JP3734982B2 - Wireless device - Google Patents

Wireless device Download PDF

Info

Publication number
JP3734982B2
JP3734982B2 JP14773899A JP14773899A JP3734982B2 JP 3734982 B2 JP3734982 B2 JP 3734982B2 JP 14773899 A JP14773899 A JP 14773899A JP 14773899 A JP14773899 A JP 14773899A JP 3734982 B2 JP3734982 B2 JP 3734982B2
Authority
JP
Japan
Prior art keywords
signal
optical
wireless device
electrical
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14773899A
Other languages
Japanese (ja)
Other versions
JP2000341744A (en
Inventor
哲夫 廣田
俊雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP14773899A priority Critical patent/JP3734982B2/en
Publication of JP2000341744A publication Critical patent/JP2000341744A/en
Application granted granted Critical
Publication of JP3734982B2 publication Critical patent/JP3734982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Description

【0001】
【発明の属する技術分野】
この発明は、例えば移動通信用の基地局無線装置に用いられ、アレーアンテナを用いて構成した無線装置に関し、特にその給電構成に係わる。
【0002】
【従来の技術】
移動通信用の基地局において、そのアンテナは鉄塔あるいは建物の屋上等の高所に設置され、無線装置の大半は建物の内部に置かれることが多い。図3は従来の無線装置の構成例を示し、無線装置1は、高所に設置される部分であり主にアンテナ1aと、送受共用器1bと、低雑音増幅器1cとから成る。一方、受信機13、送信機23、電力増幅器24は建物の内部に置かれている。これらの間は同軸ケーブル30によって接続されている。
【0003】
この基地局無線装置において、アンテナ1aで受信した信号は送受共用器1bを経て低雑音増幅器1cにより増幅される。この受信信号は同軸ケーブル30により受信機13へ伝送され、受信機において周波数変換された後、復調され、受信ベースバンド信号を得る。
一方、送信機23は、送信ベースバンド信号で変調された高周波信号を生成し、これは電力増幅器24により増幅される。この高周波信号は同軸ケーブル30により高所の無線装置1へ伝送され、送受共用器1bを経てアンテナ1aから送信される。
【0004】
このような無線装置においては、それぞれ一つの受信信号、送信信号を扱っている。これに対し、複数のアンテナをアレー状に配置し、各アンテナで送受信される信号の振幅、位相を個々の移動局に対して最適に制御することにより通信品質の向上を図る方法がある。
図4は、アレーアンテナを用いる基地局無線装置を従来技術を用いて構成した例を示したものである。ここでは、図3における無線装置1と同等の無線装置が無線装置2以下複数台設けられており、アンテナもそれぞれの無線装置に一個ずつ備えられている。以下では無線装置、アンテナはそれぞれ全部でN台あるものとして説明する。これらで受信された信号はそれぞれ独立した同軸ケーブル30によって受信機13をはじめとするN台の受信機に供給されている。これらはベースバンド信号に復調された後、アナログ/ディジタル変換器12等によってディジタル信号に変換され受信信号処理装置11に入力される。受信信号処理装置11はN個の受信信号に演算を施すことにより個々の移動局に対応した複数の受信信号10に分解する。
【0005】
また、個々の移動局にむけられた複数の送信信号20は送信信号処理装置21によって各アンテナに対応したN個の送信信号に変換された後、それぞれディジタル/アナログ変換器22等によってアナログベースバンド信号に変換される。これらはさらに送信機23等によって高周波信号に変換され、電力増幅器24等で増幅されてから同軸ケーブル30を経由して高所設置無線装置に送られアンテナ1a,2a等からそれぞれ送信される。
【0006】
【発明が解決しようとする課題】
図4に示したような、従来技術により構成した無線装置においては、アレーアンテナを用いる場合に必要とされる複数のアンテナおよび送受信装置を、個々の同軸ケーブルを用いて接続している。このため、アンテナ等が設置される建物の屋上等の高所から、無線装置の大半が収容される建物の内部へ大量の同軸ケーブルを敷設する必要がある。このことは設置工事の費用を増大させるのみならず、設置場所の条件によってはケーブルの敷設そのものを困難にすることがあり、アレーアンテナを使用するにあたっての大きな障害となる。同軸ケーブルの代りに光ファイバケーブルを用いて、工事を容易にすることが考えられる。しかし、この場合、光/電気変換、電気/光変換の過程で歪みが発生し、大きな送信電力の伝送は困難となる。
【0007】
この発明の目的は、このような大量の同軸ケーブル敷設が必要な点を解決し、より簡単な工事により設置可能であり、かつ大きな送信電力をも使用可能な無線装置を提供することにある。
【0008】
【課題を解決するための手段】
請求項1の発明の無線装置は、高所に設置される第1の無線装置群と第1の高出力用無線装置1、屋内に設置される第2の無線装置群と第2の高出力用無線装置から成る。第1の無線装置群は、主にアンテナ、送受共用器、低雑音増幅器、電力増幅器、電気/光変換器、光/電気変換器から成るN個の無線装置で構成され、第2の無線装置群は、受信機、送信機、電気/光変換器、光/電気変換器を備えたN個の無線装置で構成される。また、第1の高出力用無線装置は、主にアンテナ、送受共用器、低雑音増幅器から成り、第2の高出力用無線装置は、受信機、送信機、電力増幅器を備える。第1の無線装置群と第2の無線装置群は多芯光ファイバケーブルにより接続され、第1の無線装置群に含まれる個々の無線装置の入出力端子は、多芯光ファイバケーブルに含まれる芯線によって、第2の無線装置群に含まれる個々の無線装置の入出力端子に接続されている。一方、第1の高出力用無線装置と第2の高出力用無線装置との間は同軸ケーブルにより接続される。
【0009】
このように請求項1の発明の無線装置では、同軸ケーブルによる接続は一組の無線装置間のみに用いられ、他の複数の無線装置間は1本の多芯光ファイバケーブルによって接続されており、鉄塔や屋上等の高所から建物の内部へ敷設する同軸ケーブルの本数が少なくてすむという効果が得られる。
請求項3の発明の無線装置においては、高所に設置されたN個の無線装置は、アンテナ、送受共用器、低雑音増幅器、電力増幅器を備え、さらに受信信号を復調して受信ベースバンド信号を出力する受信機、送信ベースバンド信号を高周波信号に変換する送信機、受信ベースバンド信号をディジタル信号に変換するアナログ/ディジタル変換器、ディジタル信号を送信ベースバンドに変換するディジタル/アナログ変換器を備える。N個の無線装置の出力信号は多重化装置によって1系列の信号に束ねられ、電気/光変換器により光信号に変換されてから光ファイバケーブルによって屋内へ伝送される。また、屋内から光信号の形で伝送されてくる信号は光/電気変換器により電気信号に変換された後、分離装置によってN系列の信号に分離されてN個の無線装置に入力される。
【0010】
一方、屋内に設置する装置は主に、多重化された受信信号からN系列の受信信号を取り出す分離装置、N系列の受信信号を処理する受信信号処理装置、N系列の送信信号を生成する送信信号処理装置、N系列の送信信号を多重化する多重化装置から成り、高所に設置される無線装置と光信号の形で信号をやり取りするための電気/光変換器、光/電気変換器を備える。
【0011】
このように請求項3の発明の無線装置は、送受信器の機能をアンテナ側に用意し、屋内設置装置とのインタフェースは多重化されたディジタル信号で変調された光信号の形をとるため、高所設置無線装置と屋内設置装置の間は光ファイバケーブル2本で接続できる点に特徴があり、建物の屋上等の高所から建物の内部へのケーブル敷設が容易であるという効果が得られる。
【0012】
【発明の実施の形態】
請求項1及び2の発明の実施例を図1により説明する。第1の無線装置群40と第1の高出力用無線装置100は鉄塔上あるいは建物の屋上等の高所に設置されており、第2の無線装置群41と第2の高出力用無線装置101は屋内に設置される。第1の無線装置群40はアンテナ1a、アンテナ2a等のN個のアンテナ、および無線装置1、無線装置2等のN個の無線装置から成る。これらN個の無線装置は送受共用器1b、これに接続された低雑音増幅器1c、及び電力増幅器1d、電気/光変換器1e、光/電気増幅器1fよりなる。また、第2の無線装置群41は、光/電気変換器15、送信機13、アナログ/ディジタル変換器12をひと組の装置とするN組の装置と、電気/光変換器25、送信機23、ディジタル/アナログ変換器22をひと組の装置とするN組の装置と、受信信号処理装置11と、送信信号処理装置21から成る。第1の無線装置群40と第2の無線装置群41は多芯光ファイバケーブル31によって接続され、第1の高出力用無線装置100と第2の高出力用無線装置101は同軸ケーブル30で接続されている。第1の高出力用無線装置100はアンテナ100a、送受共用器100b、低雑音増幅器100cからなる。第2の高出力用無線装置101はアナログ/ディジタル変換器112、受信機113、ディジタル/アナログ変換器122、送信機123、電力増幅器124を含み、アナログ/ディジタル変換器112、ディジタル/アナログ変換器122はそれぞれ受信信号処理装置11と、送信信号処理装置21に接続されている。
【0013】
第1の無線装置群40に含まれるアンテナによって受信された信号は、無線装置1、無線装置2等のN個の無線装置内の各低雑音増幅器1cによりそれぞれ増幅され、更に各電気/光変換器1eで電気/光変換が施された後、多芯光ファイバケーブル31の芯線一本ずつによってそれぞれ屋内に設置された第2の無線装置群41に送られる。第2の無線装置群41においてはこれらの光信号は光/電気変換器15,・・・によりそれぞれ電気信号に戻され、さらに受信機13,・・・によりそれぞれ復調され、ベースバンド信号が生成される。このベースバンド信号はアナログ/ディジタル変換器12,・・・によりそれぞれディジタル信号に変換されてから、受信信号処理装置11に送られる。一方、アンテナ100aで受信された信号は低雑音増幅器100cで増幅され、電気信号のままで同軸ケーブル30により受信機113に送られ、復調される。この信号もアナログ/ディジタル変換器112でディジタル信号に変換されてから、受信信号処理装置11に送られる。受信信号処理装置11に入力されたN+1系列の信号は一括して処理され、所要の受信信号10が得られる。
【0014】
次に、送信すべき信号20は、送信信号処理装置21によって、N+1系列のディジタル信号に変換される。このうちN系列については、ディジタル/アナログ変換器22,・・・によりそれぞれアナログ信号に変換され、更に送信機23,・・・においてそれぞれ高周波信号とされた後、電気/光変換器25,・・・によりそれぞれ光信号に変換され、多芯光ファイバケーブル31によって無線装置群1に向けて伝送される。一方、残りの1系列の信号はディジタル/アナログ変換器122でアナログ信号に変換された後、送信機123によって高周波信号とされ、更に、電力増幅器124によって増幅され、電気信号のままで同軸ケーブル30によって伝送される。
【0015】
第1の無線装置群40ではN系列の光信号は各光/電気変換器1fによりそれぞれ電気信号に戻され、さらに各電力増幅器1dで所要の電力レベルまでそれぞれ増幅され、アンテナ1a,・・・より送信される。一方、第1の高出力用無線装置100においては、同軸ケーブル30からの信号はそのまま送受共用器100bを介してアンテナ100aより送信される。
【0016】
無線装置群間の信号を光信号に置き換えると、細心、軽量の光ファイバによる接続ができる利点があるが、反面、光/電気間の変換の過程で歪みを発生する。このため大きな送信電力が必要な場合においては伝送が困難な場合がある。この実施例においては、比較的低電力のN系列の信号については光信号に置き換えて多芯光ファイバケーブルにより伝送し、特に大きな送信電力を要する第1の高出力用無線装置100と第2の高出力用無線装置101についてのみ同軸ケーブル30で接続している。しかしこれらN+1組の無線装置は一体として動作し、送受信信号は受信信号処理装置11と、送信信号処理装置21において一括して処理される。これにより、ケーブルの敷設を最小限に抑えることができるという利点がある。
【0017】
次に、請求項3の発明の実施例を図2により説明する。無線装置1をはじめN台の無線装置、および多重化装置19、分離装置29は鉄塔上あるいは建物の屋上等の高所に設置されたおり、屋内には分離装置16、多重化装置26、受信信号処理装置11、送信信号処理装置21が設置されている。両者は電気/光変換器18,27、光/電気変換器17,28を介して光ファイバケーブル32によって接続されている。
【0018】
アンテナ1aによって受信された信号は、送受共用器1bを経て低雑音増幅器1cにより増幅される。受信機1gはこの受信信号を復調しベースバンド信号を生成する。このベースバンド信号はアナログ/ディジタル変換器1iによってサンプリングされディジタル信号に変換される。同様に、他のアンテナで受信した信号についても無線装置2等、他の無線装置においてそれぞれ復調され、ディジタル化されたベースバンド信号となる。これらのN系列のディジタルベースバンド信号は多重化装置19によって一系列のディジタル信号にまとめられ、電気/光変換器18によって、変調された光信号の形に変換され、光ファイバケーブル32によって屋内に向けて伝送される。
【0019】
この信号は光/電気変換器17によって電気信号に戻され、分離装置16によって再びN系列のディジタル信号となる。これは受信信号処理装置11によってディジタル信号処理を施され、所要の受信信号10が得られる。
送信すべき信号20は、送信信号処理装置21によって、個々のアンテナおよび無線装置に対応したN系列のディジタル信号に変換される。これらは多重化装置26によって一系列のディジタル信号にまとめられ、電気/光変換器18によって光信号に変換され、光ファイバケーブル32によって伝送される。
【0020】
この光信号は、光/電気変換器28によって電気信号に戻され、分離装置29によって再びN系列のディジタル信号となる。これらは無線装置1をはじめとするN台の無線装置にそれぞれ入力される。無線装置1においては、入力されたディジタル信号はディジタル/アナログ変換器1jによってアナログ信号に変換され、送信機1hによって変調された高周波信号が生成される。これは電力増幅器1dによって増幅され、送受共用器1bを経由してアンテナ1aより送信される。同様に無線装置2をはじめとする他の無線装置においても、それぞれ分離装置29からの信号をもとに高周波信号が生成され、増幅されたのちアンテナより送信される。
【0021】
この実施例においては、無線装置間の信号のやりとりは多重化されたディジタル信号により行われており、2本の光ファイバのみによって接続されているため、ケーブルの敷設が容易であるという利点がある。また、第1の実施例と同様に、雷害に対する耐力も大きい。
【0022】
【発明の効果】
以上説明したように、この発明によれば、アンテナをはじめとする無線装置群が設置される建物の屋上等の高所から、他の無線装置が収容される建物の内部へ大量の同軸ケーブルを敷設する必要がなく、工事が簡単ですむという効果が得られる。また装置間の接続は光ファイバによっているため、雷害に対して耐力が大きいという効果を有する。また高出力送信については同軸ケーブルを利用するため、光/電気変換、電気/光変換による歪みの問題が生じない。
【図面の簡単な説明】
【図1】請求項1及び2の発明の実施例を示すブロック図。
【図2】請求項3の発明の実施例を示すブロック図。
【図3】従来技術による第1の構成例を示すブロック図。
【図4】従来技術による第2の構成例を示すブロック図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radio apparatus that is used in, for example, a base station radio apparatus for mobile communication and is configured using an array antenna, and more particularly to a power supply configuration thereof.
[0002]
[Prior art]
In mobile communication base stations, the antenna is installed at a high place such as a steel tower or the rooftop of a building, and the majority of wireless devices are often placed inside the building. FIG. 3 shows a configuration example of a conventional radio apparatus. The radio apparatus 1 is a part installed at a high place, and mainly includes an antenna 1a, a duplexer 1b, and a low noise amplifier 1c. On the other hand, the receiver 13, the transmitter 23, and the power amplifier 24 are placed inside the building. These are connected by a coaxial cable 30.
[0003]
In this base station radio apparatus, the signal received by the antenna 1a is amplified by the low noise amplifier 1c through the duplexer 1b. This received signal is transmitted to the receiver 13 through the coaxial cable 30, and after being frequency-converted in the receiver, it is demodulated to obtain a received baseband signal.
On the other hand, the transmitter 23 generates a high-frequency signal modulated by the transmission baseband signal, which is amplified by the power amplifier 24. This high-frequency signal is transmitted to the radio device 1 at a high place by the coaxial cable 30, and is transmitted from the antenna 1a through the duplexer 1b.
[0004]
Such wireless devices handle one received signal and one transmitted signal, respectively. On the other hand, there is a method of improving communication quality by arranging a plurality of antennas in an array and optimally controlling the amplitude and phase of signals transmitted and received by each antenna for each mobile station.
FIG. 4 shows an example in which a base station radio apparatus using an array antenna is configured using the prior art. Here, a plurality of wireless devices equivalent to the wireless device 1 in FIG. 3 are provided below the wireless device 2, and one antenna is provided for each wireless device. In the following description, it is assumed that there are N wireless devices and antennas in total. The signals received by these are supplied to N receivers including the receiver 13 by independent coaxial cables 30. These signals are demodulated into baseband signals, converted into digital signals by an analog / digital converter 12 or the like, and input to the received signal processing device 11. The received signal processing device 11 performs an operation on N received signals to decompose them into a plurality of received signals 10 corresponding to individual mobile stations.
[0005]
A plurality of transmission signals 20 directed to individual mobile stations are converted into N transmission signals corresponding to each antenna by a transmission signal processing device 21, and then each analog baseband is converted by a digital / analog converter 22 or the like. Converted to a signal. These are further converted into high-frequency signals by the transmitter 23 or the like, amplified by the power amplifier 24 or the like, and then sent to the radio device installed at a high place via the coaxial cable 30 and transmitted from the antennas 1a and 2a, respectively.
[0006]
[Problems to be solved by the invention]
In the wireless device configured according to the prior art as shown in FIG. 4, a plurality of antennas and transmitting / receiving devices required when using an array antenna are connected using individual coaxial cables. For this reason, it is necessary to lay a large amount of coaxial cables from a high place such as a rooftop of a building where an antenna or the like is installed to the inside of a building in which most of the wireless devices are accommodated. This not only increases the cost of installation work, but also makes it difficult to lay the cable depending on the conditions of the installation location, which is a major obstacle to the use of the array antenna. It is conceivable to use an optical fiber cable instead of the coaxial cable to facilitate the construction. However, in this case, distortion occurs in the process of optical / electrical conversion and electrical / optical conversion, and transmission of large transmission power becomes difficult.
[0007]
An object of the present invention is to solve the point that a large amount of coaxial cable needs to be laid, and to provide a wireless device that can be installed by simpler construction and can use a large transmission power.
[0008]
[Means for Solving the Problems]
The wireless device according to the first aspect of the present invention includes a first wireless device group and a first high-power wireless device 1 installed at a high place, a second wireless device group and a second high-power installed indoors. It consists of radio equipment. The first wireless device group mainly includes N wireless devices including an antenna, a duplexer, a low noise amplifier, a power amplifier, an electrical / optical converter, and an optical / electrical converter, and the second wireless device. The group consists of N wireless devices with a receiver, transmitter, electrical / optical converter, and optical / electrical converter. The first high-power radio apparatus mainly includes an antenna, a duplexer, and a low-noise amplifier, and the second high-power radio apparatus includes a receiver, a transmitter, and a power amplifier. The first wireless device group and the second wireless device group are connected by a multi-core optical fiber cable, and input / output terminals of individual wireless devices included in the first wireless device group are included in the multi-core optical fiber cable. The core wire is connected to the input / output terminal of each wireless device included in the second wireless device group. On the other hand, the first high-power radio device and the second high-power radio device are connected by a coaxial cable.
[0009]
Thus, in the wireless device of the first aspect of the present invention, the connection by the coaxial cable is used only between one set of wireless devices, and the plurality of other wireless devices are connected by a single multi-core optical fiber cable. In addition, there is an effect that the number of coaxial cables to be laid from the high place such as a steel tower or the roof to the inside of the building can be reduced.
According to a third aspect of the present invention, the N radio apparatuses installed at a high place include an antenna, a duplexer, a low noise amplifier, and a power amplifier, and further demodulates the received signal to receive the received baseband signal. A receiver that outputs a transmission baseband signal to a high-frequency signal, an analog / digital converter that converts a reception baseband signal to a digital signal, and a digital / analog converter that converts a digital signal to a transmission baseband Prepare. The output signals of the N radio devices are bundled into a series of signals by a multiplexing device, converted into an optical signal by an electric / optical converter, and then transmitted indoors by an optical fiber cable. A signal transmitted in the form of an optical signal from indoors is converted into an electric signal by an optical / electrical converter, and then separated into N series signals by a separating device and input to N wireless devices.
[0010]
On the other hand, a device installed indoors mainly includes a separation device that extracts an N-sequence reception signal from multiplexed reception signals, a reception signal processing device that processes an N-sequence reception signal, and a transmission that generates an N-sequence transmission signal. An electrical / optical converter and an optical / electrical converter for exchanging signals in the form of optical signals with a radio device installed at a high place, comprising a signal processing device, a multiplexing device for multiplexing N-sequence transmission signals Is provided.
[0011]
In this way, the wireless device of the invention of claim 3 provides the function of a transceiver on the antenna side, and the interface with the indoor installation device takes the form of an optical signal modulated by a multiplexed digital signal. The site-installed wireless device and the indoor-installed device are characterized in that they can be connected with two optical fiber cables, and an effect is obtained that it is easy to lay a cable from a high place such as a rooftop of a building to the inside of the building.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the invention of claims 1 and 2 will be described with reference to FIG. The first wireless device group 40 and the first high-power wireless device 100 are installed on a high place such as on a steel tower or the rooftop of a building. The second wireless device group 41 and the second high-power wireless device 100 101 is installed indoors. The first wireless device group 40 includes N antennas such as the antenna 1a and the antenna 2a, and N wireless devices such as the wireless device 1 and the wireless device 2. These N radio apparatuses include a duplexer 1b, a low noise amplifier 1c connected thereto, a power amplifier 1d, an electric / optical converter 1e, and an optical / electric amplifier 1f. Further, the second wireless device group 41 includes N sets of devices including the optical / electrical converter 15, the transmitter 13, and the analog / digital converter 12 as a set of devices, the electrical / optical converter 25, and the transmitter. 23, N sets of devices having the digital / analog converter 22 as a set of devices, a reception signal processing device 11 and a transmission signal processing device 21. The first wireless device group 40 and the second wireless device group 41 are connected by a multi-core optical fiber cable 31, and the first high-power wireless device 100 and the second high-power wireless device 101 are coaxial cables 30. It is connected. The first high-power radio apparatus 100 includes an antenna 100a, a duplexer 100b, and a low noise amplifier 100c. The second high-power radio apparatus 101 includes an analog / digital converter 112, a receiver 113, a digital / analog converter 122, a transmitter 123, and a power amplifier 124. The analog / digital converter 112, the digital / analog converter Reference numerals 122 are respectively connected to the reception signal processing device 11 and the transmission signal processing device 21.
[0013]
The signals received by the antennas included in the first wireless device group 40 are respectively amplified by the low noise amplifiers 1c in the N wireless devices such as the wireless device 1 and the wireless device 2, and further each electric / optical conversion. After the electrical / optical conversion is performed by the device 1e, the cores of the multi-core optical fiber cable 31 are sent one by one to the second wireless device group 41 installed indoors. In the second wireless device group 41, these optical signals are respectively converted back to electrical signals by the optical / electrical converters 15 and so on, and further demodulated by the receivers 13 and so on to generate baseband signals. Is done. These baseband signals are converted into digital signals by the analog / digital converters 12,..., And then sent to the reception signal processing device 11. On the other hand, the signal received by the antenna 100a is amplified by the low noise amplifier 100c, sent to the receiver 113 through the coaxial cable 30 as it is as an electrical signal, and demodulated. This signal is also converted into a digital signal by the analog / digital converter 112 and then sent to the reception signal processing device 11. The N + 1 series signals input to the reception signal processing device 11 are collectively processed, and a required reception signal 10 is obtained.
[0014]
Next, the signal 20 to be transmitted is converted into an N + 1 series digital signal by the transmission signal processing device 21. Of these, the N series is converted into analog signals by the digital / analog converters 22... And further converted into high frequency signals by the transmitters 23. Each of the signals is converted into an optical signal by the multi-core optical fiber cable 31 and transmitted to the wireless device group 1. On the other hand, the remaining one series of signals is converted into an analog signal by the digital / analog converter 122, then converted to a high frequency signal by the transmitter 123, further amplified by the power amplifier 124, and the coaxial cable 30 as it is as an electrical signal. Transmitted by.
[0015]
In the first wireless device group 40, the N-sequence optical signals are converted back to electrical signals by the respective optical / electrical converters 1f, and further amplified to the required power levels by the respective power amplifiers 1d, and the antennas 1a,. Will be sent. On the other hand, in the first high-power radio apparatus 100, the signal from the coaxial cable 30 is transmitted as it is from the antenna 100a via the duplexer 100b.
[0016]
Replacing signals between wireless device groups with optical signals has the advantage of being able to connect with fine and lightweight optical fibers, but on the other hand, distortion occurs in the process of conversion between light and electricity. For this reason, transmission may be difficult when large transmission power is required. In this embodiment, a relatively low power N-sequence signal is replaced with an optical signal and transmitted by a multi-core optical fiber cable, and the first high-power radio apparatus 100 and the second high-power radio apparatus 100 that require particularly large transmission power are used. Only the high-power radio apparatus 101 is connected by the coaxial cable 30. However, these N + 1 sets of wireless devices operate as a single unit, and transmission / reception signals are collectively processed by the reception signal processing device 11 and the transmission signal processing device 21. This has the advantage that cable laying can be minimized.
[0017]
Next, an embodiment of the invention of claim 3 will be described with reference to FIG. The wireless device 1 and the N wireless devices, the multiplexing device 19 and the separation device 29 are installed on a high place such as on a steel tower or the rooftop of a building. The separation device 16, the multiplexing device 26, and the reception are installed indoors. A signal processing device 11 and a transmission signal processing device 21 are installed. Both are connected by an optical fiber cable 32 via electrical / optical converters 18 and 27 and optical / electrical converters 17 and 28.
[0018]
The signal received by the antenna 1a is amplified by the low noise amplifier 1c through the duplexer 1b. The receiver 1g demodulates the received signal to generate a baseband signal. This baseband signal is sampled and converted into a digital signal by the analog / digital converter 1i. Similarly, signals received by other antennas are also demodulated and digitized into baseband signals by other wireless devices such as the wireless device 2. These N series digital baseband signals are combined into a series of digital signals by the multiplexer 19, converted into a modulated optical signal form by the electrical / optical converter 18, and indoors by the optical fiber cable 32. It is transmitted toward.
[0019]
This signal is converted back to an electrical signal by the optical / electrical converter 17, and becomes an N-sequence digital signal again by the separation device 16. This is subjected to digital signal processing by the reception signal processing device 11 to obtain a required reception signal 10.
A signal 20 to be transmitted is converted into an N-sequence digital signal corresponding to each antenna and radio apparatus by a transmission signal processing device 21. These are combined into a series of digital signals by the multiplexing device 26, converted into optical signals by the electrical / optical converter 18, and transmitted by the optical fiber cable 32.
[0020]
This optical signal is converted back to an electrical signal by the optical / electrical converter 28, and becomes an N-sequence digital signal again by the separation device 29. These are respectively input to N wireless devices including the wireless device 1. In the wireless device 1, the input digital signal is converted into an analog signal by the digital / analog converter 1j, and a high frequency signal modulated by the transmitter 1h is generated. This is amplified by the power amplifier 1d and transmitted from the antenna 1a via the duplexer 1b. Similarly, in other wireless devices such as the wireless device 2, a high frequency signal is generated based on the signal from the separation device 29, amplified, and then transmitted from the antenna.
[0021]
In this embodiment, signals are exchanged between wireless devices by multiplexed digital signals, and since they are connected by only two optical fibers, there is an advantage that cable laying is easy. . In addition, similarly to the first embodiment, the resistance to lightning damage is large.
[0022]
【The invention's effect】
As described above, according to the present invention, a large number of coaxial cables are connected from a high place such as a rooftop of a building where a group of radio devices including an antenna is installed to the inside of a building where other radio devices are accommodated. There is no need to lay, and the effect is that construction is simple. In addition, since the connection between the devices is based on an optical fiber, there is an effect that the resistance to lightning damage is large. In addition, since a coaxial cable is used for high-power transmission, there is no problem of distortion due to optical / electrical conversion and electrical / optical conversion.
[Brief description of the drawings]
1 is a block diagram showing an embodiment of the first and second aspects of the present invention;
FIG. 2 is a block diagram showing an embodiment of the invention of claim 3;
FIG. 3 is a block diagram showing a first configuration example according to the prior art.
FIG. 4 is a block diagram showing a second configuration example according to the prior art.

Claims (3)

屋外に設置された第1の高出力用無線装置と、
上記屋外に設置され、上記第1の高出力用無線装置に比べ低出力の複数の無線装置からなる第1の無線装置群と、
屋内に設置され、第2の高出力用無線装置と、
上記屋内に設置され、上記第2の高出力用無線装置に比べ低出力の複数の無線装置からなる第2の無線装置群と、
上記第1の無線装置群の各無線装置と、上記第2の無線装置群の各無線装置との対応するものをそれぞれ接続する多芯光ファイバケーブルと、
上記第1の高出力無線装置と上記第2の高出力無線装置とを接続する一対の送信用及び受信用同軸ケーブルと
を具備する無線装置。
A first high-power radio device installed outdoors;
A first wireless device group that is installed outdoors and includes a plurality of wireless devices with lower output than the first high-power wireless device;
A second high-power radio device installed indoors;
A second wireless device group that is installed indoors and includes a plurality of low-power wireless devices compared to the second high-power wireless device;
A multi-core optical fiber cable for connecting each wireless device of the first wireless device group and a corresponding wireless device of the second wireless device group;
A wireless device comprising a pair of transmission and reception coaxial cables connecting the first high-power wireless device and the second high-power wireless device.
上記第1の無線装置群の各無線装置は、
アンテナと、そのアンテナに接続された送受共用器と、その送受共用器よりの受信信号を増幅する低雑音増幅器と、その低雑音増幅器の出力信号を光信号に変換して上記多芯光ファイバケーブルの1本の芯線へ供給する電気/光変換器と、上記多芯光ファイバケーブルの1本の芯線からの光信号を電気信号に変換する光/電気変換器と、その光/電気変換器よりの電気信号を増幅して、上記送受共用器へ出力する電力増幅器とよりなり、
上記第2の無線装置群の各無線装置は、
上記多芯光ファイバケーブルの1本の芯線からの光信号を電気信号に変換する光/電気変換器と、その光/電気変換器からの電気信号を復調する受信機と、送信機と、その送信機の出力信号を光信号に変換して上記多芯光ファイバケーブルの1本の芯線へ供給する電気/光変換器とよりなり、
上記第1の高出力用無線装置は、アンテナと、そのアンテナに接続された送受共用器と、その送受共用器よりの受信信号を増幅して上記受信用同軸ケーブルに供給する低雑音増幅器とよりなり、上記送信用同軸ケーブルよりの送信信号を上記送受共用器へ供給し、
上記第2の高出力用無線装置は、上記受信用同軸ケーブルからの受信信号を復調する受信機と、送信機と、その送信機の出力信号を増幅して上記送信用同軸ケーブルへ供給する電力増幅器とよりなる
ことを特徴とする請求項1記載の無線装置。
Each wireless device of the first wireless device group is
An antenna, a duplexer connected to the antenna, a low noise amplifier that amplifies a received signal from the duplexer, and an output signal of the low noise amplifier is converted into an optical signal, and the multi-core optical fiber cable An electrical / optical converter for supplying to one core wire, an optical / electrical converter for converting an optical signal from one core wire of the multi-core optical fiber cable into an electrical signal, and the optical / electrical converter It consists of a power amplifier that amplifies the electrical signal and outputs it to the duplexer,
Each wireless device of the second wireless device group is
An optical / electrical converter that converts an optical signal from one core of the multi-core optical fiber cable into an electrical signal, a receiver that demodulates the electrical signal from the optical / electrical converter, a transmitter, An electrical / optical converter that converts the output signal of the transmitter into an optical signal and supplies it to one core of the multi-core optical fiber cable;
The first high-power radio apparatus includes an antenna, a duplexer connected to the antenna, a low-noise amplifier that amplifies a reception signal from the duplexer and supplies the amplified signal to the coaxial cable for reception. Supply the transmission signal from the transmission coaxial cable to the duplexer,
The second high-power radio apparatus includes a receiver that demodulates a reception signal from the reception coaxial cable, a transmitter, and an electric power that amplifies the output signal of the transmitter and supplies the amplified output signal to the transmission coaxial cable. The radio apparatus according to claim 1, further comprising an amplifier.
基地局の屋外に設けられたそれぞれ一対の送信機及び受信機を備えた複数の無線装置よりなる無線装置群と、
上記無線装置群の各受信機よりの出力信号である各移動局からのベースバンド信号を多重化する第1の多重化装置と、
その第1の多重化装置の出力信号を第1の光信号に変換する第1の電気/光変換器と、
第2の光信号を電気信号に変換する第1の光/電気変換器と、
その変換された電気信号を分離して上記無線装置群の対応送信機にベースバンド信号の入力信号として供給する第1の分離装置と、
上記基地局の屋内に設けられた各移動局へのベースバンド信号を処理して、上記無線装置群の各無線装置対応のベースバンド信号として出力する送信信号処理装置と、
その送信信号処理装置よりのベースバンド信号の出力信号を多重化する第2の多重化装置と、
その第2の多重化装置の出力信号を上記第2の光信号に変換する第2の電気/光変換器と、
上記第1の光信号を電気信号に変換する第2の光/電気変換器と、
その変換された電気信号を多重分離する第2の分離装置と、
その第2の分離装置で分離された信号を処理して各移動局からのベースバンド信号の受信信号として出力する受信信号処理装置と、
上記第1の電気/光変換器と上記第2の光/電気変換器とを接続する第1の光ファイバケーブルと、
上記第1の光/電気変換器と上記第2の電気/光変換器とを接続する第2の光ファイバケーブルとを備え、
上記無線装置のそれぞれのアンテナと、
そのアンテナに接続された送受共用器と、
その送受共用器よりの無線受信信号を増幅し、対応する上記受信機へ出力する低雑音増幅器と、
上記各送信機よりの無線信号を増幅して対応する上記送受共用器へ出力する電力増幅器とを備え、
上記無線装置群の上記複数のアンテナはアレー状に配置されたアレーアンテナを構成していることを特徴とする無線装置。
A wireless device group comprising a plurality of wireless devices each provided with a pair of transmitters and receivers provided outside the base station;
A first multiplexer that multiplexes a baseband signal from each mobile station that is an output signal from each receiver of the wireless device group;
A first electrical / optical converter that converts an output signal of the first multiplexing device into a first optical signal;
A first optical / electrical converter for converting a second optical signal into an electrical signal;
A first separation device that separates the converted electrical signal and supplies it as a baseband signal input signal to a corresponding transmitter of the wireless device group;
A transmission signal processing device for processing a baseband signal to each mobile station provided indoors in the base station and outputting as a baseband signal corresponding to each wireless device of the wireless device group;
A second multiplexer for multiplexing the output signal of the baseband signal from the transmission signal processing device;
A second electrical / optical converter for converting the output signal of the second multiplexer into the second optical signal;
A second optical / electrical converter for converting the first optical signal into an electrical signal;
A second separator for demultiplexing the converted electrical signal;
A reception signal processing device that processes the signal separated by the second separation device and outputs the received signal as a baseband signal from each mobile station;
A first optical fiber cable connecting the first electrical / optical converter and the second optical / electrical converter;
A second optical fiber cable connecting the first optical / electrical converter and the second electrical / optical converter;
Each antenna of the wireless device;
A duplexer connected to the antenna;
A low noise amplifier that amplifies the radio reception signal from the duplexer and outputs the amplified signal to the corresponding receiver;
A power amplifier that amplifies a radio signal from each transmitter and outputs the amplified signal to the corresponding duplexer;
The plurality of antennas of the group of radio devices constitutes an array antenna arranged in an array.
JP14773899A 1999-05-27 1999-05-27 Wireless device Expired - Fee Related JP3734982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14773899A JP3734982B2 (en) 1999-05-27 1999-05-27 Wireless device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14773899A JP3734982B2 (en) 1999-05-27 1999-05-27 Wireless device

Publications (2)

Publication Number Publication Date
JP2000341744A JP2000341744A (en) 2000-12-08
JP3734982B2 true JP3734982B2 (en) 2006-01-11

Family

ID=15437036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14773899A Expired - Fee Related JP3734982B2 (en) 1999-05-27 1999-05-27 Wireless device

Country Status (1)

Country Link
JP (1) JP3734982B2 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0100165D0 (en) * 2001-01-22 2001-01-22 Blue2Space Ab Communication system
US7495560B2 (en) 2006-05-08 2009-02-24 Corning Cable Systems Llc Wireless picocellular RFID systems and methods
US8472767B2 (en) * 2006-05-19 2013-06-25 Corning Cable Systems Llc Fiber optic cable and fiber optic cable assembly for wireless access
JP2007333400A (en) * 2006-06-12 2007-12-27 Dx Antenna Co Ltd Gps signal transmission system
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
WO2009081376A2 (en) 2007-12-20 2009-07-02 Mobileaccess Networks Ltd. Extending outdoor location based services and applications into enclosed areas
JP5480916B2 (en) 2009-02-03 2014-04-23 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー Fiber optic based distributed antenna system, components, and related methods for calibration thereof
CN102396171B (en) 2009-02-03 2015-09-30 康宁光缆系统有限责任公司 Based on the distributing antenna system of optical fiber, assembly and the correlation technique for monitoring and configure distributing antenna system based on optical fiber, assembly
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
WO2012024247A1 (en) 2010-08-16 2012-02-23 Corning Cable Systems Llc Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
EP2678972B1 (en) 2011-02-21 2018-09-05 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (rf) communications over optical fiber in distributed communications systems, and related components and methods
WO2012148938A1 (en) 2011-04-29 2012-11-01 Corning Cable Systems Llc Determining propagation delay of communications in distributed antenna systems, and related components, systems and methods
CN103609146B (en) 2011-04-29 2017-05-31 康宁光缆系统有限责任公司 For increasing the radio frequency in distributing antenna system(RF)The system of power, method and apparatus
EP2832012A1 (en) 2012-03-30 2015-02-04 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods
WO2013162988A1 (en) 2012-04-25 2013-10-31 Corning Cable Systems Llc Distributed antenna system architectures
WO2014024192A1 (en) 2012-08-07 2014-02-13 Corning Mobile Access Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
CN105308876B (en) 2012-11-29 2018-06-22 康宁光电通信有限责任公司 Remote unit antennas in distributing antenna system combines
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
EP3008515A1 (en) 2013-06-12 2016-04-20 Corning Optical Communications Wireless, Ltd Voltage controlled optical directional coupler
WO2014199380A1 (en) 2013-06-12 2014-12-18 Corning Optical Communications Wireless, Ltd. Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
WO2016071902A1 (en) 2014-11-03 2016-05-12 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement
WO2016075696A1 (en) 2014-11-13 2016-05-19 Corning Optical Communications Wireless Ltd. Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
WO2016098109A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
WO2016098111A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)

Also Published As

Publication number Publication date
JP2000341744A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
JP3734982B2 (en) Wireless device
US9356697B2 (en) Distributed antenna system and method
US6496290B1 (en) Optic repeater system for extending coverage
KR100453667B1 (en) Optical transmission system for mobile communication, and a fixed station apparatus
JP2897492B2 (en) Mobile communication device
US20070019679A1 (en) Mobile communications network with multiple radio units
KR102128800B1 (en) Distributed antenna system
JPH09200840A (en) Private radio communication system
CN211830769U (en) 5G frequency conversion light distribution system
CA2509601A1 (en) Distributed wireless network employing utility poles and optical signal distribution
CN105556876B (en) Long distance wireless is equipped
US6021163A (en) Inter-unit digital signal transmitting method, digital signal transmitter and receiver equipment, digital signal transmitter, and digital signal receiver
WO2017115925A1 (en) Main unit and distributed antenna system comprising same
WO2017171120A1 (en) Base station signal matching device, and base station interface unit and distributed antenna system comprising same
CN113938140A (en) Remote transmission covering method, system and remote unit
US20240088949A1 (en) Distributed antenna system and signal transmission method
CN110808784A (en) Outdoor 5G micro-station system based on broadcasting and TV HFC network
CN111343641A (en) Intelligent 5G network system
CN215300635U (en) 5G base station coupling zoom-out system
CN115882921B (en) Base station frequency shift system
CN102333323B (en) Wireless coverage system of high-speed carrier
KR101468635B1 (en) Dual Band UTP femto remote solution and Method
CN113225132A (en) 5G base station coupling zoom-out system
KR20010010595A (en) Apparatus for allocating sectors dynamically in a connected base station of optical repeater system for mobile telephone and method thereof
JP2005168043A (en) Base station apparatus and relay transmission office apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees