは連通されている。詳しくは、該吐出室22と流通管36とは、図5に示すように、リヤハウジング4に設けられた吐出通路90を介して連通されている。
【0054】
図5及び図6に示すように、収容室91は、リヤハウジング4において吐出通路90の途中から流通管36側を拡径するようにして形成されている。これにより、収容室91の奥側には、吐出通路90において吐出室22側の部位との径差により、位置決め用段差91aが形成されている。また、前記収容室91よりも流通管36側には、リヤハウジング4の外側に突出するように収容筒97が設けられている。この収容筒97の内径は、収容室91の内径よりも更に大きく形成されている。収容室91及び収容筒97は、吐出通路90の一部を構成している。
【0055】
差圧低下促進手段としての逆止弁92は、蓋付き有底円筒状をなすケース96内に、弁孔93aを有する弁座93、弁座93に接離することで弁孔93aを開閉する弁体94、及び弁孔93aを閉塞する方向に弁体94を付勢する付勢バネ95を備えてなる。逆止弁92は前記収容室91において、ケース96の先端が位置決め用段差91aに当接する位置まで圧入されて固定されている。逆止弁92は、弁体94を収容するケース96の内空間が、弁孔93aを介して吐出通路90に連通されるとともに、ケース96の周面に貫設された複数の連通孔96aを介して収容筒97内に連通されている。つまり、逆止弁92において、弁孔93a、ケース96の内空間及び連通孔96aは、吐出通路90の一部を構成する。導圧孔96bは、弁孔93aと反対側でケース96の内空間を収容筒97に連通させ、弁体94の背圧として流通管36即ち凝縮器31側の圧力を導入している。
【0056】
そして、前記逆止弁92の弁体94は、その前後の圧力差(つまり、前端面に作用する吐出室22の圧力Pdと背圧たる凝縮器31側の圧力Pd’との差)に基づく荷重と、付勢バネ95のバネ荷重とのバランスによって弁座93に接離動作される。この接離動作により、弁体94は弁孔93a(吸入通路90)を開放又は閉塞する。
【0057】
逆止弁92は、圧縮機の吐出容量がある程度大きいために吐出室22の圧力Pdが高くなって前記Pd−Pd’差圧による荷重が付勢バネ95荷重を上回る限り、弁孔93a(吐出通路90)を開状態として圧縮機と外部冷媒回路30との間の冷媒循環を許容する(図5参照)。これに対し、圧縮機の吐出容量が小さくなって圧力Pdが充分に高まりきらない場合には(例えばθminに対応する最小容量時)、付勢バネ95の荷重がPd−Pd’差圧による荷重を凌駕し、弁孔93aを閉状態として圧縮機と外部冷媒回路30との間の冷媒循環が阻止される(図6参照)。勿論、Pd’がPdを上回るような場合には、逆止弁92は凝縮器31側から吐出室22への逆流を阻止する。
【0058】
なお、圧縮機が最小容量で運転される際、逆止弁92は閉じてしまうが、それが故に吐出室22に吐き出されたガスが後述するように制御弁及びクランク室5を経由して吸入室21に戻されるという圧縮機内での冷媒ガスの内部循環が、小容量運転時にも確保される。
【0059】
(制御体系)
図2及び図3に示すように、車輌用空調装置は該空調装置の制御全般を司る制御装置70を備えている。制御装置70は、CPU、ROM、RAM、内蔵タイマ及びI/Oインターフェイスを備えたコンピュータ類似の制御ユニットであり、I/Oの入力端子には外部情報検知手段71が接続され、I/Oの出力端子には駆動回路72が接続されている。少なくとも制御装置70は、外部情報検知手段71から提供される各種の外部情報に基づいて適切なデューティ比Dtを演算し、駆動回路72に対しそのデューティ比Dtでの駆動信号の出力を指令する。駆動回路72は、命じられたデューティ比Dtの駆動信号を制御弁のコイル67に出力する。コイル67に提供される駆動信号のデューティ比Dtに応じて、前記制御弁のソレノイド部(設定差圧変更アクチュエータ100)の電磁付勢力Fが変化する。なお、少なくとも制御弁及び制御装置70によって吐出容量制御手段が構成される。
【0060】
前記外部情報検知手段71は各種センサ類を包括する機能実現手段である。外部情報検知手段71を構成するセンサ類としては、例えば、A/Cスイッチ(乗員が操作する空調装置のON/OFFスイッチ)、車室内温度(又はそれと相関する蒸発器からの吹き出し空気の温度)Te(t)を検出するための温度センサ、車室内温度(又はそれと相関する蒸発器からの吹き出し空気の温度)の好ましい設定温度Te(set)を設定するための温度設定器、エンジンEの吸気管路に設けられたスロットル弁の角度又は開度を検知するためのアクセル開度センサがあげられる。なお、スロットル弁角度又は開度は、車輌の操縦者によるアクセルペダルの踏込量を反映した情報として利用される。
【0061】
次に、図7〜図9のフローチャートを参照して制御装置70による制御弁へのデューティ制御の概要を簡単に説明する。
図7のフローチャートは、空調制御プログラムの幹となるメインルーチンを示す。車輌のイグニションスイッチ(又はスタートスイッチ)がONされると、制御装置70は電力を供給され演算処理を開始する。制御装置70は、図7のステップS71(以下単に「S71」という、他のステップも以下同様)において初導プログラムに従い各種の初期設定を行う。例えば、制御弁のデューティ比Dtに初期値又は暫定値を与える。その後、処理はS72以下に示された状態監視及びデューティ比の内部演算処理へと進む。
【0062】
S72では、A/CスイッチがONされるまで該スイッチのON/OFF状況が監視される。A/CスイッチがONされると、処理は非常時判定ルーチン(S73)へ進む。S73では、車輌が非定常的な状態つまり非常時運転モードにあるか否かを外部情報に基づいて判断する。ここで言う「非常時運転モード」とは、例えば、追い越し加速のような車輌の加速時(少なくとも操縦者が急加速を欲している場合)を指す。外部情報検知手段71から提供される検出アクセル開度を所定の判定値と比較することで、そのような車輌加速状態にあることを合理的に推定することができる。本実施形態では説明の簡素化のため、非常時判定の項目は車輌の加速時のみとする。
【0063】
非常時判定ルーチンでの監視項目のいずれにも該当しない場合には、S73判定がNOとなる。その場合には、車輌が定常的な状態つまり通常運転モードにあるとみなされる。ここで言う「通常運転モード」とは、プログラム的には非常時判定ルーチンの監視項目に該当しない排他的な条件充足状態を意味し、つまるところ、車輌が平均的な運転状況で使用されていると合理的に推定できる状態を指す。
【0064】
図8の通常制御ルーチンRF8は、通常運転モードでの空調能力に関する手順を示す。S81において制御装置70は、温度センサの検出温度Te(t)が温度設定器による設定温度Te(set)より大であるか否かを判定する。S81判定がNOの場合、S82において前記検出温度Te(t)が設定温度Te(set)より小であるか否かを判定する。S82判定もNOの場合には、検出温度Te(t)が設定温度Te(set)に一致していることになるため、冷房能力の変化につながるデューティ比Dtの変更の必要はない。それ故、制御装置70は駆動回路72にデューティ比Dtの変更指令を発することなく、該ルーチンRF8を離脱する。
【0065】
S81判定がYESの場合、車室内は暑く熱負荷が大きいと予測されるため、S83において制御装置70はデューティ比Dtを単位量ΔDだけ増大させ、その修正値(Dt+ΔD)へのデューティ比Dtの変更を駆動回路72に指令する。すると、設定差圧変更アクチュエータ100の電磁力Fが若干強まり、その時点での差圧(Pd−Ps)では上下付勢力の均衡が図れないため、作動ロッド40が上動して戻しバネ57が蓄力され、この戻しバネ57の下向き付勢力f2の増加分が上向きの電磁付勢力Fの増加分を補償して再び数4式が成立する位置に作動ロッド40の弁体部43が位置決めされる。その結果、制御弁の開度(つまり給気通路28の開度)が若干減少し、クランク圧Pcが低下傾向となり、クランク圧Pcとシリンダボア内圧とのピストン20を介した差も小さくなって斜板12が傾斜角度増大方向に傾動し、圧縮機の状態は吐出容量が増大し負荷トルクも増大する方向に移行する。圧縮機の吐出容量が増大すれば、蒸発器33での除熱能力も高まり温度Te(t)も低下傾向に向かうはずであり、又、圧力監視点P1,P2間の差圧は増加する。
【0066】
他方、S82判定がYESの場合、車室内は寒く熱負荷が小さいと予測されるため、S84において制御装置70はデューティ比Dtを単位量ΔDだけ減少させ、その修正値(Dt−ΔD)へのデューティ比Dtの変更を駆動回路72に指令する。すると、設定差圧変更アクチュエータ100の電磁力Fが若干弱まり、その時点での差圧(Pd−Ps)では上下付勢力の均衡が図れないため、作動ロッド40が下動して戻しバネ57の蓄力も減り、この戻しバネ57の下向き付勢力f2の減少分が上向きの電磁付勢力Fの減少分を補償して再び数4式が成立する位置に作動ロッド40の弁体部43が位置決めされる。その結果、制御弁の開度(つまり給気通路28の開度)が若干増加し、クランク圧Pcが増大傾向となり、クランク圧Pcとシリンダボア内圧とのピストン20を介した差も大きくなって斜板12が傾斜角度減少方向に傾動し、圧縮機の状態は吐出容量が減少し負荷トルクも減少する方向に移行する。圧縮機の吐出容量が減少すれば、蒸発器33での除熱能力も低まり温度Te(t)も増加傾向に向かうはずであり、又、圧力監視点P1,P2間の差圧は減少する。
【0067】
このようにS83及び/又はS84でのデューティ比Dtの修正処理を経ることで、検出温度Te(t)が設定温度Te(set)からずれていてもデューティ比Dtが次第に最適化され、更に制御弁での内部自律的な弁開度調節も相俟って温度Te(t)が設定温度Te(set)付近に収束する。
【0068】
図7のメインルーチンのS73判定でYESの場合、制御装置70は図9の加速時制御ルーチンRF9に示す一連の処理を実行する。まずS91(準備ステップ)において、現在のデューティ比Dtを復帰目標値DtRとして記憶する。DtRは、後述するS97でのデューティ比Dtの戻し制御における目標値である。S92において、その時の検出温度Te(t)を加速カット開始時の温度Te(INI)として記憶する。そして制御装置70は、S93で内蔵タイマの計測動作をスタートさせ、S94でデューティ比Dtをゼロに設定変更してコイル67への通電停止即ち加速カットを駆動回路72に指令する。これにより、制御弁の開度は戻しバネ57の作用で一義的に最大(全開)となり、クランク圧Pcが増大する。S95において、タイマによって計測された経過時間が予め定められた設定時間STを超えたか否かを判定する。S95判定がNOである限り、デューティ比Dtはゼロに維持される。換言すれば、タイマースタートからの経過時間が少なくとも設定時間STを超えるまで制御弁の開度は全開に保たれ、圧縮機の吐出容量及び負荷トルクが確実に最小化される。そして、加速時におけるエンジン負荷の低減(極小化)を少なくとも時間STだけは確実に達成する。一般に車輌の加速は一時的なものであるため設定時間STは短くてよい。
【0069】
時間STの経過後、S96において、そのときの検出温度Te(t)が、前記加速カット開始時温度Te(INI)に許容増加温度βを加えた温度値よりも大きいか否かを判定する。この判定は、少なくとも時間STの経過により許容増加温度βを超えて温度Te(t)が増大したか否かを調べるものであり、冷房能力の復帰が直ちに必要であるか否かを判断することを目的とする。S96判定がYESの場合には室温上昇の兆候がみられることを意味するので、その場合には、S97においてデューティ比Dtの戻し制御が行われる。この戻し制御の趣旨は、予め定められた復帰パターンに従ってデューティ比Dtを徐々に復帰目標値DtRに戻すことで斜板12の傾斜角度の急変による衝撃を回避することにある。S97の枠内に示したグラフによれば、S96の判定がYESになったときが時点t4であり、デューティ比Dtが復帰目標値DtRに到達したときが時点t5である。所定時間(t5−t4)をかけて直線的パターンのDt復帰が実施される。尚、時間隔(t4−t3)は、前記設定時間STとS96判定でNOを繰り返す時間との和に相当する。デューテイ比Dtが目標値DtRに到達すると、サブルーチンRF9の処理が終了し、処理がメインルーチンに戻される。
【0070】
図10は、加速カットの際のデューティ比Dt、圧力Pd及びPs、並びに、圧縮機の負荷トルク(又は吐出容量)の経時的な相関関係を概念的に示す。
図10に示すように、上述の加速カットにおいてデューティ比Dtがゼロに設定変更されると(時点t3)、前記制御弁の弁開度が最大化され、圧縮機の吐出容量(即ち圧縮機の負荷トルク)が急激に減少する。これ以後、圧力監視点P1たる吐出室22内のガス圧Pdは、図10(b)において実線111で示すように、前記吐出容量の減少と、給気通路28及び制御弁を介したクランク室5への高圧ガスの流出とにより速やかに低下する。このPd低下により、前記逆止弁92が吐出室22と外部冷媒回路30との連通を遮断するため、前記吐出室22内のガス圧Pdの低下はかなり早い。また、図10(b)において実線112で示すように、圧力監視点P2たる吸入室21内のガス圧Psは、圧縮機の吐出容量の最小化によるシリンダボア1aへのガス吸入量の低下と、抽気通路27を介したクランク室5からの高圧ガスの流入により上昇傾向をたどる。つまり、加速カット区間(t3〜t4)では、ガス圧PdおよびPsは前記逆止弁92の作用によって急速に接近し、Pd−Psの差が速やかに最小化する。
【0071】
ここで本発明における逆止弁92の役割を理解するため、比較例として、前記圧縮機の吐出室22と凝縮器31側の流通管36との間に前記逆止弁92が設けられていない場合について説明する。この場合、凝縮器31側と吐出室22とは、前記外部冷媒回路30において常に連通される。つまり、吐出室22内の圧力が低下するためには、外部冷媒回路30における凝縮器31側も含めた大容量領域の圧力も同時に低下する必要がある。そのため、図10(b)において二点鎖線113で示すように、前記逆止弁92が設けられていない場合の吐出室22においては、Dtをゼロに変更した後もPdは極めて緩慢にしか低下せず、Pd−Psの差は開いたままとなる。これは、2つの圧力監視点間の差圧と圧縮機の吐出容量との相関性に、許容できない「齟齬」が生じることを意味する。
【0072】
前記圧縮機においては前述の数4式を満たすように制御弁の弁開度が決定され、この弁開度に基づいて吐出容量が調節される。加速カット時においては、デューティ比Dtはゼロに設定されるため、設定差圧変更アクチュエータ100の電磁付勢力FはF=0となる。従って、この場合の圧力監視点P1及びP2間の差圧(Pd−Ps)は、次の数5式の値(理論値)を示すべきである。なお、f1とf2との差を小さくすることでDt=0のときの設定差圧(Pd−Ps)を限りなくゼロに近づけることができる。
【0073】
(数5式)
Pd−Ps=(f1−f2)/(SA−SB)
本件において、デューティ比Dtを変えることで圧縮機の吐出容量を適宜変更する、つまりDtの微少変更で吐出容量の微調節を実現するためには、Dtに応じて可変設定される設定差圧TPDと、可動スプール54によって検知される実際のPd−Ps差圧との間にほぼリアルタイムの緊密な関係が保たれることが必須となる。換言すれば、制御の目標値たる設定差圧TPDの設定変更に対して実差圧の変化が、ある程度の速さで追従してこなければ、デューティ比Dtの制御に基づく吐出容量の連続的な可変制御は成り立たないか、又は二値的なON/OFF制御に陥ってしまい揺動斜板式圧縮機の特徴が生かせない。
【0074】
この点、本実施形態では、吐出室22と流通管36との境界域たる通路90に逆止弁92を設けることで、図10(b)の実線111のように加速カット時点t3以後、迅速にPdが下がり、実際のPd−Ps差圧がDt=0のときの設定差圧(数5式)に迅速に近づくいていく。このため、可動スプール54が検知する実差圧と、Dt=0が維持される加速カット区間での設定差圧との間に、看過できないほど大きな齟齬が生じる期間はたいへん短く(少なくともt4−t3の時間差よりも小)、その意味で、実差圧が設定差圧にほぼ追いつくまでのタイムラグは、フィードバック制御での追従性の許容範囲内にある。
【0075】
これに対し、逆止弁を設けない比較例の場合には、図10(b)の二点鎖線113のように加速カット時点t3以後、Pdの低下が極めて緩慢で、実際のPd−Ps差圧がDt=0のときの設定差圧(数5式)にまでなかなか落ちきらない。少なくとも、Dtの戻し制御が始まる時点t4に到っても、可動スプール54が検知する実差圧は、時点t4(Dt=0)でのあるべき設定差圧(数5式)よりも遥かに大きいままとなる。即ち、Dtの戻し制御が開始される最初の時点(t4)において既に、実差圧と設定差圧との間に看過できない大きな齟齬が生じてしまっており、前記数4のバランス式に依拠せんとする制御の大前提が崩れている。このため、図10(c)の二点鎖線114に示すように、Dtの戻し制御の過程でDtがある程度加算されてそのときの設定差圧と、可動スプール54が検知する実差圧とが一致するまでの間(例えば、t4からt6までの区間)、Dtの加算にもかかわらず制御弁が全開のままとなり吐出容量が最小に維持される。そして、設定差圧と実差圧とが現に一致した以後にはじめて、設定差圧TPDの可変設定と実差圧の変化とが許容できる追従性で整合し、制御弁の通電制御に基づく吐出容量の連続可変制御が実質化される。
【0076】
つまり、逆止弁92が存在しないと、加速カット状態(Dt=0)からDtを復帰目標値DtRに戻す過程で、圧縮機の吐出容量又は負荷トルクを徐々に立ち上げていくというパターン(図10(c)の実線115のパターン)での制御が極めて困難になる。仮に図10(c)の二点鎖線114のような急峻な立上げパターンに陥った場合には、吐出容量(又は負荷トルク)の急立上げの瞬間に乗員に衝撃や異音を感じさせる結果となり、あまり好ましくない。緩やかな直線的パターンでのDt戻し制御の目的はそもそも、衝撃や異音を誘発させないことにある。
【0077】
上記実施形態では、逆止弁92を設けることにより、前記二点間差圧(Pd−Ps)を急速に低下(Pd及びPsを均等化)させ、理想的な戻し制御を実現可能にする(図10(c)の実線115参照)。
【0078】
(効果)第1実施形態によれば、以下のような効果を得ることができる。
○ 本実施形態では、圧縮機の吐出室22と外部冷媒回路30の凝縮器31との間に逆止弁92を設けた。これにより、前記二点間の差圧(Pd−Ps)を迅速に最小化する(即ち、前記数5式の状態にする)ことができる。従って、S97におけるデューティ比の戻し制御を、予め設定された復帰パターンに忠実な理想的なものにすることができる。
【0079】
〇 本実施形態では、室内又は蒸発器での熱負荷の大きさに影響される吸入圧Psを容量制御弁の弁開度制御(つまりは圧縮機の吐出容量制御)の指標とすることなく、冷媒循環回路における二つの圧力監視点P1,P2間の差圧(Pd−Ps)を直接の制御対象として圧縮機吐出容量のフィードバック制御を実現している。このため、蒸発器での熱負荷状況に影響されることなく、エンジン側の事情を優先すべき非常時には外部制御によって即座に吐出容量を減少(又は増大)させることができる。それ故に、加速時等におけるカット制御の応答性やカット制御の信頼性及び安定性に優れている。
【0080】
〇 通常時においても、検出温度Te(t)及び設定温度Te(set)に基づく目標差圧(設定差圧)TPDの自動修正(図8のS81〜S84)を伴う、二点間差圧(Pd−Ps)を指標とした吐出容量のフィードバック制御により、人間の快適感を満たすという空調装置本来の目的を十分に達成することができる。つまり本実施形態によれば、通常時における室温の安定維持を図るための圧縮機の吐出容量制御と、非常時における緊急避難的な吐出容量の迅速な変更とを両立させることができる。
【0081】
○ 逆止弁92は、クラッチレスタイプの圧縮機が最小傾角状態即ち最小吐出容量状態となった場合には、吐出室22と外部冷媒回路30との連通を遮断し、最小吐出運転時でも圧縮機内での冷媒ガスの内部循環を維持させる。即ち逆止弁92の閉弁時には、各ボア1aから吐出室22に吐出されたガスは、行き場を求めて全開状態の制御弁及び給気通路28を介してクランク室5に向かう。更にクランク室5からは抽気通路27を介して吸入室21に向かう流れが生じる。つまり、最小吐出容量時には逆止弁92の閉弁により、シリンダボア1a→吐出室22→(給気通路28)→クランク室5→(抽気通路27)→吸入室21→シリンダボア1aという内部循環流れが自然に生じる。この冷媒ガスの内部循環により、潤滑オイルのミスト化促進と摺動部位への搬送が確保され、常時運転が宿命のクラッチレス圧縮機にあって、オイル切れによる内部機構の焼付きが未然に回避される。即ち本実施形態においては、逆止弁92は、必要時にPd−Ps差圧を迅速に低下させる手段、吐出室22への逆流を防止する手段および最小吐出運転時において冷媒ガス及び潤滑オイルの内部循環を確保する手段という少なくとも三つの役目を担う。
【0082】
(第2実施形態:図11〜図12参照)
この第2実施形態の空調装置は、前記第1実施形態において容量制御弁の構成を変更し、それに伴い前記検圧通路37を省いたものであり、その他の点では第1実施形態の空調装置と同一の構成になっている。従って、以下では図11に示す容量制御弁についてのみ説明することとし、第1実施形態と共通する構成部分については図面上に同一符号を付すことにして重複した説明を省略する。
【0083】
図11に示すように、バルブハウジング45内には、作動ロッド40が軸方向に移動可能に収容されている。作動ロッド40は、先端部たる弁体部43及び基端部たるガイドロッド部44からなる棒状部材である。弁体部43とガイドロッド部44とは同径であり同じ軸直交断面積SFを有する。
【0084】
バルブハウジング45の上半部本体45b内には弁室46が設けられている。弁室46の上方にはアッパーポート80が設けられている。このアッパーポート80は給気通路28の上流部を介して弁室46を吐出室22に連通させる。アッパーポート80はその内径が前記弁体部43の外径よりもやや小さくなるように形成されており、その口径面積はSGである。弁室46とアッパーポート80との境界に位置する段差は弁座81として機能する。作動ロッド40が図11の位置(最下動位置)から弁体部43が弁座81に着座する最上動位置へ上動されると、アッパーポート80が弁体部43により遮断される。
【0085】
一方、弁室46を取り囲むバルブハウジング45の周壁には半径方向に延びるセンターポート82が設けられ、このセンターポート82は給気通路28の下流部を介して弁室46をクランク室5に連通させる。従って、作動ロッドの弁体部43は、弁室46内での位置に応じて給気通路28の開度を任意調節可能な弁体として機能する。また、弁室46は、給気通路28の一部を構成している。
【0086】
ソレノイド部の固定鉄心62を取り囲むバルブハウジング45の周壁には半径方向に延びるロアーポート83が設けられている。また、収容筒61の内壁面と固定鉄心62との間にはスリット84が形成されている。前記ロアーポート83とスリット84とは連通しており、検圧通路38を介してソレノイド室63を吸入室21に連通させる。つまり、ソレノイド室63には吸入圧Psが及んでいる。
【0087】
なお、本第2実施形態の制御弁においては、弁体部43の上面が吐出圧Pdに、そして、ソレノイド室63内においてガイドロッド部44が吸入圧Psにさらされ、弁室46及びソレノイド室63は固定鉄心62によって圧力的に隔絶されている。つまり、図11の作動ロッド40は、図3における作動ロッド40と可動スプール54の両方の役目を担う存在であり、弁室46、ガイド孔65、ソレノイド室63、作動ロッド40及び可動鉄心64は、差圧検出手段を構成している。
【0088】
ソレノイド室63には戻しが収容され、該戻しバネ85は可動鉄心64を固定鉄心62から離間させる方向に作用して可動鉄心64及び作動ロッド40を下方に付勢する。この戻しバネ85は、可動鉄心64及び作動ロッド40を最下動位置(非通電時における初期位置)に戻すための初期化手段として機能する。
【0089】
図11の容量制御弁の動作条件や特性は、作動ロッド40の各部に作用する種々の力を考察することで明らかとなる。
図12に示すように、作動ロッド40の弁体部43上端面には、アッパーポート80の内周面から垂下させた仮想円筒面(二本の垂直破線で示す)によって内側部分と外側部分とに分けられ、前記内側部分(面積:SG)には吐出圧Pdが下向きに作用し、前記外側部分(面積:SF−SG)にはクランク圧Pcが下向きに作用するものとみなすことができる。
【0090】
他方、ガイドロッド部44には、戻しバネ85の下向き付勢力f3によって減殺された上向きの電磁付勢力Fが作用する。また、ソレノイド室63に及んでいる吸入圧Psは、可動鉄心64の上下面での圧力相殺を考慮すれば、ガイドロッド部44の軸直交断面積SFに相当する面積でもってガイドロッド部44を上向きに押している。
【0091】
作動ロッド40は弁体部43とガイドロッド部44とを有する一体物であるから、弁体部43及びガイドロッド部44に作用する全ての力の総和は0(ゼロ)になるはずである。この力の総和は、下向き方向を正方向として整理すると、次の数6式及び数7式のように表される。
【0092】
(数6式)
Pd・SG+Pc・(SF−SG)+f3−Ps・SF−F=0
(数7式)
(Pd−Ps)・SG+(Pc−Ps)・(SF−SG)=F−f3
上記の数7式において、差圧(Pc−Ps)は差圧(Pd−Ps)に対して、事実上無視できるほどの極小値であり、面積(SF−SG)は面積SGに対し同様に無視できるほどの極小値である。従って、更に上記の数7式を整理すると、次に示す数8式のように表される。
【0093】
(数8式)
Pd−Ps≒(F−f3)/SG
数8式において、f3,SGは機械設計の段階で一義的に決まる確定的なパラメータである。また、吐出圧Pd及び吸入圧Psは圧縮機の運転状況に応じて変化する可変パラメータであり、電磁付勢力Fはコイル67への電力供給量に応じて変化する可変パラメータである。
【0094】
この数8式から次の二つのことが言える。第1に、図11の容量制御弁は、その弁開度調節動作の基準(即ち、制御目標値)となる二点間差圧(Pd−Ps)の設定値(設定差圧TPD)を、コイル67へのデューティ制御によって外部から一義的に決定することが可能な構造となっている。つまり制御弁は、外部制御によって設定差圧TPDを変更することが可能な設定差圧可変型の制御弁である。第2に、前記二点間差圧(Pd−Ps)以外の圧力パラメータは作動ロッド40の変位動作の大きな拘束要因とはなり得ず、容量制御弁は、ほぼ、前記二点間差圧(Pd−Ps)と、電磁付勢力F及びバネ力f3との力学的バランスに基づいて円滑に作動し得る。
【0095】
このような構造によれば、第1実施形態における容量制御弁に見られるような可動スプール54などを省くことができ、制御弁の小型化が可能となる。なお、第2実施形態の空調装置も、前記第1実施形態と同様の作用及び効果を奏することは言うまでもない。
【0096】
(第2実施形態の別例)
図11及び図12において、アッパーポート80の内径を弁体部43の外径に等しくなるように拡径してもよい。つまり、弁体部43がアッパーポート80内に進入することで閉弁状態が実現される構造としてもよい。この場合、アッパーポート80の口径面積SGはSFに等しいものとなる。従って、SG=SFとして数6式を整理すると、次に示す数9式及び数10式が導かれる。
【0097】
(数9式)
Pd・SF+f3−Ps・SF−F=0
(数10式)
Pd−Ps=(F−f3)/SF
この場合においても、二点間差圧(Pd−Ps)の設定値(設定差圧TPD)を、コイル67へのデューティ制御によって外部から一義的に決定することが可能な構造となっている。つまり制御弁は、外部制御によって設定差圧TPDを変更することが可能な設定差圧可変型の制御弁である。また、この容量制御弁は、前記二点間差圧(Pd−Ps)と、電磁付勢力F及びバネ力f3との力学的バランスのみに基づいて円滑に作動し得る。
【0098】
(変更例)
本発明の趣旨から逸脱しない範囲で、例えば、以下の様態でも実施できる。
○ 図13及び図15に示すように、逆止弁92を、圧縮機の吸入室21と、外部冷媒回路30の蒸発器33との間に設けてもよい。
【0099】
図15に示すように、吸入室21と外部冷媒回路30の蒸発器33側の流通管35とは、リヤハウジング4に設けられた吸入通路90aを介して連通されている。収容室91は、リヤハウジング4において吸入通路90aの途中から吸入室21までを拡径するようにして形成され、この収容室91の奥側には、位置決め用段差91aが形成されている。
【0100】
逆止弁92は前記収容室91において、ケース96の先端が位置決め用段差91aに当接する位置まで圧入されている。逆止弁92は、ケース96の内空間が、弁孔93aを介して吸入通路90aに連通されるとともに、ケース96の周面に貫設された複数の連通孔96aを介して吸入室21に連通されている。導圧孔96bは、弁孔93aと反対側でケース96の内空間を吸入室21に連通させ、弁体94の背圧として吸入室21の圧力を導入している。
【0101】
そして、前記逆止弁92の弁体94は、その前後の圧力差(つまり、前端面に作用する蒸発器33側の圧力Ps’と背圧たる吸入室21の圧力Psとの差)に基づく荷重と、付勢バネ95のバネ荷重とのバランスによって弁座93に対し接離動作し、弁孔93a(即ち吸入通路90a)を開放又は閉塞する。
【0102】
逆止弁92は、蒸発器33の圧力Ps’が高く前記Ps’とPsとの差圧による荷重が付勢バネ95荷重を上回る限り、弁孔93a(吸入通路90a)を開状態として圧縮機と外部冷媒回路30との間の冷媒循環を許容する。一方、圧力Ps’が充分に高まりきらない場合や、PsがPs’を上回るような場合には、弁孔93aを閉状態として圧縮機と外部冷媒回路30との間の冷媒循環が阻止される。
【0103】
なお、前記吐出室22に吐き出されたガスが制御弁及びクランク室5を経由して吸入室21に戻されるという圧縮機内での冷媒ガスの内部循環は、図5,6における逆止弁92の場合と同様に、小容量運転時にも確保される。
【0104】
加速時制御ルーチンRF9における加速カットにおいてデューティ比Dtがゼロに設定変更されると、前記制御弁の弁開度が最大化され、クランク圧Pcは急上昇する。加速カット下においては、圧縮機と外部冷媒回路30との間での冷媒循環も最小化され、しかも、吸入室21にはクランク室5の冷媒ガスが、常時連通の抽気通路27を介して流入され続けていることから、吸入通路90aにおいて吸入室21側の圧力が蒸発器33側の圧力以上となる。このとき、逆止弁92が吸入通路90aを閉塞し、吸入室21側から蒸発器33側への冷媒ガスの逆流が規制される。このようにして逆止弁92により外部冷媒回路30から遮断された吸入室21の圧力は、クランク室5からの冷媒ガスの供給により比較的速やかに上昇される(図16(b)における実線116)。また、吐出室22内のガス圧Pdは、冷媒循環の減少と、給気通路28を介したクランク室5への高圧ガスの流出により低下傾向をたどる(図16(b)における実線117)。即ち、ガス圧PdおよびPsはこの逆止弁92の作用によって急速に接近し、Pd−Psの差が速やかに最小化する。従って、第1実施形態の場合と同様、S97におけるデューティ比の戻し制御を、予め設定された復帰パターンに忠実な理想的なものにすることができる。
【0105】
○ 図14に示すように、冷媒循環回路において逆止弁92を、外部冷媒回路30の凝縮器31と圧縮機の吐出室22との間と、圧縮機の吸入室21と外部冷媒回路30の蒸発器33との間との2箇所に設けてもよい。このような構成によれば、Pd−Psの差を更に迅速に最小化することができる。従って、S97におけるデューティ比の戻し制御を、予め設定された復帰パターンに対して更に忠実なものにすることができる。
【0106】
○ 前記実施形態では、圧縮機の給気通路28の途中に制御弁を設け、該制御弁の弁開度を調節することでクランク圧Pcを変更するようにしたが、抽気通路27の途中に制御弁を設けてもよい。この場合においても、クランク室5から吸入室21への冷媒ガスの流入量を調節可能な制御弁を用いることで、クランク圧Pcを変更し、圧縮機の吐出容量を調節することができる。
【0107】
○ 冷媒循環回路において、減圧装置として温度式膨張弁32の代わりに弁開度の調整機能のない固定絞り(オリフィスチューブ)を用いてもよい。
○ 前記実施形態では、追い越し加速のような車輌の加速時において、圧縮機の吐出容量を強制的に所定容量に制御するようにしたが、登坂走行のようなエンジンEが高負荷状態にある場合などに制御するようにしてもよい。
【0108】
(前記各請求項に記載した以外の技術的思想のポイント)
差圧以外の種々の外部情報」は、少なくとも蒸発器での熱負荷状況に関する物理量を含むこと。
【0109】
記外部情報検知手段は少なくとも、室内温度と相関性のある温度情報を得るための温度センサと、所望温度を設定するための温度設定器とを備えており、前記吐出容量制御手段は、前記温度センサの検出温度と前記温度設定器の設定温度との比較結果に基づいて前記設定差圧を決定すること。
【0110】
記外部情報検知手段は少なくとも、車輌のアクセル開度を検知するアクセル開度センサを備え、前記吐出容量制御手段は、少なくとも前記アクセル開度センサの検知アクセル開度に基づいて車輌が加速状態の非常時にあるか否かを判定すると共に、加速時には前記フィードバック制御を中断して圧縮機の吐出容量を強制的に最小化すること。
【0111】
記吐出容量制御手段は、非常時において一旦最小化された吐出容量を、予め定められた復帰パターンに従って最小化する前の吐出容量に復帰させる圧縮機吐出容量の戻し制御を行うこと。
【0112】
記設定差圧変更アクチュエータは、外部からの通電制御により電磁付勢力を変化させるソレノイド部を有すること。
記ソレノイド部への非通電時には、クランク室の内圧が増大する方向に前記弁体を位置決めする初期化手段を更に備えてなること。
【0113】
【発明の効果】
以上詳述したように本発明によれば、蒸発器での熱負荷状況に影響されることなく、必要時には外部制御によって圧縮機の吐出容量を迅速に変更することができる。特に本発明によれば、室温の安定維持を図るための圧縮機の吐出容量制御と、緊急避難的な吐出容量の迅速な変更とを両立させることが可能となる。
【図面の簡単な説明】
【図1】容量可変型斜板式圧縮機の一例の断面図。
【図2】第1実施形態に従う冷媒循環回路の概要を示す回路図。
【図3】第1実施形態に従う容量制御弁の断面図。
【図4】図3の制御弁の構造特性を説明するための概略断面図。
【図5】図1のX1−X1線断面図。
【図6】閉塞状態にある逆止弁の拡大断面図。
【図7】容量制御のメインルーチンのフローチャート。
【図8】通常制御ルーチンのフローチャート。
【図9】加速時制御ルーチンのフローチャート。
【図10】加速カットの際の動作特性を示すタイムチャート。
【図11】第2実施形態に従う容量制御弁の断面図。
【図12】図11の制御弁の構造特性を説明するための概略断面図。
【図13】別例の冷媒循環回路の概要を示す回路図。
【図14】別例の冷媒循環回路の概要を示す回路図。
【図15】別例の吸入通路を開放した状態にある逆止弁周辺の断面図。
【図16】加速カットの際の動作特性を示すタイムチャート。
【図17】従来技術での吸入圧と吐出容量の関係を概念的に示すグラフ。
【符号の説明】
1a…シリンダボア、5…クランク室、12…斜板(カムプレート)、20…ピストン、21…吸入室、22…吐出室、27…抽気通路、28…給気通路(27及び28は内部通路を構成する)、31…凝縮器、32…膨張弁(減圧装置)、33…蒸発器、、40…作動ロッド(第2実施形態において差圧検出手段を構成する)、43…弁体部(弁体)、45…バルブハウジング、46…弁室(第2実施形態では差圧検出手段を構成する)、48…感圧室、54…可動スプール(区画部材)、55…P1圧力室、56…P2圧力室(48,54,55及び56は差圧検出手段を構成する)、63…ソレノイド室、64…可動鉄心、65…ガイド孔(63,64及び65は第2実施形態において差圧検出手段を構成する)、70…制御装置(吐出容量制御手段を構成する)、71…外部情報検知手段、92…逆止弁(差圧低下促進手段)、100…設定差圧変更アクチュエータ、P1,P2…第1,第2の圧力監視点、Pc…クランク圧(クランク室の内圧)、Pd…吐出圧(圧力監視点P1における圧力)、Ps…吸入圧(圧力監視点P2における圧力)、TPD…設定差圧。

Claims (8)

  1. 凝縮器、減圧装置、蒸発器及び容量可変型圧縮機からなる冷媒循環回路を備えた空調装置であって、
    前記圧縮機の冷媒吐出容量を推し量る指標として、前記冷媒循環回路における圧縮機と凝縮器との間に設定された第1の圧力監視点と、蒸発器と圧縮機との間に設定された第2の圧力監視点との間の差圧を検出する差圧検出手段と、
    前記差圧以外の種々の外部情報を検知する外部情報検知手段と、
    前記外部情報検知手段から提供される外部情報に基づいて制御目標値たる設定差圧を決定すると共に、その設定差圧に前記差圧検出手段によって検出された差圧が近づくように前記圧縮機の吐出容量をフィードバック制御する吐出容量制御手段と
    を備え
    前記容量可変型圧縮機は、シリンダボア内にピストンを往復動可能に収容する往復ピストン式圧縮機であって、該ピストンと作動連結されたカムプレートを収容するクランク室の内圧を制御することで吐出容量を変更可能なタイプであり、
    前記吐出容量制御手段は、
    前記第1及び第2の圧力監視点間の差圧を機械的に検出する前記差圧検出手段を内蔵しその検出差圧に基づいて自律的に弁開度調節可能であり且つその自律的な弁開度調節動作の目標となる設定差圧を外部からの制御によって変更可能な前記クランク室の内圧を調節するための制御弁と、
    前記外部情報検知手段と電気的に接続されて前記制御弁の設定差圧を可変設定する制御装置とから構成され、
    当該空調装置は更に、前記制御装置による設定差圧の設定変更に起因して圧縮機の吐出容量が低減されるときに、第1の圧力監視点と第2の圧力監視点との間の差圧の迅速低下を促進する差圧低下促進手段を備えてなることを特徴とする空調装置。
  2. 前記第1の圧力監視点は該圧縮機の吐出室に設定され、第2の圧力監視点は該圧縮機の吸入室に設定されていることを特徴とする請求項1に記載の空調装置。
  3. 前記吐出容量制御手段は、外部情報に基づいて通常時又は非常時の判定を行う機能を備え、非常時には前記フィードバック制御を中断して圧縮機の吐出容量を強制的に所定容量に制御することを特徴とする請求項1又は2に記載の空調装置。
  4. 前記第1の圧力監視点は圧縮機の吐出室に設定されており、前記差圧低下促進手段は、該吐出室と前記凝縮器との間に配設された逆止弁を含むことを特徴とする請求項1〜のいずれか一項に記載の空調装置。
  5. 前記第2の圧力監視点は圧縮機の吸入室に設定されており、前記差圧低下促進手段は、該吸入室と前記蒸発器との間に配設された逆止弁を含むことを特徴とする請求項のいずれか一項に記載の空調装置。
  6. カムプレートを収容するクランク室の内圧を制御することで吐出容量を変更可能な容量可変型圧縮機に用いられる制御弁であって、
    前記圧縮機の吐出室、クランク室及び吸入室を経由する内部通路の一部を構成すべくバルブハウジング内に区画された弁室と、
    前記弁室内に移動可能に設けられ該弁室内での位置に応じて前記内部通路の開度を調節する弁体と、
    前記圧縮機の吐出室と吸入室との間の差圧を検出すると共に、その差圧に基づく荷重を前記弁体に及ぼして弁室内での弁体の位置決めに関与する差圧検出手段と、
    少なくとも前記差圧検出手段に対し作動連結可能に設けられ、当該差圧検出手段による弁体の位置決め動作の目標となる設定差圧を外部からの制御により変更可能とする設定差圧変更アクチュエータと
    を備えてなることを特徴とする容量可変型圧縮機の制御弁。
  7. 前記差圧検出手段は、前記バルブハウジング内に区画された感圧室と、前記感圧室内を二つの圧力室に区画すると共に該バルブハウジングの軸方向に変位可能な状態で前記弁体と作動連結された区画部材を備えており、前記二つの圧力室にはそれぞ れ前記圧縮機の吐出室及び吸入室の圧力が導かれることを特徴とする請求項6に記載の容量可変型圧縮機の制御弁
  8. 前記弁体と前記差圧検出手段とは作動ロッドに一体化されており、その作動ロッドの一端で吸入室の圧力を受圧し他端で吐出室の圧力を受圧することを特徴とする請求項6に記載の容量可変型圧縮機の制御弁
JP33427999A 1999-11-25 1999-11-25 空調装置および容量可変型圧縮機の制御弁 Expired - Fee Related JP3780784B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP33427999A JP3780784B2 (ja) 1999-11-25 1999-11-25 空調装置および容量可変型圧縮機の制御弁
KR1020000046785A KR20010050068A (ko) 1999-11-25 2000-08-12 공조장치 및 용량가변형 압축기의 제어밸브
US09/717,804 US6457319B1 (en) 1999-11-25 2000-11-21 Air conditioner and control valve in variable displacement compressor
DE60033000T DE60033000T2 (de) 1999-11-25 2000-11-23 Klimaanlage und Steuerventil in einem variablen Verdrängungskompressor
EP00125707A EP1103721B1 (en) 1999-11-25 2000-11-23 Air conditioner and control valve in variable displacement compressor
BR0005558-1A BR0005558A (pt) 1999-11-25 2000-11-24 Condicionador de ar e válvula de controle em compressor de deslocamento variável
CN00137180A CN1302992A (zh) 1999-11-25 2000-11-24 变容式压缩机的空气调节器和控制阀

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33427999A JP3780784B2 (ja) 1999-11-25 1999-11-25 空調装置および容量可変型圧縮機の制御弁

Publications (2)

Publication Number Publication Date
JP2001153042A JP2001153042A (ja) 2001-06-05
JP3780784B2 true JP3780784B2 (ja) 2006-05-31

Family

ID=18275574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33427999A Expired - Fee Related JP3780784B2 (ja) 1999-11-25 1999-11-25 空調装置および容量可変型圧縮機の制御弁

Country Status (7)

Country Link
US (1) US6457319B1 (ja)
EP (1) EP1103721B1 (ja)
JP (1) JP3780784B2 (ja)
KR (1) KR20010050068A (ja)
CN (1) CN1302992A (ja)
BR (1) BR0005558A (ja)
DE (1) DE60033000T2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858191B2 (en) 2008-04-07 2014-10-14 Calsonic Kansei Corporation Swash plate type compressor

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060325A1 (fr) * 2000-06-27 2003-07-24 Kabushiki Kaisha Toyota Jidoshokki Compresseur
JP3942851B2 (ja) * 2001-07-31 2007-07-11 株式会社テージーケー 容量制御弁
JP4246975B2 (ja) * 2002-02-04 2009-04-02 イーグル工業株式会社 容量制御弁
JP4271459B2 (ja) * 2002-05-15 2009-06-03 サンデン株式会社 空調装置
JP4152674B2 (ja) * 2002-06-04 2008-09-17 株式会社テージーケー 可変容量圧縮機用容量制御弁
JP2004053180A (ja) * 2002-07-23 2004-02-19 Sanden Corp 可変容量圧縮機を用いた空調装置
JP2004106676A (ja) * 2002-09-18 2004-04-08 Denso Corp 車両用空調装置
US8463441B2 (en) 2002-12-09 2013-06-11 Hudson Technologies, Inc. Method and apparatus for optimizing refrigeration systems
TWI235684B (en) * 2003-04-11 2005-07-11 Au Optronics Corp Anti-splashing device and method
JP4614642B2 (ja) * 2003-08-29 2011-01-19 三洋電機株式会社 冷凍システム
US7412842B2 (en) 2004-04-27 2008-08-19 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system
US7275377B2 (en) 2004-08-11 2007-10-02 Lawrence Kates Method and apparatus for monitoring refrigerant-cycle systems
JP2006083837A (ja) * 2004-08-19 2006-03-30 Tgk Co Ltd 可変容量圧縮機用制御弁
CN100436815C (zh) * 2004-08-31 2008-11-26 株式会社Tgk 用于可变容积式压缩机的控制阀
JP2006097673A (ja) * 2004-08-31 2006-04-13 Tgk Co Ltd 可変容量圧縮機用制御弁
JP4511393B2 (ja) * 2005-03-11 2010-07-28 サンデン株式会社 車両用空調装置
JP3995007B2 (ja) * 2005-05-30 2007-10-24 ダイキン工業株式会社 調湿装置
DE502006004468D1 (de) * 2005-11-09 2009-09-17 Bayerische Motoren Werke Ag Klimakompressor mit differenzdruckbegrenzungseinrichtung
US7611335B2 (en) * 2006-03-15 2009-11-03 Delphi Technologies, Inc. Two set-point pilot piston control valve
JP4799252B2 (ja) * 2006-04-06 2011-10-26 サンデン株式会社 空調装置
US8590325B2 (en) 2006-07-19 2013-11-26 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US20080216494A1 (en) 2006-09-07 2008-09-11 Pham Hung M Compressor data module
US20080264080A1 (en) * 2007-04-24 2008-10-30 Hunter Manufacturing Co. Environmental control unit for harsh conditions
JP4861914B2 (ja) * 2007-06-26 2012-01-25 サンデン株式会社 可変容量圧縮機の容量制御システム
JP5474284B2 (ja) 2007-07-12 2014-04-16 サンデン株式会社 可変容量圧縮機の容量制御システム
JP5053740B2 (ja) * 2007-07-13 2012-10-17 サンデン株式会社 可変容量圧縮機の容量制御弁
US20090037142A1 (en) 2007-07-30 2009-02-05 Lawrence Kates Portable method and apparatus for monitoring refrigerant-cycle systems
US8393169B2 (en) 2007-09-19 2013-03-12 Emerson Climate Technologies, Inc. Refrigeration monitoring system and method
US8160827B2 (en) 2007-11-02 2012-04-17 Emerson Climate Technologies, Inc. Compressor sensor module
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
JP5091757B2 (ja) * 2008-05-01 2012-12-05 サンデン株式会社 可変容量圧縮機の容量制御システム
KR100986943B1 (ko) * 2008-08-13 2010-10-12 주식회사 두원전자 사판식 압축기의 토출용 체크밸브
KR20100121961A (ko) * 2009-05-11 2010-11-19 엘지전자 주식회사 공기조화기
AU2012223466B2 (en) 2011-02-28 2015-08-13 Emerson Electric Co. Residential solutions HVAC monitoring and diagnosis
US8964338B2 (en) 2012-01-11 2015-02-24 Emerson Climate Technologies, Inc. System and method for compressor motor protection
US9480177B2 (en) 2012-07-27 2016-10-25 Emerson Climate Technologies, Inc. Compressor protection module
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9638436B2 (en) 2013-03-15 2017-05-02 Emerson Electric Co. HVAC system remote monitoring and diagnosis
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
CA2908362C (en) 2013-04-05 2018-01-16 Fadi M. Alsaleem Heat-pump system with refrigerant charge diagnostics
EP3744978B1 (en) * 2018-01-26 2023-11-15 Eagle Industry Co., Ltd. Capacity control valve
WO2019146965A1 (ko) * 2018-01-29 2019-08-01 한온시스템 주식회사 압축기의 제어장치, 그에 사용되는 전자식 제어밸브 및 그를 포함한 전동 압축기
US11401923B2 (en) 2018-02-15 2022-08-02 Eagle Industry Co., Ltd. Capacity control valve
CN111684157B (zh) * 2018-02-15 2022-05-03 伊格尔工业股份有限公司 容量控制阀
JP7139084B2 (ja) 2018-02-27 2022-09-20 イーグル工業株式会社 容量制御弁
CN109357453B (zh) * 2018-10-19 2020-05-22 珠海格力电器股份有限公司 变容压缩机变容切换的判断方法、装置以及控制装置
KR20200133485A (ko) * 2019-05-20 2020-11-30 현대자동차주식회사 차량의 공기조화 시스템, 공기조화 시스템용 전자제어밸브 및 공기조화 시스템의 제어방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62253970A (ja) * 1986-04-25 1987-11-05 Toyota Autom Loom Works Ltd 可変容量圧縮機
US4732544A (en) * 1986-06-12 1988-03-22 Diesel Kiki Co., Ltd. Variable capacity wobble plate compressor
AU615200B2 (en) * 1987-06-30 1991-09-26 Sanden Corporation Refrigerant circuit with passageway control mechanism
JPH085310B2 (ja) * 1989-04-29 1996-01-24 日産自動車株式会社 車両用空調装置
JP3355002B2 (ja) * 1993-10-15 2002-12-09 株式会社豊田自動織機 可変容量型圧縮機用制御弁
US5577894A (en) * 1993-11-05 1996-11-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Piston type variable displacement compressor
JP3612140B2 (ja) * 1996-04-15 2005-01-19 株式会社テージーケー 容量可変圧縮機の容量制御装置
US6010312A (en) * 1996-07-31 2000-01-04 Kabushiki Kaisha Toyoda Jidoshokki Seiksakusho Control valve unit with independently operable valve mechanisms for variable displacement compressor
JP3900669B2 (ja) 1998-04-16 2007-04-04 株式会社豊田自動織機 制御弁及び可変容量型圧縮機
JP3728387B2 (ja) * 1998-04-27 2005-12-21 株式会社豊田自動織機 制御弁

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858191B2 (en) 2008-04-07 2014-10-14 Calsonic Kansei Corporation Swash plate type compressor

Also Published As

Publication number Publication date
BR0005558A (pt) 2001-07-31
EP1103721B1 (en) 2007-01-17
EP1103721A3 (en) 2003-08-06
EP1103721A2 (en) 2001-05-30
DE60033000T2 (de) 2007-11-08
US6457319B1 (en) 2002-10-01
JP2001153042A (ja) 2001-06-05
CN1302992A (zh) 2001-07-11
DE60033000D1 (de) 2007-03-08
KR20010050068A (ko) 2001-06-15

Similar Documents

Publication Publication Date Title
JP3780784B2 (ja) 空調装置および容量可変型圧縮機の制御弁
JP3991556B2 (ja) 容量可変型圧縮機の制御弁
JP3911937B2 (ja) 空調装置及び容量可変型圧縮機の制御方法
JP4081965B2 (ja) 容量可変型圧縮機の容量制御機構
JP3941303B2 (ja) 空調装置
JP3799921B2 (ja) 容量可変型圧縮機の制御装置
JP3984724B2 (ja) 容量可変型斜板式圧縮機の制御弁及び斜板式圧縮機
US6371734B1 (en) Control valve for variable displacement compressor
JP3731434B2 (ja) 容量可変型圧縮機の制御弁
EP1122430A2 (en) Controller for variable displacement compressor
JP2001133053A (ja) 空調装置
JP2001349624A (ja) 空調装置及び容量可変型圧縮機の容量制御弁
KR100494210B1 (ko) 용량가변형 압축기의 제어밸브
JP3948432B2 (ja) 容量可変型圧縮機の制御装置
JP3917347B2 (ja) 車両用空調装置
US6751971B2 (en) Variable displacement type compressor, air conditioner with the variable displacement type compressor, and method for controlling displacement in the variable displacement type compressor
JP2002054561A (ja) 容量可変型圧縮機の制御弁及び容量可変型圧縮機
JP4333042B2 (ja) 容量可変型圧縮機の制御弁
JP4122736B2 (ja) 容量可変型圧縮機の制御弁
JP2001153044A (ja) 容量可変型圧縮機の制御弁
JP2001328424A (ja) 空調装置
JP4000767B2 (ja) 容量可変型圧縮機の制御装置
JP2003083243A (ja) 容量可変型圧縮機の容量制御装置
JP2002081374A (ja) 容量可変型圧縮機の制御弁
JP2007107532A (ja) 容量可変型圧縮機の制御弁

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

LAPS Cancellation because of no payment of annual fees