JP3750570B2 - Antireflection material manufacturing method and optical member - Google Patents

Antireflection material manufacturing method and optical member Download PDF

Info

Publication number
JP3750570B2
JP3750570B2 JP2001217952A JP2001217952A JP3750570B2 JP 3750570 B2 JP3750570 B2 JP 3750570B2 JP 2001217952 A JP2001217952 A JP 2001217952A JP 2001217952 A JP2001217952 A JP 2001217952A JP 3750570 B2 JP3750570 B2 JP 3750570B2
Authority
JP
Japan
Prior art keywords
layer
refractive index
antireflection
antireflection material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001217952A
Other languages
Japanese (ja)
Other versions
JP2002122705A (en
Inventor
隆宏 原田
晴夫 宇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2001217952A priority Critical patent/JP3750570B2/en
Publication of JP2002122705A publication Critical patent/JP2002122705A/en
Application granted granted Critical
Publication of JP3750570B2 publication Critical patent/JP3750570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディスプレイの表示画面表面に適用される反射防止フィルム等の反射防止材に係わり、更に詳しくは、可視光に対し広波長域で反射防止効果を有する反射防止フィルム、及びこれを有する光学部材に関する。
【0002】
【従来の技術】
ディスプレイの多くは、室内外を問わず外光などが入射するような環境下で使用される。この外光などの入射光は、ディスプレイ表面等において正反射され、反射像が表示光と混合し表示品質を低下させ表示画像を見にくくしている。
【0003】
これを防止するため、透明基材の表面に金属酸化物などから成る高屈折率層と低屈折率層を積層した、或いは無機や有機フッ素化合物などの低屈折率層を形成した反射防止効果を有するフィルムをディスプレイ表面などに貼り合わせる等して、利用することが知られている。
【0004】
一方、これとは別に、透明基材の表面に透明な微粒子を含むコーティング層を形成し、凸凹状の表面により外光を乱反射させるなどしても、同様の効果を得られることが知られている。
【0005】
【発明が解決しようとする課題】
最近のオフィスのOA化に伴い、コンピューターを使用する頻度が増し、CRTや液晶ディスプレイと人間が相対していることが長時間化した。これにより反射像等による表示品質の低下は、目の疲労など健康障害等を引き起こす要因とも考えられ、これまで以上に、可視光の広範囲にわたってより高い反射防止効果を有する反射防止材や光学部材の要求が高まってきた。
【0006】
更には、近年ではアウトドアライフの普及に伴い、テレビや液晶ディスプレイを室外で使用する機会が益々増える傾向にあり、表示品質をより向上して表示画像を明確に認識できるように、同様に可視光の広範囲にわたってより高い反射防止効果を有するフィルム等の反射防止材や光学部材の要求が出てきている。
【0007】
しかしながら、無機物や有機物の低屈折率物質を単層で形成した反射防止層では緑色を中心とした可視光線の主要部の低屈折率化に重きを置き、赤色、紫色等の低屈折率化がなかなか果たせずに400nm及び700nm近辺ばかりではなく、人間の目の感度の比較的高い450nm及び650nm近辺の波長での屈折率が高いU型の分光反射特性を示し、可視光の広範囲にわたる高い反射防止効果を得ることはできない。また異なる屈折率層を積層した多層構成によるものでは、高屈折率層と低屈折率層の層構成の多層化、膜厚の増加、不均質を利用した複雑な材料設計、さらには中間屈折率物質などを使用することにより、上記反射特性を得られるものの、複雑な構成による安定成膜の困難化、反射防止特性の安定性低下や、使用材料の増加などによって、作製技術の高度化、歩留まりの低下、コストの上昇を招き、実用化、商品化に関しては問題となる。
【0008】
本発明は、このような問題点に着目しなされたもので、その目的とするところは、人間の目の感度の比較的高い450nm〜650nmの範囲での分光反射率が1%以下とすることを目的とし、更に好ましくは0.5%以下の波長域をより広域化するをとともに、実用性に優れた反射防止フィルム等の反射防止材ならびに光学部材を安価で且つ容易に提供することにある。
【0009】
【課題を解決するための手段】
上記の課題を解決する手段として、本発明の第1の発明は、透明プラスチック基材上の少なくとも片面に、屈折率の異なる金属酸化物を順次交互に積層した反射防止層を有し、前記反射防止層の高屈折率層及び低屈折率層が、各々同じ金属酸化物で形成されるとともに、前記高屈折率層の屈折率が各々1.9以上2.5以下で各前記高屈折率層は透明基材に近い順に屈折率が高く、前記低屈折率層の屈折率が各々1.3以上1.5以下で各前記屈折率層は透明基材に近い順に屈折率が高いことを特徴とするディスプレイ用反射防止材の製造方法であって、前記反射防止層が真空成膜プロセスによって形成し、かつ各々同じ金属酸化物によって形成される反射防止層の高屈折率層及び低屈折率層の成膜条件変化させる、または成膜粒子の基材に対する入射角を調製することを特徴とする反射防止材の製造方法である。
【0010】
具体的に式に表すと、透明基材上の少なくとも片面に、屈折率の異なる金属酸化物を順次交互に積層した反射防止層を有し、前記反射防止層の高屈折率層及び低屈折率層が、各々同じ金属酸化物で形成するとともに、更に各々の層の屈折率が積層順に、
高屈折率層:2.5≧nH1、nH2、・・・・・ 、nHn≧1.9
H1>nH2>・・・・・>nHn-1>nHn
低屈折率層:1.5≧nL1、nL2、・・・・・ 、nLn≧1.3
L1>nL2>・・・・・>nLn-1>nLn
の屈折率の条件で積層されていることを特徴とする。
【0011】
また、第2の発明は、前記の反射防止材を形成する金属酸化物の少なくとも1種類が、導電性を有していることを特徴とする。
【0012】
また、第3の発明は前記の反射防止層の上に防汚層を形成したことを特徴とする。
【0013】
また、第4の発明は前記の透明基材との反射防止層の間に耐摩禍性を有する透明ハードコート層が形成されたことを特徴とする。
【0014】
また、第5の発明は、前記の透明基材と反射防止層の間に、耐摩禍性を有する透明ハードコート層が形成されていることを特徴し、更には、前記のハードコート層に平均粒子径0.01〜3μmの透明な超微粒子を含むことを特徴とする。
【0015】
また、第6の発明は、前記の発明によって得られた反射防止材を貼り合わせる等により、これを有する光学部材であることを特徴とする。
【0016】
また、第7の発明は、前記の透明基板が光学部材である反射防止材であることを特徴とする。
【0017】
以上の様に、本発明によれば、反射防止層の高屈折率層及び低屈折率層を各々を同じ金属酸化物によって形成し、更に積層順に従って各々の屈折率を低屈折率化することにより、膜厚構成を変えずに可視光の広範囲にわたって低い反射率特性を実現できる。
【0018】
更に、反射防止層に導電性を有する金属酸化物を用いることによって、反射防止効果に加え導電性、帯電防止性を付加でき、また反射防止層の上に撥水層を形成することにより、防汚性を付与でき、より高機能化、実用性に富む反射防止材とすることができる。
【0019】
また、前記の反射防止材を貼り合わせるなどして得られた光学部材をディスプレイに用いることによって、表示品質が向上し、表示画像をより明確に認識できるようになる。
【0020】
【発明の実施の形態】
以下、本発明の反射防止材について、図面を用いて詳細に説明する。
本発明の請求項1記載の反射防止材の一構成を示す断面図を図1に示す。
また本発明の請求項2記載の反射防止材の一構成を示す断面図を図2に、更に本発明の請求項4〜6記載の反射防止材の一構成を示す断面図を図3〜5に示す。
【0021】
本発明による反射防止材は、図1に示す様に透明プラスチックフィルム等からなる透明基材1に反射防止層2を形成したもので、反射防止層2は、高屈折率層2aと低屈折率層2bを交互に積層し、低屈折率層2aが最上層となるよう構成されている。
【0022】
反射防止層を形成する透明基材1には、透明性のある基材であれば良く、プラスチックフィルムに限られず、条件さえ合えばプラスチック板、ガラス、天然樹脂等でも良いが、プラスチックフィルムの場合は、例えば、ポリメチルメタクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース等が使用でき、目的・用途によって適宜選択される。
【0023】
反射防止層2は、高屈折率層2aと低屈折率層2bを交互に所定の光学膜厚nd(屈折率n×形状膜厚dの積)となるように積層し、低屈折率層2aが最上層となるよう構成することにより反射防止機能を発現している。
【0024】
反射防止層2を構成する高屈折率層2aと低屈折率層2bは、各々が同じ金属酸化物で構成されており、高屈折率層2aの屈折率nHは1.9〜2.5、低屈折率層2bの屈折率は1.3〜1.5の範囲のものが使用できる。
【0025】
この高屈折率層2aと低屈折率層2bの屈折率は、各々の積層順に従って、高屈折率層2aがnH1、・・・・、nHnと、低屈折率層2bはnL1、・・・・、nLnと示してあり、各々の積層順に従って屈折率が低く、つまりnH1からnHnへ、またnL1からnLnへ向って低屈折率の層となっている。
【0026】
高屈折率層2aとしては、屈折率nHが1.9〜2.5の範囲の金属酸化物であれば特に限定されるものではなく、例えば酸化チタン、酸化ジルコニウム、酸化ハフニウム、酸化セリウム、酸化タンタル等の電気絶縁性金属酸化物の他、酸化インジウム、酸化錫、インジウム−錫酸化物(ITO)、酸化亜鉛等の導電性金属酸化物も使用できる。導電性金属酸化物を用いた場合は、反射防止効果に加え導電性を付加できる。一方、低屈折率層2bとしては、屈折率nLが1.3〜1.5の範囲の金属酸化物であれば特に限定されるものではなく、代表的な酸化物として酸化珪素が上げられる。本発明においては、金属酸化物に特定しているが、高屈折率層2a及び低屈折率層2bの屈折率範囲を満たす透明層であれば特に限定されるものではなく、金属酸化物の混合物、金属酸化物以外でも無機や有機の弗化物などが使用できる。
【0027】
反射防止層2は、真空蒸着法、反応性蒸着法、イオンビームアシスト蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法などの真空成膜プロセスによって形成することができる。屈折率を変化させるには、成膜条件であるガス圧力、ガス導入量、イオンビームパワー、プラズマ電力、ガス種などを変化させる他、成膜粒子の基材に対する入射角を調整することによっても可能であり、屈折率を制御できる方法であれば、いかなる成膜方法であっても構わない。
【0028】
本発明による反射特性は、一般的に可視光とされる400nm〜700nmの範囲において、人間の目の感度の比較的高い450nm〜650nmの範囲での分光反射率が1%以下とすることを目的とし、更に好ましくは0.5%以下の波長域をより広域化するを目的としている。この様な反射特性を有し、更に生産性、コスト等を考慮すると全積層数は少ない方がよく、現実的には積層数を4層構成とした場合が好ましく、更には1層目と2層目を等価膜とした4層構成が最も好ましい。
【0029】
本発明による防汚層は、本発明の反射防止層の表面を保護し、更に防汚性を高めるものであり、要求性能を満たすものであれば、いかなる材料であっても制限されるものでない。例えば、疎水性や撥油性を示す化合物が良く、適した化合物としては、フルオロカーボンやパーフルオロシラン等が、またこれらの高分子化合物等が好適である。これらの材料は、材料に応じて真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法、プラズマ重合法などの真空成膜プロセスや、マイクログラビア、スクリーン等のウェットプロセスの各種コーティング方法を用いて、撥水層を形成することができる。撥水層の厚さは反射防止層の機能を損なわないように設定されなければならず、形状膜厚10nm以下とすることが好ましい。
【0030】
本発明によるハードコート層は、透明性を有し、適度な硬度があれば特に限定はされない。電離放射線や紫外線照射による硬化樹脂や熱硬化性の樹脂が使用でき、特に紫外線照射硬化型のアクリル系や有機珪素系の樹脂や、熱硬化型のポリシロキサン樹脂が好適である。これらの樹脂は、透明プラスチックフィルム基材1と屈折率が同等もしくは近似していることがより好ましいが、形状膜厚が5μm以上の場合は特にこの必要はない。
【0031】
また、前記のハードコート層に平均粒子径0.01〜3μmの透明な無機或いは有機の超微粒子を混合分散させことにより、一般にアンチグレアと呼ばれる光拡散性の処理を施すことができる。これらの超微粒子は、透明であれば特に限定されるものではないが、低屈折率材料が好ましく、無機の酸化珪素、弗化マグネシウムが安定性、耐熱性等で好適である。これらのハードコート層は平滑に且つ均一に塗布されるものであり、塗布方法はいかなる方法でも構わない。
【0032】
これら本発明による反射防止フィルムを粘着剤、接着剤等を用いてガラス板、プラスチック板、偏光板等と貼り合わせることによって、反射防止性の有する光学部材が得られる。
【0033】
【実施例】
次に本発明を、具体的な実施例を挙げて詳細に説明する。
<実施例1>
透明基材1のトリアセチルセルロースフィルム80μm上に、高屈折率層2aに酸化チタン、低屈折率層2bに酸化珪素からなる反射防止層をプラズマアシスト蒸着法により形成し、全層数は4層とした。各層の屈折率及び光学膜厚ndは、
1層目:TiO2(nH1=2.25 nd=50nm)
2層目:SiO2(nL1=1.46 nd=45nm)
3層目:TiO2(nH2=2.00 nd=120nm)
4層目:SiO2(nL2=1.40 nd=140nm)
とした。各層の屈折率は、予め成膜条件を適性化し上記値となるように設定し、特に3層目と4層目は、蒸着粒子の入射角を斜入射として低屈折率化した。光学膜厚は、光学式の膜厚モニターにより監視し、目的光量値に達した時シャッターを閉じて所定の光学膜厚を得た。この反射防止層の絶対反射測定による分光反射特性を図6に示す。光の波長の450nm〜650nm以上にわたって反射率が0.6%以下であり、高い反射防止性を広波長域で実現できた。
【0034】
<実施例2>
透明基材1のトリアセチルセルロースフィルム80μm上に、高屈折率層2aに酸化チタン、低屈折率層2bに酸化珪素からなる反射防止層をプラズマアシスト蒸着法により形成し、全層数は4層とした。各層の屈折率及び光学膜厚ndは、
1層目:TiO2(nH1=2.25 nd=50nm)
2層目:SiO2(nL1=1.46 nd=45nm)
3層目:TiO2(nH2=2.15 nd=120nm)
4層目:SiO2(nL2=1.43 nd=140nm)
とした。各層の屈折率は、予め成膜条件を適性化し上記値となるように設定し、特に3層目と4層目は、蒸着中の圧力を高くして低屈折率化した。光学膜厚は、光学式の膜厚モニターにより監視し、目的光量値に達した時シャッターを閉じて所定の光学膜厚を得た。この反射防止層の絶対反射測定の分光反射特性を図6に示す。光の波長の450nm〜650nmにわたって反射率が0.6%以下であり、特に450nm〜630nmにわたって反射率が0.3%以下となり高い反射防止性を広波長域で実現できた。
【0035】
<実施例3>
透明基材1のポリエチレンテレフタレートフィルム100μm上に、高屈折率層2aに酸化チタン、低屈折率層2bに酸化珪素からなる反射防止層をプラズマアシスト蒸着法により形成し、全層数は4層とした。各層の屈折率及び光学膜厚ndは、
1層目:TiO2(nH1=2.25 nd=55nm)
2層目:SiO2(nL1=1.46 nd=40nm)
3層目:TiO2(nH2=2.00 nd=110nm)
4層目:SiO2(nL2=1.40 nd=145nm)
とした。各層の屈折率は、予め成膜条件を適性化し上記値となるように設定し、特に3層目と4層目は、蒸着粒子の入射角を斜入射として低屈折率化した。光学膜厚は、光学式の膜厚モニターにより監視し、目的光量値に達した時シャッターを閉じて所定の光学膜厚を得た。この反射防止層の絶対反射測定の分光反射特性を図7に示す。光の波長の430nm〜700nm以上にわたって反射率が0.6%以下であり、高い反射防止性を広波長域で実現できた。
【0036】
<実施例4>
透明基材1のポリエチレンテレフタレートフィルム100μm上に、高屈折率層2aに酸化チタン、低屈折率層2bに酸化珪素からなる反射防止層をプラズマアシスト蒸着法により形成し、全層数は4層とした。各層の屈折率及び光学膜厚ndは、
1層目:TiO2(nH1=2.25 nd=55nm)
2層目:SiO2(nL1=1.46 nd=40nm)
3層目:TiO2(nH2=2.15 nd=110nm)
4層目:SiO2(nL2=1.43 nd=145nm)
とした。各層の屈折率は、予め成膜条件を適性化し上記値となるように設定し、特に3層目と4層目は、蒸着中の圧力を高くして低屈折率化した。光学膜厚は、光学式の膜厚モニターにより監視し、目的光量値に達した時シャッターを閉じて所定の光学膜厚を得た。この反射防止層の絶対反射測定の分光反射特性を図7に示す。光の波長の450nm〜650nm以上にわたって反射率が0.6%以下であり、特に450nm〜630nmにわたって反射率が0.3%以下となり高い反射防止性を広波長域で実現できた。
【0037】
<実施例5>
透明基材1のトリアセチルセルロースフィルム80μm上に、紫外線硬化型のアクリル樹脂をマイクログラビアコート法により塗布し、紫外線照射により硬化したハードコート層4を厚さ5μmで形成した。更に高屈折率層2aに酸化チタン、低屈折率層2bに酸化珪素からなる反射防止層をプラズマアシスト蒸着法により形成し、全層数は4層とした。各層の屈折率及び光学膜厚ndは、
1層目:TiO2(nH1=2.25 nd=50nm)
2層目:SiO2(nL1=1.46 nd=45nm)
3層目:TiO2(nH2=2.15 nd=120nm)
4層目:SiO2(nL2=1.43 nd=140nm)
とした。各層の屈折率は、予め成膜条件を適性化し上記値となるように設定し、特に3層目と4層目は、蒸着粒子の入射角を斜入射として低屈折率化した。光学膜厚は、光学式の膜厚モニターにより監視し、目的光量値に達した時シャッターを閉じて所定の光学膜厚を得た。更に反射防止層の上に、プラズマCVD法により形状膜厚で40nmのパーフルオロシランからなる防汚層を形成し反射防止フィルムを作製した。この反射防止層の絶対反射測定の分光反射特性を図8に示す。光の波長の450nm〜650nm以上にわたって反射率が0.6%以下であり、高い反射防止性を広波長域で実現できた。
【0038】
<実施例6>
透明基材1のトリアセチルセルロースフィルム80μm上に、紫外線硬化型のアクリル樹脂をマイクログラビアコート法により塗布し、紫外線照射により硬化したハードコート層4を厚さ5μmで形成した。更に高屈折率層2aに酸化チタン、低屈折率層2bに酸化珪素からなる反射防止層をプラズマアシスト蒸着法により形成し、全層数は4層とした。各層の屈折率及び光学膜厚ndは、
1層目:TiO2(nH1=2.25 nd=50nm)
2層目:SiO2(nL1=1.46 nd=45nm)
3層目:TiO2(nH2=2.15 nd=120nm)
4層目:SiO2(nL2=1.43 nd=140nm)
とした。各層の屈折率は、予め成膜条件を適性化し上記値となるように設定し、特に3層目と4層目は、蒸着中の圧力を高くして低屈折率化した。光学膜厚は、光学式の膜厚モニターにより監視し、目的光量値に達した時シャッターを閉じて所定の光学膜厚を得た。更に反射防止層の上に、プラズマCVD法により形状膜厚で40nmのパーフルオロシランからなる防汚層を形成し反射防止フィルムを作製した。この反射防止層の絶対反射測定の分光反射特性を図8に示す。光の波長の450nm〜650nm以上にわたって反射率が0.6%以下であり、特に450nm〜630nmにわたって反射率が0.3%以下となり高い反射防止性を広波長域で実現できた。
【0039】
<実施例7>
前記、実施例6のハードコート層に平均粒子径0.5μmの酸化珪素の超微粒子を均一に分散させて、その上に実施例6同様に反射防止層、防汚層を順次形成し、反射防止材を作製した。ただし、光学モニターによる監視は、基材フィルムである本実施例では光の散乱により不可能なので、近傍に設置したモニター用フィルムを用いて設定の光学膜厚を得た。この反射防止材は、光拡散性を持つため鏡面光沢がなく、また分光反射特性も拡散反射測定で測定した結果、実施例6とほぼ同様であり、高い反射防止性を広波長域で実現できた。
【0040】
前記実施例では、電気絶縁性の酸化チタンを用いたが、電気伝導性を有する酸化インジウム、酸化錫、インジウム−錫酸化物(ITO)などを高屈折率層として使用し、屈折率、光学膜厚を最適化することによって、同様の反射防止性を有し、且つ電気伝導性を付与した反射防止材を作製・実現できる。
【0041】
<比較例1>
透明基材1のポリエチレンテレフタレートフィルム100μm上に、高屈折率層2aに酸化チタン、低屈折率層2bに酸化珪素からなる反射防止層をプラズマアシスト蒸着法により形成し、全層数は4層とした。各層の屈折率及び光学膜厚ndは、
1層目:TiO2(nH1=2.25 nd=55nm)
2層目:SiO2(nL1=1.46 nd=40nm)
3層目:TiO2(nH2=2.25 nd=110nm)
4層目:SiO2(nL2=1.46 nd=145nm)
とし、高屈折率層2a及び低屈折率層2bの各々の屈折率が積層順に関係なく一定となるよう、成膜条件を変えずに成膜した。この反射防止層の絶対反射測定の分光反射特性を図9に示す。実施例3及び4と比較して、近紫外側及び近赤外側の反射率が光の各波長毎に2倍以上となり、反射率が0.6%以下の波長範囲が明らかに狭く、実施例の方が反射防止性が広波長域であった。
【0042】
<比較例2>
透明基材1のトリアセチルセルロースフィルム80μm上に、紫外線硬化型のアクリル樹脂をマイクログラビアコート法により塗布し、紫外線照射により硬化したハードコート層4を厚さ5μmで形成した。更に高屈折率層2aに酸化チタン、低屈折率層2bに酸化珪素からなる反射防止層をプラズマアシスト蒸着法により形成し、全層数は4層とした。各層の屈折率及び光学膜厚ndは、
1層目:TiO2(nH1=2.25 nd=50nm)
2層目:SiO2(nL1=1.46 nd=45nm)
3層目:TiO2(nH2=2.15 nd=120nm)
4層目:SiO2(nL2=1.43 nd=140nm)
とした。高屈折率層2a及び低屈折率層2bの各々の屈折率が積層順に関係なく一定となるよう、成膜条件を変えずに成膜した。更に反射防止層の上に、プラズマCVD法により形状膜厚で40nmのパーフルオロシランからなる防汚層を形成し反射防止材を作製した。この反射防止層の絶対反射測定の分光反射特性を図10に示す。実施例5及び6と比較して、近紫外側及び近赤外側の反射率が光の各波長毎に2倍以上となり、反射率が0.6%以下の波長範囲が明らかに狭く、実施例の方が反射防止性が広波長域であった。
【0043】
【発明の効果】
以上の様に、本発明によれば、各々同じ金属酸化物によって形成される反射防止層の高屈折率層及び低屈折率層の屈折率を、積層順に従って低屈折率化することにより、層構成の多層化、膜厚の増加、中間屈折率層などの使用材料の追加等をせずに、また複雑な膜構成としなくても可視光の広範囲にわたり低い反射率特性を有する実用性に優れた反射防止材を安価で且つ容易に提供できる。
【0044】
更に、反射防止層に導電性を有する金属酸化物を用いたり、反射防止層の上に撥水層を形成することにより、導電性、帯電防止性、防汚性を付与でき、前記効果に加えてより高機能な付加価値の高い反射防止材が提供できる。
【0045】
また、本発明による反射防止材を貼り合わせるなどして得られた光学部材を用いることによって、表示品質が向上し、表示画像をより明確に認識でき、健康に優しいディスプレイを得ることができる。
【0046】
【図面の簡単な説明】
【図1】請求項1記載の反射防止材の一実施例の構成を示す断面図である。
【図2】請求項2記載の反射防止材の一実施例の構成を示す断面図である。
【図3】請求項4記載の反射防止材の一実施例の構成を示す断面図である。
【図4】請求項5記載の反射防止材の一実施例の構成を示す断面図である。
【図5】請求項6記載の反射防止材の一実施例の構成を示す断面図である。
【図6】実施例1、2の反射防止材の絶対反射測定による分光反射スペクトルである。
【図7】実施例3、4の反射防止材の絶対反射測定による分光反射スペクトルである。
【図8】実施例5、6の反射防止材の絶対反射測定による分光反射スペクトルである。
【図9】比較例1の反射防止材の絶対反射測定による分光反射スペクトルである。
【図10】比較例2の反射防止材の絶対反射測定による分光反射スペクトルである。
【符号の説明】
1:透明基材
2:反射防止層・・・・ 2−a:高屈折率層
・・・・ 2−b:低屈折率層
3:撥水層
4:ハードコート層
5:平均粒子径0.01〜3μmの透明な超微粒子を均一に分散させたハードコート層(光拡散層、アンチグレア層)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antireflection material such as an antireflection film applied to the display screen surface of a display, and more specifically, an antireflection film having an antireflection effect in a wide wavelength range with respect to visible light, and an optical having the same It relates to members.
[0002]
[Prior art]
Many displays are used in an environment where external light or the like enters regardless of whether indoors or outdoors. Incident light such as external light is specularly reflected on the display surface or the like, and the reflected image is mixed with the display light to deteriorate the display quality and make the display image difficult to see.
[0003]
In order to prevent this, the antireflective effect in which a high refractive index layer and a low refractive index layer made of a metal oxide or the like are laminated on the surface of a transparent substrate, or a low refractive index layer such as an inorganic or organic fluorine compound is formed. It is known to use a film having a film attached to a display surface or the like.
[0004]
On the other hand, it is known that the same effect can be obtained by forming a coating layer containing transparent fine particles on the surface of the transparent base material and irregularly reflecting external light by the uneven surface. Yes.
[0005]
[Problems to be solved by the invention]
With the recent trend toward office automation, the frequency of using computers has increased, and it has become a long time for CRTs and liquid crystal displays to be opposed to humans. As a result, the deterioration in display quality due to reflected images and the like is considered to be a cause of health problems such as eye fatigue, and more than ever, antireflection materials and optical members having a higher antireflection effect over a wide range of visible light. The demand has increased.
[0006]
Furthermore, in recent years, with the spread of outdoor life, there has been an increasing tendency to use televisions and liquid crystal displays outdoors, and in order to improve the display quality and make it possible to clearly recognize the displayed image, visible light is similarly applied. Therefore, there is a demand for an antireflection material such as a film having a higher antireflection effect over a wide range and an optical member.
[0007]
However, in the antireflection layer formed of a single layer of inorganic or organic low-refractive-index substances, emphasis is placed on lowering the refractive index of the main part of visible light centering on green, and lowering the refractive index of red, purple, etc. It shows a U-shaped spectral reflection characteristic with a high refractive index not only in the vicinity of 400 nm and 700 nm but also in the vicinity of wavelengths of 450 nm and 650 nm, which is relatively sensitive to the human eye, and high antireflection over a wide range of visible light. The effect cannot be obtained. Also, in the case of a multilayer structure in which different refractive index layers are stacked, the multilayer structure of the high refractive index layer and the low refractive index layer is increased, the film thickness is increased, a complicated material design utilizing inhomogeneity, and the intermediate refractive index Although the above reflection characteristics can be obtained by using materials, etc., the production technology has become more sophisticated and the yield has increased due to the difficulty of stable film formation due to the complicated structure, the decrease in the stability of antireflection characteristics, and the increase in materials used. Decrease and cost increase, and there is a problem with commercialization and commercialization.
[0008]
The present invention has been made paying attention to such problems, and the object of the present invention is to have a spectral reflectance of 1% or less in the range of 450 nm to 650 nm, which is relatively sensitive to human eyes. In addition, the present invention is to provide an antireflection material such as an antireflection film and an optical member excellent in practicality at low cost and easily while further widening the wavelength region of 0.5% or less, more preferably. .
[0009]
[Means for Solving the Problems]
As means for solving the above problems, the first invention of the present invention has an antireflection layer in which metal oxides having different refractive indexes are sequentially laminated on at least one surface on a transparent plastic substrate, and the reflection The high refractive index layer and the low refractive index layer of the prevention layer are each formed of the same metal oxide, and each of the high refractive index layers has a refractive index of 1.9 to 2.5. The refractive index is higher in the order closer to the transparent substrate, the refractive index of each of the low refractive index layers is 1.3 or more and 1.5 or less, and each low refractive index layer has a higher refractive index in the order closer to the transparent substrate. A method for producing an antireflective material for a display, characterized in that the antireflective layer is formed by a vacuum film-forming process, and each of the antireflective layers is formed of the same metal oxide. Change the film formation conditions of the layer or base material of the film formation particles A method of manufacturing anti-reflection member, which comprises preparing the incident angle against.
[0010]
More specifically, the antireflective layer is formed by alternately laminating metal oxides having different refractive indexes on at least one surface of the transparent substrate, and the antireflective layer has a high refractive index layer and a low refractive index. The layers are each formed of the same metal oxide, and the refractive index of each layer is further in the stacking order,
High refractive index layer: 2.5 ≧ n H1 , n H2 ,..., N Hn ≧ 1.9
n H1 > n H2 > ・ ・ ・ ・ ・> n Hn-1 > n Hn
Low refractive index layer: 1.5 ≧ n L1 , n L2 ,..., N Ln ≧ 1.3
n L1 > n L2 > ・ ・ ・ ・ ・> n Ln-1 > n Ln
It is characterized by being laminated under the condition of the refractive index.
[0011]
The second invention is characterized in that at least one of the metal oxides forming the antireflection material has conductivity.
[0012]
The third invention is characterized in that an antifouling layer is formed on the antireflection layer.
[0013]
The fourth invention is characterized in that a transparent hard coat layer having abrasion resistance is formed between the antireflection layer and the transparent substrate.
[0014]
Further, the fifth invention is characterized in that a transparent hard coat layer having abrasion resistance is formed between the transparent substrate and the antireflection layer, and further, the hard coat layer has an average. It contains transparent ultrafine particles having a particle diameter of 0.01 to 3 μm.
[0015]
The sixth invention is an optical member having the antireflection material obtained by the above invention, for example, by sticking it together.
[0016]
According to a seventh aspect of the invention, the transparent substrate is an antireflection material that is an optical member.
[0017]
As described above, according to the present invention, each of the high refractive index layer and the low refractive index layer of the antireflection layer is formed of the same metal oxide, and each refractive index is lowered according to the stacking order. Thus, low reflectance characteristics can be realized over a wide range of visible light without changing the film thickness configuration.
[0018]
Furthermore, by using a conductive metal oxide for the antireflection layer, it is possible to add conductivity and antistatic properties in addition to the antireflection effect, and by forming a water repellent layer on the antireflection layer, It is possible to provide an antireflection material that can impart dirtiness, have higher functionality, and is more practical.
[0019]
Further, by using an optical member obtained by bonding the antireflection material to the display, the display quality is improved and the display image can be recognized more clearly.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the antireflection material of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing one configuration of the antireflection material according to claim 1 of the present invention.
FIG. 2 is a cross-sectional view showing one configuration of the antireflection material according to claim 2 of the present invention, and FIGS. 3-5 are cross-sectional views showing one configuration of the antireflection material according to claims 4 to 6 of the present invention. Shown in
[0021]
The antireflection material according to the present invention is obtained by forming an antireflection layer 2 on a transparent base material 1 made of a transparent plastic film or the like as shown in FIG. 1, and the antireflection layer 2 has a high refractive index layer 2a and a low refractive index. The layers 2b are alternately stacked, and the low refractive index layer 2a is the uppermost layer.
[0022]
The transparent substrate 1 for forming the antireflection layer may be a transparent substrate and is not limited to a plastic film, and may be a plastic plate, glass, natural resin or the like as long as the conditions are met. For example, polymethyl methacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, and the like can be used, and are appropriately selected according to the purpose and application.
[0023]
The antireflection layer 2 is formed by alternately stacking a high refractive index layer 2a and a low refractive index layer 2b so as to have a predetermined optical film thickness nd (product of refractive index n × shape film thickness d). The anti-reflective function is expressed by constituting so that becomes the uppermost layer.
[0024]
The high refractive index layer 2a and the low refractive index layer 2b constituting the antireflection layer 2 are each made of the same metal oxide, and the refractive index nH of the high refractive index layer 2a is 1.9 to 2.5, The low refractive index layer 2b may have a refractive index in the range of 1.3 to 1.5.
[0025]
The refractive indexes of the high refractive index layer 2a and the low refractive index layer 2b are n H1 ,..., N Hn for the high refractive index layer 2a and n L1 for the low refractive index layer 2b according to the stacking order. ..., N Ln, and the refractive index is low according to the stacking order, that is, the layer has a low refractive index from n H1 to n Hn and from n L1 to n Ln .
[0026]
The high refractive index layer 2a is not particularly limited as long as the refractive index n H is a metal oxide in the range of 1.9 to 2.5. For example, titanium oxide, zirconium oxide, hafnium oxide, cerium oxide, In addition to electrically insulating metal oxides such as tantalum oxide, conductive metal oxides such as indium oxide, tin oxide, indium-tin oxide (ITO), and zinc oxide can also be used. When a conductive metal oxide is used, conductivity can be added in addition to the antireflection effect. On the other hand, the low refractive index layer 2b is not particularly limited as long as it is a metal oxide having a refractive index n L in the range of 1.3 to 1.5, and silicon oxide can be given as a representative oxide. . In the present invention, although it is specified as a metal oxide, it is not particularly limited as long as it is a transparent layer satisfying the refractive index range of the high refractive index layer 2a and the low refractive index layer 2b. In addition to metal oxides, inorganic and organic fluorides can be used.
[0027]
The antireflection layer 2 can be formed by a vacuum film formation process such as a vacuum deposition method, a reactive deposition method, an ion beam assisted deposition method, a sputtering method, an ion plating method, or a plasma CVD method. In order to change the refractive index, the gas pressure, gas introduction amount, ion beam power, plasma power, gas type, and the like, which are film formation conditions, are changed, and the incident angle of the film formation particles to the base material is adjusted. Any film forming method may be used as long as it is possible and the method can control the refractive index.
[0028]
The reflection characteristic according to the present invention is intended to have a spectral reflectance of 1% or less in a range of 450 nm to 650 nm, which is relatively sensitive to human eyes, in a range of 400 nm to 700 nm, which is generally regarded as visible light. More preferably, the objective is to broaden the wavelength range of 0.5% or less. Having such reflection characteristics and considering productivity, cost, etc., it is better that the total number of laminated layers is small. In practice, the number of laminated layers is preferably a four-layer structure. A four-layer structure in which the layers are equivalent films is most preferable.
[0029]
The antifouling layer according to the present invention protects the surface of the antireflection layer of the present invention and further enhances the antifouling property, and is not limited by any material as long as it satisfies the required performance. . For example, a compound exhibiting hydrophobicity or oil repellency is good, and suitable compounds include fluorocarbon and perfluorosilane, and these high molecular compounds. These materials use various coating methods such as vacuum deposition processes such as vacuum deposition, sputtering, ion plating, plasma CVD, and plasma polymerization, and wet processes such as microgravure and screen, depending on the material. Thus, a water repellent layer can be formed. The thickness of the water repellent layer must be set so as not to impair the function of the antireflection layer, and is preferably 10 nm or less.
[0030]
The hard coat layer according to the present invention is not particularly limited as long as it has transparency and has an appropriate hardness. A curable resin or thermosetting resin by ionizing radiation or ultraviolet irradiation can be used, and an ultraviolet irradiation curable acrylic or organosilicon resin or a thermosetting polysiloxane resin is particularly suitable. It is more preferable that these resins have the same or similar refractive index as that of the transparent plastic film substrate 1, but this is not particularly necessary when the shape film thickness is 5 μm or more.
[0031]
Further, by mixing and dispersing transparent inorganic or organic ultrafine particles having an average particle diameter of 0.01 to 3 μm in the hard coat layer, a light diffusing treatment generally called anti-glare can be performed. These ultrafine particles are not particularly limited as long as they are transparent, but a low refractive index material is preferable, and inorganic silicon oxide and magnesium fluoride are preferable in terms of stability and heat resistance. These hard coat layers are applied smoothly and uniformly, and any application method may be used.
[0032]
By attaching these antireflection films according to the present invention to a glass plate, a plastic plate, a polarizing plate or the like using an adhesive, an adhesive, or the like, an optical member having antireflection properties can be obtained.
[0033]
【Example】
Next, the present invention will be described in detail with specific examples.
<Example 1>
An antireflection layer made of titanium oxide on the high refractive index layer 2a and silicon oxide on the low refractive index layer 2b is formed on the triacetylcellulose film 80 [mu] m of the transparent substrate 1 by plasma assisted vapor deposition, and the total number of layers is four. It was. The refractive index and optical film thickness nd of each layer are
First layer: TiO 2 (n H1 = 2.25 nd = 50 nm)
Second layer: SiO 2 (n L1 = 1.46 nd = 45 nm)
Third layer: TiO 2 (n H2 = 2.00 nd = 120 nm)
Fourth layer: SiO 2 (n L2 = 1.40 nd = 140 nm)
It was. The refractive index of each layer was set in advance so that the film forming conditions were optimized and the above values were obtained, and in particular, the third layer and the fourth layer were made to have a low refractive index by setting the incident angle of vapor deposition particles as oblique incidence. The optical film thickness was monitored by an optical film thickness monitor, and when the target light amount value was reached, the shutter was closed to obtain a predetermined optical film thickness. FIG. 6 shows spectral reflection characteristics of the antireflection layer measured by absolute reflection. The reflectivity is 0.6% or less over the wavelength range of 450 nm to 650 nm, and high antireflection properties can be realized in a wide wavelength range.
[0034]
<Example 2>
An antireflection layer made of titanium oxide on the high refractive index layer 2a and silicon oxide on the low refractive index layer 2b is formed on the triacetylcellulose film 80 [mu] m of the transparent substrate 1 by plasma assisted vapor deposition, and the total number of layers is four. It was. The refractive index and optical film thickness nd of each layer are
First layer: TiO 2 (n H1 = 2.25 nd = 50 nm)
Second layer: SiO 2 (n L1 = 1.46 nd = 45 nm)
Third layer: TiO 2 (n H2 = 2.15 nd = 120 nm)
Fourth layer: SiO 2 (n L2 = 1.43 nd = 140 nm)
It was. The refractive index of each layer was set in advance such that the film formation conditions were optimized and the above values were obtained, and in particular, the third and fourth layers were lowered in refractive index by increasing the pressure during vapor deposition. The optical film thickness was monitored by an optical film thickness monitor, and when the target light amount value was reached, the shutter was closed to obtain a predetermined optical film thickness. The spectral reflection characteristics of the absolute reflection measurement of this antireflection layer are shown in FIG. The reflectivity is 0.6% or less over the light wavelength of 450 nm to 650 nm, and particularly the reflectivity is 0.3% or less over the 450 nm to 630 nm, so that high antireflection properties can be realized in a wide wavelength range.
[0035]
<Example 3>
On the polyethylene terephthalate film 100 μm of the transparent substrate 1, an antireflection layer made of titanium oxide on the high refractive index layer 2a and silicon oxide on the low refractive index layer 2b is formed by a plasma assisted deposition method, and the total number of layers is four. did. The refractive index and optical film thickness nd of each layer are
First layer: TiO 2 (n H1 = 2.25 nd = 55 nm)
Second layer: SiO 2 (n L1 = 1.46 nd = 40 nm)
Third layer: TiO 2 (n H2 = 2.00 nd = 110 nm)
Fourth layer: SiO 2 (n L2 = 1.40 nd = 145 nm)
It was. The refractive index of each layer was set in advance so that the film forming conditions were optimized and the above values were obtained, and in particular, the third layer and the fourth layer were made to have a low refractive index by setting the incident angle of vapor deposition particles as oblique incidence. The optical film thickness was monitored by an optical film thickness monitor, and when the target light amount value was reached, the shutter was closed to obtain a predetermined optical film thickness. The spectral reflection characteristics of the absolute reflection measurement of this antireflection layer are shown in FIG. The reflectivity is 0.6% or less over the light wavelength range of 430 nm to 700 nm or more, and high antireflection properties can be realized in a wide wavelength region.
[0036]
<Example 4>
On the polyethylene terephthalate film 100 μm of the transparent substrate 1, an antireflection layer made of titanium oxide on the high refractive index layer 2a and silicon oxide on the low refractive index layer 2b is formed by a plasma assisted deposition method, and the total number of layers is four. did. The refractive index and optical film thickness nd of each layer are
First layer: TiO 2 (n H1 = 2.25 nd = 55 nm)
Second layer: SiO 2 (n L1 = 1.46 nd = 40 nm)
Third layer: TiO 2 (n H2 = 2.15 nd = 110 nm)
Fourth layer: SiO 2 (n L2 = 1.43 nd = 145 nm)
It was. The refractive index of each layer was set in advance such that the film formation conditions were optimized and the above values were obtained, and in particular, the third and fourth layers were lowered in refractive index by increasing the pressure during vapor deposition. The optical film thickness was monitored by an optical film thickness monitor, and when the target light amount value was reached, the shutter was closed to obtain a predetermined optical film thickness. The spectral reflection characteristics of the absolute reflection measurement of this antireflection layer are shown in FIG. The reflectivity is 0.6% or less over the light wavelength of 450 nm to 650 nm or more, and particularly the reflectivity is 0.3% or less over 450 nm to 630 nm, and high antireflection properties can be realized in a wide wavelength range.
[0037]
<Example 5>
An ultraviolet curable acrylic resin was applied on the triacetyl cellulose film 80 μm of the transparent substrate 1 by a microgravure coating method, and a hard coat layer 4 cured by ultraviolet irradiation was formed to a thickness of 5 μm. Further, an antireflection layer made of titanium oxide on the high refractive index layer 2a and silicon oxide on the low refractive index layer 2b was formed by plasma assisted vapor deposition, and the total number of layers was four. The refractive index and optical film thickness nd of each layer are
First layer: TiO 2 (n H1 = 2.25 nd = 50 nm)
Second layer: SiO 2 (n L1 = 1.46 nd = 45 nm)
Third layer: TiO 2 (n H2 = 2.15 nd = 120 nm)
Fourth layer: SiO 2 (n L2 = 1.43 nd = 140 nm)
It was. The refractive index of each layer was set in advance so that the film forming conditions were optimized and the above values were obtained, and in particular, the third layer and the fourth layer were made to have a low refractive index by setting the incident angle of vapor deposition particles as oblique incidence. The optical film thickness was monitored by an optical film thickness monitor, and when the target light amount value was reached, the shutter was closed to obtain a predetermined optical film thickness. Further, on the antireflection layer, an antifouling layer made of perfluorosilane having a thickness of 40 nm was formed by plasma CVD to produce an antireflection film. The spectral reflection characteristics of the absolute reflection measurement of this antireflection layer are shown in FIG. The reflectivity is 0.6% or less over the wavelength range of 450 nm to 650 nm, and high antireflection properties can be realized in a wide wavelength range.
[0038]
<Example 6>
An ultraviolet curable acrylic resin was applied on the triacetyl cellulose film 80 μm of the transparent substrate 1 by a microgravure coating method, and a hard coat layer 4 cured by ultraviolet irradiation was formed to a thickness of 5 μm. Further, an antireflection layer made of titanium oxide on the high refractive index layer 2a and silicon oxide on the low refractive index layer 2b was formed by plasma assisted vapor deposition, and the total number of layers was four. The refractive index and optical film thickness nd of each layer are
First layer: TiO 2 (n H1 = 2.25 nd = 50 nm)
Second layer: SiO 2 (n L1 = 1.46 nd = 45 nm)
Third layer: TiO 2 (n H2 = 2.15 nd = 120 nm)
Fourth layer: SiO 2 (n L2 = 1.43 nd = 140 nm)
It was. The refractive index of each layer was set in advance such that the film formation conditions were optimized and the above values were obtained, and in particular, the third and fourth layers were lowered in refractive index by increasing the pressure during vapor deposition. The optical film thickness was monitored by an optical film thickness monitor, and when the target light amount value was reached, the shutter was closed to obtain a predetermined optical film thickness. Further, on the antireflection layer, an antifouling layer made of perfluorosilane having a thickness of 40 nm was formed by plasma CVD to produce an antireflection film. The spectral reflection characteristics of the absolute reflection measurement of this antireflection layer are shown in FIG. The reflectivity is 0.6% or less over the light wavelength of 450 nm to 650 nm or more, and particularly the reflectivity is 0.3% or less over 450 nm to 630 nm, and high antireflection properties can be realized in a wide wavelength range.
[0039]
<Example 7>
The ultrafine particles of silicon oxide having an average particle diameter of 0.5 μm are uniformly dispersed in the hard coat layer of Example 6, and an antireflection layer and an antifouling layer are sequentially formed on the hard coat layer in the same manner as in Example 6 for reflection. A preventive material was produced. However, since monitoring with an optical monitor is not possible due to light scattering in this example, which is a base film, a set optical film thickness was obtained using a monitor film installed in the vicinity. Since this antireflection material has light diffusibility, it has no specular gloss, and the spectral reflection characteristics are measured by diffuse reflection measurement. As a result, it is almost the same as in Example 6, and high antireflection properties can be realized in a wide wavelength range. It was.
[0040]
In the above embodiment, electrically insulating titanium oxide is used, but indium oxide, tin oxide, indium-tin oxide (ITO) having electrical conductivity is used as the high refractive index layer, and the refractive index and optical film By optimizing the thickness, an antireflection material having similar antireflection properties and electrical conductivity can be produced and realized.
[0041]
<Comparative Example 1>
On the polyethylene terephthalate film 100 μm of the transparent substrate 1, an antireflection layer made of titanium oxide on the high refractive index layer 2a and silicon oxide on the low refractive index layer 2b is formed by a plasma assisted deposition method, and the total number of layers is four. did. The refractive index and optical film thickness nd of each layer are
First layer: TiO 2 (n H1 = 2.25 nd = 55 nm)
Second layer: SiO 2 (n L1 = 1.46 nd = 40 nm)
Third layer: TiO 2 (n H2 = 2.25 nd = 110 nm)
Fourth layer: SiO 2 (n L2 = 1.46 nd = 145 nm)
The film formation was performed without changing the film formation conditions so that the refractive indexes of the high refractive index layer 2a and the low refractive index layer 2b were constant regardless of the stacking order. The spectral reflection characteristics of the absolute reflection measurement of this antireflection layer are shown in FIG. Compared with Examples 3 and 4, the near-UV and near-infrared reflectances are more than doubled for each wavelength of light, and the wavelength range where the reflectance is 0.6% or less is clearly narrow. The antireflection property was in a wider wavelength range.
[0042]
<Comparative Example 2>
An ultraviolet curable acrylic resin was applied on the triacetyl cellulose film 80 μm of the transparent substrate 1 by a microgravure coating method, and a hard coat layer 4 cured by ultraviolet irradiation was formed to a thickness of 5 μm. Further, an antireflection layer made of titanium oxide on the high refractive index layer 2a and silicon oxide on the low refractive index layer 2b was formed by plasma assisted vapor deposition, and the total number of layers was four. The refractive index and optical film thickness nd of each layer are
First layer: TiO 2 (n H1 = 2.25 nd = 50 nm)
Second layer: SiO 2 (n L1 = 1.46 nd = 45 nm)
Third layer: TiO 2 (n H2 = 2.15 nd = 120 nm)
Fourth layer: SiO 2 (n L2 = 1.43 nd = 140 nm)
It was. Film formation was performed without changing the film formation conditions so that the refractive indexes of the high refractive index layer 2a and the low refractive index layer 2b were constant regardless of the stacking order. Further, an antifouling layer made of perfluorosilane having a shape film thickness of 40 nm was formed on the antireflection layer by plasma CVD to produce an antireflection material. The spectral reflection characteristics of the absolute reflection measurement of this antireflection layer are shown in FIG. Compared with Examples 5 and 6, the reflectance on the near ultraviolet side and near infrared side is more than doubled for each wavelength of light, and the wavelength range where the reflectance is 0.6% or less is clearly narrower. The antireflection property was in a wider wavelength range.
[0043]
【The invention's effect】
As described above, according to the present invention, the refractive index of the high-refractive index layer and the low-refractive index layer of the antireflection layer, each formed of the same metal oxide, is reduced by reducing the refractive index according to the stacking order. Excellent practicality with low reflectance characteristics over a wide range of visible light without the need for multiple layers, increased film thickness, additional materials such as an intermediate refractive index layer, or complex film configurations. The antireflection material can be provided inexpensively and easily.
[0044]
Furthermore, by using a conductive metal oxide for the antireflection layer or forming a water repellent layer on the antireflection layer, it is possible to impart conductivity, antistatic properties and antifouling properties. High-value-added anti-reflective material with higher functionality.
[0045]
Further, by using an optical member obtained by bonding the antireflection material according to the present invention, display quality can be improved, a display image can be recognized more clearly, and a health-friendly display can be obtained.
[0046]
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of an embodiment of an antireflection material according to claim 1;
FIG. 2 is a cross-sectional view showing a configuration of an embodiment of an antireflection material according to claim 2;
FIG. 3 is a cross-sectional view showing a configuration of an embodiment of an antireflection material according to claim 4;
FIG. 4 is a cross-sectional view showing a configuration of an embodiment of an antireflection material according to claim 5;
FIG. 5 is a cross-sectional view showing a configuration of an embodiment of an antireflection material according to claim 6;
6 is a spectral reflection spectrum obtained by absolute reflection measurement of the antireflection material of Examples 1 and 2. FIG.
7 is a spectral reflection spectrum obtained by absolute reflection measurement of the antireflection material of Examples 3 and 4. FIG.
8 is a spectral reflection spectrum obtained by measuring absolute reflection of the antireflection material of Examples 5 and 6. FIG.
9 is a spectral reflection spectrum obtained by measuring absolute reflection of the antireflection material of Comparative Example 1. FIG.
10 is a spectral reflection spectrum obtained by measuring absolute reflection of the antireflection material of Comparative Example 2. FIG.
[Explanation of symbols]
1: Transparent base material 2: Antireflection layer ... 2-a: High refractive index layer ... 2-b: Low refractive index layer 3: Water repellent layer 4: Hard coat layer 5: Average particle size 0 Hard coat layer (light diffusion layer, antiglare layer) in which transparent ultrafine particles of 0.01 to 3 μm are uniformly dispersed

Claims (7)

透明プラスチック基材上の少なくとも片面に、屈折率の異なる金属酸化物を順次交互に積層した反射防止層を有し、前記反射防止層の高屈折率層及び低屈折率層が、各々同じ金属酸化物で形成されるとともに、前記高屈折率層の屈折率が各々1.9以上2.5以下で各前記高屈折率層は透明基材に近い順に屈折率が高く、前記低屈折率層の屈折率が各々1.3以上1.5以下で各前記屈折率層は透明基材に近い順に屈折率が高いことを特徴とするディスプレイ用反射防止材の製造方法であって、前記反射防止層が真空成膜プロセスによって形成し、かつ各々同じ金属酸化物によって形成される反射防止層の高屈折率層及び低屈折率層の成膜条件変化させる、または成膜粒子の基材に対する入射角を調製することを特徴とする反射防止材の製造方法。It has an antireflection layer in which metal oxides having different refractive indexes are alternately laminated on at least one surface on a transparent plastic substrate, and the high refractive index layer and the low refractive index layer of the antireflection layer are respectively the same metal oxide. And the refractive index of each of the high refractive index layers is 1.9 or more and 2.5 or less, and each of the high refractive index layers has a higher refractive index in the order closer to the transparent substrate. A method for producing an antireflection material for a display, wherein the refractive index is 1.3 or more and 1.5 or less, and each of the low refractive index layers has a higher refractive index in the order closer to the transparent substrate. The layers are formed by a vacuum film formation process, and the film formation conditions of the high-refractive index layer and the low-refractive index layer of the antireflection layer, which are each formed of the same metal oxide, are changed, or the incident angle of the film formation particles to the substrate Made of anti-reflective material, characterized by preparing Method. 前記、反射防止材を形成する金属酸化物の少なくとも1種類が、導電性を有していることを特徴とする請求項1記載の反射防止材の製造方法。  The method for producing an antireflection material according to claim 1, wherein at least one of the metal oxides forming the antireflection material has conductivity. 前記反射防止層の上に防汚層を形成したことを特徴とする請求項1又は2の何れかに記載の反射防止材の製造方法。  The method for producing an antireflection material according to claim 1, wherein an antifouling layer is formed on the antireflection layer. 前記透明基材と反射防止層の間に、耐摩禍性を有する透明ハードコート層が形成されていることを特徴とする請求項1〜3の何れかに記載の反射防止材の製造方法。  The method for producing an antireflection material according to any one of claims 1 to 3, wherein a transparent hard coat layer having abrasion resistance is formed between the transparent substrate and the antireflection layer. 前記ハードコート層に平均粒子径0.01〜3μmの透明な無機或いは有機の超微粒子を含む請求項4に記載の反射防止材の製造方法。  The method for producing an antireflection material according to claim 4, wherein the hard coat layer contains transparent inorganic or organic ultrafine particles having an average particle diameter of 0.01 to 3 μm. 請求項1〜5の何れかに記載の反射防止材の製造方法により得られた反射防止材を有する光学部材。  The optical member which has the antireflection material obtained by the manufacturing method of the antireflection material in any one of Claims 1-5. 透明基板が光学部材である請求項1〜5の何れかに記載の反射防止材の製造方法。  The method for producing an antireflection material according to claim 1, wherein the transparent substrate is an optical member.
JP2001217952A 2001-07-18 2001-07-18 Antireflection material manufacturing method and optical member Expired - Fee Related JP3750570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001217952A JP3750570B2 (en) 2001-07-18 2001-07-18 Antireflection material manufacturing method and optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001217952A JP3750570B2 (en) 2001-07-18 2001-07-18 Antireflection material manufacturing method and optical member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12126097A Division JP3836214B2 (en) 1997-05-12 1997-05-12 Antireflection material and optical member

Publications (2)

Publication Number Publication Date
JP2002122705A JP2002122705A (en) 2002-04-26
JP3750570B2 true JP3750570B2 (en) 2006-03-01

Family

ID=19052198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001217952A Expired - Fee Related JP3750570B2 (en) 2001-07-18 2001-07-18 Antireflection material manufacturing method and optical member

Country Status (1)

Country Link
JP (1) JP3750570B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417461B (en) * 2004-08-17 2008-03-26 Set Europ Ltd Anti-reflective moulded plastic components and methods for making the same
WO2006035475A1 (en) * 2004-09-27 2006-04-06 Jsr Corporation Laminated body and manufacturing method thereof
TW200907396A (en) * 2007-08-03 2009-02-16 Largan Precision Co Ltd Multilayer film vacuum evaporation method for a plastic optic assemble and optical image capture fro the same

Also Published As

Publication number Publication date
JP2002122705A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
CN103439761B (en) Optical film, polarizing plate and image display apparatus
JP5216501B2 (en) Optical film, polarizing plate, and image display device
US20170067593A1 (en) Transparent heat-shielding/heat-insulating member and production method thereof
EP0867733B1 (en) Antireflection coating with electromagnetic wave shielding effect and optical member having the antireflection coating
JP2006116754A (en) Reflection decreasing material, and electronic image displaying device using it
US11054559B2 (en) Reflective transparent screen having metal alloy thin film and concavo-convex structure
JP2013202844A (en) Hard coat base material, and transparent conductive film using the same
TW201924921A (en) Hard coat film, optical layered body, and image display device
JP2004047456A (en) Transparent conductive material and touch panel
JP3836214B2 (en) Antireflection material and optical member
US8263219B2 (en) Optical film, polarizing plate, and image display
JP2013246976A (en) Supporting material for conductive optical member, conductive optical member including the same, and electronic device including conductive optical member
WO2022114037A1 (en) Optical laminate and article
JP3034218B2 (en) Transparent laminate, dimmer using the same, and filter for display
JP3750570B2 (en) Antireflection material manufacturing method and optical member
JP2021144201A (en) Antireflection film and image display device
JP3965732B2 (en) Antireflection film
JP4242664B2 (en) Antireflection film
JP2002090504A (en) Antireflection material and optical member
WO2021187505A1 (en) Optical laminate, polarizing plate using same, surface plate, and image display device
JP3577866B2 (en) Conductive anti-reflection film
KR20190049277A (en) Optical antireflection film and manufacturing method of the same
JP3490214B2 (en) Anti-reflection film
JP2013174787A (en) Optical member
JP2005301004A (en) Anti-reflection film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees