JP3772303B2 - Strain measuring device - Google Patents

Strain measuring device Download PDF

Info

Publication number
JP3772303B2
JP3772303B2 JP2001379482A JP2001379482A JP3772303B2 JP 3772303 B2 JP3772303 B2 JP 3772303B2 JP 2001379482 A JP2001379482 A JP 2001379482A JP 2001379482 A JP2001379482 A JP 2001379482A JP 3772303 B2 JP3772303 B2 JP 3772303B2
Authority
JP
Japan
Prior art keywords
optical fiber
metal tube
strain
amount
rigid bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001379482A
Other languages
Japanese (ja)
Other versions
JP2003177011A (en
Inventor
幸美 吉田
Original Assignee
大成基礎設計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大成基礎設計株式会社 filed Critical 大成基礎設計株式会社
Priority to JP2001379482A priority Critical patent/JP3772303B2/en
Publication of JP2003177011A publication Critical patent/JP2003177011A/en
Application granted granted Critical
Publication of JP3772303B2 publication Critical patent/JP3772303B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、例えば地下掘削井戸や孔内に沿って装入したパイプの長さ方向における歪量を、FBG応用光ファイバー歪センサーを用いて測定することにより、地下掘削井戸や孔の歪量を計測し、あるいは各種の建築構造物等における、特に狭い空間での各種の歪量を効率的に測定するために使用する測定装置に関し、測定装置としての耐久性の向上および測定精度の向上をはかることを目的とする。
【0002】
【従来の技術】
各種の構造物等における歪量を測定する場合において、支点と作用点間に光ファイバーを直接的に介在させ、作用点の移動に伴う上記光ファイバーの伸び量を光歪センサにより測定することにより歪度を計測し、これにより、とくに極小な歪度の測定を可能にした装置を構造物等の外側表面に貼り付けて使用する測定方法については、すでに本出願人らにより出願されている(特願2000−204849)。
【0003】
上記した発明は、天井あるいは吊り下げ基準点等不動の支点と、該支点に対して移動可能な作用点との間に光ファイバーを直接的に介在させ、作用点の移動に伴う光ファイバーの伸び量を光センサーにより測定し、作用点の移動をもたらす物体の重量あるいは強度、さらには測定面の傾斜度ならびに亀裂幅の変化等を歪度として高精度に計測するようにしたものである。
【0004】
【発明が解決しようとする課題】
しかしながら上記の歪度測定装置は、使用に際して支点・作用点間に光ファイバーを直接的に介在させ、しかも該支点・作用点の部分のみに接着剤等を介して貼り付け使用するものであるところから、光ファイバー歪センサーおよび、これに接続される光ファイバー配線等が露出することになり、該露出部分に損傷をうけやすく耐久性に乏しい。 また、かかる損傷を防止する観点から実際の施工現場においては、上記した光ファイバー歪センサーや光ファイバー配線等に樹脂被覆を施し、あるいは金属製のプロテクターを被せる等の防護構造が施されることが多い。
【0005】
そのために、かかる防護構造による剛性が付加されて被測定物本来の剛性度が増してしまう結果、歪度測定に際しての精度に悪影響を及ぼしやすい。 またそればかりではなく、歪度測定装置としても構造が複雑且つ大型化するのを避けられず、しかも毀損しやすいために運搬や取り扱いに十分な注意力を要し、かつ測定装置としてのコストの高騰も避けられない。
【0006】
そこで、本発明者はプラスチック材に一定の深さの細孔を開けるとともに、該細孔内に光ファイバー歪センサーを装入し、しかも装入した光ファイバー歪センサーの長さ方向両端部に位置して該プラスチック材より剛性に優れた二つの金属体をプラスチック材に対して一体に固定するとともに、二つの金属体を被測定部における測定区間の両端に固定して、プラスチック材が受けた歪応力による歪量を前記した光ファイバー歪センサーにより測定する手法を案出した。
【0007】
かかるプラスチック材を用いた歪量測定法は、取り扱い性に優れ、しかも高精度の歪量測定が可能であるが、プラスチック材に細孔をあけるには相当の熟練性と、作業の困難性を伴うこと、またプラスチック材には吸湿性があり、経時的に材質・体積変化が進行してプラスチック自体に変形や歪を生ずるために、長期にわたる使用をおこなう場合には次第に測定結果の信頼性が失われるために、その完全な防湿対策を講じるのに大掛かりな防湿保護構造とする必要があるところから必然的に複雑かつ大型化するのを避けられない。
【0008】
【課題を解決するための手段】
本発明にあっては、FBG応用光ファイバー歪センサーを用いた歪度測定装置において、測定体としてプラスチック材に代えて金属材を使用すると共に、構造の簡素化と測定の高精度化をはかり、とくに耐久性を著しく向上させ、しかもコストの著しい低減を図るようにしたものである。 しかし、ここで測定体に金属材を使用するといっても、被測定部に固定する二つの剛体よりは弾性が低いものでなければ歪量の測定ができない。
【0009】
そこで本発明にあっては、二つの剛体に比して質的にあまり差がない金属材を測定体として使用するにあたり、前記した二つの剛体と弾性の面で差をつける手段として断面積の小さな金属管を使用することにした。 すなわち具体的には、歪量を測定すべき箇所における両端部に位置してそれぞれ被測定箇所に一体的に固定するための固定手段を有した二つの剛体と、該剛体間に一体に介在された金属管測定体とからなり、該金属管測定体は、金属管内に、金属管両端の剛体方向に向けてFBG応用光ファイバー歪センサーが、金属管内に接着剤を充填固化させて該金属管と一体的に装入されていることを特徴とする歪量測定装置に関する。
【0011】
【発明の実施の形態】
以下において本発明の具体的な内容を図1〜2にあらわした実施例をもとに説明すると、1A・1Bは剛体、3は二つの剛体1A・1B間に一体に介在される金属管測定体をあらわす。 剛体1A・1Bは、それぞれ一定区間の測定箇所における両端に安定的に、しかも形状変形することなく固定が可能な形状および材質のものが選ばれる。 例えば測定箇所にもよるが、地中に掘削した孔内の深さ方向における歪量を測定する目的で使用する場合には、孔内に装入しやすい形状(例えば円筒状)に形成するとともに、鉄(場合によっては高炭素鋼や焼き入れされた炭素鋼)その他の金属など、一定の硬度を有する材質のものが選ばれる。
【0012】
さらに剛体1A・1Bには、歪量を測定する一定区間の始端部および終端部に一体的に固定するための固定手段2が取り付けられる。 この固定手段2については、被測定箇所の形状や構造如何により種々の構造のものが考えられるが、例えば図1にあらわされているような地中Eに掘削された掘削孔H内に取り付ける場合においては、掘削孔H内に装入されたパイプPの内壁面に剛体1Aおよび1Bを、それぞれ一体に固定するためのドーナツ状をしたスペーサーでもよく、また周方向均等間隔毎に放射方向に向けて突出させた複数のバー状のものなどでもよい。
【0013】
金属管測定体3については汎用の金属パイプの使用が可能であり、内径については後記する光ファイバー歪センサー4を装入するのに必要かつ十分な内径を有し、しかも前記した剛体1A・1Bとともに、測定箇所に装入する場合の障害にならない程度の大きさおよび長さのものが選ばれ、これらの金属管測定体3は、前記二つの剛体1A・1B間に螺子結合により、あるいは溶接や接着剤により一体に介在され、しかも内部には光ファイバー歪センサー4が装入される。
【0014】
すなわち、金属管測定体3内には図2にあらわしたように、一体接続する両側の剛体1A・1B方向に向けて光ファイバー歪センサー4を装入する。 本実施例において使用される光ファイバー歪センサー4としては、「FBG応用センサ」(Fiber Bragg Grating)が使用される。
【0015】
さらにFBG応用光ファイバー歪センサー4が装入された金属管測定体3内には接着剤5を充填し、且つこれを固化させて装入されたFBG応用光ファイバー歪センサー4を金属管測定体3と一体化させる。 なお4aおよび4bは、剛体1A・1B中に引き通されたところの、前記したFBG応用光ファイバー歪センサー4に接続される光ファイバー配線を示している。
【0016】
さらに金属管測定体3内に充填される接着剤5については、瞬間接着剤などの揮発性のものや大気中の水分と反応して硬化するタイプのものは不向きであり、この場合に使用が可能な接着剤としては、金属管測定体3内への充填性に優れ、しかも金属管測定体3内において硬化完了をし、かつ硬化後の体積減少ができるだけ少ないないものであればよく、そのような接着剤の一例としてはエポキシ樹脂系の接着剤などが挙げられる。
【0017】
上記した実施例の構成において、光ファイバー歪センサー4としてFBG応用センサを用いた場合の測定例について説明すると、光ファイバーの一端から広い波長帯にわたる光を入射し、センサー部で反射される特定の波長の光を入射と同一端で捕光する。 センサー部に歪が生じると反射波長にズレを生じ、このズレの程度を測定して歪量を算出する。 なおこの場合、歪の発生は、長さに変化を生じたことを意味し、正確には[変化した分の長さ]÷[もとの長さ]であらわされる。
【0018】
上記したFBG応用センサは、光ファイバーのコア部の屈折率を一定の周期毎に変化させたもので、「Bragg波長」といわれる特定の波長の光のみを選択的に反射する特性を有する。 したがって外力が加わりFBG応用センサーに歪が生じると、前記したBragg波長が変化し、このBragg波長の変化量は、歪度と比例関係にある。 FBG応用センサーは、上記したBragg波長の変化量と歪度との関係を利用してBragg波長の変化量を検出することにより、FBG応用センサーにおける物体の傾斜などについて、これを歪度として計測することができるようにしたものである。
【0019】
しかるに、中間部に金属管測定体3を一体に介在させた剛体1A・1Bを、地中Eに掘削した掘削孔H内に取り付けられたパイプP内に装入し、目的深度での掘削孔Hの歪を測定する箇所の始端部と終端部とに、それぞれ固定手段2を用いて一体的に固定すると、両剛体1A・1Bが受けたパイプPの歪度に応じて金属管測定体3を変形させる。 この場合に、金属管測定体3内に埋設されているところの、光ファイバー歪センサー4に接続されている光ファイバーの一端に所定の光量の光を照射して測定準備をしておくものとする。
【0020】
つぎに、説明の便宜上金属管測定体3の部分の直径のみを十分に拡大してあらわした図3の原理図をもとに説明すると、前提としてパイプPに歪のない箇所では金属管測定体3に変形が発生しないために、L=R=aとなる。 しかしパイプPに歪が存する場合にはパイプPの長さ方向に沿って金属管測定体3が変形し、剛体1A・1Bは変形しないため剛体1A・1BはパイプPの曲がりに対応した明確な角度をもった位置関係を形成する。 なお金属管測定体3ではパイプPが曲がっていく内側(R側)で収縮が、またパイプPが曲がっていく外側(L側)で伸張となる。 したがってこの場合には、R=a−b L=a+b ということになる。 ここで剛体1A・1B間の距離=a とすると、剛体1BがパイプPと直交する方向への距離dだけ離れた位置でのb´は、b´=d×tan c と近似表現できる。
【0021】
このことから剛体1Aと剛体1Bとのなす角度と、剛体1Aと剛体1Bとの間に挟まれた金属管測定体3の変形量とには相関関係があることがわかる。 図3において角度cを直接求めることは困難であるが、金属管測定体3の変形量から角度cを求めることができるため、最終的にパイプP、すなわち地中に対する掘削孔の歪量を測定することができる。
【0022】
【発明の効果】
本発明は上記した通り、歪量測定装置として、歪量を測定すべき箇所における両端部に位置してそれぞれ被測定箇所に一体的に固定するための固定手段を有した二つの剛体と、該剛体間に一体に介在された金属管測定体とからなり、該金属管測定体は、金属管内に、金属管両端の剛体方向に向けてFBG応用光ファイバー歪センサーが、金属管内に接着剤を充填固化させて該金属管と一体的に装入されているものであるために、構造の簡素化をはかるとともに測定の高精度を維持し、とくに耐久性を著しく向上させ、しかもコストの著しい低減を図ることができ、例えば地下掘削井戸や孔の歪量を計測し、あるいは各種の建築構造物等における、特に狭い空間での各種の歪量を効率的に測定することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である歪量測定装置の使用状態をあらわした概略図。
【図2】図1における金属管測定体部分の中央部を拡大してあらわした横断面図。
【図3】本発明のFBG応用センサを用いた測定手段の原理説明図。
【符号の説明】
1A 剛体
1B 剛体
2 固定手段
3 金属管測定体
4 光ファイバー歪センサー
5 接着剤
[0001]
[Industrial application fields]
The present invention measures the amount of strain in an underground excavation well or hole, for example, by measuring the amount of strain in the length direction of an underground excavation well or pipe inserted along the bore using an FBG applied optical fiber strain sensor. In addition, with respect to measuring devices used to efficiently measure various amounts of distortion, particularly in narrow spaces, in various building structures, etc., the durability and measurement accuracy of the measuring device should be improved. With the goal.
[0002]
[Prior art]
When measuring the amount of strain in various structures, etc., the optical fiber is directly interposed between the fulcrum and the action point, and the degree of distortion is measured by measuring the amount of extension of the optical fiber accompanying the movement of the action point with an optical strain sensor. A measurement method that uses a device that can measure a minimum skewness by attaching it to the outer surface of a structure or the like has been already filed by the present applicants (Japanese Patent Application). 2000-204849).
[0003]
In the above-described invention, an optical fiber is directly interposed between a stationary fulcrum such as a ceiling or a suspension reference point and an action point movable with respect to the fulcrum, and the amount of extension of the optical fiber accompanying the movement of the action point is increased. The measurement is performed with an optical sensor, and the weight or strength of the object that causes the movement of the action point, and the inclination of the measurement surface and the change in crack width are measured with high accuracy as the degree of distortion.
[0004]
[Problems to be solved by the invention]
However, the above-described distortion measuring device is used in that an optical fiber is directly interposed between fulcrums and action points in use, and only the portions of the fulcrums and action points are pasted using an adhesive or the like. In addition, the optical fiber strain sensor and the optical fiber wiring connected thereto are exposed, and the exposed portion is easily damaged and has poor durability. Further, from the viewpoint of preventing such damage, in the actual construction site, a protective structure such as applying a resin coating to the above-described optical fiber strain sensor or optical fiber wiring or covering with a metal protector is often applied.
[0005]
For this reason, rigidity due to such a protective structure is added and the inherent rigidity of the object to be measured is increased. As a result, the accuracy in measuring the degree of distortion tends to be adversely affected. Not only that, it is inevitable that the structure of the strain measuring device is complicated and large, and since it is easily damaged, it requires sufficient attention for transportation and handling, and the cost of the measuring device is low. Soaring is inevitable.
[0006]
Therefore, the present inventor opened a pore of a certain depth in the plastic material, inserted an optical fiber strain sensor into the pore, and positioned at both ends in the length direction of the inserted optical fiber strain sensor. The two metal bodies, which are more rigid than the plastic material, are fixed to the plastic material integrally, and the two metal bodies are fixed to both ends of the measurement section of the measured part, and the plastic material is subjected to the strain stress received. A technique has been devised for measuring the amount of strain with the optical fiber strain sensor described above.
[0007]
The strain measurement method using such a plastic material is excellent in handleability and can measure the strain amount with high accuracy, but it requires considerable skill and difficulty in drilling holes in the plastic material. In addition, since plastic materials are hygroscopic and the material and volume change over time, causing deformation and distortion in the plastic itself, the reliability of the measurement results gradually becomes longer when used over a long period of time. In order to be lost, it is inevitable that a complicated and large-sized structure is inevitably required since a large moisture-proof protection structure is required to take a complete moisture-proof measure.
[0008]
[Means for Solving the Problems]
In the present invention, in the distortion measuring device using the FBG applied optical fiber strain sensor, a metal material is used instead of a plastic material as a measurement body, and the structure is simplified and the measurement accuracy is improved. The durability is remarkably improved and the cost is remarkably reduced. However, even if a metal material is used for the measurement body here, the amount of strain cannot be measured unless the elasticity is lower than that of the two rigid bodies fixed to the portion to be measured.
[0009]
Therefore, in the present invention, when using a metal material that is not much different in quality as compared with the two rigid bodies as a measuring body, the cross-sectional area is used as a means for making a difference between the two rigid bodies and the elastic surface. Decided to use a small metal tube. That is, specifically, two rigid bodies having fixing means for integrally fixing to the measurement site at both ends of the location where the amount of strain is to be measured are integrally interposed between the rigid bodies. A metal tube measuring body, and the FBG applied optical fiber strain sensor is filled in the metal tube with an adhesive filled in the metal tube toward the rigid body direction at both ends of the metal tube. The present invention relates to a strain amount measuring device that is integrally inserted.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the following, the specific contents of the present invention will be described based on the embodiment shown in FIGS. 1 and 2. 1A and 1B are rigid bodies, and 3 is a metal pipe measurement integrally interposed between two rigid bodies 1A and 1B. Represents the body. As the rigid bodies 1A and 1B, those having a shape and a material that can be fixed stably at both ends of the measurement points in a certain section without being deformed are selected. For example, depending on the measurement location, when it is used for the purpose of measuring the amount of strain in the depth direction in a hole excavated in the ground, it is formed into a shape that is easy to insert into the hole (for example, a cylindrical shape) A material having a certain hardness such as iron (in some cases, high carbon steel or hardened carbon steel) or other metal is selected.
[0012]
Further, fixing means 2 for fixing the rigid bodies 1A and 1B integrally to the start and end portions of a fixed section for measuring the strain amount is attached. The fixing means 2 may be of various structures depending on the shape and structure of the location to be measured. For example, when the fixing means 2 is installed in the excavation hole H excavated in the ground E as shown in FIG. May be a donut-shaped spacer for integrally fixing the rigid bodies 1A and 1B to the inner wall surface of the pipe P inserted in the excavation hole H, and may be directed in the radial direction at equal circumferential intervals. It may be a plurality of bar-like ones that are protruded.
[0013]
A general-purpose metal pipe can be used for the metal pipe measuring body 3, and the inner diameter has a necessary and sufficient inner diameter for inserting the optical fiber strain sensor 4 described later, and together with the rigid bodies 1A and 1B described above. The metal tube measuring body 3 is selected to have a size and a length that do not hinder the insertion into the measurement location, and the metal pipe measuring body 3 is screwed between the two rigid bodies 1A and 1B or welded, The optical fiber strain sensor 4 is inserted inside by an adhesive and is inserted inside.
[0014]
That is, as shown in FIG. 2, the optical fiber strain sensor 4 is inserted into the metal tube measuring body 3 toward the rigid bodies 1A and 1B on both sides to be integrally connected. As the optical fiber strain sensor 4 used in the present embodiment, “FBG applied sensor” (Fiber Bragg Grating) is used.
[0015]
Further, the metal tube measuring body 3 in which the FBG applied optical fiber strain sensor 4 is inserted is filled with an adhesive 5, and the FBG applied optical fiber strain sensor 4 which has been solidified is inserted into the metal tube measuring body 3. Integrate. In addition, 4a and 4b have shown the optical fiber wiring connected to the above-mentioned FBG application optical fiber distortion sensor 4 pulled in in rigid body 1A * 1B.
[0016]
Furthermore, the adhesive 5 filled in the metal tube measuring body 3 is not suitable for a volatile material such as an instantaneous adhesive or a type that cures by reacting with moisture in the atmosphere. As the possible adhesive, it is sufficient that it has excellent filling properties in the metal tube measuring body 3 and is cured in the metal tube measuring body 3 and the volume reduction after curing is not as small as possible. An example of such an adhesive is an epoxy resin adhesive.
[0017]
In the configuration of the above-described embodiment, a measurement example when an FBG applied sensor is used as the optical fiber strain sensor 4 will be described. Light having a wide wavelength band is incident from one end of the optical fiber and reflected at the sensor unit. Light is captured at the same end as the incident. When distortion occurs in the sensor unit, the reflected wavelength is shifted, and the amount of distortion is calculated by measuring the degree of this shift. In this case, the occurrence of distortion means that the length has changed, and is accurately expressed as [length of change] / [original length].
[0018]
The above-described FBG applied sensor is obtained by changing the refractive index of the core portion of the optical fiber for every predetermined period, and has a characteristic of selectively reflecting only light of a specific wavelength called “Bragg wavelength”. Therefore, when an external force is applied and distortion occurs in the FBG applied sensor, the Bragg wavelength changes, and the amount of change in the Bragg wavelength is proportional to the degree of distortion. The FBG applied sensor detects the amount of change in the Bragg wavelength by using the relationship between the amount of change in the Bragg wavelength and the degree of distortion, and measures the inclination of the object in the FBG applied sensor as the degree of distortion. It is something that can be done.
[0019]
However, the rigid bodies 1A and 1B in which the metal pipe measuring body 3 is integrally interposed in the intermediate portion are inserted into the pipe P attached in the excavation hole H excavated in the underground E, and the excavation hole at the target depth is obtained. When the fixing means 2 is used to integrally fix the starting end portion and the terminal end portion of the portion where the strain of H is measured, the metal pipe measuring body 3 according to the degree of strain of the pipe P received by both the rigid bodies 1A and 1B. Deform. In this case, it is assumed that measurement preparation is performed by irradiating one end of an optical fiber connected to the optical fiber strain sensor 4 embedded in the metal tube measuring body 3 with a predetermined amount of light.
[0020]
Next, based on the principle diagram of FIG. 3 in which only the diameter of the portion of the metal tube measuring body 3 is sufficiently enlarged for convenience of explanation, the metal pipe measuring body is assumed in a portion where the pipe P is not distorted as a premise. 3 is not deformed, L = R = a. However, when the pipe P is distorted, the metal pipe measuring body 3 is deformed along the length direction of the pipe P, and the rigid bodies 1A and 1B are not deformed. Therefore, the rigid bodies 1A and 1B are clearly corresponding to the bending of the pipe P. A positional relationship with an angle is formed. In the metal pipe measuring body 3, contraction occurs on the inner side (R side) where the pipe P is bent, and expansion occurs on the outer side (L side) where the pipe P is bent. Therefore, in this case, R = a−b L = a + b. If the distance between the rigid bodies 1A and 1B = a, then b ′ at a position where the rigid body 1B is separated by a distance d in the direction perpendicular to the pipe P can be approximated as b ′ = d × tan c.
[0021]
From this, it can be seen that there is a correlation between the angle formed by the rigid bodies 1A and 1B and the amount of deformation of the metal tube measuring body 3 sandwiched between the rigid bodies 1A and 1B. Although it is difficult to directly obtain the angle c in FIG. 3, since the angle c can be obtained from the deformation amount of the metal pipe measuring body 3, finally the strain amount of the drill hole with respect to the pipe P, that is, the ground is measured. can do.
[0022]
【The invention's effect】
As described above, the present invention provides, as a strain amount measuring device, two rigid bodies having fixing means that are positioned at both ends of a portion where a strain amount is to be measured and each of which is integrally fixed to a measured location ; It consists of a metal tube measuring body that is integrally interposed between rigid bodies, and the metal tube measuring body is filled with adhesives in the metal tube and FBG applied optical fiber strain sensor toward the rigid body direction at both ends of the metal tube. Since it is solidified and inserted integrally with the metal tube, it simplifies the structure, maintains high accuracy of measurement, particularly improves durability, and significantly reduces costs. For example, the amount of strain in an underground excavation well or a hole can be measured, or various types of strain in various building structures and the like, particularly in a narrow space, can be efficiently measured.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a use state of a strain amount measuring apparatus according to an embodiment of the present invention.
2 is an enlarged cross-sectional view showing a central portion of a metal tube measuring body portion in FIG. 1;
FIG. 3 is a diagram for explaining the principle of measuring means using the FBG application sensor of the present invention.
[Explanation of symbols]
1A rigid body 1B rigid body 2 fixing means 3 metal tube measuring body 4 optical fiber strain sensor 5 adhesive

Claims (1)

歪量を測定すべき箇所における両端部に位置してそれぞれ被測定箇所に一体的に固定するための固定手段を有した二つの剛体と、該剛体間に一体に介在された金属管測定体とからなり、該金属管測定体は、金属管内に、金属管両端の剛体方向に向けてFBG応用光ファイバー歪センサーが、金属管内に接着剤を充填固化させて該金属管と一体的に装入されていることを特徴とする歪量測定装置。Two rigid bodies that are positioned at both ends of the portion where the amount of strain is to be measured and have a fixing means for integrally fixing to the portion to be measured, and a metal pipe measuring body that is integrally interposed between the rigid bodies, The metal tube measuring body is inserted into the metal tube integrally with the FBG-applied optical fiber strain sensor in the direction of the rigid body at both ends of the metal tube, with the adhesive filled in the metal tube and solidified. A distortion amount measuring apparatus characterized by comprising:
JP2001379482A 2001-12-13 2001-12-13 Strain measuring device Expired - Fee Related JP3772303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001379482A JP3772303B2 (en) 2001-12-13 2001-12-13 Strain measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001379482A JP3772303B2 (en) 2001-12-13 2001-12-13 Strain measuring device

Publications (2)

Publication Number Publication Date
JP2003177011A JP2003177011A (en) 2003-06-27
JP3772303B2 true JP3772303B2 (en) 2006-05-10

Family

ID=19186837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001379482A Expired - Fee Related JP3772303B2 (en) 2001-12-13 2001-12-13 Strain measuring device

Country Status (1)

Country Link
JP (1) JP3772303B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191209A (en) * 2013-03-27 2014-10-06 Occ Corp Metal tube optical fiber cable
CN104244808A (en) * 2012-04-04 2014-12-24 布鲁塞尔大学 Optical force transducer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172536A (en) * 2003-12-10 2005-06-30 Taisei Kiso Sekkei Kk Knuckle measuring device
JP2007256117A (en) * 2006-03-23 2007-10-04 Fujitsu Ltd Printed circuit board testing device, printed circuit board testing method, printed circuit board testing program, and printed circuit board manufacturing method
US9416652B2 (en) 2013-08-08 2016-08-16 Vetco Gray Inc. Sensing magnetized portions of a wellhead system to monitor fatigue loading
CN111156916A (en) * 2020-01-16 2020-05-15 京工高科成都光电有限公司 Distributed optical fiber strain measurement system and use method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104244808A (en) * 2012-04-04 2014-12-24 布鲁塞尔大学 Optical force transducer
JP2014191209A (en) * 2013-03-27 2014-10-06 Occ Corp Metal tube optical fiber cable

Also Published As

Publication number Publication date
JP2003177011A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
US7751657B2 (en) Inclinometer system
JP4836180B2 (en) Displacement measuring device
JP6771100B2 (en) FBG strain sensor device that can be fixed by welding
JP5005363B2 (en) Fiber optic sensor cable
KR101129692B1 (en) underground displacement measuring instrument
JP3772303B2 (en) Strain measuring device
JP2007205740A (en) Tiltmeter using fbg optical fiber sensor
CN103411713B (en) Wide range is based on the reinforcing steel corrosion monitoring sensor of fiber grating sensing technology
JP2008134155A (en) Optical fiber strain gage
JP2009020016A (en) Optical fiber sensor cable
EP2990755A1 (en) Strain sensor and manufacturing method for strain sensor
KR100941227B1 (en) A fixture for an optical fiber sensor and a method for fixing an optical fiber sensor by using a fixture
US10451807B2 (en) Strain isolated fiber Bragg grating sensors
JP2001174341A (en) Pressure distribution sensor
KR100833718B1 (en) apparatus for measuring-survey of pile using the plate-type survey senser
JP2000303481A (en) Sloping ground monitoring device
JP2008180672A (en) Hollow displacement sensor, hollow displacement measuring system, mounting method of hollow displacement sensor
KR20050108328A (en) Fiber optic sensor embedded reinforcing bar
KR20180105816A (en) Apparatus for detecting deflection using optical fiber sensor
JP2019127794A (en) Anchor tendon and method for constructing ground anchor
JP2003106818A (en) Apparatus for measuring amount of distortion
CN103630083A (en) Strain measuring device
JP2005172536A (en) Knuckle measuring device
JP2017211266A (en) Foundation and bedrock distortion measurement device, and foundation and bedrock measurement method
JP2007255894A (en) Fbg strain gauge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees