JP3742882B2 - Polarization synthetic aperture radar image processing method and apparatus - Google Patents

Polarization synthetic aperture radar image processing method and apparatus Download PDF

Info

Publication number
JP3742882B2
JP3742882B2 JP2003376492A JP2003376492A JP3742882B2 JP 3742882 B2 JP3742882 B2 JP 3742882B2 JP 2003376492 A JP2003376492 A JP 2003376492A JP 2003376492 A JP2003376492 A JP 2003376492A JP 3742882 B2 JP3742882 B2 JP 3742882B2
Authority
JP
Japan
Prior art keywords
polarization
scattering
terrain
image
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003376492A
Other languages
Japanese (ja)
Other versions
JP2005140607A (en
Inventor
敏文 森山
清峰 浦塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2003376492A priority Critical patent/JP3742882B2/en
Publication of JP2005140607A publication Critical patent/JP2005140607A/en
Application granted granted Critical
Publication of JP3742882B2 publication Critical patent/JP3742882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、地球表面を観測する衛星や航空機などに搭載された高分解能偏波合成開口レーダで得られた画像データから、土地被覆分類を行う偏波合成開口レーダ画像処理方法及び装置に関する。   The present invention relates to a polarization synthetic aperture radar image processing method and apparatus for performing land cover classification from image data obtained by a high resolution polarization synthetic aperture radar mounted on a satellite or an aircraft that observes the earth surface.

本発明は、電波を用いたリモートセンシングの中で、特に偏波情報を利用する衛星、航空機に搭載される合成開口レーダのデータ処理に関する分野で利用される。土地被覆分類の応用として、環境、災害のモニタリング、土地利用の計画立案の補助データなどに利用できる。   INDUSTRIAL APPLICABILITY The present invention is used in the field of remote sensing using radio waves, particularly in the field relating to data processing of a synthetic aperture radar mounted on a satellite or aircraft that uses polarization information. As an application of land cover classification, it can be used for environment, disaster monitoring, auxiliary data for land use planning, etc.

衛星や航空機に搭載される合成開口レーダに応用した偏波合成開口レーダが現在開発され、幾つか運用されている。合成開口レーダ装置は、人工衛星や航空機等の移動プラットホームから進行方向に対して側方の地上に電波を発射し、地上の映像を再生するための2次元データを得る装置である。この合成開口レーダ装置では、アジマス距離分解能を向上させるために合成開口技術が用いられる。合成開口技術は、搭載プラットホームの移動を利用して実効的に極めて大口径のアンテナを用いたのと同等の高分解能を得る技術である(特許文献1参照)。   Polarization synthetic aperture radar applied to synthetic aperture radar onboard satellites and aircraft has been developed and is now in operation. A synthetic aperture radar device is a device that obtains two-dimensional data for emitting radio waves from a moving platform such as an artificial satellite or an aircraft to the ground on the side in the traveling direction to reproduce a ground image. In this synthetic aperture radar apparatus, synthetic aperture technology is used to improve the azimuth distance resolution. Synthetic aperture technology is a technology that effectively obtains high resolution equivalent to that using an extremely large-diameter antenna by using the movement of the mounting platform (see Patent Document 1).

合成開口レーダは、イメージレーダの一種であり、その画像(SAR画像)は、地表にある物体からの散乱パワーを2次元的にマッピングしたものである。そして、散乱パワーは、物体の粗さ、複素誘電率、形状、送信信号の周波数、偏波、入射角等によって影響を受ける。即ち、周波数、偏波、入射角等を変えることによって、対象物体からより多くの情報を得ることが出来る。   Synthetic aperture radar is a type of image radar, and its image (SAR image) is obtained by two-dimensionally mapping scattered power from an object on the ground surface. The scattered power is affected by the roughness of the object, the complex dielectric constant, the shape, the frequency of the transmission signal, the polarization, the incident angle, and the like. That is, more information can be obtained from the target object by changing the frequency, polarization, incident angle, and the like.

偏波合成開口レーダ装置は、前述の散乱パワーに影響を与えるものの中で偏波に着目をし、偏波を変えることで対象物体の情報を出来るだけ多く得ることを目的とした装置である。この偏波合成開口レーダ装置のアンテナ部は、水平偏波用アンテナと、垂直偏波用アンテナとを備えて、水平偏波と垂直偏波とを送信している。そして、この送信に対し、地表面の対象物からの散乱波は垂直偏波成分と水平偏波成分を含むが、これは2つのアンテナに受信される。   The polarization synthetic aperture radar apparatus is an apparatus that focuses on the polarization among those that affect the scattering power described above and aims to obtain as much information on the target object as possible by changing the polarization. The antenna unit of this polarization synthetic aperture radar apparatus includes a horizontally polarized antenna and a vertically polarized antenna, and transmits horizontally polarized waves and vertically polarized waves. For this transmission, the scattered wave from the object on the ground surface includes a vertical polarization component and a horizontal polarization component, which are received by two antennas.

即ち、レーダの送信アンテナと受信アンテナにそれぞれ水平偏波(H)、垂直偏波(V)を送受信する機能が有ることにより、水平偏波で送受信したHH(受信偏波、送信偏波)偏波信号、水平偏波で送信/垂直偏波で受信したVH信号、垂直偏波で送信/水平偏波で受信したHV信号、垂直偏波で送受信したVV信号の各偏波信号が入力することになる。   That is, the radar transmitting antenna and the receiving antenna each have a function of transmitting and receiving horizontal polarization (H) and vertical polarization (V), so that HH (reception polarization and transmission polarization) polarization transmitted and received by horizontal polarization is transmitted. Input is a polarization signal of a wave signal, a VH signal transmitted with horizontal polarization / received with vertical polarization, a HV signal transmitted with vertical polarization / received with horizontal polarization, and a VV signal transmitted / received with vertical polarization. become.

このように、偏波合成開口レーダ装置では、レーダの送信アンテナと受信アンテナにそれぞれ水平偏波(H)、垂直偏波(V)を送受信する機能が有ることにより、送受信の偏波の組み合わせからHH,HV,VH,VVの4つのデータを得ることができる。但し、HV=VHになることが知られているため、実際は三つになる。合成開口レーダの場合、画像の1ピクセル毎にHH,HV,VH,VVの散乱係数からなるデータの組み合わせが得られる。このデータは、一般に散乱マトリクスと呼ばれている。この散乱マトリクスを解析することにより、地上の土地被覆状況を調べることができる。従来の散乱マトリクスを解析する方法の例として
(1) 散乱行列の三成分分解
(2) 偏波エントロピー(Polarimetric Entropy)
(3) 三成分散乱モデル分解(Three-component scattering model)
等が知られている(非特許文献1〜3参照)。これらの手法から得られた特徴をもとに、最尤法などの教師付き分類、ISODATAなどの教師無し分類を行い、土地被覆状況を推定する。
In this way, in the polarization synthetic aperture radar apparatus, the transmission antenna and the reception antenna of the radar have a function of transmitting and receiving horizontal polarization (H) and vertical polarization (V), respectively. Four data of HH, HV, VH and VV can be obtained. However, since it is known that HV = VH, there are actually three. In the case of a synthetic aperture radar, a combination of data consisting of scattering coefficients of HH, HV, VH, and VV is obtained for each pixel of an image. This data is generally called a scattering matrix. By analyzing this scattering matrix, the land cover situation on the ground can be examined. As an example of a conventional method of analyzing the scattering matrix
(1) Three-component decomposition of the scattering matrix
(2) Polarimetric Entropy
(3) Three-component scattering model
Etc. are known (see Non-Patent Documents 1 to 3). Based on the characteristics obtained from these methods, supervised classification such as maximum likelihood and unsupervised classification such as ISODATA are performed to estimate the land cover situation.

従来方法の欠点として、都市部の分類の困難さがある。図4に示すように、電波入射角(EL)方向には、表面散乱と、二回反射散乱と、体積散乱がある。表面散乱は、海域、農地、低植生域における一次Bragg 散乱過程であり、森林領域に関しては、主に葉の表面からの散乱を表している。二回反射散乱は、地表面に入射して樹幹に反射する散乱過程である。体積散乱は、ランダムに傾いたワイヤが合成された散乱過程であり、主にHV偏波に起因している。また、図示したように、自然地形において、一般に海洋、草原、林などの自然植生は、アジマスシンメトリー(Azimuth symmetry)と呼ばれ、表面散乱、二回反射散乱、体積散乱の各散乱係数はアジマス(AZ)方向に依存しない。   A disadvantage of the conventional method is that it is difficult to classify urban areas. As shown in FIG. 4, there are surface scattering, double reflection scattering, and volume scattering in the radio wave incident angle (EL) direction. Surface scattering is the primary Bragg scattering process in sea areas, agricultural land, and low vegetation areas, and for the forest area, it mainly represents scattering from the leaf surface. Twice reflection scattering is a scattering process in which the light is incident on the ground surface and reflected by the tree trunk. Volume scattering is a scattering process in which randomly inclined wires are synthesized, and is mainly caused by HV polarization. As shown in the figure, in natural terrain, natural vegetation such as the ocean, grassland, and forest is generally called azimuth symmetry, and the scattering coefficients of surface scattering, double reflection scattering, and volume scattering are azimuth ( AZ) direction independent.

これに対して、人工地形において、都市部などのビルディング等では、植生層(Vegetation layer)のような体積散乱の影響はあまり無いと考えられており、ビルディングの向きとレーダとの位置関係により、散乱係数が大きく変化し、2回反射散乱からクロス偏波も発生する(非特許文献4参照)。そのため、都市部などでは、アジマスシンメトリーの特性が無いため、ビルディングや住宅地の家の配置により、それら領域の分類精度が大きく変化する可能性があった。

特開平09-178847号公報 E. Krogager, Z.H. Czyz, "Properties of the sphere, deplane, helix decomposition," Proc. 3rd International Workshop on Radar Polarimetry, vol.1, pp.106-1114,1995 S.R. Cloude and E. Pottier, "A Entropy Based Classification Scheme for Land Applications of Polarimetric SAR," IEEE Trans. Geosci. Remote Sensing, vol.34, no.2, pp.68-78, March 1996 A. Freeman and S.L. Durden, " A Three-Component Scattering Model for Polarimetric SAR Data," IEEE Trans. Geosci. Remote Sensing, vol.36, no.3, pp.963-973, May 1998 G. Franceschetti, A. Iodice and D. Riccio, " A Canonical Problem in Electromagnetic Backscattering from Buildings," IEEE Trans. Geosci. Remote Sensing, vol.40, no.8, pp.1787-1801 August 2002 山口芳雄、偏波(ポーラリメトリック)レーダの基礎と応用、リアライズ社、平成10年
On the other hand, in artificial terrain, it is considered that there is not much influence of volume scattering like the vegetation layer (Vegetation layer) in buildings such as urban areas, etc. Due to the positional relationship between the direction of the building and the radar, The scattering coefficient changes greatly, and cross-polarized light is also generated from twice reflected scattering (see Non-Patent Document 4). For this reason, in urban areas and the like, there is no azimuth symmetry characteristic, so the classification accuracy of these areas may vary greatly depending on the arrangement of buildings and houses in residential areas.

Japanese Unexamined Patent Publication No. 09-178847 E. Krogager, ZH Czyz, "Properties of the sphere, deplane, helix decomposition," Proc. 3rd International Workshop on Radar Polarimetry, vol.1, pp.106-1114,1995 SR Cloude and E. Pottier, "A Entropy Based Classification Scheme for Land Applications of Polarimetric SAR," IEEE Trans. Geosci. Remote Sensing, vol.34, no.2, pp.68-78, March 1996 A. Freeman and SL Durden, "A Three-Component Scattering Model for Polarimetric SAR Data," IEEE Trans. Geosci. Remote Sensing, vol.36, no.3, pp.963-973, May 1998 G. Franceschetti, A. Iodice and D. Riccio, "A Canonical Problem in Electromagnetic Backscattering from Buildings," IEEE Trans. Geosci. Remote Sensing, vol.40, no.8, pp.1787-1801 August 2002 Yoshio Yamaguchi, Basics and Applications of Polarimetric Radar, Realize, 1998

Freemanのアルゴリズム(上述の三成分散乱モデル分解法)では、クロス偏波が生じる成分を体積散乱として取り扱う。しかし、都市部や住宅地では、建物の向きにより2回反射散乱からクロス偏波を生じる。そのため、従来の方法では都市部においてクロス偏波が生じた場合、体積散乱が生じたと誤判定されることがあった。   In Freeman's algorithm (the above-described three-component scattering model decomposition method), a component in which cross polarization occurs is treated as volume scattering. However, in urban areas and residential areas, cross-polarized waves are generated from double reflection scattering depending on the direction of the building. Therefore, in the conventional method, when cross polarization occurs in an urban area, it may be erroneously determined that volume scattering has occurred.

そこで、本発明は、係る問題点を解決して、自然地形とその他を判定する手法の改良により、誤判定を少なくして、都市部の分類精度を向上させることを目的としている。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve such problems and improve the classification accuracy of urban areas by reducing the erroneous determination by improving the method for determining natural terrain and others.

本発明の偏波合成開口レーダ画像処理方法は、各偏波で取得した2次元画像でありかつ1ピクセル毎に複素数の散乱係数が与えられている偏波複素画像データの読み込みを行ない、読み込んだ偏波複素画像データの水平偏波で送受信したHH画像と垂直偏波で送信/水平偏波で受信したHV画像との間及び水平偏波で送信/垂直偏波で受信したVH画像と垂直偏波で送受信したVV画像との間の相関を各ピクセルに対して計算し、この計算した各ピクセルの相関値を基準値に基づき、自然地形とその他の地形に分離判定し、自然地形と判断されたピクセルについて自然地形のモデルで特徴量を計算し、かつ、その他の地形と判断されたピクセルについてその他のモデルで特徴量を計算し、この計算された両方の特徴量から土地被覆状況の分類を行なうことから成る。   The polarization synthetic aperture radar image processing method of the present invention reads and reads polarization complex image data that is a two-dimensional image acquired with each polarization and is given a complex scattering coefficient for each pixel. Between the HH image transmitted and received in the horizontal polarization of the polarization complex image data and the HV image transmitted in the vertical polarization / received in the horizontal polarization and the VH image transmitted in the horizontal polarization / received in the vertical polarization and the vertical polarization. The correlation between the VV image transmitted and received by the wave is calculated for each pixel, and the calculated correlation value of each pixel is separated and determined into a natural terrain and other terrain based on the reference value. The feature amount is calculated with the natural terrain model for the obtained pixel, and the feature amount is calculated with the other model for the pixel determined to be other terrain, and the land cover status is classified from both of the calculated feature amounts. It consists of conduct.

また、本発明の偏波合成開口レーダ画像処理装置は、各偏波で取得した2次元画像でありかつ1ピクセル毎に複素数の散乱係数が与えられている偏波複素画像データの読み込みを行う画像データ取得処理部と、読み込んだ偏波複素画像データの水平偏波で送受信したHH画像と垂直偏波で送信/水平偏波で受信したHV画像との間及び水平偏波で送信/垂直偏波で受信したVH画像と垂直偏波で送受信したVV画像との間の相関を各ピクセルに対して計算する相関処理部と、計算した各ピクセルの相関値を基準値に基づき、自然地形とその他の地形に分離判定する分離処理部と、自然地形と判断されたピクセルについて自然地形のモデルで特徴量を計算する自然地形用散乱マトリクス分解処理部と、その他の地形と判断されたピクセルについてその他のモデルで特徴量を計算する人工地形用散乱マトリクス分解処理部と、前記計算された両方の特徴量から土地被覆状況の分類を行う土地被覆分類処理部と、から成る。
The polarization synthetic aperture radar image processing apparatus of the present invention is an image for reading polarization complex image data that is a two-dimensional image acquired with each polarization and is provided with a complex scattering coefficient for each pixel. Between the data acquisition processing unit and the HH image transmitted / received by the horizontal polarization of the read polarization complex image data and the HV image transmitted / received by the vertical polarization / transmission / vertical polarization by the horizontal polarization A correlation processing unit for calculating for each pixel a correlation between the VH image received in step S4 and a VV image transmitted and received in vertical polarization, and the calculated correlation value of each pixel based on the reference value, A separation processing unit that determines separation into terrain, a natural terrain scattering matrix decomposition processing unit that calculates features for natural terrain using a natural terrain model, and other terrain pixels. Artificial topography for a scattering matrix decomposing unit for calculating a feature quantity in the other models, the land cover classification processing unit for classifying the land cover status from the feature of both the calculated consists.

本発明によれば、自然地形とその他の判定手法の改良により、誤判定を少なくすることができ、都市部の分類精度が向上することが期待できる。本発明によれば、偏波合成開口レーダ画像から都市部の散乱メカニズムを考慮して、都市構造物とレーダのアジマス方向の位置関係にあまり影響を受けずに、特徴を抽出することが可能となる。
According to the present invention, it is possible to reduce misjudgments and improve the classification accuracy of urban areas by improving natural terrain and other judging methods. According to the present invention, it is possible to extract features from a polarization synthetic aperture radar image in consideration of the scattering mechanism in the urban area without being significantly affected by the positional relationship between the urban structure and the radar in the azimuth direction. Become.

一般に、高分解能偏波合成開口レーダでは、送受信アンテナの組み合わせにより、例えば水平偏波アンテナをH、垂直偏波アンテナをVと呼ぶことにより、送受でHH,HV,VH,VVの組み合わせによる画像を得ることができる。そして、この画像の1ピクセル毎に各偏波の複素散乱係数が与えられ、この散乱係数を組み合わせにより散乱マトリクスSが構成できる。   In general, in a high-resolution polarization synthetic aperture radar, a combination of transmission and reception antennas, for example, a horizontal polarization antenna is called H and a vertical polarization antenna is called V, so that an image of a combination of HH, HV, VH, and VV can be transmitted and received. Obtainable. A complex scattering coefficient of each polarization is given for each pixel of the image, and the scattering matrix S can be configured by combining the scattering coefficients.

Figure 0003742882
Figure 0003742882

一般に、レーダの送受信アンテナが同じ位置にある場合、散乱マトリクスの非対角項である要素は等しくなり(SHV=SVH)、散乱マトリクスを3変量で表すことができる。この散乱マトリクスの各変量の共分散行列をCovariance Matrix(コバリアンスマトリクス)と呼ぶ。   In general, when the transmitting and receiving antennas of the radar are at the same position, the elements that are non-diagonal terms of the scattering matrix are equal (SHV = SVH), and the scattering matrix can be expressed by three variables. The covariance matrix of each variable of the scattering matrix is called a Covariance Matrix.

Figure 0003742882
Figure 0003742882

ここで、< >は画素間の平均(アンサンブル平均)を意味する。一般に海洋、草地、森林などの自然地形は<SHHSHV*>, <SVHSVV*>=0が成り立つことが知られている。これはライク偏波(HH,VV偏波)とクロス偏波(HV,VH偏波)間で相関が無いことを意味する。ここで、*は、複素共役を表している。 Here, <> means an average between pixels (ensemble average). Generally, it is known that <SHHSHV *>, <SVHSVV *> = 0 holds for natural topography such as ocean, grassland, and forest. This means that there is no correlation between the like polarization (HH, VV polarization) and the cross polarization (HV, VH polarization). Here, * represents a complex conjugate.

Figure 0003742882
Figure 0003742882

本発明は、従来の技術にあるFreemanの三成分散乱モデル分解(Three-component scattering model)を改良して都市部にも適用できるようにしたものである。この参考にした手法は、(数4),(数5)に示すように、海洋、草原、林などの自然地形の散乱を表面散乱(Ssurface)、2回反射散乱(Sdihedral)、体積散乱(Svolume)の合成としてモデル化している。一方、都市部の散乱では、表面散乱(Ssurface)、2回反射散乱(Sdihedral)、改良した2回反射散乱(S'dihedral)或いはワイヤー散乱(Swire)などが主に生じている。そこで、Freemanの方法を、都市部の散乱をモデル化できるように拡張を行った。具体的には、モデルを自然地形とそれ以外に分けた。また、自然地形以外のモデルでは体積散乱が生じないとし、2回反射散乱でクロス偏波の発生を表現できるように改良した。   The present invention is an improvement of Freeman's three-component scattering model in the prior art so that it can be applied to urban areas. As shown in (Equation 4) and (Equation 5), the method referred to by this method is to scatter the natural terrain such as ocean, grassland, forest, etc. by surface scattering (Ssurface), double reflection scattering (Sdihedral), volume scattering ( Svolume) is modeled as a composite. On the other hand, in the urban area, surface scattering (Ssurface), double reflection scattering (Sdihedral), improved double reflection scattering (S'dihedral), wire scattering (Swire), and the like are mainly generated. So we extended Freeman's method to model urban scattering. Specifically, the model was divided into natural terrain and others. In addition, the model other than the natural topography is improved so that volume scattering does not occur and the generation of cross polarization can be expressed by double reflection scattering.

Figure 0003742882
Figure 0003742882

Figure 0003742882
Figure 0003742882

アジマスシンメトリー(azimuth symmetry)になる植生では、ライク偏波(HH,VV偏波)とクロス偏波(HV,VH偏波)間での相関が無いと言われている。この特徴を利用して、自然地形とその他の構造物とを分離する判断基準を作ることができる。   In vegetation that becomes azimuth symmetry, it is said that there is no correlation between like polarization (HH, VV polarization) and cross polarization (HV, VH polarization). This feature can be used to create a criterion for separating natural terrain from other structures.

また、本発明は、Freemanの手法をもとに2回反射モデルを拡張して、クロス偏波が生じた場合も取り扱うことができる。さらに、拡張した2回反射モデルから、ワイヤーなどの散乱も取り扱うことができる。   In addition, the present invention can handle the case where cross polarization occurs by extending the reflection model twice based on Freeman's method. Furthermore, it is possible to handle scattering of wires and the like from the extended two-reflection model.

図1は、本発明の偏波合成開口レーダ画像処理装置を例示する図である。「画像データ取得処理部」1に対して、処理する偏波複素画像データを指示し、その画像データの読み込みを行う。偏波複素画像データは、各偏波で取得したHH,HV,VH,VV偏波の2次元画像であり、その1ピクセル毎に複素数の散乱係数が与えられている。   FIG. 1 is a diagram illustrating a polarization synthesis aperture radar image processing apparatus according to the present invention. The “image data acquisition processing unit” 1 is instructed on the polarization complex image data to be processed, and the image data is read. The polarization complex image data is a two-dimensional image of HH, HV, VH, and VV polarization acquired for each polarization, and a complex scattering coefficient is given for each pixel.

「HH画像とHV画像、VH画像とVV画像との相関処理部」2は、読み込んだデータを以下の(数6)(数7)を用いて画像間の相関を調べる。計算の仕方は、注目する画像の座標(i,j)を中心としてMxN個のデータを用いて以下の式で計算する。   The “HH image and HV image, VH image and VV image correlation processing unit” 2 examines the correlation between images using the following (Equation 6) and (Equation 7). The calculation is performed by the following formula using MxN data centering on the coordinates (i, j) of the image of interest.

Figure 0003742882
Figure 0003742882

Figure 0003742882
これを各ピクセルに対して行う。
Figure 0003742882
This is done for each pixel.

「人工地形と自然地形の分離処理部」3は、上記計算した各ピクセルの相関値Cor(SHH,SHV*),Cor(SVH,SVV*)に関して以下のような判定を行う。Cor(SHH,SHV*)又はCor(SVH,SVV*)が基準値より大きいならば自然地形でないその他(人工地形)の領域と判定する。上記の判定以外のときは自然地形と判定する。   The “artificial landform and natural landform separation processing unit” 3 performs the following determination on the calculated correlation values Cor (SHH, SHV *) and Cor (SVH, SVV *) of each pixel. If Cor (SHH, SHV *) or Cor (SVH, SVV *) is greater than the reference value, it is determined that the area is other than natural terrain (artificial terrain). When it is other than the above judgment, it is judged as natural terrain.

「自然地形用Covariance Matrix分解処理部」4は、自然地形と判断されたピクセルについて自然地形のモデルで、特徴量を計算する。   The “Natural Terrain Covariance Matrix Decomposition Processing Unit” 4 calculates a feature amount of a pixel determined to be natural terrain using a natural terrain model.

「人工地形用Covariance Matrix分解処理部」5は、その他(人工地形)と判断されたピクセルについてその他(人工地形)のモデルで、特徴量を計算する。   The “Covariance Matrix Decomposition Processing Unit for Artificial Terrain” 5 calculates the feature amount of the pixel determined to be other (artificial landform) using the other (artificial landform) model.

「土地被覆分類処理部」6は、上記で求めた両特徴量から、データベースを使って、教師付き分類の最尤法や教師無し分類のISODATA法などにより土地被覆状況の分類を行う。そして、この分類した結果を表示する。   The “land cover classification processing unit” 6 classifies the land cover status from the two feature quantities obtained above by using a database with a maximum likelihood method of supervised classification or an ISODATA method of unsupervised classification. Then, the classified result is displayed.

図1に示された「自然地形用Covariance Matrix分解処理部」4について、さらに具体的に説明する。「人工地形と自然地形の分離処理部」3において自然地形と判断されたピクセルは、「非特許文献3」に記載された手法に基づいて散乱マトリクスを分解することができ、分類に適用できる特徴量を算出できる。この手法は、自然地形が、図2に示すように、表面散乱、2回反射散乱、体積散乱に因るものとして分解している。また、クロス偏波は体積散乱からのみ生じるとしている。そのため、都市域への適用は適さない。実際の計算では、上記のモデルを以下のようにモデル化している。   The “natural terrain covariance matrix decomposition processing unit” 4 shown in FIG. 1 will be described in more detail. The pixel determined to be natural terrain in the “artificial terrain and natural terrain separation processing unit” 3 can decompose the scattering matrix based on the method described in “Non-Patent Document 3”, and can be applied to classification. The amount can be calculated. In this method, as shown in FIG. 2, the natural terrain is decomposed as a result of surface scattering, double reflection scattering, and volume scattering. Further, it is assumed that cross polarization occurs only from volume scattering. Therefore, it is not suitable for urban areas. In the actual calculation, the above model is modeled as follows.

1)表面散乱モデル:
表面散乱は、図2(A)に示すように、海域、農地、低植生域における一次Bragg散乱過程である。森林領域に関しては、主に葉の表面からの散乱を表している。その散乱マトリクス及びCovariance Matrixの各要素は、以下のように表すことができる。
1) Surface scattering model:
As shown in FIG. 2A, the surface scattering is a primary Bragg scattering process in a sea area, agricultural land, and a low vegetation area. For the forest area, it mainly represents scattering from the leaf surface. Each element of the scattering matrix and the Covariance Matrix can be expressed as follows.

Figure 0003742882
Figure 0003742882

Figure 0003742882
Figure 0003742882

2)2回反射散乱モデル:
2回反射散乱は、図2(B)に示すように、地表面を入射して樹幹に反射する、またはその逆の散乱過程である。その散乱マトリクス及びCovariance Matrixの各要素は、以下のように表すことができる。但し、αに関わるパラメータRpqはフレネルの反射係数を表し、pは偏波(v:垂直偏波, h:水平偏波)、qは反射する場所(g:地表面, t:樹幹)を表す。また、γpは偏波による位相の変化、減衰を表す。
2) Twice reflection scattering model:
As shown in FIG. 2B, the double reflection scattering is a scattering process that is incident on the ground surface and reflected by the tree trunk, or vice versa. Each element of the scattering matrix and the Covariance Matrix can be expressed as follows. Where the parameter Rpq related to α represents the reflection coefficient of Fresnel, p represents the polarization (v: vertical polarization, h: horizontal polarization), and q represents the reflection location (g: ground surface, t: trunk) . Γp represents a change in phase and attenuation due to polarization.

Figure 0003742882
Figure 0003742882

Figure 0003742882
Figure 0003742882

3)体積散乱モデル:
体積散乱は、図2(C)に示すように、ランダムに傾いたワイヤーが合成された散乱過程である。主にHV偏波に起因している。そのCovariance Matrixの各要素は、以下のように表すことができる。
3) Volume scattering model:
Volume scattering is a scattering process in which randomly inclined wires are synthesized as shown in FIG. This is mainly due to HV polarization. Each element of the Covariance Matrix can be expressed as follows:

Figure 0003742882
Figure 0003742882

計測データは三つのモデルの合成であるため、Covariance Matrixの各要素は、以下のように記述できる。   Since the measurement data is a composite of three models, each element of the Covariance Matrix can be described as follows.

Figure 0003742882
Figure 0003742882

fs,fd,fvは、それぞれ表面散乱、2回反射散乱、体積散乱の寄与を示す。α、βは、2回反射散乱、表面散乱の成分から得られる係数である。fvは<ShvShv*>から直接導出できる。残りのパラメータは、<SHHSVV*>の実部の符号から、   fs, fd, and fv represent the contributions of surface scattering, double reflection scattering, and volume scattering, respectively. α and β are coefficients obtained from components of twice reflection scattering and surface scattering. fv can be derived directly from <ShvShv *>. The remaining parameters are derived from the sign of the real part of <SHHSVV *>

Figure 0003742882
Figure 0003742882

の仮定を行い、その他のパラメータfs、fd、α、βを推定する。
以上から、三つのモデルに対する未知パラメータを求めることができる。そして、求まったパラメータから分類に利用する特徴量を算出する。特徴量とは、各偏波間の受信電力<SHHSHH*>,<SHVSHV*>, <SVHSVH*>,<SVVSVV*>の合計Pに対する表面散乱、2回反射散乱、体積散乱などの電力寄与Ps,Pd,Pvである。各偏波の電力の合計P、表面散乱、2回反射散乱、体積散乱などの電力寄与Ps,Pv, Pdは、以下のように与えられる。
The other parameters fs, fd, α, and β are estimated.
From the above, unknown parameters for the three models can be obtained. Then, a feature amount used for classification is calculated from the obtained parameters. The feature value is the power contribution Ps such as surface scattering, double reflection scattering, and volume scattering for the total P of received power <SHHSHH *>, <SHVSHV *>, <SVHSVH *>, <SVVSVV *> between each polarization, Pd and Pv. The power contributions Ps, Pv, and Pd such as the total power P of each polarization, surface scattering, double reflection scattering, and volume scattering are given as follows.

Figure 0003742882
Figure 0003742882

図1に示された「人工地形用Covariance Matrix分解処理部」5について、さらに具体的に説明する。「人工地形と自然地形の分離処理部」3において、その他(人工地形)と判断されたピクセルでは、以下の方法で散乱マトリクスを分解し、分類に適用できる特徴量を算出する。条件として、以下の点を考慮する。   The "Covariance Matrix decomposition processing unit for artificial terrain" 5 shown in FIG. 1 will be described more specifically. In the “artificial terrain / natural terrain separation processing unit” 3, the pixel determined to be other (artificial terrain) decomposes the scattering matrix by the following method and calculates a feature quantity applicable to classification. The following points are considered as conditions.

(1)図3に示すように、人工地形での散乱は、主に表面散乱、2回反射散乱、改良した2回反射散乱、ワイヤー散乱からなる。
(2)この地形では<SHHSHV*>, <SVHSVV*>=0の条件は成り立たない。しかし、実施例2の表面散乱と2回反射散乱の各モデルではクロス偏波成分はゼロとなるため、<SHHSHV*>, <SVHSVV*>=0となる。一方で、非特許文献4においてビルディングなどの人工構造物において、2回反射散乱からクロス偏波成分が発生することが示されている。そこで、2回反射散乱モデルにおいてクロス偏波成分の発生を考慮できるように拡張する。これにより、拡張した2回反射散乱から<SHHSHV*>, <SVHSVV*>≠0の条件を満たせる。また、単一のワイヤー散乱モデルにおいても、<SHHSHV*>, <SVHSVV*>≠0の条件を満たせる。実際の計算では、上記のモデルを、以下のようにモデル化する。
(1) As shown in FIG. 3, scattering on artificial terrain mainly consists of surface scattering, double reflection scattering, improved double reflection scattering, and wire scattering.
(2) The condition of <SHHSHV *>, <SVHSVV *> = 0 does not hold in this landform. However, in each model of surface scattering and twice reflection scattering of Example 2, the cross polarization component is zero, so <SHHSHV *>, <SVHSVV *> = 0. On the other hand, Non-Patent Document 4 shows that in an artificial structure such as a building, a cross polarization component is generated from twice reflected scattering. Therefore, the two-reflection scattering model is extended so that the generation of the cross polarization component can be considered. As a result, the condition of <SHHSHV *>, <SVHSVV *> ≠ 0 can be satisfied from the extended double reflection scattering. Even in a single wire scattering model, <SHHSHV *>, <SVHSVV *> ≠ 0 can be satisfied. In the actual calculation, the above model is modeled as follows.

1)表面散乱モデル(図3(A)参照):
表面散乱モデルの散乱マトリクス及びCovariance Matrixの各要素は、以下のように表すことができる。
1) Surface scattering model (see FIG. 3A):
Each element of the scattering matrix and the Covariance Matrix of the surface scattering model can be expressed as follows.

Figure 0003742882
Figure 0003742882

Figure 0003742882
Figure 0003742882

2)2回反射散乱モデル(図3(B)参照):
2回反射散乱モデルの散乱マトリクス及びCovariance Matrixの各要素は、以下のように表すことができる。
2) Double reflection scattering model (see FIG. 3B):
Each element of the scattering matrix and the Covariance Matrix of the double reflection scattering model can be expressed as follows.

Figure 0003742882
Figure 0003742882

Figure 0003742882
Figure 0003742882

3)改良した2回反射散乱モデル(図3(C)参照):
改良した2回反射散乱モデルの散乱マトリクス及びCovariance Matrixの各要素は、以下のように表すことができる。
3) Improved double reflection scattering model (see FIG. 3C):
The elements of the scattering matrix and the Covariance Matrix of the improved two-reflection scattering model can be expressed as follows.

Figure 0003742882
Figure 0003742882

Figure 0003742882
Figure 0003742882

4)ワイヤー散乱モデル(図3(D)参照):
ワイヤー散乱モデルの散乱マトリクス(非特許文献5参照)及びCovariance Matrixの各要素は、以下のように表すことができる。
4) Wire scattering model (see FIG. 3D):
Each element of the scattering matrix of the wire scattering model (see Non-Patent Document 5) and the Covariance Matrix can be expressed as follows.

Figure 0003742882
Figure 0003742882

Figure 0003742882
Figure 0003742882

ここで、モデル3)、4)は同じ表現形式となるため、計測データは1)と2)、3)又は4)タイプの三つの合成と考え、Covariance Matrixの各要素を以下のように記述する。 Here, since the models 3) and 4) have the same expression format, the measurement data is considered to be a composite of three types 1) and 2), 3) or 4), and each Covariance Matrix element is described as follows: To do.

Figure 0003742882
<SHHSHV*>、<SHVSVV*>からα´が算出できることから、
Figure 0003742882
Since α ′ can be calculated from <SHHSHV *> and <SHVSVV *>,

Figure 0003742882
Figure 0003742882

と判定し、パラメータρとfw又はfd´を求めることができる。さらに、残りのパラメータfs、fd、α、βは、上記実施例2の手法と同様にして求めることができる。 And parameters ρ and fw or fd ′ can be obtained. Further, the remaining parameters fs, fd, α, and β can be obtained in the same manner as the method of the second embodiment.

以上から、表面散乱、2回反射散乱、拡張した2回反射散乱、ワイヤー散乱のモデルに対する未知パラメータを求めることができる。そして、求まったパラメータから分類に利用する特徴量を算出する。特徴量とは、各偏波間の受信電力<SHHSHH*>,<SHVSHV*>, <SVHSVH*>,<SVVSVV*>の合計Pに対する表面散乱、2回反射散乱、ワイヤー散乱などの電力寄与Ps,Pd,Pwである。但し、拡張した2回反射散乱のモデルの寄与は、従来の2回反射散乱の寄与の一部として算出する。各偏波の電力の合計P、表面散乱、2回反射散乱、ワイヤー散乱などの電力寄与Ps,Pd,Pwは、以下のように与えられる。
From the above, it is possible to obtain unknown parameters for models of surface scattering, double reflection scattering, extended double reflection scattering, and wire scattering. Then, a feature amount used for classification is calculated from the obtained parameters. The feature amount is the power contribution Ps such as surface scattering, double reflection scattering, wire scattering, etc. for the total power of received power <SHHSHH *>, <SHVSHV *>, <SVHSVH *>, <SVVSVV *> between each polarization. Pd, Pw. However, the contribution of the extended double reflection scattering model is calculated as a part of the conventional double reflection scattering contribution. The power contributions Ps, Pd, and Pw, such as the total power P of each polarization, surface scattering, double reflection scattering, and wire scattering, are given as follows.

Figure 0003742882
Figure 0003742882

本発明の偏波合成開口レーダ画像処理装置を例示する図である。It is a figure which illustrates the polarization synthetic aperture radar image processing apparatus of this invention. 自然地形での表面散乱、2回反射散乱、体積散乱の概念を示す図である。It is a figure which shows the concept of the surface scattering in natural landform, twice reflection scattering, and volume scattering. 人工地形での表面散乱、2回反射散乱、改良した2回反射散乱、ワイヤー散乱の概念を示す図である。It is a figure which shows the concept of the surface scattering in an artificial landform, 2 times reflection scattering, the improved 2 times reflection scattering, and wire scattering. 自然地形及び人工地形での散乱を説明する図である。It is a figure explaining scattering in natural terrain and artificial terrain.

符号の説明Explanation of symbols

1 画像データ取得処理部
2 HH画像とHV画像、VH画像とVV画像との相関処理部
3 人工地形と自然地形の分離処理部
4 自然地形用Covariance Matrix分解処理部
5 人工地形用Covariance Matrix分解処理部
6 土地被覆分類処理部
1 Image data acquisition processing unit 2 Correlation processing unit between HH image and HV image, VH image and VV image 3 Artificial landform and natural landform separation processing unit 4 Covariance Matrix decomposition processing unit for natural landform 5 Covariance Matrix decomposition processing for artificial landform Part 6 Land cover classification processing part

Claims (2)

各偏波で取得した2次元画像でありかつ1ピクセル毎に複素数の散乱係数が与えられている偏波複素画像データの読み込みを行ない、
前記読み込んだ偏波複素画像データの水平偏波で送受信したHH画像と垂直偏波で送信/水平偏波で受信したHV画像との間及び水平偏波で送信/垂直偏波で受信したVH画像と垂直偏波で送受信したVV画像との間の相関を各ピクセルに対して計算し、
上記計算した各ピクセルの相関値を基準値に基づき、自然地形とその他の地形に分離判定し、
自然地形と判断されたピクセルについて自然地形のモデルで特徴量を計算し、かつ、その他の地形と判断されたピクセルについてその他のモデルで特徴量を計算し、
前記計算された両方の特徴量から土地被覆状況の分類を行なう、
ことから成る偏波合成開口レーダ画像処理方法。
Read the polarization complex image data that is a two-dimensional image acquired with each polarization and is given a complex scattering coefficient for each pixel,
Between the HH image transmitted and received in the horizontal polarization of the read polarization complex image data and the HV image transmitted in the vertical polarization / received in the horizontal polarization and the VH image transmitted in the horizontal polarization / received in the vertical polarization. And the correlation between the VV image transmitted and received with vertical polarization for each pixel,
Based on the calculated correlation value for each pixel based on the reference value, the natural terrain and other terrain are separated and determined.
Calculate features for natural terrain pixels using natural terrain models, and calculate features for other terrain pixels using other models,
The land cover status is classified from both of the calculated features.
A polarization synthetic aperture radar image processing method comprising:
各偏波で取得した2次元画像でありかつ1ピクセル毎に複素数の散乱係数が与えられている偏波複素画像データの読み込みを行う画像データ取得処理部と、
前記読み込んだ偏波複素画像データの水平偏波で送受信したHH画像と垂直偏波で送信/水平偏波で受信したHV画像との間及び水平偏波で送信/垂直偏波で受信したVH画像と垂直偏波で送受信したVV画像との間の相関を各ピクセルに対して計算する相関処理部と、
上記計算した各ピクセルの相関値を基準値に基づき、自然地形とその他の地形に分離判定する分離処理部と、
自然地形と判断されたピクセルについて自然地形のモデルで特徴量を計算する自然地形用散乱マトリクス分解処理部と、
その他の地形と判断されたピクセルについてその他のモデルで特徴量を計算する人工地形用散乱マトリクス分解処理部と、
前記計算された両方の特徴量から土地被覆状況の分類を行う土地被覆分類処理部と、
から成る偏波合成開口レーダ画像処理装置。
An image data acquisition processing unit for reading polarization complex image data that is a two-dimensional image acquired at each polarization and is provided with a complex scattering coefficient for each pixel;
Between the HH image transmitted and received in the horizontal polarization of the read polarization complex image data and the HV image transmitted in the vertical polarization / received in the horizontal polarization and the VH image transmitted in the horizontal polarization / received in the vertical polarization. And a correlation processing unit that calculates a correlation between each pixel and a VV image transmitted / received by vertical polarization,
Based on the reference value of the calculated correlation value of each pixel, a separation processing unit that separates the natural terrain from the other terrain,
A scattering matrix decomposition processing unit for natural terrain that calculates a feature amount using a natural terrain model for pixels determined to be natural terrain,
A scattering matrix decomposition processing unit for artificial terrain that calculates a feature amount using another model for pixels determined to be other terrain,
A land cover classification processing unit for classifying the land cover status from both of the calculated feature amounts;
Polarization synthetic aperture radar image processing apparatus comprising:
JP2003376492A 2003-11-06 2003-11-06 Polarization synthetic aperture radar image processing method and apparatus Expired - Lifetime JP3742882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376492A JP3742882B2 (en) 2003-11-06 2003-11-06 Polarization synthetic aperture radar image processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376492A JP3742882B2 (en) 2003-11-06 2003-11-06 Polarization synthetic aperture radar image processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2005140607A JP2005140607A (en) 2005-06-02
JP3742882B2 true JP3742882B2 (en) 2006-02-08

Family

ID=34687511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376492A Expired - Lifetime JP3742882B2 (en) 2003-11-06 2003-11-06 Polarization synthetic aperture radar image processing method and apparatus

Country Status (1)

Country Link
JP (1) JP3742882B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107657262A (en) * 2016-12-30 2018-02-02 航天星图科技(北京)有限公司 A kind of computer automatic sorting Accuracy Assessment

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898458B2 (en) * 2006-08-03 2011-03-01 Pasco Corporation Disaster countermeasure support method
JP4946547B2 (en) * 2007-03-16 2012-06-06 日本電気株式会社 Polarimetry SAR image processing method, polarimetry SAR apparatus, and image processing apparatus
JP5376814B2 (en) * 2008-03-03 2013-12-25 三菱電機株式会社 Target identification device
CN101498789B (en) * 2009-02-25 2011-10-12 中国测绘科学研究院 Ground object target classification method and apparatus based on polarimetric synthetic aperture radar
JP5294923B2 (en) * 2009-02-27 2013-09-18 三菱スペース・ソフトウエア株式会社 Artifact detection device, artifact detection method, and artifact detection program
JP5545700B2 (en) * 2009-03-23 2014-07-09 三菱スペース・ソフトウエア株式会社 SPECIFIC DEVICE, SPECIFIC PROGRAM, AND SPECIFIC METHOD
JP5369817B2 (en) * 2009-03-26 2013-12-18 日本電気株式会社 Polarimetry SAR device and target identification method using polarimetry SAR data
JP6234707B2 (en) * 2013-05-22 2017-11-22 三菱スペース・ソフトウエア株式会社 Water level measurement device, water level measurement program, water level measurement method, and radar observation method
CN103675818B (en) * 2013-12-03 2017-01-18 中国科学院深圳先进技术研究院 Method and system for measuring polarimetric synthetic aperture radar data ground object three-dimensional distance
US9945942B2 (en) * 2015-03-24 2018-04-17 Utilis Israel Ltd. System and method of underground water detection
US10884128B2 (en) 2015-03-24 2021-01-05 Utilis Israel Ltd. System and method of underground water detection
CN105005796B (en) * 2015-08-10 2018-03-30 中国人民解放军国防科学技术大学 Satellite-borne SAR image Ship target recognition method based on step analysis
JP6821456B2 (en) * 2017-01-31 2021-01-27 株式会社パスコ Radio environment survey system, radio environment survey method, and program
CN112630741B (en) * 2020-12-11 2023-04-14 江西师范大学 Full-polarization synthetic aperture radar image target compensation PEOC method
CN115166741B (en) * 2022-09-08 2022-11-29 中国科学院空天信息创新研究院 Simplified model-based dual-phase central polarization chromatography decomposition method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2354655A (en) * 1999-09-23 2001-03-28 Matra Marconi Space Uk Ltd Mitigation of Faraday rotation in space bourne radar
JP3564540B2 (en) * 2001-09-07 2004-09-15 独立行政法人情報通信研究機構 Land use classification processing method using SAR image
JP2004184184A (en) * 2002-12-02 2004-07-02 Mitsubishi Electric Corp Radar image processing apparatus
JP3653082B2 (en) * 2003-01-16 2005-05-25 財団法人資源探査用観測システム研究開発機構 Radar equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107657262A (en) * 2016-12-30 2018-02-02 航天星图科技(北京)有限公司 A kind of computer automatic sorting Accuracy Assessment
CN107657262B (en) * 2016-12-30 2019-03-15 中科星图股份有限公司 A kind of computer automatic sorting Accuracy Assessment

Also Published As

Publication number Publication date
JP2005140607A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP3742882B2 (en) Polarization synthetic aperture radar image processing method and apparatus
Zhang et al. Classification of polarimetric SAR image based on support vector machine using multiple-component scattering model and texture features
CN101369019A (en) Polarization interference synthetic aperture radar three-dimensional imaging method based on polarization data amalgamation
Shahrezaei et al. Fractal analysis and texture classification of high-frequency multiplicative noise in SAR sea-ice images based on a transform-domain image decomposition method
Li et al. Comparisons of circular transmit and linear receive compact polarimetric SAR features for oil slicks discrimination
US7039523B2 (en) Method of determining salinity of an area of soil
Ghasemi et al. Urban classification using preserved information of high dimensional textural features of Sentinel-1 images in Tabriz, Iran
JP3742881B2 (en) Polarization synthetic aperture radar calibration method and apparatus
Javali et al. A review on synthetic aperture radar for earth remote sensing: Challenges and opportunities
CN110378896B (en) TomosAR vegetation pest and disease damage monitoring method and device based on polarization coherence
JP2005043333A (en) Method and system for reverse estimation of ocean wave direction spectrum from radar image
Souissi et al. Analysis of orientation angle shifts on the polarimetric data using Radarsat2 images
Liu et al. Ship detection using RADARSAT-2 fine quad mode and simulated compact polarimetry data
Farina et al. Fusion of radar images: State of art and perspective
Wecklich et al. Production of a global forest/non-forest map utilizing TanDEM-X interferometric SAR data
CN112950492A (en) Full-polarization SAR image denoising method based on self-adaptive anisotropic diffusion
Soliman et al. Electromagnetic resonances of natural grasslands and their effects on radar vegetation index
Azemati et al. Circular-linear polarization signatures in bistatic scattering models applied to signals of opportunity
Colin-Koeniguer et al. Urban applications
Shukla et al. Effect of polarization orientation angle compensation on airborne l-band uavsar data for the Munich area, Germany
Jain et al. Land Cover Classification by Decision Based Classifier using Dual Polarimetric SAR Observables
Correa-Muñoz et al. Detection of landslides with SAR polarymetry: Case study of South-Eastern Colombia
Long et al. Spatial resolution and processing tradeoffs for HYDROS: Application of reconstruction and resolution enhancement techniques
Simone et al. Multifrequency and multiresolution fusion of SAR images for remote sensing applications
Ibrahim et al. PolSAR Target Decomposition Technique to Estimate Ocean Surface temperature and Salinity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

R150 Certificate of patent or registration of utility model

Ref document number: 3742882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term