JP3766933B2 - Purification device to purify contaminated soil - Google Patents

Purification device to purify contaminated soil Download PDF

Info

Publication number
JP3766933B2
JP3766933B2 JP2003094664A JP2003094664A JP3766933B2 JP 3766933 B2 JP3766933 B2 JP 3766933B2 JP 2003094664 A JP2003094664 A JP 2003094664A JP 2003094664 A JP2003094664 A JP 2003094664A JP 3766933 B2 JP3766933 B2 JP 3766933B2
Authority
JP
Japan
Prior art keywords
water
cleanliness
dewatering
filtration
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003094664A
Other languages
Japanese (ja)
Other versions
JP2004298750A (en
Inventor
隆 伊佐野
Original Assignee
東洋建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋建設株式会社 filed Critical 東洋建設株式会社
Priority to JP2003094664A priority Critical patent/JP3766933B2/en
Publication of JP2004298750A publication Critical patent/JP2004298750A/en
Application granted granted Critical
Publication of JP3766933B2 publication Critical patent/JP3766933B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、海底、又は河底等の底質に含有する疎水性物質を除去する浄化装置に関するものである。
【0002】
【従来の技術】
工事排水には、様々な疎水性有害物質が含まれているが、この疎水性物質を含んだ排水は、流れが緩やかな場所では固体分が沈降し底質となり、疎水性物質は水に難溶であるために、高濃度の疎水性物質が蓄積した底質が形成されることとなる。特に、底質中の小粒子径固体と有機物は、単位体積当りの表面積が非常に大きいために、ダイオキシン類を含む多量の疎水性物質を含有している。
【0003】
そこで、このように汚染された海底、又は河底の底質を浄化する従来の浄化装置を、図5に基いて説明する。
従来の浄化装置は、海底、又は河底の疎水性物質例えばダイオキシン類を含有する底質から浚渫船により掘削した汚染土壌を、基準径以下の粒子に分級する分級手段1と、この分級手段1で分級された極小粒子をフロック化し凝集沈殿させ、沈殿泥15、15aと高清浄度水16とを分離させる凝集沈殿槽2と、この凝集沈殿槽2に沈殿した沈殿泥15、15aを圧搾脱水する脱水装置3と、凝集沈殿槽2により分離された高清浄度水16を濾過吸着処理する濾過吸着手段50とから概略構成されている。
【0004】
分級手段1は、振動篩6及びサイクロン7で構成されており、浚渫船により海底、又は河底等の底質を浚渫し、この底質をパイプ輸送し、まず、振動篩6により、大径粒子(粒径≧2mm)と、高濃度のダイオキシン類等を含む水分が付着する中径粒子(粒径<2mm)とに分級して、中径粒子は泥水受槽8、大径粒子は粗粒土回収槽9に貯留される。この時、振動篩6には、洗浄水槽6aから洗浄水ポンプ30により洗浄水が圧送され、泥粒子等を洗浄する。この洗浄水槽6aには、後述する濾過吸着手段50の吸着処理水受槽54に貯留された吸着処理水の一部が洗浄水として送水ポンプ37aにより送水されている。
【0005】
次に、泥水受槽8に貯留された中径粒子はさらにサイクロン7により分級され、分級された極小径粒子(粒径<74μm)は、泥水受槽10に貯留され、小径粒子(74μm≦粒径<2mm)は、粗粒土回収槽9に貯留される。また、泥水受槽10には、後述する濾過吸着手段50の砂濾過水槽51、及び活性炭槽53を、送水ポンプ52a、54aにより送水した各処理水で洗浄した際に発生する洗浄汚水が圧送され、極小径粒子と共に均一に攪拌されて、その泥水が移送ポンプ31により凝集沈殿槽2に圧送される。ここで、それぞれの粒径により分級する際、基準となる径は、事前に粒径とダイオキシン類含有量との関係を調査し適宜決定されることになる。
【0006】
また、泥水には泥水受槽10から凝集沈殿槽2に圧送される途中に、凝集剤であるPACがPAC槽11からPAC添加ポンプ33により添加され、ラインミキサー14で混練されフロック化される。このフロック化された固体物は凝集沈殿槽2に貯留され、この固体物には、高分子凝集剤が高分子溶解槽12から高分子添加ポンプ32により添加されると共に、消石灰溶液が消石灰溶液槽13から消石灰添加ポンプ34により添加される。すると、凝集沈殿槽2に貯留された固体物は、さらに大きくフロック化され沈殿泥15として沈殿すると共に、凝集沈殿槽2の上部には高清浄度水16が分離され、この高清浄度水16は、凝集沈殿槽2内を区画した仕切板をオーバフローするように右端の凝集沈殿槽2の上部に流入する。
このように分離された高清浄度水16は、送水ポンプ40により濾過吸着手段50に送水される。一方、沈殿泥15は、移送ポンプ35によりスラリー貯泥槽17に移送され、また、右端の凝集沈殿槽2に沈殿した沈殿泥15aも移送ポンプ41によりスラリー貯泥槽17に圧送され、沈殿泥15と共に攪拌された後、打込ポンプ36により脱水装置3へ打ち込まれる。
【0007】
濾過吸着手段50は、砂を濾過材とする砂濾過槽51と、濾過処理水を貯留する濾過処理水受槽52と、活性炭を吸着材とする活性炭槽53と、吸着処理水を貯留する吸着処理水受槽54とから構成されている。
そして、前述した凝集沈殿槽2で分離された高清浄度水16は、まず、砂濾過材51aにより濾過処理され濾過処理水として濾過処理水受槽52に貯留される。この濾過処理水は、送水ポンプ38により活性炭槽53に送水され、活性炭吸着材53aによりダイオキシン類等の疎水性物質が吸着処理されて、吸着処理水として吸着処理水受槽54に貯留される。
この吸着処理水は、ダイオキシン類濃度、PH及び濁度等の水質が測定され、排出基準を満足していれば、放流ポンプ37により放流されることになる。
【0008】
脱水装置3は圧搾式フィルタプレスであり、スラリー貯泥槽17内の泥水は、圧搾式フィルタプレスに打込ポンプ36により所定の圧力で打ち込まれると共に、圧搾式フィルタプレスで圧搾脱水される。
そして、圧搾式フィルタプレスで圧搾脱水後、絞出された水は、脱水濾水槽19側にやや傾斜したベルトコンベア18に落下しその傾斜に沿って、脱水濾水槽19に貯留される。その後、脱水濾水槽19に貯留された泥水は、送水ポンプ39により、泥水受槽10まで送水され、再処理が行われる。
また、圧搾式フィルタプレスで圧搾脱水された低含水の土塊(脱水ケーキ)は、その後ベルトコンベア18に落下し、ベルトコンベア18を脱水濾水槽19側とは反対側に回転させて、土塊を土砂ピット20に回収する。
【0009】
また、特許文献1には、特に、第7システムにおいて、泥水を脱水装置で内部に充填された吸着濾布をもって脱水し、汚染濃度の低減された泥水は第8システムに送られ、この第8システムにおいて、所定の測定手段により有害物質が含まれていないことを確認後放流され、有害物質が存在すれば、その存在度合いに応じて前システムに戻されることが記載されている。
【0010】
【特許文献1】
特開2002−233859号公報
【0011】
【発明が解決しようとする課題】
上述したように、従来の浄化装置では、凝集沈殿槽で凝集されフロック化された沈殿泥を、脱水装置によって圧搾脱水し、絞出された水を全て泥水受槽に戻して再処理しているが、脱水装置から絞出された水は、大部分が清浄度の高い高清浄度水であり、この高清浄度水をも前工程に戻し再処理しているため処理効率が極めて良くない。さらに、浄化装置を構成する全ての設備が大型化することになり、経済的にも不利である。
【0012】
また、従来の浄化装置では、濾過吸着手段を、砂を濾過材とする砂濾過槽と、活性炭を吸着材とする活性炭槽とから構成して、高清浄度水を砂濾過材及び活性炭吸着材のそれぞれを通過させて処理している。しかし、高清浄度水を2種類の濾過及び吸着材を通過させるために、処理時間が大幅に増加し、濾過吸着手段に係る設備が大型化すると共に、設備費用も高額となる。
【0013】
また、特許文献1には、第7システムにおいて、泥水をフィルタプレス、ベルトプレス等の脱水装置で、内部に充填された吸着濾布をもって脱水し、汚染濃度が低減された泥水を次工程の第8システムに送り、この第8システムにおいて、所定の測定手段により有害物質が存在するか否かを判定しているが、有害物質が含有されている場合には、汚染濃度が低減された泥水を全て前システムに戻すことになるため、処理効率が悪く、まだ改善する余地がある。
【0014】
本発明は、かかる点に鑑みてなされたものであり、構成する各設備を小型化すると共に、効率良く疎水性物質を含んだ汚染土壌、又は排水を浄化処理する浄化装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明は、上記課題を解決するための手段として、請求項1に記載した汚染土壌を浄化する浄化装置の発明は、疎水性物質等の有害物質を含有する汚染土壌、又は排水を浄化する浄化装置において、汚染土壌、又は排水を基準径以下に分級した極小径粒子を凝集剤でフロック化して凝集沈殿させ、沈殿した沈殿泥を圧搾脱水する脱水装置と、該脱水装置により絞出された清浄度の高い高清浄度水と該高清浄度水より清浄度の低い低清浄度水とが接触しないようにそれぞれを回収する回収手段とを具備して、該回収手段は、前記脱水装置から絞出される高清浄度水を回収すると共に水平にスライド可能な高清浄度水回収用シュートと、前記脱水装置から絞出される低清浄度水を回収するベルトコンベアとを具備し、これら高清浄度水回収用シュートとベルトコンベアとは、前記脱水装置の下方に上下に並設され、前記脱水装置から高清浄度水、または低清浄度水のいずれかが絞出される時、前記高清浄度水回収用シュートがスライドすると共に、前記脱水装置の直下には、絞出される高清浄度水、または低清浄度水に対応する前記高清浄度水回収用シュート、またはベルトコンベアのいずれかが配置されることを特徴とするものである。
このように構成することにより、脱水装置で絞出された高清浄度水と低清浄度水とが接触しないように、それぞれを回収する回収手段を備えたので、高清浄度水と低清浄度水のそれぞれを、回収手段を介して容易に所望の工程に送ることができる。
また、回収手段を構成する高清浄度水回収用シュートとベルトコンベアを脱水装置の下方に上下に並設して、脱水装置の直下には、脱水装置から絞出される高清浄度水、または低清浄度水に対応して高清浄度水回収用シュート、またはベルトコンベアのいずれかが配置されるので、高清浄度水と低清浄度水とを接触させずに容易に回収することができる。
【0016】
請求項に記載した汚染土壌を浄化する浄化装置の発明は、請求項1に記載した浄化装置の発明において、前記回収手段で回収した高清浄度水を濾過吸着材を介して浄化させる濾過吸着手段を設け、前記濾過吸着材は、疎水性物質を吸着すると共に、粒径が1μm〜5mmの粒状のものを積層して構成するか、あるいはスポンジ状の樹脂で構成することを特徴とするものである。
従来2種類の濾過吸着材を使用し2段階に分けて処理していたものを、上述のように1種類の濾過吸着材により構成したので、濾過吸着手段に係る設備を小型化できると共に、処理時間を大幅に短縮できる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態に係る浄化装置を図1〜図4に基いて詳細に説明する。なお、本発明の実施の形態の説明において従来例と同一部材及び相当する部品は、同一の符号を使用して、その説明を適宜省略する。
本発明の実施の形態に係る浄化装置は、図1に示すように、海底、又は河底等の疎水性物質例えばダイオキシン類が含有する底質から浚渫船により浚渫した汚染土壌を、基準径以下の粒子に分級する分級手段1と、この分級手段1で分級された極小径粒子をフロック化し凝集沈殿させ、沈殿泥15、15aと高清浄度水16とを分離させる凝集沈殿槽2と、この凝集沈殿槽2に沈殿した沈殿泥15、15aを圧搾脱水する脱水装置3と、この脱水装置3により絞出された清浄度の低い低清浄度水と清浄度の高い高清浄度水16’とが接触しないようにそれぞれを回収する回収手段4と、凝集沈殿槽2で分離した高清浄度水16と回収手段4で回収された高清浄度水16’とを濾過吸着材23bを介して浄化する濾過吸着手段5とから構成されている。
【0018】
ここで、高清浄度水、透視度が高く、SS濃度が約100mg/L未満の水に相当し、低清浄度水、透視度が低く、SS濃度が約100mg/L以上の水に相当する。
また、上述した構成の分級手段1、凝集沈殿槽2及び脱水装置3は、従来例と同一のため、ここでの説明を省略する。
【0019】
回収手段4は、図1〜図3に示すように、脱水装置3の圧搾式フィルタプレスから絞出される高清浄度水(低清浄度水が絞出された直後から最後まで絞出される水)を回収する水平にスライド可能な高清浄度水回収用シュート61と、脱水装置3から絞出される低清浄度水(圧搾開始時に絞出される水)及び脱水装置3で圧搾脱水された土塊を回収するベルトコンベア62とから構成されている。これらの高清浄度水回収用シュート61とベルトコンベア62は、圧搾式フィルタプレスが載置する型材で骨組された架台64に配設されている。また、高清浄度水回収用シュート61及びベルトコンベア62の両側方には、高清浄度水16’を貯留する高清浄度水槽21と脱水装置3で圧搾脱水された土塊を集積する土砂ピット20がそれぞれ配設されている。さらに、高清浄度水槽21の近傍には、低清浄度水を貯留する低清浄度水槽22が配設されている。
【0020】
高清浄度水回収用シュート61は、図2及び図3に示すように、圧搾式フィルタプレスの下方で、高清浄度水16’が落下する圧搾式フィルタプレスの落下口3aに対向すると共に、高清浄度水槽21側にやや傾いて配設されている。この高清浄度水回収用シュート61の高清浄度水槽21側の先端底には、高清浄度水槽21と連通する連通管66が装着されている。また、架台64には、ローラ受部材65が、左右方向(高清浄度水回収用シュート61の短手側方向)に複数(図2では5本)所定の間隔を設け延設されており、このローラ受部材65に、高清浄度水回収用シュート61をスライド可能とする高清浄度水槽21方向に延在するローラ61aが複数(図3では7本)連結されている。さらに、この高清浄度水回収用シュート61の一方の長手側側壁には、駆動ジャッキ67が連結され、図示しない駆動源により駆動ジャッキ67が伸縮することにより、高清浄度水回収用シュート61が左右方向に移動可能となる。
【0021】
ベルトコンベア62は、図3に示すように、断面視において低清浄度水及び土塊を受ける受け部63が形成されており、高清度水回収用シュート61の下方で、低清浄度水槽22側にやや傾斜して配設されている。また、ベルトコンベア62の低清浄度水槽22側の端部には、低清浄度水槽22と連通する図示しない連通管が装着されている。
【0022】
濾過吸着手段5は、図1に示すように、濾過吸着材23bを備えた濾過吸着槽23と、この濾過吸着槽23に並設すると共に、濾過吸着材23bにより濾過吸着処理された濾過吸着処理水を貯留する濾過吸着水受槽24とから構成されている。また、濾過吸着槽23の上部には、凝集沈殿槽2で分離された高清浄度水16、及び脱水装置3から絞出された高清浄度水16’内の微細物を取り除く金網(開口ピッチ:106μm)23a、23aが配設されている。
なお、この金網23a、23aは、高清浄度水16、16’の清浄度が高い場合には、設置しなくてもよい。
【0023】
濾過吸着材23bは、スポンジ状のウレタン樹脂、または250μm≦粒径<850μmの活性炭の粒子、250μm≦粒径<850μmのポリアクリル酸エステル架橋重合体の粒子、250μm≦粒径<850μmのゼオライトの粒子、のいずれかの粒子を積層して構成されている。
【0024】
ここで、上記の各濾過吸着材及び従来の濾過吸着材の濾過吸着効果を図4に基いて説明する。図4は、被処理水(ダイオキシン類濃度:24pg−TEQ/L)を各濾過吸着材で処理し、処理後のダイオキシン類濃度を示したものである。
図4に示すように、各濾過吸着材で処理した後、全ての処理水のダイオキシン類濃度は、約0.11〜0.15pg−TEQ/Lの範囲に入っており、排水基準(ダイオキシン類濃度:10pg−TEQ/L以下)、及び環境基準(ダイオキシン類濃度:1pg−TEQ/L以下)を満足している。
したがって、上記の濾過吸着材のいずれかを使用することにより排水基準、及び環境基準を満足することが可能である。この実施の形態では、吸着効率面、費用面及び取扱易さ面からスポンジ状のウレタン樹脂を採用している。
【0025】
次に、海底、又は河底の疎水性物質が含有した底質から浚渫船により掘削した汚染土壌を浄化する浄化方法を図1に基いて説明する。ここで、分級手段から脱水装置までの工程は、従来例と同一のため詳細な説明を省略する。
疎水性物質が含有した底質から掘削した汚染土壌は、分級手段1により極小径粒子に分級され、従来と同様にこの極小径粒子は凝集沈殿槽2に圧送され、凝集沈殿槽2で高清浄度水(ダイオキシン類濃度:約15pg−TEQ/L)16と沈殿泥(ダイオキシン類濃度:約2000pg−TEQ/g)15、15aとに分離される。
ここで、分級手段1の振動篩6内の泥粒子等を洗浄する洗浄水は、後述する濾過吸着手段5の濾過吸着水受槽24に貯留した濾過吸着処理水の一部を送水ポンプ42a、30により洗浄水槽6aを介して送水される。また、濾過吸着材23bであるウレタン樹脂に付着したSS等の洗浄は、後で詳述するが送水ポンプ42cから送水される濾過吸着処理水で内部洗浄され、また送水ポンプ42bから送水される濾過吸着処理水を表面洗浄装置である複数のノズル23cからジェット噴射して表面洗浄し、その後の洗浄汚水は、泥水受槽10に戻され再処理が行われる。
【0026】
凝集沈殿槽2で沈殿した沈殿泥15、15aは、従来と同様にスラリー貯留槽17を介して、打込ポンプ36により脱水装置3の圧搾式フィルタプレスに打ち込まれ、圧搾脱水される。
圧搾脱水時、圧搾初期に絞出された低清浄度水を回収する時は、高清浄度水回収用シュート61を圧搾式フィルタプレスの落下口3aから離間するように左右方向に移動させて、落下口3aの真下にはベルトコンベア62のみを配置する。
そして、絞出された低清浄度水はベルトコンベア62の受け部63に落下しその傾斜に沿って、図示しない連通管を経由して低清浄度水槽22に貯留される。
そして、低清浄度水槽22内の低清浄度水はポンプ43により泥水受槽10に送られ、再び凝集処理が行われることになる。このように回収された低清浄度水の量は、脱水装置3に打ち込まれた沈殿泥15、15aの量の約5〜6%程度の量に相当する。
【0027】
また低清浄度水が絞出された後に絞出される高清浄度水16’を回収する時は、高清浄度水回収用シュート61を左右方向に移動させて圧搾式フィルタプレスの落下口3aの真下に配置して、高清浄度水16’を高清浄度水回収用シュート61の溝部に落下させてその傾斜に沿って高清浄度水槽21に貯留する。このように回収された高清浄度水16’の量は、脱水装置3に打ち込まれた沈殿泥15、15aの量の約80%の量に相当する。
【0028】
さらに、高清浄度水16’の回収が終了した後は、再び高清浄度水回収用シュート61を落下口3aから離間するように左右方向に移動させて、圧搾式フィルタプレスの落下口3aの直下には、ベルトコンベア62を配設して、圧搾式フィルタプレスで圧搾脱水された土塊が、その落下口3aからベルトコンベア62の受け部63に落下する。そして、ベルトコンベア62を土砂ピット20側に回転させて、土塊を土砂ピット20に排出する。
【0029】
次に、凝集沈殿層2で分離された高清浄度水16、及び脱水装置3により回収された高清浄度水16’は、送水ポンプ40、42により濾過吸着手段5に送水される。すなわち、高清浄度水16、16’は、金網23a、23aを経由して、濾過吸着槽23に設けた濾過吸着材23bのスポンジ状のウレタン樹脂にて処理され、濾過吸着処理水としてパイプ25から濾過吸着水受槽24に貯留される。この濾過吸着水受槽24に貯留された濾過吸着処理水は、ダイオキシン類濃度、PH、及び濁度等の水質が測定され、排水基準を満足していれば、放流ポンプ42より放流されることになる。
【0030】
ここで、濾過吸着手段5の保守管理として、濾過吸着材23bのウレタン樹脂の表面を洗浄するために、濾過吸着水受槽24に貯留した濾過吸着処理水の一部を圧送ポンプ42bにより濾過吸着槽23の側壁上端から注入し、側壁に設けた表面洗浄装置の複数のノズル23cからウレタン樹脂の表面にジェット噴射で表面洗浄している。また、濾過吸着槽23内の濾過吸着材23bのウレタン樹脂の内部洗浄は、濾過吸着処理水の一部を送水ポンプ42cによりパイプ25内を逆流させて洗浄している。なお、濾過吸着処理と洗浄作業の切換え時には、パイプ25に備えた図示しないストップバルブを作動させる。このストップバルブの作動方法は、濾過吸着処理時には開け、表面洗浄時には閉じ、内部洗浄前に送水ポンプ42cとパイプ25とを連絡後開けることにより行う。
【0031】
以上説明したように、本発明の実施の形態に係る浄化装置によれば、特に、凝集沈殿槽2で沈殿した沈殿泥15、15aを圧搾脱水する脱水装置3と、この脱水装置3の圧搾式フィルタプレスから絞出された高清浄度水16’を回収する高清浄度水回収用シュート61と、同様に絞出された低清浄度水及び圧搾脱水された土塊を回収するベルトコンベア62と、1種類の濾過吸着材23bにより構成された濾過吸着手段5とを具備したので、圧搾式フィルタプレスから絞出された高清浄度水16’を高清浄度水回収用シュート61で回収し、濾過吸着手段5の濾過吸着材23bに送り浄化することができる。このように沈殿泥15、15aの量の約80%にも相当する高清浄度水16’を濾過吸着手段5の濾過吸着材23bに送り浄化するので、従来沈殿泥15、15aから絞出された水を全て前工程に戻していたのに対して、処理時間を大幅に短縮できると共に、浄化装置を構成する全設備の小型化を達成できる。
【0032】
また、濾過吸着手段5の濾過吸着材23bをスポンジ状のウレタン樹脂の1種類で構成し排水基準、及び環境基準を満足できるので、従来2種類の濾過吸着材51a、53aを使用し2段階に分けて処理していたのに対して、処理時間を短縮できると共に、濾過吸着手段5に係る設備の小型化を達成することができる。
【0033】
また、本発明の実施の形態では、凝集沈殿槽2で沈殿した沈殿泥15、15aを、脱水装置3の圧搾式フィルタプレスで圧搾脱水し、絞出された、沈殿泥15、15aの量の約80%にも相当する高清浄度水16’を、次工程の濾過吸着手段5の濾過吸着材23bに送り浄化すると共に、同様に絞出された低清浄度水を、前工程の泥水受槽10に戻し再処理するので、処理時間を従来より大幅に短縮できると共に、浄化装置を構成する全設備の小型化を達成できる。
【0034】
なお、本発明の実施の形態では、疎水性物質をダイオキシン類として説明したが、ダイオキシン類以外の疎水性物質にも、本発明の浄化装置を採用することができる。
【0035】
【発明の効果】
以上説明したように、請求項1に記載した汚染土壌を浄化する浄化装置の発明によれば、汚染土壌、又は排水を基準径以下に分級した極小径粒子を凝集剤でフロック化して凝集沈殿させ、その沈殿泥を圧搾脱水する脱水装置と、この脱水装置から絞出された低清浄度水と高清浄度水とを接触しないようにそれぞれを回収する回収手段とを具備し、脱水装置から絞出された低清浄度水と高清浄度水とを回収手段を介して接触させずに、低清浄度水は前工程に戻し、高清浄度水は次工程に送れるので、処理時間を従来より大幅に短縮することが可能となり、浄化装置を構成する全設備を小型化でき、トータルコストの削減を達成することができる。
【0036】
また、回収手段を左右にスライド可能な高清浄度水回収用シュートとベルトコンベアとから構成し、これらの高清浄度水回収用シュートとベルトコンベアを脱水装置の下方に上下に並設し、脱水装置の直下には、脱水装置から絞出される高清浄度水、または低清浄度水に対応して高清浄度水回収用シュート、またはベルトコンベアのいずれかが配置されるので、高清浄度水と低清浄度水とを接触させずに容易に回収することができる。
【0037】
請求項に記載した汚染土壌を浄化する浄化装置の発明によれば、回収手段で回収した高清浄度水を浄化させる濾過吸着材を、疎水性物質を吸着すると共に、粒径が1μm〜5mmの粒状のものを積層して構成するか、あるいはスポンジ状の樹脂により構成したので、1種類の濾過吸着材により排水基準、及び環境基準を満足させるので、処理時間を従来より大幅に短縮できると共に、濾過吸着手段に係る設備を小型化することが可能となる。
【図面の簡単な説明】
【図1】 図1は、本発明の実施の形態に係る汚染土壌を浄化する浄化装置を示す模式図である。
【図2】 図2は、本発明の実施の形態に係る汚染土壌を浄化する浄化装置の構成である回収手段を示す正面図である。
【図3】 図3は、本発明の実施の形態に係る汚染土壌を浄化する浄化装置の構成である回収手段を示す側面図である。
【図4】 図4は、本発明の実施の形態に係る汚染土壌を浄化する浄化装置の構成である濾過吸着材の処理効果を示すものである。
【図5】 図5は、従来の汚染土壌を浄化する浄化装置を示す模式図である。
【符号の説明】
3 脱水装置
4 回収手段
5 濾過吸着手段
23b 濾過吸着材
16、16’ 高清浄度水
61 高清浄度水回収用シュート
62 ベルトコンベア
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purification device for removing hydrophobic substances contained in sediments such as the seabed or riverbed.
[0002]
[Prior art]
The construction wastewater contains various hydrophobic harmful substances, but the wastewater containing this hydrophobic substance sinks solids and becomes sediment in the place where the flow is slow, and the hydrophobic substance is difficult to water. Due to the dissolution, a sediment in which a high concentration of hydrophobic substance is accumulated is formed. In particular, small-particle-size solids and organic substances in the sediment contain a large amount of hydrophobic substances including dioxins because the surface area per unit volume is very large.
[0003]
Therefore, a conventional purification device for purifying the contaminated sea bottom or riverbed sediment will be described with reference to FIG.
A conventional purification device includes a classification means 1 for classifying contaminated soil excavated by dredgers from bottom sediments containing hydrophobic substances such as dioxins at the bottom of the sea or riverbed, and the classification means 1 The classified ultrafine particles are flocked and agglomerated and precipitated, and the agglomeration sedimentation tank 2 that separates the sedimentation mud 15 and 15a and the high cleanliness water 16, and the sedimentation mud 15 and 15a precipitated in the agglomeration sedimentation tank 2 are squeezed and dehydrated. The dehydration apparatus 3 and the filtration adsorption means 50 which carries out the filtration adsorption process of the high cleanliness water 16 isolate | separated by the coagulation sedimentation tank 2 are comprised.
[0004]
The classifying means 1 is composed of a vibrating sieve 6 and a cyclone 7. The bottom sediment such as a seabed or a riverbed is dredged by a dredger, and this sediment is pipe-transported. (Particle size ≧ 2 mm) and medium-sized particles (particle size <2 mm) to which water containing high-concentration dioxins and the like adheres. The medium-sized particles are a muddy water receiving tank 8 and the large-sized particles are coarse-grained soil. It is stored in the collection tank 9. At this time, washing water is pumped from the washing water tank 6a to the vibrating sieve 6 by the washing water pump 30 to wash mud particles and the like. A part of the adsorbed treated water stored in the adsorbed treated water receiving tank 54 of the filtration adsorbing means 50, which will be described later, is fed to the washed water tank 6a by the water feed pump 37a as washed water.
[0005]
Next, the medium-sized particles stored in the muddy water receiving tank 8 are further classified by the cyclone 7, and the classified very small diameter particles (particle diameter <74 μm) are stored in the muddy water receiving tank 10 and are classified into small diameter particles (74 μm ≦ particle diameter < 2 mm) is stored in the coarse-grained soil collection tank 9. In addition, to the muddy water receiving tank 10, washing sewage generated when the sand filtration water tank 51 of the filtration adsorbing means 50 and the activated carbon tank 53, which will be described later, are washed with the treated water fed by the water feed pumps 52a and 54a, is pumped. The muddy water is uniformly stirred together with the extremely small particles, and the muddy water is pumped to the coagulating sedimentation tank 2 by the transfer pump 31. Here, when classifying by each particle size, the reference diameter is appropriately determined by investigating the relationship between the particle size and the dioxin content in advance.
[0006]
In addition, PAC, which is a coagulant, is added from the PAC tank 11 by the PAC addition pump 33 while being fed to the muddy water from the muddy water receiving tank 10 to the coagulating sedimentation tank 2, and is kneaded and flocked by the line mixer 14. The flocked solid material is stored in the coagulation sedimentation tank 2, and a polymer flocculant is added to the solid material from the polymer dissolution tank 12 by the polymer addition pump 32, and the slaked lime solution is added to the slaked lime solution tank. 13 is added by a slaked lime addition pump 34. Then, the solid matter stored in the coagulation sedimentation tank 2 is further flocked and settled as sedimentation mud 15, and high cleanliness water 16 is separated at the upper part of the coagulation sedimentation tank 2. Flows into the upper portion of the coagulation sedimentation tank 2 at the right end so as to overflow the partition plate partitioning the coagulation sedimentation tank 2.
The high cleanliness water 16 thus separated is fed to the filtration adsorption means 50 by the water feed pump 40. On the other hand, the sedimentation mud 15 is transferred to the slurry mud storage tank 17 by the transfer pump 35, and the sedimentation mud 15 a that has settled in the coagulation sedimentation tank 2 at the right end is also pumped to the slurry mud storage tank 17 by the transfer pump 41. After being stirred together with 15, it is driven into the dehydrator 3 by the driving pump 36.
[0007]
The filtration adsorbing means 50 includes a sand filtration tank 51 using sand as a filtering material, a filtered water receiving tank 52 for storing filtered water, an activated carbon tank 53 using activated carbon as an adsorbing material, and an adsorption processing for storing adsorption water. The water receiving tank 54 is comprised.
And the high cleanliness water 16 isolate | separated by the coagulation sedimentation tank 2 mentioned above is first filtered by the sand filter material 51a, and is stored in the filtered water receiving tank 52 as filtered water. This filtered water is sent to the activated carbon tank 53 by the water pump 38, and a hydrophobic substance such as dioxins is adsorbed by the activated carbon adsorbent 53a and stored in the adsorbed water receiving tank 54 as adsorbed water.
This adsorbed treated water is discharged by the discharge pump 37 if the water quality such as dioxin concentration, pH and turbidity is measured and the discharge standard is satisfied.
[0008]
The dewatering device 3 is a squeezing filter press, and the muddy water in the slurry mud tank 17 is squeezed into the squeezing filter press by a driving pump 36 at a predetermined pressure and squeezed and dehydrated by the squeezing filter press .
Then, after squeezing and dewatering with a squeezing filter press, the squeezed water falls onto a belt conveyor 18 slightly inclined toward the dewatering drainage tank 19 and is stored in the dewatering drainage tank 19 along the inclination. Thereafter, the muddy water stored in the dewatered drainage tank 19 is sent to the muddy water receiving tank 10 by the water supply pump 39 and reprocessed.
In addition, the low water-containing soil mass (dehydrated cake) that has been squeezed and dewatered by the squeezing filter press falls to the belt conveyor 18 and rotates the belt conveyor 18 to the side opposite to the dewatered drainage tank 19 side, thereby removing the soil mass from the soil. Collect in the pit 20.
[0009]
Further, in Patent Document 1, in particular, in the seventh system, the muddy water is dehydrated by the adsorption filter cloth filled inside by the dewatering device, and the muddy water whose contamination concentration is reduced is sent to the eighth system. In the system, it is described that it is discharged after confirming that no harmful substance is contained by a predetermined measuring means, and if a harmful substance is present, it is returned to the previous system depending on the degree of its existence.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-233859
[Problems to be solved by the invention]
As described above, in the conventional purification device, the precipitated mud that has been aggregated and flocked in the coagulating sedimentation tank is squeezed and dehydrated by the dewatering device, and all the squeezed water is returned to the mud receiving tank and reprocessed. The water squeezed from the dehydrator is mostly clean water with high cleanliness, and the high cleanliness water is also returned to the previous process and reprocessed, so that the treatment efficiency is not very good. Furthermore, all the facilities constituting the purification device are increased in size, which is disadvantageous economically.
[0012]
Moreover, in the conventional purification apparatus, the filtration adsorbing means is composed of a sand filtration tank using sand as a filter medium and an activated carbon tank using activated carbon as an adsorbent, and high cleanliness water is supplied to the sand filter medium and the activated carbon adsorbent. Each of them is processed by passing. However, since the high cleanliness water is passed through the two types of filtration and adsorbents, the processing time is greatly increased, the equipment relating to the filtration and adsorption means is increased in size, and the equipment cost is also increased.
[0013]
Further, in Patent Document 1, in the seventh system, muddy water is dehydrated with an adsorption filter cloth filled therein by a dewatering device such as a filter press or a belt press, and the muddy water whose contamination concentration is reduced in the next step. In this eighth system, whether or not harmful substances are present is determined by predetermined measuring means. If harmful substances are contained, muddy water with reduced contamination concentration is used. Since all will be returned to the previous system, the processing efficiency is poor and there is still room for improvement.
[0014]
The present invention has been made in view of such points, and an object of the present invention is to provide a purifying apparatus for purifying contaminated soil or drainage containing a hydrophobic substance efficiently while reducing the size of each facility. And
[0015]
[Means for Solving the Problems]
As a means for solving the above problems, the present invention provides a purification device for purifying contaminated soil according to claim 1, wherein the purification device purifies contaminated soil containing toxic substances such as hydrophobic substances or drainage. In the equipment, a dewatering device that flocculates and precipitates the contaminated soil or drainage particles classified to a reference diameter or less by a flocculant with a flocculant, and squeezes and dewaters the settled sedimented mud, and the squeezed by the dewatering device and and a recovery means degrees high and high cleanliness of water and a low cleanliness water less cleanliness than the high cleanliness water to recover the respective so as not to contact, said collecting means, down from the dewatering device A high-purity water recovery chute that collects the high-purity water discharged and that can be slid horizontally, and a belt conveyor that recovers the low-purity water squeezed from the dehydrator. Recovery sh The belt and the belt conveyor are arranged vertically below the dewatering device, and when either high clean water or low clean water is squeezed out from the dewatering device, the high clean water collecting chute And either the high cleanliness water to be squeezed out or the high cleanliness water recovery chute corresponding to the low cleanliness water or a belt conveyor is disposed immediately below the dehydrator. It is a feature.
By comprising in this way, it has recovery means to collect each so that the high cleanliness water squeezed by the dehydrator and the low cleanliness water do not come in contact with each other. Each of the water can be easily sent to the desired process via the recovery means.
In addition, a high clean water recovery chute and a belt conveyor that constitute the recovery means are arranged vertically below the dehydrator, and high clean water squeezed from the dehydrator or low Since either the high cleanliness water recovery chute or the belt conveyor is arranged corresponding to the cleanliness water, the high cleanliness water and the low cleanliness water can be easily recovered without contacting them.
[0016]
The invention of the purification device for purifying contaminated soil according to claim 2 is the filtration adsorption for purifying the high cleanliness water collected by the recovery means through the filtration adsorbent in the invention of the purification device according to claim 1. Means for adsorbing a hydrophobic substance and laminating particles having a particle size of 1 μm to 5 mm, or comprising a sponge-like resin. It is.
Conventionally, two types of filtration adsorbents were used and processed in two stages. As described above, one type of filtration adsorbent was used, so the equipment related to the filtration adsorbing means can be downsized and processed. Time can be greatly reduced.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a purification device according to an embodiment of the present invention will be described in detail with reference to FIGS. In the description of the embodiments of the present invention, the same members and corresponding parts as those in the conventional example are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
As shown in FIG. 1, the purification apparatus according to the embodiment of the present invention is configured to remove contaminated soil dredged by dredgers from bottom sediments containing hydrophobic substances such as the seabed or riverbed, such as dioxins. Classifying means 1 for classifying the particles, coagulation sedimentation tank 2 for flocating and agglomerating and precipitating the very small particles classified by the classification means 1, and separating the sedimentation mud 15 and 15a from the high cleanliness water 16, and this aggregation The dewatering device 3 that squeezes and dewaters the sedimentary muds 15 and 15a precipitated in the settling tank 2, and low cleanliness water with low cleanliness and high cleanliness water 16 'with high cleanliness extracted by the dewatering device 3. The recovery means 4 for recovering each so as not to contact, the high cleanliness water 16 separated in the coagulation sedimentation tank 2, and the high cleanliness water 16 'recovered by the recovery means 4 are purified through the filtration adsorbent 23b. It consists of filtration adsorption means 5 That.
[0018]
Here, high cleanliness water has high transparency and corresponds to water having an SS concentration of less than about 100 mg / L, and low cleanliness water has low transparency and has an SS concentration of about 100 mg / L or more. Equivalent to.
Moreover, since the classification means 1, the coagulation sedimentation tank 2, and the dehydration apparatus 3 having the above-described configuration are the same as those of the conventional example, description thereof is omitted here.
[0019]
As shown in FIGS. 1 to 3, the recovery means 4 is a high cleanliness water squeezed from the squeeze filter press of the dehydrator 3 (water that is squeezed from immediately after the low cleanliness water is squeezed to the end). The horizontally clean slidable chute 61 for recovering water, the low cleanliness water squeezed from the dehydrator 3 (the water squeezed at the start of squeezing), and the debris that has been squeezed and dewatered by the dehydrator 3 And a belt conveyor 62. These high cleanliness water recovery chute 61 and belt conveyor 62 are arranged on a frame 64 framed by a mold material on which a squeezing filter press is placed. Further, on both sides of the high cleanliness water collecting chute 61 and the belt conveyor 62, a high cleanliness water tank 21 for storing the high cleanliness water 16 'and a sediment pit 20 for accumulating soil blocks squeezed and dewatered by the dehydrator 3. Are arranged respectively. Furthermore, a low cleanliness water tank 22 for storing low cleanliness water is disposed in the vicinity of the high cleanliness water tank 21.
[0020]
As shown in FIGS. 2 and 3, the high cleanliness water recovery chute 61 is opposed to the squeeze filter press drop port 3a where the high cleanliness water 16 'falls below the squeeze filter press. It is disposed slightly tilted toward the high cleanliness water tank 21 side. A communication pipe 66 communicating with the high cleanliness water tank 21 is attached to the bottom end of the high cleanliness water recovery chute 61 on the high cleanliness water tank 21 side. In addition, a plurality of roller receiving members 65 are extended from the gantry 64 at predetermined intervals in the left-right direction (the short side direction of the high cleanliness water collecting chute 61) (five in FIG. 2). A plurality (seven in FIG. 3) of rollers 61 a extending in the direction of the high cleanliness water tank 21 that allows the high cleanliness water recovery chute 61 to slide can be connected to the roller receiving member 65. Further, a drive jack 67 is connected to one longitudinal side wall of the high cleanliness water recovery chute 61, and the drive jack 67 expands and contracts by a drive source (not shown) so that the high cleanliness water recovery chute 61 is It can move left and right.
[0021]
As shown in FIG. 3, the belt conveyor 62 is formed with a receiving portion 63 for receiving low cleanliness water and a lump in a cross-sectional view, and below the high purity water recovery chute 61, on the low cleanliness water tank 22 side. It is arranged with a slight inclination. A communication pipe (not shown) that communicates with the low cleanliness water tank 22 is attached to the end of the belt conveyor 62 on the low cleanliness water tank 22 side.
[0022]
As shown in FIG. 1, the filtration and adsorption means 5 includes a filtration and adsorption tank 23 provided with a filtration and adsorption material 23b, and a filtration and adsorption process in which the filtration and adsorption process is performed by the filtration and adsorption material 23b. It is comprised from the filtration adsorption water receiving tank 24 which stores water. Further, in the upper part of the filtration adsorption tank 23, a high-cleanness water 16 separated in the coagulation sedimentation tank 2 and a wire mesh (opening pitch) for removing fines in the high-cleanness water 16 ′ squeezed from the dehydrator 3 : 106 μm) 23 a and 23 a are provided.
The wire nets 23a and 23a may not be installed when the cleanliness of the high cleanliness water 16 and 16 'is high.
[0023]
The filtration adsorbent 23b is made of a sponge-like urethane resin, activated carbon particles having a particle size of 250 μm ≦ particle size <850 μm, polyacrylic acid ester crosslinked polymer particles having a particle size of 250 μm ≦ 850 μm, or zeolite having a particle size of 250 μm ≦ particle size <850 μm. Any one of the particles is laminated.
[0024]
Here, the filtration adsorption effect of each of the above filtration adsorbents and the conventional filter adsorbent will be described with reference to FIG. FIG. 4 shows the concentration of dioxins after treatment of treated water (dioxins concentration: 24 pg-TEQ / L) with each filter adsorbent.
As shown in FIG. 4, after treating with each filter adsorbent, the concentration of dioxins in all treated waters is in the range of about 0.11 to 0.15 pg-TEQ / L, and the wastewater standard (dioxins) Concentration: 10 pg-TEQ / L or less) and environmental standards (dioxin concentration: 1 pg-TEQ / L or less).
Therefore, it is possible to satisfy drainage standards and environmental standards by using any of the above-mentioned filtration adsorbents. In this embodiment, a sponge-like urethane resin is adopted in terms of adsorption efficiency, cost, and ease of handling.
[0025]
Next, a purification method for purifying contaminated soil excavated by a dredger from the bottom sediment containing the hydrophobic substance on the seabed or riverbed will be described with reference to FIG. Here, since the steps from the classifying means to the dehydrating apparatus are the same as those in the conventional example, detailed description thereof is omitted.
The contaminated soil excavated from the sediment containing the hydrophobic substance is classified into ultra-small particles by the classifying means 1, and the ultra-small particles are pumped to the coagulating sedimentation tank 2 in the same manner as in the past, and highly purified in the coagulating sedimentation tank 2. It is separated into water (dioxins concentration: about 15 pg-TEQ / L) 16 and precipitated mud (dioxins concentration: about 2000 pg-TEQ / g) 15, 15a.
Here, the washing water for washing the mud particles and the like in the vibration sieve 6 of the classifying means 1 is a part of the filtered adsorption treated water stored in the filtered adsorbed water receiving tank 24 of the filtration adsorbing means 5 described later. Is fed through the washing water tank 6a. Further, as will be described later in detail, the cleaning of SS or the like attached to the urethane resin that is the filtration adsorbent 23b is internally washed with the filtration adsorption treated water supplied from the water pump 42c, and the filtration supplied from the water pump 42b. Adsorbed treated water is jetted from a plurality of nozzles 23c, which are surface cleaning devices, to clean the surface, and the subsequent cleaning sewage is returned to the muddy water receiving tank 10 for reprocessing.
[0026]
The sedimentation muds 15 and 15a precipitated in the coagulation sedimentation tank 2 are driven into the squeeze type filter press of the dewatering device 3 by the driving pump 36 through the slurry storage tank 17 in the same manner as in the past, and are dewatered by compression.
At the time of squeezing and dewatering, when collecting low cleanliness water squeezed in the early stage of squeezing, the chute 61 for high cleanliness water recovery is moved left and right so as to be separated from the drop port 3a of the squeeze filter press, Only the belt conveyor 62 is disposed directly below the dropping port 3a.
Then, the low cleanliness water that has been squeezed out falls on the receiving portion 63 of the belt conveyor 62 and is stored in the low cleanliness water tank 22 via a communication pipe (not shown) along the inclination.
And the low cleanliness water in the low cleanliness water tank 22 is sent to the muddy water receiving tank 10 by the pump 43, and the aggregation process is performed again. The amount of the low cleanliness water collected in this way corresponds to an amount of about 5 to 6% of the amount of the sedimentary mud 15, 15 a driven into the dehydrator 3.
[0027]
Further, when recovering the high cleanliness water 16 'that has been squeezed out after the low cleanliness water has been squeezed out, the chute 61 for high cleanliness water recovery is moved in the left-right direction, and the drop port 3a of the squeeze filter press is used. Arranged just below, the high cleanliness water 16 ′ is dropped into the groove portion of the high cleanliness water recovery chute 61 and stored in the high cleanliness water tank 21 along the inclination. The amount of the high cleanliness water 16 ′ thus recovered corresponds to about 80% of the amount of sedimentary mud 15, 15 a driven into the dehydrator 3.
[0028]
Further, after the recovery of the high cleanliness water 16 'is finished, the high cleanliness water recovery chute 61 is moved again in the left-right direction so as to be separated from the drop port 3a, and the drop of the drop port 3a of the squeeze type filter press. Directly below, a belt conveyor 62 is provided, and the earth lump that has been squeezed and dehydrated by the squeezing filter press falls from the drop port 3 a to the receiving portion 63 of the belt conveyor 62. And the belt conveyor 62 is rotated to the earth and sand pit 20 side, and the earth lump is discharged to the earth and sand pit 20.
[0029]
Next, the high cleanliness water 16 separated by the coagulation sedimentation layer 2 and the high cleanliness water 16 ′ recovered by the dewatering device 3 are fed to the filtration adsorption means 5 by the feed pumps 40 and 42. That is, the high cleanliness water 16, 16 'is treated with the sponge-like urethane resin of the filtration adsorbent 23b provided in the filtration adsorption tank 23 via the wire nets 23a, 23a, and the pipe 25 is used as the filtration adsorption treated water. To the filtered adsorbed water receiving tank 24. The filtered adsorbed water stored in the filtered adsorbed water receiving tank 24 is measured for water quality such as dioxin concentration, PH, and turbidity, and is discharged from the discharge pump 42 if the drainage standard is satisfied. Become.
[0030]
Here, as maintenance management of the filtration adsorbing means 5, in order to wash the surface of the urethane resin of the filtration adsorbent 23b, a part of the filtered adsorption treated water stored in the filtration adsorbed water receiving tank 24 is filtered by the pressure feeding pump 42b. 23 is injected from the upper end of the side wall, and the surface is cleaned by jetting onto the surface of the urethane resin from a plurality of nozzles 23c of the surface cleaning device provided on the side wall. Further, the internal cleaning of the urethane resin of the filtration adsorbent 23b in the filtration adsorption tank 23 is carried out by causing a part of the filtration adsorption treated water to flow backward in the pipe 25 by the water pump 42c. Note that a stop valve (not shown) provided in the pipe 25 is operated when switching between the filtration adsorption process and the cleaning operation. The stop valve is operated by opening it during filtration and adsorption processing, closing it when cleaning the surface, and opening the water pump 42c and the pipe 25 after connecting them before internal cleaning.
[0031]
As explained above, according to the purification apparatus according to the embodiment of the present invention, in particular, the dewatering device 3 for squeezing and dewatering the sedimented mud 15 and 15a precipitated in the coagulating sedimentation tank 2, and the squeezing type of the dewatering device 3 A high cleanliness water recovery chute 61 for recovering the high cleanliness water 16 'squeezed from the filter press, and a belt conveyor 62 for recovering the low cleanliness water that has been squeezed out and the squeezed debris, Since the filter adsorbing means 5 constituted by one type of filter adsorbing material 23b is provided, the high cleanliness water 16 'squeezed from the squeeze filter press is recovered by the high cleanliness water recovery chute 61 and filtered. It can be sent to the filtering adsorbent 23b of the adsorbing means 5 for purification. Thus, since the high cleanliness water 16 'corresponding to about 80% of the amount of the sedimentation mud 15 and 15a is sent to the filtration adsorbent 23b of the filtration adsorbing means 5 for purification, it is squeezed from the conventional sedimentation mud 15 and 15a. In contrast to the fact that all the water is returned to the previous process, the processing time can be greatly shortened, and the downsizing of all facilities constituting the purification apparatus can be achieved.
[0032]
Further, since the filtration adsorbing material 23b of the filtration adsorbing means 5 is composed of one type of sponge-like urethane resin and can satisfy the drainage standard and the environmental standard, the conventional two kinds of filtration adsorbing materials 51a and 53a are used in two stages. In contrast to the separate processing, the processing time can be shortened, and the equipment related to the filtration adsorption means 5 can be reduced in size.
[0033]
Further, in the embodiment of the present invention, the precipitate mud 15,15a precipitated in the coagulating sedimentation tank 2, and squeezing and dewatering by squeezing type filter press dewatering device 3, issued down, the amount of precipitation mud 15,15a The high cleanliness water 16 'corresponding to about 80% is sent to the filtration adsorbent 23b of the filtration adsorbing means 5 in the next step for purification, and the low cleanliness water extracted in the same manner is used for the muddy water receiving tank in the previous step. Since the processing is returned to 10 and reprocessing is performed, the processing time can be significantly shortened as compared with the prior art, and the downsizing of all facilities constituting the purification apparatus can be achieved.
[0034]
In the embodiment of the present invention, the hydrophobic substance is described as dioxins. However, the purification apparatus of the present invention can be applied to hydrophobic substances other than dioxins.
[0035]
【The invention's effect】
As explained above, according to the invention of the purification apparatus for purifying contaminated soil according to claim 1, the contaminated soil or the ultra-small particles classified into the drainage below the reference diameter are flocculated with an aggregating agent and agglomerated and precipitated. The dewatering device for squeezing and dewatering the sedimentary mud, and a recovery means for collecting the low and high cleanliness water squeezed from the dewatering device so as not to contact each other. Since the low cleanliness water and high cleanliness water that have been discharged are not brought into contact with each other through the recovery means, the low cleanliness water can be returned to the previous process and the high cleanliness water can be sent to the next process. It is possible to greatly reduce the size, and it is possible to reduce the size of all the equipment that constitutes the purification device, thereby achieving a reduction in total cost.
[0036]
In addition, the collection means consists of a high clean water recovery chute and a belt conveyor that can slide to the left and right, and these high clean water recovery chute and belt conveyor are arranged vertically below the dewatering device. Directly below the equipment, either high clean water squeezed out from the dehydrator or high clean water recovery chute or belt conveyor is arranged corresponding to the low clean water. And low cleanliness water can be easily recovered without contact.
[0037]
According to the invention of the purification apparatus for purifying contaminated soil according to claim 2 , the filtration adsorbent for purifying the high cleanliness water recovered by the recovery means adsorbs the hydrophobic substance and has a particle size of 1 μm to 5 mm. Since it is constructed by laminating granular materials or by using a sponge-like resin, the drainage standard and environmental standard are satisfied with one type of filtration adsorbent, so that the processing time can be greatly shortened compared to the conventional method. It is possible to reduce the size of the equipment related to the filtration and adsorption means.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a purification device for purifying contaminated soil according to an embodiment of the present invention.
FIG. 2 is a front view showing a recovery means that is a configuration of a purification device for purifying contaminated soil according to an embodiment of the present invention.
FIG. 3 is a side view showing a recovery means that is a configuration of a purification device for purifying contaminated soil according to an embodiment of the present invention.
FIG. 4 shows the processing effect of a filtration adsorbent which is a configuration of a purification device for purifying contaminated soil according to an embodiment of the present invention.
FIG. 5 is a schematic view showing a conventional purification device for purifying contaminated soil.
[Explanation of symbols]
3 Dehydrator 4 Recovery means 5 Filtration adsorption means 23b Filtration adsorption material 16, 16 'High cleanliness water 61 Chute 62 for high cleanliness water recovery Belt conveyor

Claims (2)

  1. 疎水性物質等の有害物質を含有する汚染土壌、又は排水を浄化する浄化装置において、
    汚染土壌、又は排水を基準径以下に分級した極小径粒子を凝集剤でフロック化して凝集沈殿させ、沈殿した沈殿泥を圧搾脱水する脱水装置と、該脱水装置により絞出された清浄度の高い高清浄度水と該高清浄度水より清浄度の低い低清浄度水とが接触しないようにそれぞれを回収する回収手段とを具備して、該回収手段は、前記脱水装置から絞出される高清浄度水を回収すると共に水平にスライド可能な高清浄度水回収用シュートと、前記脱水装置から絞出される低清浄度水を回収するベルトコンベアとを具備し、これら高清浄度水回収用シュートとベルトコンベアとは、前記脱水装置の下方に上下に並設され、前記脱水装置から高清浄度水、または低清浄度水のいずれかが絞出される時、前記高清浄度水回収用シュートがスライドすると共に、前記脱水装置の直下には、絞出される高清浄度水、または低清浄度水に対応する前記高清浄度水回収用シュート、またはベルトコンベアのいずれかが配置されることを特徴とする浄化装置。
    In a purification device that purifies contaminated soil containing toxic substances such as hydrophobic substances or wastewater,
    A dewatering device that flocculates and precipitates contaminated soil or drainage particles classified to a reference diameter or less with a flocculant and coagulates and settles the precipitated mud, and a high degree of cleanness extracted by the dewatering device and and a recovery means and high cleanliness of water and a low cleanliness water less cleanliness than the high cleanliness water to recover the respective so as not to contact, said collecting means, high issued down from the dewatering device A high cleanliness water recovery chute that collects cleanliness water and can be slid horizontally, and a belt conveyor that recovers low cleanliness water squeezed from the dewatering device. And the belt conveyor are arranged vertically below the dewatering device, and when either high clean water or low clean water is squeezed out of the dewatering device, the high clean water collecting chute is When sliding , Directly below the dewatering apparatus, purification, characterized in that one of said high cleanliness water recovery chute or belt conveyor, corresponding to the high cleanliness water, or low cleanliness water issued diaphragm is arranged apparatus.
  2. 前記回収手段で回収した高清浄度水を濾過吸着材を介して浄化させる濾過吸着手段を設け、前記濾過吸着材は、疎水性物質を吸着すると共に、粒径が1μm〜5mmの粒状のものを積層して構成するか、あるいはスポンジ状の樹脂で構成することを特徴とする請求項に記載の浄化装置。Filtration adsorption means for purifying the high cleanliness water collected by the collection means through a filtration adsorbent is provided, and the filtration adsorbent adsorbs a hydrophobic substance and has a particle size of 1 μm to 5 mm. The purification device according to claim 1 , wherein the purification device is constituted by being laminated or made of sponge-like resin.
JP2003094664A 2003-03-31 2003-03-31 Purification device to purify contaminated soil Expired - Fee Related JP3766933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094664A JP3766933B2 (en) 2003-03-31 2003-03-31 Purification device to purify contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094664A JP3766933B2 (en) 2003-03-31 2003-03-31 Purification device to purify contaminated soil

Publications (2)

Publication Number Publication Date
JP2004298750A JP2004298750A (en) 2004-10-28
JP3766933B2 true JP3766933B2 (en) 2006-04-19

Family

ID=33407180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094664A Expired - Fee Related JP3766933B2 (en) 2003-03-31 2003-03-31 Purification device to purify contaminated soil

Country Status (1)

Country Link
JP (1) JP3766933B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599481B2 (en) * 2005-04-20 2010-12-15 ミノワ工機株式会社 Wastewater treatment equipment
JP5276779B2 (en) * 2006-06-09 2013-08-28 五洋建設株式会社 Purification method for sediment and soil contaminated with dioxins
CN102172614B (en) * 2011-01-28 2012-07-04 南京市环境保护科学研究院 Ex-situ washing remediation method for nitrochlorobenzene-contaminated soil
FR3106074A1 (en) * 2020-01-10 2021-07-16 Brezillon Soil remediation

Also Published As

Publication number Publication date
JP2004298750A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
KR100526993B1 (en) Washing method for oils and heavy metals contaminated soils
JP2016147212A (en) Contaminated soil purification apparatus
JP3766933B2 (en) Purification device to purify contaminated soil
JP6344588B1 (en) Soil purification system
JP4401251B2 (en) General waste incineration wastewater treatment method
CA2676659C (en) Method and apparatus for the purification of water contaminated with sulfate ions and with heavy metal ions
JP2004243185A (en) Solid-liquid separation treatment method and apparatus therefor
CN1686845A (en) Method and equipment for treating slight polluted water by integrated adsorption and separation
JP2009072747A (en) Water treatment apparatus utilizing microbubbles and water treatment method
JPH0643292A (en) Radioactive waste liquid disposal device
CN209276344U (en) A kind of online minimizing processing unit of sludge of sewage treatment plant
JP4033671B2 (en) Coal storage muddy water purification device and coal muddy muddy water purification method
JP4247840B2 (en) Sludge dewatering unit and sludge suction and dewatering device using the same
KR200344615Y1 (en) Separator of remnant in wastewater
CN213680307U (en) Sludge treatment system
KR100483694B1 (en) Adsorption Reaction Unit Using Power Active Corbon and Method Thereof
JPH0839097A (en) Polluted water purifying apparatus
JP2008029911A (en) Treatment method of bone black cleaning drainage
KR102013076B1 (en) Movable sludge dewatering appratus
KR100303255B1 (en) A method of and a system of treating an adulterated matter
CN211999086U (en) Multistage interception screw press with oil separation and sand settling functions
CN109384367A (en) A kind of online minimizing processing unit of sludge of sewage treatment plant and method
CN111203030B (en) High-efficiency recyclable solid-liquid separation method for industrial wastewater
CN208104102U (en) A kind of Full automatic integrated water purifier
KR200220293Y1 (en) Waste water filtering device of livestock farm

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees