JP3732809B2 - Air conditioner heating operation control method - Google Patents

Air conditioner heating operation control method Download PDF

Info

Publication number
JP3732809B2
JP3732809B2 JP2002215075A JP2002215075A JP3732809B2 JP 3732809 B2 JP3732809 B2 JP 3732809B2 JP 2002215075 A JP2002215075 A JP 2002215075A JP 2002215075 A JP2002215075 A JP 2002215075A JP 3732809 B2 JP3732809 B2 JP 3732809B2
Authority
JP
Japan
Prior art keywords
heating
air
compressor
operated
operating frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002215075A
Other languages
Japanese (ja)
Other versions
JP2003254584A (en
Inventor
クワン ホー ヨム
キ ソブ リー
Original Assignee
エルジー電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR10-2002-0011607A priority Critical patent/KR100474892B1/en
Priority to KR2002-011607 priority
Application filed by エルジー電子株式会社 filed Critical エルジー電子株式会社
Publication of JP2003254584A publication Critical patent/JP2003254584A/en
Application granted granted Critical
Publication of JP3732809B2 publication Critical patent/JP3732809B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機に関するもので、特に、空気調和機の暖房運転制御方法に関する。
【0002】
【従来の技術】
一般に、空気調和機は商店やオーフィス又は家庭などの室内空間に取り付けられて室内を冷房又は暖房する機器である。かかる空気調和機は冷凍サイクルを成す圧縮機、第1熱交換機及び第2熱交換機、膨張バルブからなり、これを循環する冷媒の連続的な蒸発作用と凝縮作用によって室内を冷房又は暖房することになる。
【0003】
前記空気調和機は前述した構成要素の何れもが一つのケースに取り付けられることができるが、快適な室内環境を作るために通常前記第1熱交換機を含んでいる室内機と、前記第2熱交換機と圧縮機を含んでいる室外機とに分けられる。この時、冷媒の流動方向によって前記第1熱交換機を介して暖房空気又は冷房空気が生成される。
【0004】
上記課程を概略的に説明すると、まず、室内を暖房するために、前記圧縮機により高温高圧に圧縮された冷媒ガスが前記第1熱交換機に送られ、前記第1熱交換機を介して冷媒ガスが室内空気と熱交換されながら凝縮される。この時、前記第1熱交換機を通過した室内空気は高温化されて室内に吐き出される。該過程から高温化された室内空気は風向調節部材によってユーザーの希望する方向に吐き出されて暖房することになる。続いて、前記第1熱交換機から凝縮された冷媒液は、膨張バルブを通過しながら蒸発しやすい圧力で減圧されて第2熱交換機に送られ、前記第2熱交換機を介して冷媒液が室外空気と熱交換されながら蒸発される。この時、前記第2熱交換機を通過した室外空気は低温化されて室外に吐き出される。
【0005】
なお、室内を冷房するために、冷媒は前記方向と反対方向に循環する。
従って、前記第2熱交換機では冷媒の凝縮作用が生じ、前記第1熱交換機では冷媒の蒸発作用が生じる。この場合、室内空気は前記第1熱交換機を介して低温化されて室内を冷房することになる。
【0006】
前記のように作動する空気調和機はユーザーによって別の操作が加えられない限り、運転が開始されてから終了されるまで室内空気を強制循環させる送風ファンと圧縮機及び風向調節部材などが一律的に動作される。これによって、前記空気調和機は暖房運転の時、次のような問題があった。
【0007】
即ち、運転開始から終了まで送風ファン及び圧縮機が一律的に動作されることによって、室内全体の温度が希望温度に至るまで長時間が必要であった。
従って、室内温度が希望温度に至る間、ユーザーに冷気が供給されるなどユーザーに不具合が生じていた。
また、運転開始から終了までユーザーによって別の操作が加えられない限り、暖房空気が一定した風向に吐き出されることによって室内空間のバランスを良好に暖房させるために相当な時間が必要となっていた。
【0008】
一般的に風向調節部材は上、上中、中、中下、下の吐き出し角を有しているが、ユーザーの操作のない場合前記風向調節部材は中の吐き出し角を有している。従って、暖房空気は当然室内中間に吐き出されこの場合、一定時間の間室内の上下部間に温度差が大きく発生する。即ち、室内中間に吐き出された暖房空気は密度が小さいので上昇し難くなり、この場合、室内上部の比較的冷たい空気は密度が相対的に大きいので下降することになる。従って、暖房運転の時、室内空間は上部、中部、底部の順に暖房されるしかない。しかしながら、ユーザーは実際に底部に位置するので暖房運転初期に十分な暖房空気が供給されないことになるという問題があった。
【0009】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点を解決するためのもので、暖房運転の時ユーザーの希望温度に至るまでかかる時間を短縮させることができる空気調和機の暖房運転制御方法を提供することを目的とする。
【0010】
本発明の他の目的は、暖房運転時室内空間の温度差が迅速に解消できる空気調和機の暖房運転制御方法を提供することである。
【0011】
【課題を解決するための手段】
上記目的を達成するための本発明による空気調和機の暖房運転制御方法は、
運転初期に室内温度を早く上昇させ、室内の温度差を迅速に解消するために運転時間によって冷媒の吐き出し量及び風量と風向を可変させて暖房空気を供給するパワー暖房モードと、ユーザーの選択した所望温度に至るまで一定した風量と一定した風向とに暖房空気を供給する一般暖房モードとからなることを特徴とする。
【0012】
この時前記パワー暖房モードが次のような二つの方法によって実現される。
即ち、前記パワー暖房モードは室内温度を急上昇させるために、第1設定時間の間、前記圧縮機を最大運転周波数に運転する急速運転段階と、前記急速運転段階後、室内の温度差を迅速に解消するために第2設定時間の間前記圧縮機を室内温度によって可変される運転周波数に運転する緩速運転段階とからなる。
さらに、前記緩速運転段階は、前記圧縮機が室内温度によって決定される可変運転周波数に運転される段階と、前記風量調節部材が暖房空気の吐き出し方向によって、上向、中上向、中向、中下向、下向に調節されるとき、暖房空気が室内底に集中されるように前記風向調節部材が下向に調節される段階と、前記第1送風ファンは、中風に運転される段階と、からなる。
【0013】
又、本発明の他の実施形態によると、前記パワー暖房モードは室内温度を急上昇させるために第1設定時間の間前記圧縮機を最大運転周波数に運転する急速運転段階と、前記急速運転段階後、吸入される室内空気の温度を設定温度と比較する段階と、前記温度比較段階で室内空気の温度が設定温度以上の場合第2設定時間の間前記圧縮機を最大運転周波数より小さい一定した周波数に運転しながら、室内の温度差を解消する第1緩速運転段階と、前記温度比較段階で室内空気の温度が設定温度未満の場合、前記第2設定時間の間前記圧縮機を室内温度によって可変される運転周波数に運転しながら室内の温度差を解消する第2緩速運転段階とからなる。
【0014】
従って、本発明は暖房運転の時、前記急速運転段階を介して室内温度が希望温度に至るのにかかる時間を短縮することができる長所を提供し、前記緩速運転段階を介して室内の温度差が迅速に解消できる長所を提供する。
【0015】
【発明の実施の形態】
以下、添付の図面を参照して本発明を更に詳細に説明する。
図中、同様の構成を有する部分には同一の符号を付している。
【0016】
先ず図1によると、本発明による空気調和機は冷媒を高温高圧に圧縮する圧縮機1と、圧縮された冷媒を凝縮させる第1熱交換機2と、凝縮された冷媒を断熱膨張させる膨張バルブ3と、断熱膨張された冷媒を等圧蒸発させる第2熱交換機4からなる。この時、前記第1熱交換機2と第2熱交換機4は冷媒の流動方向によって互いに反対の機能が行われる。
【0017】
前記圧縮機1は印加される電圧の周波数(以下、運転周波数)によって運転速度が異なり、これによって冷媒の吐き出し量も変化される。即ち、前記圧縮機1は運転周波数が大きいほど冷媒の吐き出し量も比例して増加する。
前記第1熱交換機2の一側には空気を強制循環させて冷媒の凝縮作用を手伝う第1送風ファン2aが取り付けられ、前記第2熱交換機4の一側には空気を強制循環させて冷媒の蒸発作用を手伝う第2送風ファン4aが取り付けられる。この時、前記第1送風ファン2aと第2送風ファン4aは空気吐き出し量によって強風、中風、弱風で運転される。
このように、構成された空気調和機は前記第1熱交換機2が取り付けられる室内機と、前記第2熱交換機4及び圧縮機1が取り付けられる室外機とに構成される。
【0018】
図2に示すように、前記室内機は下部に吸入口10aが形成され上部に吐き出し口10bが形成されるケース10と、前記ケース10の内部に取り付けられる第1熱交換機(図1の2)及び第1送風ファン(図1の2a)から構成される。この時前記吐き出し口には吐き出し空気の風向を調節する風向調節部材20が取り付けられる。前記風向調節部材20は吐き出し空気の風向を上向、中上向、中向、下向の5段階に調節する。
【0019】
尚、前記ケース10の前面一側に機器の作動状態をユーザーに知らせるためのディスプレイ部30が取り付けられている。前記ディスプレイ部30にはユーザーの操作を導く多数のボタンが取り付けられ、前記ボタンのうち、暖房運転をパワー暖房モードと一般暖房モードとに選択できるボタンも含んでいる。この時、前記ディスプレイ部30の裏面に機器の全運転を制御する制御部が取り付けられている。
前記制御部は圧縮機の印加電圧は勿論、第1送風ファン及び第2送風ファンの風量と風向調節部材20の位置を制御する。
【0020】
この時前記パワー暖房モードとは室内温度を迅速に上昇させ、室内の温度差を迅速に解消するために、運転時間によって冷媒の吐き出し量及び風量と風向を可変させて暖房空気を供給する運転状態を意味する。かかるパワー暖房モードは暖房運転初期に非常に有効に適用され得るし、その詳細は後に述べる。
前記一般暖房モードとは、ユーザーの選択した希望温度に至るまでに一定した風量と一定した風向とに暖房空気を供給する運転状態を意味する。即ち、前記一般暖房モードでは風量調節部材20が中風に調節されると共に第1送風ファン2aが中風に運転される。
【0021】
以下、本発明による空気調和機の暖房運転制御方法をより詳細に説明する。
先ず、図3を参照して本発明の一実施形態による空気調和機の暖房運転制御方法を説明する。
図3に示すように、先ず、制御部においてユーザーから入力された運転状態がパワー暖房モードであるか一般暖房モードであるかを判断する(S1)。この時ユーザーはディスプレイ30のボタンと操作するか又はリモコンを介して運転状態を入力することができる。
【0022】
前記判断結果、一般暖房モードが入力された場合、前記制御部は室内温度がユーザーの希望温度に至るまで前記風向調節部材20と第1送風ファン2aを既に設定された風向と風量に運転することになる(S10)。
前記判断結果、パワー暖房モードが入力された場合、前記制御部は運転時間をチェックしながら(S2)、前記運転時間が第1設定時間に至るかの可否を判断する(S3)。
【0023】
この時、前記制御部は運転時間が第1設定時間に至るまでに室内温度を急上昇させるために急速運転段階を行う(S20)。
このために、前記急速運転段階(S20)は、冷媒吐き出し量が最大となるように前記圧縮機1が最大運転周波数に運転される段階(S21)と、第1熱交換機2を介して生成された暖房空気が室内底に集中されるように前記風量調節部材20が下向に調節される段階(S22)と、暖房空気の吐き出し量が最大となるように前記第1送風ファン2aが強風に運転される段階(S23)とからなる。この時、室外機に取り付けられる第2送風ファン4aやはり強風に運転されるのが望ましい(S24)。これは最大運転周波数に運転される圧縮機1の効率及び第1熱交換機2における熱交換効率を向上させるためである。
【0024】
又、前記制御部は運転時間が第1設定時間に至る場合、室内温度差を迅速に解消するために緩速運転段階(S30)を行う。以後、前記制御部は第2設定時間に至ったかどうかを判断し(S4)、前記第2設定時間まで緩速運転段階(S30)を行う。
【0025】
このために、前記緩速運転段階(S30)は前記圧縮機1が室内温度によって決められる可変運転周波数に運転される段階(S31)と、暖房空気が室内底に集中されるように前記風量調節部材20が下向に調節される段階(S32)と、前記第1送風ファン2が中風に運転される段階(S33)に成される。勿論この場合にも圧縮機1の効率及び第1熱交換機2における熱交換の効率を向上させるために、前記第2送風ファン4aは弱風に運転されるのが望ましい(S34)。
【0026】
前記緩速運転段階S30において、前記圧縮機1の運転周波数はユーザーの希望温度によって設定される圧縮機の停止時、温度(Ts)と吸入される室内空気の温度(Td)との差によって決められる。ここで、前記圧縮機の停止時温度(Ts)とは、室内温度がある程度上昇して大略3〜4℃を加えた温度である。この時、前記圧縮機1が最適に運転されるようにするために、前記圧縮機1は温度差(Ts−Td)によって多段階の運転周波数を有するのが望ましく、少なくとも最大周波数と最小運転周波数及びその間の定格運転周波数を有するのが望ましい。
【0027】
図4に示すように、前記緩速運転段階のうち、前記圧縮機1はTs−Tdが0.0〜0.99℃であれば、最小運転周波数に運転され、前記Ts―Tdが1.0〜2.49℃であれば、定格運転周波数に運転され、前記Ts―Tdが2.5℃以上であれば、最大運転周波数に運転される。即ち、前記Ts−Tdが大きいということは室内温度と希望温度との差が大きいことを意味し、従って、室内温度差を迅速に解消するためには圧縮機1が前記Ts―Tdに比例する運転周波数に運転されるべきである。
【0028】
尚、図5に示すように、前記圧縮機1の運転周波数が図4より細分化されていることが分かる。この場合、前記圧縮機1を更に最適に運転できることは勿論である。
図5に示すように、前記最小運転周波数と定格運転周波数との間に第1運転周波数と第2運転周波数が存在し、前記定格運転周波数と最大運転周波数との間に第3運転周波数が存在する。この時、第1運転周波数より第2運転周波数が大きく、前記第2運転周波数より第3運転周波数が大きい。
【0029】
この場合、前記緩速運転段階S30において、前記圧縮機1はTs−Tdが0.5〜0.99℃であれば、前記最小運転周波数と定格運転周波数の間の第1運転周波数に運転され、前記Ts―Tdが1.0〜1.49℃であれば最小運転周波数と定格運転周波数の間の第2運転周波数に運転され、前記Ts―Tdが2.0〜2.49℃であれば定格運転周波数と最大運転周波数の間の第3運転周波数に運転される。
以後、前記制御部は運転時間が第2設定時間に至ることになると、パワー暖房モードを終了し、自動に一般暖房モードに転換して継続室内を暖房することになる(S10)。
【0030】
要するに、本発明の第1実施形態は前記急速運転段階(S20)において、圧縮機1の運転速度を時間によって制御し、前記緩速運転段階(S30)において圧縮機1の運転速度を時間と共に室内温度によって制御する。これは室内温度を希望温度まで急上昇させると共に室内温度差を迅速に解消するのに効率的に作用する。
【0031】
図6及び図7を参照して本発明の他の実施形態による空気調和機の暖房運転制御方法を説明すると次のようである。
図6及び図7に示すように、先ず制御部においてユーザーから入力された運転状態がパワー暖房モードであるか一般暖房モードであるかを判断する(S1)。前記判断結果、一般暖房モードが入力された場合、前記制御部は室内温度がユーザーの希望温度に至るまで前記風向調節部材20と第1送風ファン2を既に設定された風向と風量に運転することになる(S10)。
【0032】
前記判断結果、パワー暖房モードが入力された場合、前記制御部は運転時間をチェックしながら(S2)、前記運転時間が第1設定時間に至るまでの可否を判断する(S3)。この時、前記制御部は運転時間が第1設定時間に至る前まで室内温度を急上昇させるために急速運転段階を行う(S20)。
【0033】
前記急速運転段階(S20)は圧縮機1が最大運転周波数に運転される段階(S21)と、風量調節部材20が下向に調節される段階(S22)と、前記第1送風ファン2が強風に運転される段階(S23)になる。この時室外機の第2送風ファン4もやはり強風に運転されるのが望ましい(S24)。前記急速運転段階(S20)は前記の第1実施形態と同じである。
【0034】
次に前記制御部は運転時間が第1設定時間に至る場合、熱交換のために吸入される室内空気の温度を設定温度と比較する(S5)。この時前記設定温度はユーザーの希望温度よりは低い温度であって、室内温度差を更に効率的に解消するために前記圧縮機1と風向調節部材20などを異に制御する基準となる。
前記比較結果、室内空気の吸入温度が設定温度以上の場合、前記制御部は第2設定時間の間前記圧縮機1を最大運転周波数より小さい一定した運転周波数に運転しながら室内の温度差を解消する第1緩速運転段階を行う(S40)。
【0035】
前記第1緩速運転段階(S40)は前記圧縮機1が最小運転周波数と定格運転周波数間の運転周波数に運転される段階(S41)と、前記風量調節部材20が中下向に調節される段階(S42)と、前記第1送風ファン2が中風に運転される段階(S43)からなる。この時前記圧縮機1は図5の第1運転周波数又は第2運転周波数に運転できる。
【0036】
この場合、前記圧縮機1の効率及び第1熱交換機2における熱交換効率を向上させるために、前記第2送風ファン4は中風に運転されるのが望ましい(S44)。
前記比較結果、室内空気の吸入温度が設定温度の未満の場合、前記制御部は第2設定時間の間前記圧縮機1を室内温度によって可変される運転周波数に運転しながら、室内の温度差を解消する第2緩速運転段階を行う(S60)。
前記第2緩速運転段階(S60)は前記圧縮機1が室内温度によって決められる可変運転周波数に運転される段階(S61)と、前記風量調節部材20が中風に調節される段階(S62)と、前記第1送風ファン2が中風に運転される段階(S63)に成される。勿論該場合にも圧縮機1の効率及び第1熱交換機2における熱交換効率を向上させるために、前記第2送風ファン4は弱風に運転されるのが望ましい(S64)。
【0037】
前記第2緩速運転段階(S60)において、前記圧縮機1の運転周波数は、前記第1実施形態の場合と同様に、圧縮機の停止時温度Tsと室内空気の温度Tdとの差によって決められる。この時前記圧縮機1が最適に運転されるために、前記圧縮機1は温度差Ts―Tdによって多段階の運転周波数を有するのが望ましく、少なくとも最大運転周波数と最小運転周波数及びその間の定格運転周波数を有するのが望ましい。
【0038】
即ち、前記第2緩速運転段階(S60)のうち、前記圧縮機はTs―Tdが0.0〜0.99℃であれば、最小運転周波数に運転され、前記Ts―Tdが1.0〜2.49℃となると定格運転周波数に運転され、前記Ts―Tdが2.5℃以上になると最大運転周波数に運転される。これは図4に示されている。
【0039】
これに加えて、前記第2緩速運転段階(S60)において、前記圧縮機1はより細分化されている運転周波数によって運転できる。即ち、前記圧縮機1はTs―Tdが0.5〜0.99℃であれば、前記最小運転周波数と定格運転周波数の間の第1運転周波数に運転され、前記Ts―Tdが1.0〜1.49℃以上であれば、最小運転周波数と定格運転周波数の間の第2運転周波数に運転され、前記Ts―Tdが2.0〜2.49℃であれば、定格運転周波数と最大運転周波数間の第3運転周波数に運転される。これは図5に示されている。
【0040】
以後、前記制御部は運転時間が第2設定時間に至ると、パワー暖房モードを終了し、自動に一般暖房モードに転換して室内を暖房し続けることになる(S10)。
要するに、本発明の第2実施形態は緩速運転段階から急速運転段階を介して上昇した室内温度によって圧縮機を一定した運転周波数に運転するか又は室内温度によって可変される運転周波数に運転しながら室内温度差を迅速に解消することになる。
【0041】
【発明の効果】
以上説明したように、本発明の空気調和機の暖房運転制御方法によると、次のような効果がある。
即ち、暖房運転が開始されてから希望温度に至るまでかかる時間を短縮することができ、室内の温度差をより迅速に解消できる効果を提供する。
従って、ユーザーは運転初期に希望温度の暖房空気を迅速に供給されることができる。
【0042】
以上本発明の好適な一実施形態に対して説明したが、前記実施形態のものに
限定されるわけではなく、本発明の技術思想に基づいて種々の変形又は変更が可能である。
【図面の簡単な説明】
【図1】本発明による空気調和機の構成要素を示したブロック図である。
【図2】本発明の第1実施形態による空気調和機の室内機を示した斜視図である。
【図3】本発明の第1実施形態による空気調和機の暖房運転制御方法を示したフローチャート図である。
【図4】各々本発明による空気調和機の暖房運転制御方法のうち、圧縮機の最適運転周波数を選定する方法を示した図である。
【図5】各々本発明による空気調和機の暖房運転制御方法のうち、圧縮機の最適運転周波数を選定する方法を示した図である。
【図6】本発明の第2実施形態による空気調和機の暖房運転制御方法を示すフローチャート図である。
【図7】本発明の第2実施形態による空気調和機の暖房運転制御方法を示すフローチャート図である。
【符号の説明】
1…圧縮機
2…第1熱交換機
2a…第1送風ファン
3…膨張バルブ
4…第2熱交換機
4a…第2送風ファン
10…ケース
20…風向調節部材
30…ディスプレイ部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner, and more particularly to a heating operation control method for an air conditioner.
[0002]
[Prior art]
Generally, an air conditioner is a device that is attached to an indoor space such as a store, an office, or a home to cool or heat the room. Such an air conditioner includes a compressor, a first heat exchanger, a second heat exchanger, and an expansion valve that form a refrigeration cycle. The indoor air conditioner cools or heats the room by continuous evaporating action and condensing action of the circulating refrigerant. Become.
[0003]
In the air conditioner, any of the components described above can be attached to a single case, but in order to create a comfortable indoor environment, an indoor unit that normally includes the first heat exchanger, and the second heat Divided into an exchange and an outdoor unit containing a compressor. At this time, heating air or cooling air is generated through the first heat exchanger according to the flow direction of the refrigerant.
[0004]
Describing the above process schematically, first, in order to heat the room, a refrigerant gas compressed to a high temperature and a high pressure by the compressor is sent to the first heat exchanger, and the refrigerant gas passes through the first heat exchanger. Is condensed while exchanging heat with room air. At this time, the room air that has passed through the first heat exchanger is heated to be discharged into the room. The room air heated to high temperature from this process is exhaled in the direction desired by the user by the air direction adjusting member and heated. Subsequently, the refrigerant liquid condensed from the first heat exchanger is depressurized at a pressure that easily evaporates while passing through the expansion valve, and is sent to the second heat exchanger, and the refrigerant liquid is passed through the second heat exchanger. It is evaporated while exchanging heat with air. At this time, the outdoor air that has passed through the second heat exchanger is cooled down and discharged to the outside.
[0005]
In order to cool the room, the refrigerant circulates in the direction opposite to the above direction.
Accordingly, the refrigerant heat condenses in the second heat exchanger, and the refrigerant evaporates in the first heat exchanger. In this case, the room air is cooled down through the first heat exchanger to cool the room.
[0006]
The air conditioner that operates as described above has a uniform fan, compressor, and wind direction adjusting member that forcibly circulates the room air from the start to the end unless the user performs another operation. To be operated. As a result, the air conditioner has the following problems during heating operation.
[0007]
That is, it takes a long time until the temperature of the entire room reaches the desired temperature by uniformly operating the blower fan and the compressor from the start to the end of operation.
Therefore, while the room temperature reaches the desired temperature, the user is in trouble, for example, cold air is supplied to the user.
Also, unless another operation is performed by the user from the start to the end of the operation, considerable time is required to heat the balance of the indoor space satisfactorily by discharging the heating air in a constant wind direction.
[0008]
Generally, the wind direction adjusting member has upper, upper, middle, middle, lower, and lower discharge angles. However, when there is no user operation, the wind direction adjusting member has a medium discharge angle. Accordingly, the heating air is naturally discharged into the middle of the room, and in this case, a large temperature difference is generated between the upper and lower parts of the room for a certain time. That is, the heating air discharged to the middle of the room has a low density, so it is difficult to rise. In this case, the relatively cool air in the upper part of the room is lowered because the density is relatively high. Therefore, during heating operation, the indoor space can only be heated in the order of top, middle, and bottom. However, since the user is actually located at the bottom, there is a problem that sufficient heating air is not supplied in the early stage of the heating operation.
[0009]
[Problems to be solved by the invention]
The present invention is to solve the above-described problems of the prior art, and to provide a heating operation control method for an air conditioner that can shorten the time required to reach a user's desired temperature during heating operation. Objective.
[0010]
Another object of the present invention is to provide a heating operation control method for an air conditioner that can quickly eliminate the temperature difference in the indoor space during heating operation.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a heating operation control method for an air conditioner according to the present invention comprises:
Power heating mode to supply heating air by changing the refrigerant discharge amount and air volume and direction according to the operation time in order to quickly raise the room temperature early in the operation and quickly eliminate the temperature difference in the room, selected by the user It is characterized by comprising a general heating mode in which heating air is supplied in a constant air volume and a constant air direction until reaching a desired temperature.
[0012]
At this time, the power heating mode is realized by the following two methods.
That is, in the power heating mode, in order to increase the indoor temperature rapidly, a rapid operation stage in which the compressor is operated at the maximum operating frequency during a first set time, and after the rapid operation stage, the indoor temperature difference is quickly increased. In order to solve this problem, the method includes a slow operation stage in which the compressor is operated at an operation frequency that is varied depending on the room temperature during a second set time.
Further, the slow operation stage includes the stage where the compressor is operated at a variable operation frequency determined by the room temperature, and the air volume adjusting member is upward, middle upward, and intermediate When the airflow is adjusted downward, the airflow direction adjusting member is adjusted downward so that the heating air is concentrated on the bottom of the room, and the first blower fan is operated to the medium wind. Stage.
[0013]
According to another embodiment of the present invention, the power heating mode is a rapid operation stage in which the compressor is operated at a maximum operating frequency for a first set time in order to rapidly increase the indoor temperature, and after the rapid operation stage. A step of comparing the temperature of the sucked room air with a set temperature, and a constant frequency lower than the maximum operating frequency for a second set time when the temperature of the room air is equal to or higher than the set temperature in the temperature comparison step. When the room air temperature is lower than the set temperature in the first slow speed operation stage that eliminates the temperature difference in the room and the temperature comparison stage, the compressor is controlled according to the room temperature during the second set time. It comprises a second slow operating stage in which the temperature difference in the room is eliminated while operating at a variable operating frequency.
[0014]
Accordingly, the present invention provides an advantage of reducing the time required for the room temperature to reach the desired temperature through the rapid operation stage during the heating operation, and the room temperature through the slow operation stage. Providing the advantage that the difference can be resolved quickly.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
In the figure, parts having the same configuration are denoted by the same reference numerals.
[0016]
Referring first to FIG. 1, an air conditioner according to the present invention includes a compressor 1 that compresses a refrigerant to high temperature and pressure, a first heat exchanger 2 that condenses the compressed refrigerant, and an expansion valve 3 that adiabatically expands the condensed refrigerant. And the second heat exchanger 4 that evaporates the refrigerant adiabatically expanded at a constant pressure. At this time, the first heat exchanger 2 and the second heat exchanger 4 perform opposite functions depending on the flow direction of the refrigerant.
[0017]
The operation speed of the compressor 1 varies depending on the frequency of the applied voltage (hereinafter referred to as operation frequency), and the refrigerant discharge amount is changed accordingly. That is, as the operating frequency of the compressor 1 increases, the refrigerant discharge amount increases in proportion.
A first blower fan 2a is attached to one side of the first heat exchanger 2 to help the refrigerant condensing action by forcibly circulating air, and the air is forced to circulate to the one side of the second heat exchanger 4 A second blower fan 4a is attached to help evaporate the air. At this time, the first blower fan 2a and the second blower fan 4a are operated with strong wind, medium wind, and weak wind according to the air discharge amount.
Thus, the comprised air conditioner is comprised in the indoor unit in which the said 1st heat exchanger 2 is attached, and the outdoor unit in which the said 2nd heat exchanger 4 and the compressor 1 are attached.
[0018]
As shown in FIG. 2, the indoor unit has a case 10 in which a suction port 10 a is formed in the lower part and a discharge port 10 b is formed in the upper part, and a first heat exchanger (2 in FIG. 1) attached to the inside of the case 10. And a first blower fan (2a in FIG. 1). At this time, a wind direction adjusting member 20 for adjusting the wind direction of the discharged air is attached to the discharge port. The wind direction adjusting member 20 adjusts the wind direction of the discharged air in five stages: upward, middle upward, intermediate, and downward.
[0019]
A display unit 30 is attached to one side of the front surface of the case 10 to inform the user of the operating state of the device. The display unit 30 is provided with a number of buttons for guiding a user's operation. Among the buttons, the display unit 30 includes a button for selecting a heating operation from a power heating mode and a general heating mode. At this time, a control unit for controlling the entire operation of the device is attached to the back surface of the display unit 30.
The controller controls the air volume of the first blower fan and the second blower fan and the position of the wind direction adjusting member 20 as well as the applied voltage of the compressor.
[0020]
At this time, the power heating mode is an operating state in which heating air is supplied by changing the refrigerant discharge amount, the air amount and the air direction according to the operation time in order to quickly increase the indoor temperature and quickly eliminate the indoor temperature difference. Means. Such a power heating mode can be applied very effectively in the early stage of heating operation, and details thereof will be described later.
The general heating mode means an operation state in which heating air is supplied to a constant air volume and a constant air direction until reaching a desired temperature selected by the user. That is, in the general heating mode, the air volume adjusting member 20 is adjusted to medium wind and the first blower fan 2a is operated to medium wind.
[0021]
Hereinafter, a heating operation control method for an air conditioner according to the present invention will be described in more detail.
First, a heating operation control method for an air conditioner according to an embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 3, first, in the control unit, it is determined whether the operation state input from the user is the power heating mode or the general heating mode (S1). At this time, the user can operate the buttons of the display 30 or input the driving state via the remote controller.
[0022]
When the general heating mode is input as a result of the determination, the control unit operates the wind direction adjusting member 20 and the first blower fan 2a to the preset wind direction and air volume until the room temperature reaches the user's desired temperature. (S10).
When the power heating mode is input as a result of the determination, the control unit determines whether or not the operation time reaches the first set time while checking the operation time (S2) (S3).
[0023]
At this time, the control unit performs a rapid operation stage in order to rapidly increase the room temperature until the operation time reaches the first set time (S20).
For this reason, the rapid operation stage (S20) is generated via the first heat exchanger 2 and the stage (S21) in which the compressor 1 is operated at the maximum operation frequency so that the refrigerant discharge amount is maximized. When the air flow rate adjusting member 20 is adjusted downward so that the heated air is concentrated on the bottom of the room (S22), the first blower fan 2a is turned to a strong wind so that the amount of heating air discharged becomes maximum. The operation stage (S23) is included. At this time, it is desirable that the second blower fan 4a attached to the outdoor unit is also operated in a strong wind (S24). This is to improve the efficiency of the compressor 1 operated at the maximum operating frequency and the heat exchange efficiency in the first heat exchanger 2.
[0024]
In addition, when the operation time reaches the first set time, the controller performs a slow operation step (S30) in order to quickly eliminate the indoor temperature difference. Thereafter, the controller determines whether or not the second set time has been reached (S4), and performs a slow speed operation step (S30) until the second set time.
[0025]
For this reason, the slow speed operation step (S30) is performed when the compressor 1 is operated at a variable operation frequency determined by the room temperature (S31), and the air volume adjustment is performed so that the heating air is concentrated on the indoor bottom. The step of adjusting the member 20 downward (S32) and the step of operating the first blower fan 2 in medium wind (S33) are performed. Of course, in this case as well, in order to improve the efficiency of the compressor 1 and the efficiency of heat exchange in the first heat exchanger 2, it is desirable that the second blower fan 4a is operated in a weak wind (S34).
[0026]
In the slow operation step S30, the operating frequency of the compressor 1 is determined by the difference between the temperature (Ts) and the temperature of the indoor air to be sucked (Td) when the compressor is stopped, which is set according to the user's desired temperature. It is done. Here, the stop temperature (Ts) of the compressor is a temperature obtained by adding approximately 3 to 4 ° C. by increasing the room temperature to some extent. At this time, in order for the compressor 1 to operate optimally, the compressor 1 preferably has a multi-stage operation frequency according to a temperature difference (Ts−Td), and at least the maximum frequency and the minimum operation frequency. And having a rated operating frequency in between.
[0027]
As shown in FIG. 4, in the slow operation stage, the compressor 1 is operated at the minimum operation frequency when Ts−Td is 0.0 to 0.99 ° C., and the Ts−Td is 1. If it is 0-2.49 degreeC, it will drive | operate to a rated operation frequency, and if the said Ts-Td is 2.5 degreeC or more, it will drive | operate to a maximum operation frequency. That is, the large Ts−Td means that the difference between the room temperature and the desired temperature is large, and therefore the compressor 1 is proportional to the Ts−Td in order to quickly eliminate the room temperature difference. Should be driven to the operating frequency.
[0028]
In addition, as shown in FIG. 5, it turns out that the operating frequency of the said compressor 1 is subdivided from FIG. In this case, of course, the compressor 1 can be operated more optimally.
As shown in FIG. 5, a first operating frequency and a second operating frequency exist between the minimum operating frequency and the rated operating frequency, and a third operating frequency exists between the rated operating frequency and the maximum operating frequency. To do. At this time, the second operating frequency is higher than the first operating frequency, and the third operating frequency is higher than the second operating frequency.
[0029]
In this case, in the slow operation step S30, the compressor 1 is operated at a first operation frequency between the minimum operation frequency and the rated operation frequency if Ts-Td is 0.5 to 0.99 ° C. If the Ts-Td is 1.0 to 1.49 ° C., it is operated at a second operating frequency between the minimum operating frequency and the rated operating frequency, and the Ts-Td is 2.0 to 2.49 ° C. For example, it is operated at a third operating frequency between the rated operating frequency and the maximum operating frequency.
Thereafter, when the operation time reaches the second set time, the control unit ends the power heating mode, automatically switches to the general heating mode, and heats the continuous room (S10).
[0030]
In short, in the first embodiment of the present invention, the operation speed of the compressor 1 is controlled according to time in the rapid operation stage (S20), and the operation speed of the compressor 1 is increased over time in the slow operation stage (S30). Control by temperature. This effectively increases the room temperature to the desired temperature and effectively eliminates the room temperature difference.
[0031]
A heating operation control method for an air conditioner according to another embodiment of the present invention will be described with reference to FIGS. 6 and 7 as follows.
As shown in FIGS. 6 and 7, first, the control unit determines whether the operation state input by the user is the power heating mode or the general heating mode (S1). As a result of the determination, when the general heating mode is input, the control unit operates the wind direction adjusting member 20 and the first blower fan 2 at the preset wind direction and air volume until the room temperature reaches the user's desired temperature. (S10).
[0032]
When the power heating mode is input as a result of the determination, the control unit determines whether or not the operation time reaches the first set time while checking the operation time (S2) (S3). At this time, the control unit performs a rapid operation stage in order to rapidly increase the room temperature until the operation time reaches the first set time (S20).
[0033]
The rapid operation step (S20) includes a step (S21) in which the compressor 1 is operated at the maximum operating frequency, a step (S22) in which the air volume adjusting member 20 is adjusted downward, and the first blower fan 2 is in a strong wind. (S23). At this time, it is desirable that the second blower fan 4 of the outdoor unit is also operated in a strong wind (S24). The rapid operation stage (S20) is the same as in the first embodiment.
[0034]
Next, when the operation time reaches the first set time, the control unit compares the temperature of the indoor air sucked for heat exchange with the set temperature (S5). At this time, the set temperature is lower than the user's desired temperature, and becomes a reference for differently controlling the compressor 1 and the wind direction adjusting member 20 and the like in order to more efficiently eliminate the indoor temperature difference.
As a result of the comparison, if the intake temperature of the indoor air is equal to or higher than the set temperature, the control unit eliminates the temperature difference in the room while operating the compressor 1 at a constant operating frequency smaller than the maximum operating frequency for the second set time. A first slow driving stage is performed (S40).
[0035]
In the first slow speed operation step (S40), the compressor 1 is operated at an operation frequency between a minimum operation frequency and a rated operation frequency (S41), and the air volume adjusting member 20 is adjusted in a downward direction. A step (S42) and a step (S43) in which the first blower fan 2 is operated to a medium wind. At this time, the compressor 1 can be operated at the first operating frequency or the second operating frequency of FIG.
[0036]
In this case, in order to improve the efficiency of the compressor 1 and the heat exchange efficiency in the first heat exchanger 2, it is preferable that the second blower fan 4 is operated in a medium wind (S44).
As a result of the comparison, if the intake temperature of the indoor air is lower than the set temperature, the control unit operates the compressor 1 at an operation frequency that is variable according to the room temperature for a second set time, The 2nd slow driving | running | working stage which eliminates is performed (S60).
The second slow operation step (S60) includes a step (S61) in which the compressor 1 is operated at a variable operation frequency determined by a room temperature, and a step (S62) in which the air volume adjusting member 20 is adjusted to a medium wind. The first blower fan 2 is operated in a medium wind (S63). Of course, also in this case, in order to improve the efficiency of the compressor 1 and the heat exchange efficiency in the first heat exchanger 2, it is desirable that the second blower fan 4 is operated in a weak wind (S64).
[0037]
In the second slow operation stage (S60), the operating frequency of the compressor 1 is determined by the difference between the compressor stop temperature Ts and the indoor air temperature Td, as in the first embodiment. It is done. At this time, in order for the compressor 1 to operate optimally, the compressor 1 preferably has a multi-stage operation frequency due to the temperature difference Ts-Td, and at least the maximum operation frequency, the minimum operation frequency, and the rated operation therebetween. It is desirable to have a frequency.
[0038]
That is, in the second slow operation stage (S60), if Ts-Td is 0.0 to 0.99 ° C., the compressor is operated at the minimum operation frequency, and Ts-Td is 1.0. When it reaches ˜2.49 ° C., it is operated at the rated operating frequency, and when Ts−Td is 2.5 ° C. or higher, it is operated at the maximum operating frequency. This is illustrated in FIG.
[0039]
In addition, in the second slow operation stage (S60), the compressor 1 can be operated at a more detailed operation frequency. That is, when Ts-Td is 0.5 to 0.99 ° C., the compressor 1 is operated at the first operating frequency between the minimum operating frequency and the rated operating frequency, and the Ts-Td is 1.0. If it is ˜1.49 ° C. or higher, it is operated at a second operating frequency between the minimum operating frequency and the rated operating frequency, and if Ts−Td is 2.0 to 2.49 ° C., the rated operating frequency and maximum Driving to a third operating frequency between operating frequencies. This is illustrated in FIG.
[0040]
Thereafter, when the operation time reaches the second set time, the control unit ends the power heating mode, automatically switches to the general heating mode, and continues to heat the room (S10).
In short, the second embodiment of the present invention operates the compressor at a constant operating frequency according to the room temperature increased from the slow operating stage through the rapid operating stage or while operating at the operating frequency variable by the room temperature. The temperature difference in the room will be resolved quickly.
[0041]
【The invention's effect】
As described above, the air conditioner heating operation control method of the present invention has the following effects.
That is, it is possible to shorten the time taken from the start of the heating operation to the desired temperature, and to provide an effect that the temperature difference in the room can be eliminated more quickly.
Therefore, the user can be quickly supplied with the heating air at the desired temperature in the initial stage of operation.
[0042]
Although a preferred embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications or changes can be made based on the technical idea of the present invention.
[Brief description of the drawings]
FIG. 1 is a block diagram showing components of an air conditioner according to the present invention.
FIG. 2 is a perspective view showing the indoor unit of the air conditioner according to the first embodiment of the present invention.
FIG. 3 is a flowchart showing a heating operation control method of the air conditioner according to the first embodiment of the present invention.
FIG. 4 is a diagram illustrating a method for selecting an optimum operating frequency of a compressor among heating operation control methods for an air conditioner according to the present invention.
FIG. 5 is a diagram illustrating a method for selecting an optimum operating frequency of a compressor among heating operation control methods for an air conditioner according to the present invention.
FIG. 6 is a flowchart showing a heating operation control method for an air conditioner according to a second embodiment of the present invention.
FIG. 7 is a flowchart showing a heating operation control method for an air conditioner according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... 1st heat exchanger 2a ... 1st ventilation fan 3 ... Expansion valve 4 ... 2nd heat exchanger 4a ... 2nd ventilation fan 10 ... Case 20 ... Wind direction adjustment member 30 ... Display part

Claims (19)

  1. 圧縮機と第1熱交換機及び第2熱交換機の間を冷媒が循環し、前記第1熱交換機側に第1送風ファンが前記第2熱交換機側に第2送風ファンが各々備えられ、吐き出し空気の風向を上下に調節する風向調節部材を含んでいる空気調和機の暖房運転制御方法において、
    前記空気調和機の暖房運転制御方法は、
    前記空気調和機の暖房運転初期に室内温度を早く上昇させ、室内の温度差を迅速に解消するためパワー暖房モードと、
    ユーザーが選択した所望温度に至るまでに既設定された一定した風量と既設定された一定した風向に暖房空気を供給する一般暖房モードとからなり、 前記パワー暖房モードは、
    (a)室内温度を早く上昇させるために、第1設定時間の間前記圧縮機を最大運転周波数に運転する急速運転段階と、
    (b)前記(a)段階後、室内の温度差を早く解消するための緩速運転段階とからなり、前記(b)段階は、
    (b1)前記圧縮機が室内温度によって決定される可変運転周波数に運転される段階と、
    (b2)前記風量調節部材が暖房空気の吐き出し方向によって、上向、中上向、中向、中下向、下向に調節されるとき、暖房空気が室内底に集中されるように前記風向調節部材が下向に調節される段階と、
    (b3)前記第1送風ファンは、中風に運転される段階と、
    からなる空気調和機の暖房運転制御方法。
    Between the compressor and the first heat exchanger及beauty second heat exchanger circulates the refrigerant, a first blower fan to the first heat exchanger side are provided second blower fan respectively to the second heat exchange side, spitting In the heating operation control method of an air conditioner including a wind direction adjusting member that adjusts the wind direction of air up and down,
    The heating operation control method of the air conditioner is:
    Quickly raise the room temperature to the heating operation initial of the air conditioner, the power heating mode to quickly eliminate the temperature difference between the room,
    User Ri is Do and a general heating mode supplying the heating air to constant wind direction, which is pre-set constant air volume and preset before reaching the desired temperature selected, the power heating mode,
    (A) a rapid operation stage in which the compressor is operated at a maximum operation frequency for a first set time in order to quickly raise the room temperature;
    (B) After the step (a), it comprises a slow operation step for quickly eliminating the temperature difference in the room, and the step (b)
    (B1) the compressor is operated at a variable operating frequency determined by the room temperature;
    (B2) When the air volume adjusting member is adjusted upward, middle upward, middle, middle downward, or downward depending on the direction of air discharge, the air direction is adjusted so that the heating air is concentrated on the indoor bottom. The adjustment member is adjusted downward;
    (B3) the first blower fan is driven to a medium wind;
    A heating operation control method for an air conditioner.
  2. 前記(a)段階は、The step (a) includes:
    (a1)前記圧縮機が最大運転周波数に運転される段階と、  (A1) the compressor is operated at a maximum operating frequency;
    (a2)暖房空気が室内底に集中されるように前記風向調節部材が下向に調節される段階と、  (A2) adjusting the wind direction adjusting member downward so that the heating air is concentrated on the bottom of the room;
    (a3)暖房空気の吐き出し量が最大となるように前記第1送風ファンが強風に運転される段階とからなることを特徴とする請求項1に記載の空気調和機の暖房運転制御方法。  (A3) The heating operation control method for an air conditioner according to claim 1, wherein the first blower fan is operated in a strong wind so that a discharge amount of the heating air is maximized.
  3. 前記(a)段階は、The step (a) includes:
    (a4)前記第2送風ファンが強風に運転される段階と  (A4) the second air blowing fan is operated in a strong wind;
    からなることを特徴とする請求項2に記載の空気調和機の暖房運転制御方法。The heating operation control method for an air conditioner according to claim 2, comprising:
  4. 前記(b)段階は、In step (b),
    (b4)前記第2送風ファンが弱風に運転される段階を更に含んでいることを特徴とする請求項3に記載の空気調和機の暖房運転制御方法。  (B4) The heating operation control method for an air conditioner according to claim 3, further comprising the step of operating the second blower fan in a weak wind.
  5. 前記(b1)段階において、前記圧縮機は、ユーザーの希望温度によって設定される圧縮機の停止時温度(Ts)と吸入される室内空気の温度(Td)との差によって決められる少なくとも3個以上の運転周波数に運転されることを特徴とする請求項3に記載の空気調和機の暖房運転制御方法。In the step (b1), the number of compressors is at least three or more determined by a difference between a compressor stop temperature (Ts) set according to a user's desired temperature and a temperature (Td) of the intake air. The heating operation control method for an air conditioner according to claim 3, wherein the air conditioner is operated at an operation frequency of 5.
  6. 前記(b1)段階は、The step (b1) includes
    (b11)前記Ts−Tdが0.0〜0.99℃であれば、前記圧縮機が最小運転周波数に運転される段階と、  (B11) If the Ts-Td is 0.0 to 0.99 ° C, the compressor is operated at a minimum operating frequency;
    (b12)前記Ts−Tdが1.0〜2.49℃であれば、前記圧縮機が定格運転周波数に運転される段階と、  (B12) If the Ts-Td is 1.0 to 2.49 ° C., the compressor is operated at a rated operating frequency;
    (b13)前記Ts−Tdが2.5℃以上であれば、前記圧縮機が最大運転周波数に運転される段階とからなることを特徴とする請求項5に記載の空気調和機の暖房運転制御方法。  (B13) If Ts-Td is 2.5 degreeC or more, it will consist of the stage which the said compressor is drive | operated to the maximum operation frequency, The heating operation control of the air conditioner of Claim 5 characterized by the above-mentioned. Method.
  7. 前記(b11)段階は、The step (b11) includes
    前記Ts−Tdが0.5〜0.99℃であれば、前記圧縮機が最小運転周波数と定格運転周波数の間の運転周波数に運転される段階とからなることを特徴とする請求項6に記載の空気調和機の暖房運転制御方法。  The method according to claim 6, wherein if the Ts-Td is 0.5 to 0.99 ° C, the compressor is operated at an operation frequency between a minimum operation frequency and a rated operation frequency. The heating operation control method of the air conditioner described.
  8. 前記(b12)段階は、The step (b12) includes:
    前記Ts−Tdが1.0〜1.49℃であれば、前記圧縮機が最小運転周波数と定格運転周波数との間の第2運転周波数に運転される段階と、  If the Ts-Td is 1.0 to 1.49 ° C., the compressor is operated at a second operating frequency between a minimum operating frequency and a rated operating frequency;
    前記Ts−Tdが2.0〜2.49℃であれば、前記圧縮機が定格運転周波数と最大運転周波数との間の第3運転周波数に運転される段階とからなることを特徴とする請求項6に記載の空気調和機の暖房運転制御方法。  If the Ts-Td is 2.0 to 2.49 ° C, the compressor is operated at a third operating frequency between a rated operating frequency and a maximum operating frequency. Item 7. A heating operation control method for an air conditioner according to Item 6.
  9. 前記パワー暖房モードと一般暖房モードは順次的に行われることを特徴とする請求項1に記載の空気調和機の暖房運転制御方法。The heating operation control method for an air conditioner according to claim 1, wherein the power heating mode and the general heating mode are sequentially performed.
  10. 圧縮機と第1熱交換機及び第2熱交換機の間を冷媒が循環し、前記第1熱交換機側に第1送風ファンが前記第2熱交換機側に第2送風ファンが各々備えられ、吐き出し空気の風向を上下に調節する風向調節部材を含んでいる空気調和機の暖房運転制御方法において、A refrigerant circulates between the compressor, the first heat exchanger, and the second heat exchanger, a first blower fan is provided on the first heat exchanger side, and a second blower fan is provided on the second heat exchanger side, respectively. In the heating operation control method of an air conditioner including a wind direction adjusting member that adjusts the wind direction of
    前記空気調和機の暖房運転制御方法は、  The heating operation control method of the air conditioner is:
    前記空気調和機の暖房運転初期に室内温度を急上昇させ、室内の温度差を早く解消するためのパワー暖房モードと、  Power heating mode for rapidly increasing the room temperature in the early stage of heating operation of the air conditioner and quickly eliminating the temperature difference in the room;
    ユーザーが選択した所望温度に至るまでに既設定された一定した風量と既設定された一定した風向に暖房空気を供給する一般暖房モードとからなり、  It consists of a general air heating mode in which heating air is supplied to a preset constant air volume and a preset constant air direction until reaching a desired temperature selected by the user,
    前記パワー暖房モードは、  The power heating mode is
    (a)室内温度を急上昇させるために、第1設定時間の間前記圧縮機を最大運転周波数に運転する急速運転段階と、  (A) a rapid operation stage in which the compressor is operated at a maximum operation frequency for a first set time in order to rapidly increase the room temperature;
    (b)前記(a)段階後、吸入される室内空気の温度を設定温度と比較する段階と、  (B) after the step (a), comparing the temperature of the intake indoor air with a set temperature;
    (c)前記(b)段階において室内空気の温度が設定温度以上の場合、第2設定時間の間前記圧縮機を最大運転周波数より小さい一定した運転周波数に運転しながら室内の温度差を解消する第1緩速運転段階と、  (C) If the temperature of the room air is equal to or higher than the set temperature in the step (b), the temperature difference in the room is eliminated while the compressor is operated at a constant operating frequency smaller than the maximum operating frequency for the second set time. A first slow driving stage;
    (d)前記(b)段階において室内空気の温度が設定温度未満の場合、前記第2設定時間の間前記圧縮機を室内温度によって可変する運転周波数に運転しながら室内の温度差を解消する第2緩速運転段階とからなり、  (D) When the temperature of the room air is lower than the set temperature in the step (b), the temperature difference in the room is eliminated while the compressor is operated at an operation frequency that varies according to the room temperature during the second set time. 2 It consists of a slow driving stage,
    前記(d)段階は、  In step (d),
    (d1)前記圧縮機が室内温度によって決定される可変運転周波数に運転される段階と、  (D1) the compressor is operated at a variable operating frequency determined by the room temperature;
    (d2)前記風量調節部材が暖房空気の吐き出し方向によって、上向、中上向、中向、中下向、下向に調節されるとき、暖房空気が室内中間に集中されるように前記風向調節部材が中向に調節される段階と、  (D2) When the air volume adjusting member is adjusted upward, middle upward, middle, middle downward, and downward depending on the direction of air discharge, the air direction is adjusted so that the heating air is concentrated in the middle of the room. The adjustment member is adjusted in the middle direction;
    (d3)前記第1送風ファンが暖房空気の吐き出し量によって強風、中風、弱風に運転される時、前記第1送風ファンが中風に運転される段階と、からなる、  (D3) when the first blower fan is driven to strong wind, medium wind, and weak wind according to the amount of heating air discharged, the first blower fan is driven to medium wind.
    ことを特徴とする空気調和機の暖房運転制御方法。  The heating operation control method of the air conditioner characterized by the above-mentioned.
  11. 前記(a)段階は、The step (a) includes:
    (a1)前記圧縮機が最大運転周波数に運転される段階と、  (A1) the compressor is operated at a maximum operating frequency;
    (a2)暖房空気が室内底に集中されるように前記風向調節部材が下向に調節される段階と、  (A2) adjusting the wind direction adjusting member downward so that the heating air is concentrated on the bottom of the room;
    (a3)暖房空気の吐き出し量が最大となるように前記第1送風ファンが強風に運転される段階とからなることを特徴とする請求項10に記載の空気調和機の暖房運転制御方法。  The heating operation control method for an air conditioner according to claim 10, further comprising: (a3) a step of operating the first blower fan in a strong wind so that a discharge amount of the heating air is maximized.
  12. 前記(a)段階は、The step (a) includes:
    (a4)前記第2送風ファンが強風に運転される段階を更に含んでいることを特徴とする請求項11に記載の空気調和機の暖房運転制御方法。  (A4) The heating operation control method for an air conditioner according to claim 11, further comprising the step of operating the second blower fan in a strong wind.
  13. 前記(c)段階は、In step (c),
    (c1)前記圧縮機が最小運転周波数と定格運転周波数の間の運転周波数に運転される段階と、  (C1) the compressor is operated at an operating frequency between a minimum operating frequency and a rated operating frequency;
    (c2)前記風向調節部材が中下向に調節される段階と、  (C2) the step of adjusting the wind direction adjusting member in the middle down direction;
    (c3)前記第1送風ファンが中風に運転される段階とからなることを特徴とする請求  (C3) The first blower fan is operated to a medium wind. 項10に記載の空気調和機の暖房運転制御方法。Item 11. A heating operation control method for an air conditioner according to Item 10.
  14. 前記(c)段階は、In step (c),
    (c4)前記第2送風ファンが室外空気の吐き出し量によって強風、中風、弱風に運転される時、前記第2送風ファンが中風に運転される段階を更に含んでいることを特徴とする請求項13に記載の空気調和機の暖房運転制御方法。  (C4) The method further includes the step of operating the second blower fan in medium wind when the second blower fan is driven in strong wind, medium wind, and weak wind depending on the amount of outdoor air discharged. Item 14. A heating operation control method for an air conditioner according to Item 13.
  15. 前記(d)段階は、In step (d),
    (d4)前記第2送風ファンが弱風に運転される段階と更に含んでいることを特徴とする請求項12に記載の空気調和機の暖房運転制御方法。  (D4) The heating operation control method for an air conditioner according to claim 12, further comprising the step of operating the second blower fan in a weak wind.
  16. 前記(d1)段階において、In the step (d1),
    前記圧縮機はユーザーの希望温度によって決められる圧縮機の停止時温度Tsと吸入される室内空気の温度(Td)との差によって決められる少なくとも三つ以上の運転周波数に運転されることを特徴とする請求項12に記載の空気調和機の暖房運転制御方法。  The compressor is operated at at least three operating frequencies determined by a difference between a compressor stop temperature Ts determined by a user's desired temperature and a temperature (Td) of sucked indoor air. The heating operation control method for an air conditioner according to claim 12.
  17. 前記(d1)段階は、The step (d1) includes
    (d11)前記Ts―Tdが0.0〜0.99℃であれば、前記圧縮機が最小運転周波数に運転される段階と、  (D11) If the Ts-Td is 0.0 to 0.99 ° C., the compressor is operated at a minimum operating frequency;
    (d12)前記Ts―Tdが1.0〜2.49℃であれば、前記圧縮機が定格運転周波数に運転される段階と、  (D12) If the Ts-Td is 1.0 to 2.49 ° C, the compressor is operated at a rated operating frequency;
    (d13)前記Ts―Tdが2.5℃以上であれば、前記圧縮機が最大運転周波数に運転される段階とからなることを特徴とする請求項16に記載の空気調和機の暖房運転制御方法。  (D13) If Ts-Td is 2.5 degreeC or more, it will consist of the stage which the said compressor is drive | operated to the maximum operation frequency, The heating operation control of the air conditioner of Claim 16 characterized by the above-mentioned. Method.
  18. 前記(d11)段階は、The step (d11) includes
    前記Ts―Tdが0.5〜0.99℃であれば、前記圧縮機が最小運転周波数と定格運転周波数との間の第1運転周波数に運転される段階とからなることを特徴とする請求項17に記載の空気調和機の暖房運転制御方法。  When the Ts-Td is 0.5 to 0.99 ° C, the compressor is operated at a first operating frequency between a minimum operating frequency and a rated operating frequency. Item 18. A heating operation control method for an air conditioner according to Item 17.
  19. 前記(d12)段階は、The step (d12) includes:
    前記Ts―Tdが1.0〜1.49℃であれば、前記圧縮機が最小運転周波数と定格運転周波数との間の第2運転周波数に運転される段階と、  If the Ts-Td is 1.0 to 1.49 ° C., the compressor is operated at a second operating frequency between a minimum operating frequency and a rated operating frequency;
    前記Ts―Tdが2.0〜2.49℃であれば、前記圧縮機が定格運転周波数と最大運転周波数との間の第3運転周波数に運転される段階とからなることを特徴とする請求項17に記載の空気調和機の暖房運転制御方法。  When the Ts-Td is 2.0 to 2.49 ° C, the compressor is operated at a third operating frequency between a rated operating frequency and a maximum operating frequency. Item 18. A heating operation control method for an air conditioner according to Item 17.
JP2002215075A 2002-03-05 2002-07-24 Air conditioner heating operation control method Expired - Fee Related JP3732809B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2002-0011607A KR100474892B1 (en) 2002-03-05 2002-03-05 Methode for controlling a heating of air-conditioner
KR2002-011607 2002-03-05

Publications (2)

Publication Number Publication Date
JP2003254584A JP2003254584A (en) 2003-09-10
JP3732809B2 true JP3732809B2 (en) 2006-01-11

Family

ID=27751986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215075A Expired - Fee Related JP3732809B2 (en) 2002-03-05 2002-07-24 Air conditioner heating operation control method

Country Status (5)

Country Link
EP (1) EP1342961B1 (en)
JP (1) JP3732809B2 (en)
KR (1) KR100474892B1 (en)
CN (1) CN1228581C (en)
DE (1) DE60218627T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822327A (en) * 2013-10-29 2014-05-28 广东科龙空调器有限公司 Frequency-conversion air-conditioner electrical heating control method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614748B2 (en) * 2004-11-30 2011-01-19 三洋エアコンディショナーズ株式会社 Air conditioner
JP4571520B2 (en) * 2005-02-25 2010-10-27 シャープ株式会社 Air conditioner control device
KR100640801B1 (en) * 2005-05-10 2006-11-02 엘지전자 주식회사 Method for controlling vane of ceiling type air conditioner
JP6217148B2 (en) * 2012-07-18 2017-10-25 日立工機株式会社 Centrifuge
JP2014040969A (en) * 2012-08-23 2014-03-06 Daikin Ind Ltd Air conditioner
JP6059480B2 (en) * 2012-09-20 2017-01-11 株式会社アイ・エフ Indoor temperature control system equipment
CN104596038B (en) * 2015-01-26 2017-11-10 广东美的制冷设备有限公司 The control method and device of air conditioner
CN104713202B (en) * 2015-04-09 2018-02-23 宁波奥克斯电气股份有限公司 Judge the blower control method after air-conditioning heating to temperature
US11022357B2 (en) * 2015-10-05 2021-06-01 Carrier Corporation System and method of operating a variable speed compressor with a two-stage controller
CN105465969B (en) * 2015-12-31 2017-06-09 广东美的制冷设备有限公司 The stifled detection method of air-conditioning system oil and detection means, air-conditioner
CN105465968B (en) * 2015-12-31 2017-10-03 广东美的制冷设备有限公司 The stifled detection method of air-conditioning system oil and detection means, air conditioner
CN105485857B (en) * 2015-12-31 2017-09-26 广东美的制冷设备有限公司 The stifled detection method of air-conditioning system oil and detection means, air conditioner
CN105509250B (en) * 2015-12-31 2017-09-26 广东美的制冷设备有限公司 The stifled detection method of air-conditioning system oil and detection means, air conditioner
CN105588282B (en) * 2015-12-31 2017-06-09 广东美的制冷设备有限公司 The stifled detection method of air-conditioning system oil and detection means, air-conditioner
CN105627517B (en) * 2016-01-20 2018-09-25 珠海格力电器股份有限公司 The defrosting control method and defrosting control device of air conditioner
CN111692721A (en) * 2019-03-15 2020-09-22 开利公司 Control method for air conditioning system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712244A (en) * 1980-06-26 1982-01-22 Matsushita Electric Ind Co Ltd Air conditioner
JPS60142140A (en) * 1983-12-28 1985-07-27 Matsushita Electric Ind Co Ltd Air conditioner
JP2808467B2 (en) * 1990-01-19 1998-10-08 松下電器産業株式会社 Control device for air conditioner
JPH04270854A (en) * 1991-02-26 1992-09-28 Hitachi Ltd Controlling method for air conditioner
JPH07332740A (en) * 1994-06-03 1995-12-22 Toshiba Corp Operation control method of air conditioner
JP3404150B2 (en) * 1994-09-28 2003-05-06 東芝キヤリア株式会社 Air conditioner and control method thereof
JP3548627B2 (en) * 1995-05-25 2004-07-28 東芝キヤリア株式会社 Air conditioner
JP3549692B2 (en) * 1995-11-24 2004-08-04 松下電器産業株式会社 Control device and control method for air conditioner
KR100248760B1 (en) * 1997-06-27 2000-04-01 윤종용 Heating control method for air conditioner
JPH1163627A (en) * 1997-08-20 1999-03-05 Funai Electric Co Ltd Equipment and method for controlling flap of air conditioner and recording medium wherein flap control program is recorded
JPH11173632A (en) * 1997-12-09 1999-07-02 Fujitsu General Ltd Control method for air conditioner
JP3223918B2 (en) * 1999-10-19 2001-10-29 松下電器産業株式会社 Multi-room air conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822327A (en) * 2013-10-29 2014-05-28 广东科龙空调器有限公司 Frequency-conversion air-conditioner electrical heating control method

Also Published As

Publication number Publication date
EP1342961A1 (en) 2003-09-10
KR20030072063A (en) 2003-09-13
KR100474892B1 (en) 2005-03-08
CN1442640A (en) 2003-09-17
EP1342961B1 (en) 2007-03-07
JP2003254584A (en) 2003-09-10
CN1228581C (en) 2005-11-23
DE60218627D1 (en) 2007-04-19
DE60218627T2 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP3732809B2 (en) Air conditioner heating operation control method
KR100640801B1 (en) Method for controlling vane of ceiling type air conditioner
KR20040069614A (en) Method for dehumidification of air conditioner
JP6225819B2 (en) Air conditioner
JP2008101894A (en) Air conditioner and control method therefor
JP3011709B2 (en) Dry operation device for air conditioner and control method thereof
JP3756854B2 (en) Air conditioner operation control apparatus and method
JPH10132360A (en) Method for operating air conditioning system, and air conditioner
JP3574438B2 (en) Air conditioner operation control method
JP3993015B2 (en) Air conditioner
JPH08110117A (en) Equipment and method of controlling air conditioner
JP6004670B2 (en) Air conditioner control device, air conditioner control method, air conditioner program, and air conditioner equipped with the same
KR20060128190A (en) A noise control method of air conditioner
KR20040033801A (en) Vane control method for dehumidification air conditioner
KR20170057760A (en) Control method of the inverter dehumidifier
KR20110009927A (en) Air conditioner
US20050092003A1 (en) Method for controlling air conditioner having multi-compressor
KR101932848B1 (en) Air-conditioning apparatus and a method controlling the same
KR20180091521A (en) Method for controlling operation of air conditioner
KR100858533B1 (en) Up And Down Control Assembly And Method Of Vane For Air Conditioner
KR100575661B1 (en) Method for controlling drive in air conditioner
KR100863303B1 (en) Method for controlling air conditionner
KR20050091512A (en) A dehumidify driving apparatus of air conditioner
KR20090005691U (en) Air conditioner
KR20150085214A (en) refrigerator and control method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050408

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees