JP3729012B2 - LED module - Google Patents

LED module Download PDF

Info

Publication number
JP3729012B2
JP3729012B2 JP2000046951A JP2000046951A JP3729012B2 JP 3729012 B2 JP3729012 B2 JP 3729012B2 JP 2000046951 A JP2000046951 A JP 2000046951A JP 2000046951 A JP2000046951 A JP 2000046951A JP 3729012 B2 JP3729012 B2 JP 3729012B2
Authority
JP
Japan
Prior art keywords
point
parabola
axis
optical system
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000046951A
Other languages
Japanese (ja)
Other versions
JP2001237463A (en
Inventor
達清 内田
昌男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000046951A priority Critical patent/JP3729012B2/en
Publication of JP2001237463A publication Critical patent/JP2001237463A/en
Application granted granted Critical
Publication of JP3729012B2 publication Critical patent/JP3729012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、足元灯、表示灯、スポットライト、ウォールウォッシャ、建築化照明、スタンド、車内灯などの照明器具や、信号灯、視線誘導灯などに用いられるLEDモジュールに関するものである。
【0002】
【従来の技術】
従来、この種のLEDモジュールとして実開平4−92660(従来例1)や特開平61−188803(従来例2)に示すものがあった。図18は従来例1のLEDモジュールの断面図、図19は従来例2のLED光源の断面図である。図18では、LEDチップ50を反射枠51で囲みかつ透明樹脂によるレンズ52で封止されている。また図19では、ディスクリートLED53にレンズ54を取付けている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来例1では反射枠51で制御された光は前面のレンズ52で屈折して出射するため、光源(LEDチップ)50の発する光線のうち多くの部分が正面以外の方向に拡散してしまうという問題があった。
【0004】
従来例2では光源の発する光を効率良く平行光に制御できるが、レンズ形状が複雑で製作し難い。またレンズ54の長さが大きくなり、LED光源のサイズが大きくなってしまうという問題があった。
【0005】
したがって、この発明の目的は、上記課題を解決し、必要最小限の立体角に効率良く光を反射する挟角配光のLEDモジュールを提供することである。
【0006】
【課題を解決するための手段】
上記課題を解決するためにこの発明の請求項1記載のLEDモジュールは、光学系の軸cに配置されたLED光源を反射面で囲みかつ封止物質で封止された配光部を備えたLEDモジュールにおいて、封止物質のレンズ面Lpが光学系の軸cを中心とする平面からなり、反射面が光学系の軸cに対して対称に配置されたそれぞれ凹曲面からなる内側の反射面Rlと外側の反射面Ruを持ち、レンズ面Lpに沿った径方向の線分lpは光学系の軸cと直交する直線上の線分であり、内側の反射面Rlに沿った径方向の放物線rlはその焦点が光源上の点p0に位置し、放物線rlの一方の端点p1の光学系の軸cからの距離は光源の設置に必要なスペースの半径以上で、放物線rlの他方の端点p2は、線分lpを対称軸として光源上の点p0と線対称の位置にある点をp0′、光源上の点p0を起点とし光学系の軸cに対する臨界角θ′の角度で延びる直線と線分lpとの交点をp5として、点p0′と点p5を結んで延長した直線上の点で線分lpより光源側にあり、外側の反射面Ruに沿った径方向の放物線ruはその焦点が点p0′に位置し、放物線ruの一方の端点p3は、点p0′と点p5を結んで延長した直線より光源側で、かつ放物線rlより外側に位置し、放物線ruの他方の端点p4は線分lpと放物線ruの交点である。
【0007】
上記の構成により、光源を発した光は2通りの経路を経て光学系の軸cに平行な光に制御される。まず、光源から反射面Rl方向に進む光は、反射面Rlが光源上に焦点を持つ曲面であるため、反射により平行光に制御される。反射面Rlで反射した光は、レンズ面Lpに対しほぼ垂直に入射し、平行光のまま出射する。また、光源から反射面Rlと点p5の間に進む光は、まずレンズ面Lpで全反射する。反射面Ruは、その焦点がレンズ面Lpでの反射による光源の虚像上に位置するように構成されているので、レンズ面Lpで全反射された光は反射面Ruにより平行光に制御される。反射面Ruで反射した光は、レンズ面Lpに対しほぼ垂直に入射するため、屈折による偏向はほとんどないまま平行光として出射する。これにより、点p5の方向から反射面Rlの端点p1方向にいたるまでの範囲のほとんど光を、レンズなしで平行光に制御して出射させることが可能である。
【0009】
請求項記載のLEDモジュールは、請求項において、放物線rlの端点p1の光学系の軸cからの距離が、LED光源の設置に必要なスペースの半径に等しく、放物線ruの一方の端点p4の光学系の軸cからの距離は、光源上の点p0と放物線rlの端点p2を結んで延長した直線と線分lpの交点をp4′として、点p4′の光学系の軸cからの距離以上とした。
【0010】
これにより、光源から見た場合に反射面Ruは反射面Rlの影に隠れ、光源から直接反射面Ruに入射する成分がなくなる。このため、光源から直接反射面Ruに到達する光が存在する場合に、反射面Ruはp0′方向から入射光のみ平行光に制御する機能を持つため、直接光源方向から入射した光は平行光に変換されないということがなくなる。
【0011】
請求項記載のLEDモジュールは、光学系の軸cに配置されたLED光源を反射面で囲みかつ封止物質で封止された配光部を備えたLEDモジュールにおいて、前記封止物質のレンズ面が光学系の軸cを中心とする凸曲面からなる内側のレンズ面LEと平面からなる外側のレンズ面Lpを持ち、前記反射面が光学系の軸cに対して対称に配置されたそれぞれ凹曲面からなる内側の反射面Rlと外側の反射面Ruを持ち、内側のレンズ面LEに沿った径方向の曲線lEはその端点p5′が前記光源上の点p0を起点とし光学系の軸cに対する臨界角θ′の角度で延びる直線より外側にあり、外側のレンズ面Lpに沿った径方向の線分lpは点p5′を通り光学系の軸cに直交する直線上の線分であり、内側の反射面Rlに沿った径方向の放物線rlはその焦点が前記光源上の点p0に位置し、放物線rlの一方の端点p1の光学系の軸cからの距離は曲線lEの端点p5′の光学系の軸cからの距離以上で、放物線rlの他方の端点p2は、線分lpを対称軸として前記光源上の点p0と線対称の位置にある点をp0′として、点p0′と点p5′を結んで延長した直線と放物線rlの交点に位置し、外側の反射面Ruに沿った径方向の放物線ruはその焦点が点p0′に位置し、放物線ruの一方の端点p3は、点p0′と点p5′を結んで延長した直線より前記光源側で、かつ放物線rlより外側に位置し、放物線ruの他方の端点p4は線分lpと放物線ruの交点である。
【0012】
このように、光源から点p5の範囲を覆うレンズ面LEを加えたので、この光学系では、光源から反射面Rlの端点p1と点p5′の間に照射される光については、請求項1と同様の仕組みで平行光に制御される。それに加えて、レンズ面LEの方向に照射された光については、レンズ面LEが凸レンズをなしているため、光学系の軸cに集光される方向に屈折される。このため、光源から点p5と光学系の軸に照射された光を平行光に制御する要素を与えていない場合に、この範囲に照射された光が平行光にならないうえに、レンズ面Lpにおいて拡散する方向に屈折してしまうということがなくなる。
【0013】
請求項4記載のLEDモジュールは、請求項において、曲線lEは楕円の一部で長径aEと短径bEの比が、n′をレンズの媒質の屈折率、nを空気の屈折率として、bE/aE=(n′−n / /n′を満たし、楕円の一方の焦点がLED光源上の点p0に位置し、楕円の中心は光学系の軸c上で点p0より照射方向側にあり、曲線lEの端点p5′は楕円とその短径bEの交点である。
【0014】
このようなレンズ面LEの楕円レンズは焦点上から発した光を平行光に制御する性質があることが知られている。この光学系では、光源から反射面Rlの端点p1と点p5′の間に照射される光については、請求項1と同様の仕組みで平行光に制御される。それに加えて、レンズ面LEの方向に照射された光については、レンズ面LEが上記のような性質を持つ楕円レンズであるため、平行光に制御される。このため、光学系の軸cから反射面Rlの端点p1方向にいたるまでの範囲の光をほとんど平行光に制御して出射させることが可能である。
【0016】
請求項記載のLEDモジュールは、請求項において、放物線rlの一方の端点p1の光学系の軸cからの距離は、曲線lEの端点p5′の光学系の軸cからの距離と等しく、放物線ruの一方の端点p4の光学系の軸cからの距離は、LED光源上の点p0と放物線rlの端点p2を結んで延長した直線と線分lpの交点をp4′として、p4′の光学系の軸cからの距離以上である。
【0017】
これにより、光源から見た場合に反射面Ruは反射面Rlの影に隠れ、光源から直接反射面Ruに入射する成分がなくなる。このため、光源から直接反射面Ruに到達する光が存在する場合に、反射面Ruはp0′方向から入射光のみ平行光に制御する機能を持つため、直接光源方向から入射した光は平行光に変換されないということがなくなる。
【0018】
【発明の実施の形態】
この発明の第1の実施の形態のLEDモジュールを図1ないし図3に基づいて説明する。図1はこの発明の第1の実施の形態のLEDモジュールの幾何学的構成を示す断面図、図2(a)はこの発明の第1の実施の形態のLEDモジュールを用いた信号灯の全体図、(b)はランプ部の拡大図、(c)は(b)のA−A′断面図、図3はこの発明の第1の実施の形態の作用説明図である。
【0019】
図2(a)に示すように、この実施の形態では信号灯のランプ部1がLEDモジュールで構成されている。LEDモジュールは、図2(b)に示すように多数の配光部2を備え、その1つの構成を図2(c)に示す。図2(c)において、3はプリント基板、4はLEDチップ、5は樹脂製反射枠、6はアルミニウム蒸着面、7はエポキシ樹脂である。LEDチップ4はLED光源として用いられ、アルミニウム蒸着面6等で形成された反射面で囲まれ、エポキシ樹脂7等の封止物質で封止されている。
【0020】
上記LEDモジュールの配光部2は、図1に示すように、封止物質のレンズ面Lpが光学系の軸cを中心とする平面からなり、反射面が光学系の軸cに対して対称に配置されたそれぞれ凹曲面からなる内側の反射面Rlと外側の反射面Ruを持つ。この場合、封止物質は以下の条件を全て満たす線分lpを、光学系の軸cを中心に回転させたレンズ面Lpを持つ。ここで光学系の軸cとは、光源を通り光学系の照射方向へ延びる直線である。
【0021】
(1)線分lpは、光学系の軸cと直交する直線上の線分である。
【0022】
(2)線分lpの端点p4は、線分lpと放物線ruの交点である。
【0023】
(3)線分lpの端点p6は、線分lpと光学系の軸cの交点である。
【0024】
反射面は以下の条件を全て満たす放物線rlを、光学系の軸cを中心に回転させた反射面Rlを持つ。なおここでは、放物線rl,ruとは、放物線の両端点を結んだ直線と放物線の間を通り、放物線の曲折と逆方向の曲折を持たない直線あるいは曲線とする放物線の近似線を含むものとする。
【0025】
(1)放物線rlの焦点が光源上の点p0に位置する。
【0026】
(2)放物線rlの一方の端点p1の光学系の軸cからの距離は、光源の設置に必要な半径と等しいかより長い。
【0027】
(3)放物線rlの一方の端点p2は、点p0′とp5を結んで延長した直線上の点で、線分lpより光源側にある。ここでp0′とp5は以下の条件を満たす点である。点p0′は線分lpを対称軸として、光源上のp0と線対称の位置にある点であり、平面Lpによる光源の虚像上の点である。点p5は、光源上の点p0を起点とし、光学系の軸cに対して式1で与えられる臨界角θ′の角度で延びる直線と、線分lpの交点である。なおここで、n′はレンズの媒質の屈折率、nは空気の屈折率である。
【0028】
θ′=sin-1(n/n′) …(式1)
また、反射面は以下の条件を全て満たす放物線ruを、光学系の軸cを中心に回転させた反射面Ruを持つ。
【0029】
(1)放物線ruの焦点が、平面Lpによる光源の虚像上の点p0′に位置する。
【0030】
(2)放物線ruの一方の端点p3は、点p0′とp5を結んで延長した直線より光源側で、なおかつ放物線rlより外側(光源と反対側)に位置する。
【0031】
(3)放物線ruの一方の端点p4は、線分lpと放物線ruの交点である。
【0032】
次に上記構成の作用について説明する。図3に示すように、光源を発した光は2通りの経路をへて光学系の軸cに平行な光に制御される。まず、光源から反射面Rl方向に進む光は、反射面Rlが光源上に焦点を持つ曲面であるため、反射により平行光に制御される。反射面Rlで反射した光は、レンズ面Lpに対しほぼ垂直に入射し、平行光のまま出射する(図3のAの光線)。また、光源から反射面Rlと点p5の間に進む光は、まずレンズ面Lpで全反射する。反射面Ruは、その焦点がレンズ面Lpでの反射による光源の虚像上に位置するように構成されているので、レンズ面Lpで全反射された光は反射面Ruにより平行光に制御される。反射面Ruで反射した光は、レンズ面Lpに対しほぼ垂直に入射するため、屈折による偏向はほとんどないまま平行光として出射する(図3のBの光線)。この光学系では、光源からp5と光学系の軸cの間に照射された光は、特に制御しない。
【0033】
以上のように、点p5の方向から反射面Rlの端点p1方向にいたるまでの範囲のほとんど光を、レンズなしで平行光に制御して出射させることが可能である。このため、照明用光源として用いた場合、狭い範囲に光を照射できるため、照明効率の高い器具を実現できる。また、信号用として用いた場合、光学系正面の観察者から見ると反射面全域が発光しているように見え、輝度の高い信号灯を実現できる。
【0034】
この発明の参考例を図4および図5に基づいて説明する。図4(a)はこの発明の参考例のLEDモジュールを用いたダウンライト照明器具の全体図、(b)はそのA−A′断面図、図5はこの発明の参考例のLEDモジュールの幾何学的構成を示す断面図である。
【0035】
図4(a)に示すように、この参考例ではダウンライト照明器具がLEDモジュールで構成されている。LEDモジュールは、多数の配光部2aを備え、その1つの構成を図2(b)に示す。図4(b)において、3はプリント基板、4はLEDチップ、5aは樹脂製反射枠、6aはアルミニウム蒸着面、7はエポキシ樹脂である。
【0036】
上記LEDモジュールの配光部2aは、図5に示すように、第1の実施の形態の条件に加えて、放物線ruの一方の端点p3が、点p0′とp5を結んで延長した直線と、放物線rlの交点に位置する。これにより、光学系は第1の実施の形態の範囲内で最も直径が小さくなる。
【0037】
この発明の第の実施の形態を図6および図7に基づいて説明する。図6(a)はこの発明の第3の実施の形態のLEDモジュールを用いたフットライト照明器具の全体図、(b)はそのA−A′断面図、図7はこの発明の第の実施の形態のLEDモジュールの幾何学的構成を示す断面図である。
【0038】
図6(a)に示すように、この実施の形態ではフットライト照明器具がLEDモジュールで構成されている。LEDモジュールは、多数の配光部2bを備え、その1つの構成を図6(b)に示す。図6(b)において、3はプリント基板、4はLEDチップ、5bは樹脂製反射枠、11は銀蒸着面、7はエポキシ樹脂である。
【0039】
上記LEDモジュールの配光部2bは、図7に示すように、第1の実施の形態の条件に加えて、放物線rlの端点p1の光学系の軸cからの距離が、光源の設置に必要な半径に等しい。また、放物線ruの一方の端点p4の光学系の軸cからの距離は、p4′の光学系の軸cからの距離と等しいかより長い。ただしp4′は、光源上の点p0と放物線rlの端点p2を結んで延長した直線と、直線lpの交点である。
【0040】
これにより、光源から見た場合に反射面Ruは反射面Rlの影に隠れ、光源から直接反射面Ruに入射する成分がなくなる。このため、光源から直接反射面Ruに到達する光が存在する場合に、反射面Ruはp0′方向から入射光のみ平行光に制御する機能を持つため、直接光源方向から入射した光は平行光に変換されないということがなくなる。
【0041】
この発明の第の実施の形態のLEDモジュールを図8ないし図10に基づいて説明する。図8(a)はこの発明の第の実施の形態のLEDモジュールを用いた視線誘導灯の全体図、(b)はそのA−A′断面図、図9はこの発明の第の実施の形態のLEDモジュールの幾何学的構成を示す断面図、図10はこの発明の第の実施の形態の作用説明図である。
【0042】
図8(a)に示すように、この実施の形態では視線誘導灯がLEDモジュールで構成されている。LEDモジュールは、多数の配光部2cを備え、その1つの構成を図8(b)に示す。図8(b)において、3はプリント基板、4はLEDチップ、10はアルミニウム製反射枠、7aはエポキシ樹脂である。
【0043】
上記LEDモジュールの配光部2cは、図9に示すように、封止物質のレンズ面が光学系の軸cを中心とする凸曲面からなる内側のレンズ面LEと平面からなる外側のレンズ面Lpを持ち、反射面が光学系の軸cに対して対称に配置されたそれぞれ凹曲面からるな内側の反射面Rlと外側の反射面Ruを持つ。この場合、封止物質は以下の条件を全て満たす曲線lEを、光学系の軸cを中心として回転させたレンズ面LEを持つ。
【0044】
(1)曲線lEの端点p5′は、光源上の点p0を起点とし、光学系の軸cに対して第1の実施の形態の式1で与えられる臨界角θ′の角度で延びる直線より外側(光学系の軸cの反対側)に存在する。
【0045】
(2)曲線lEの端点p6は光学系の軸c上の点で、もう一方の端点p5′から光学系の軸c上におろした垂線と光学系の軸cとの交点より、光源からの距離が長い。
【0046】
(3)曲線lEは、点p5′とp6を結んだ直線より、光源と反対側に凸な曲線である。
【0047】
また、封止樹脂は以下の条件を全て満たす線分lpを、光学系の軸cを中心に回転させたレンズ面Lpを持つ。
【0048】
(1)線分lpは、点p5′を通り光学系の軸cに直交する直線上の線分である。
【0049】
(2)線分lpの一方の端点は点p5である。
【0050】
(3)線分lpの端点p4は放物線ruとの交点である。
【0051】
反射面は以下の条件を全て満たす放物線rlを、光学系の軸cを中心に回転させた反射面Rlを持つ。
【0052】
(1)放物線rlの焦点が光源上の点p0に位置する。
【0053】
(2)放物線rlの一方の端点p1の光学系の軸cからの距離は、曲線lEの端点p5′の光学系の軸cからの距離と、等しいかより長い。
【0054】
(3)放物線rlの一方の端点p2は、点p0′とp5を結んで延長した直線と放物線rlの交点に位置する。ただし、点p0′は線分lpを含む直線を挟んで光源上の点p0と線対称の位置にある点であり、平面Lpによる光源の虚像上の点である。
【0055】
また、反射面は以下の条件を全て満たす放物線ruを、光学系の軸cを中心に回転させた反射面Ruを持つ。
【0056】
(1)放物線ruの焦点が、平面Lpによる光源の虚像上の点p0′に位置する。
【0057】
(2)放物線ruの一方の端点p3は、点p0′とp5′を結んで延長した直線より光源側で、なおかつ放物線rlより外側(光源と反対側)に位置する。
【0058】
(3)放物線ruの一方の端点p4は、線分lpと放物線ruの交点である。
【0059】
次に上記構成の作用について説明する。図10に示すように、光源から点p5の範囲を覆うレンズ面LEを加えたので、この光学系では、光源から反射面Rlの端点p1と点p5′の間に照射される光については、請求項1と同様の仕組みで平行光に制御される。それに加えて、レンズ面LEの方向に照射された光については、レンズ面LEが凸レンズをなしているため、光学系の軸cに集光される方向に屈折される(図10のCの光)。このため、光源から点p5と光学系の軸cに照射された光を平行光に制御する要素を与えていない場合に、この範囲に照射された光が平行光にならないうえに、レンズ面Lpにおいて拡散する方向に屈折してしまうということがなくなる。このため、照明用光源として用いた場合、狭い範囲に光を照射でき、周辺にはあまり光を漏らさないため、照明効率の高い器具を実現できる。また、信号用光源として用いた場合、光学系正面の観察者から見ると反射面全域が発光していて輝度が高く、なおかつそれ以外の方向にいる観察者からはあまり発光して見えない信号灯を実現できる。A,Bの光の説明は第1の実施の形態と同様である。
【0060】
この発明の第の実施の形態を図11ないし図13に基づいて説明する。図11(a)はこの発明の第の実施の形態のLEDモジュールの全体図、(b)はそのA−A′断面図、図12はこの発明の第の実施の形態のLEDモジュールの幾何学的構成を示す断面図、図13はこの発明の第の実施の形態の作用説明図である。
【0061】
図11(a)に示すように、LEDモジュールは、多数の配光部2dを備え、その1つの構成を図11(b)に示す。図11(b)において、3はプリント基板、4はLEDチップ、5は樹脂製反射枠、6はアルミニウム蒸着面、7bはエポキシ樹脂である。
【0062】
上記LEDモジュールの配光部2dは、図12に示すように、第の実施の形態の条件に加えて、曲線lEが、以下の条件を全て満たす楕円の一部である。
【0063】
(1)楕円の長径aEと短径bEの比が、ほぼ式2で求められる値を満たす。ここで、n′はレンズの媒質の屈折率、nは空気の屈折率である。
【0064】
bE/aE=(n′2 −n2 1/2 /n′ …(式2)
(2)楕円の一方の焦点がLED光源上の点p0に位置する。
【0065】
(3)楕円の中心は、光学系の軸c上で点p0より照射方向側にある。
【0066】
(4)曲線lEの端点p6は、楕円と光学系の軸cの2つの交点のうち、点p0より照射方向側の点である。
【0067】
(5)曲線lEの端点p5′は、楕円とその端径bEの交点のうちの一方である。
【0068】
次に上記構成の作用について説明する。図13に示すように、このようなレンズ面LEの楕円レンズは焦点上から発した光を平行光に制御する性質があることが知られている。この光学系では、光源から反射面Rlの端点p1と点p5′の間に照射される光については、請求項1と同様の仕組みで平行光に制御される。それに加えて、レンズ面LEの方向に照射された光については、レンズ面LEが上記のような性質を持つ楕円レンズであるため、平行光に制御される(図13のCの光)。このため、光学系の軸cから反射面Rlの端点p1方向にいたるまでの範囲の光をほとんど平行光に制御して出射させることが可能である。A,Bの光の説明は第1の実施の形態と同様である。
【0069】
この発明の参考例を図14および図15に基づいて説明する。図14(a)はこの発明の参考例のLEDモジュールの全体図、(b)はそのA−A′断面図、図15はこの発明の参考例のLEDモジュールの幾何学的構成を示す断面図である。
【0070】
図14(a)に示すように、LEDモジュールは、多数の配光部2eを備え、その1つの構成を図14(b)に示す。図14(b)において、3はプリント基板、4はLEDチップ、5aは樹脂製反射枠、6aはアルミニウム蒸着面、7bはエポキシ樹脂である。
【0071】
上記LEDモジュールの配光部2eは、図15に示すように、第の実施の形態の条件に加えて、放物線rlの一方の端点p1の光学系の軸cからの距離は、曲線lEの端点p5′の光学系の軸cからの距離と等しい。また、放物線ruの一方の端点p3が、点p0′と点p5′を結んで延長した直線と、放物線rlの交点に位置する。これにより、光学系は第の実施の形態の範囲内で最も直径が小さくなる。
【0072】
この発明の第の実施の形態を図16および図17に基づいて説明する。図16(a)はこの発明の第の実施の形態のLEDモジュールの全体図、(b)はそのA−A′断面図、図17はこの発明の第の実施の形態のLEDモジュールの幾何学的構成を示す断面図である。
【0073】
図16(a)に示すように、LEDモジュールは、配光部2fを備え、その構成を図16(b)に示す。図16(b)において、3はプリント基板、4はLEDチップ、5bは樹脂製反射枠、6bはアルミニウム蒸着面、7bはエポキシ樹脂である。
【0074】
上記LEDモジュールの配光部2fは、図17に示すように、放物線rlの一方の端点p1の光学系の軸cからの距離は、曲線lEの端点p5′の光学系の軸cからの距離と等しい。また、放物線ruの一方の端点p4の光学系の軸cからの距離は、p4′の光学系の軸cからの距離と等しいかより長い。ただしp4′は、光源上の点p0と放物線rlの端点p2を結んで延長した直線と、線分lpの交点である。
【0075】
これにより、光源から見た場合に反射面Ruは反射面Rlの影に隠れ、光源から直接反射面Ruに入射する成分がなくなる。このため、光源から直接反射面Ruに到達する光が存在する場合に、反射面Ruはp0′方向から入射光のみ平行光に制御する機能を持つため、直接光源方向から入射した光は平行光に変換されないということがなくなる。
【0076】
なお、上記構成のLEDモジュールは、実施の形態で示した照明器具以外の照明器具にも適用できる。また、反射枠は樹脂製の他に金属製でもよく、レンズはエポキシ樹脂以外の樹脂等でもよい。
【0077】
【発明の効果】
この発明の請求項1記載のLEDモジュールによれば、光源を発した光は2通りの経路を経て光学系の軸cに平行な光に制御される。これにより、点p5の方向から反射面Rlの端点p1方向にいたるまでの範囲のほとんど光を、レンズなしで平行光に制御して出射させることが可能である。このため、照明用光源として用いた場合、狭い範囲に光を照射できるため、照明効率の高い器具を実現できる。また、信号用として用いた場合、光学系正面の観察者から見ると反射面全域が発光しているように見え、輝度の高い信号灯を実現できる。
【0078】
また、レンズ表面で全反射するほとんどの光を、反射面による1回の反射で出射できるため、反射を繰り返すことによる光の損失が少なく、器具効率が良い。また、凸レンズを全く構成しないため、薄型の照明器具や信号灯を実現でき、製作が容易である。
【0080】
請求項では、光源から見た場合に反射面Ruは反射面Rlの影に隠れ、光源から直接反射面Ruに到達する光束がなくなるので、より効率的に平行光に制御できる。また、反射面Rlが光源に最も近いため、光源から反射面Rlを見たときの立体角が最も大きくなり、より広い範囲の光束を平行光に制御できる。
【0081】
この発明の請求項記載のLEDモジュールによれば、光源から点p5の範囲を覆うレンズ面LEを加えたので、この光学系では、光源から反射面Rlの端点p1と点p5′の間に照射される光については、請求項1と同様の仕組みで平行光に制御される。それに加えて、レンズ面LEの方向に照射された光については、レンズ面LEが凸レンズをなしているため、光学系の軸cに集光される方向に屈折され、レンズ表面に到達して拡散していた光を集光できる。このため、照明用光源として用いた場合、狭い範囲に光を照射でき、周辺にはあまり光を漏らさないため、照明効率の高い器具を実現できる。また、信号用光源として用いた場合、光学系正面の観察者から見ると反射面全域が発光していて輝度が高く、なおかつそれ以外の方向にいる観察者からはあまり発光して見えない信号灯を実現できる。
【0082】
また、レンズ表面で全反射するほとんどの光を、反射面による1回の反射で出射できるため、反射を繰り返すことによる光の損失が少なく、器具効率が良い。また、従来例2に比較してレンズ形状が単純であるため、製作が容易である。
【0083】
請求項4では、光源から反射面Rlの端点p1と点p5′の間に照射される光については、請求項1と同様の仕組みで平行光に制御される。それに加えて、レンズ面LEの方向に照射された光については、レンズ面LEが焦点上から発した光を平行光に制御する性質を持つ楕円レンズであるため、平行光に制御される。このため、光学系の軸cから反射面Rlの端点p1方向にいたるまでの範囲の光をほとんど平行光に制御して出射させることが可能である。
【0085】
請求項では、光源から見た場合に反射面Ruは反射面Rlの影に隠れ、光源から直接反射面Ruに到達する光束がなくなるので、光源から発する光をより効率的に平行光に制御できる。また、反射面Rlが光源に最も近いため、光源から反射面Rlを見たときの立体角が最も大きくなり、より広い範囲の光束を平行光に制御できる。
【図面の簡単な説明】
【図1】 この発明の第1の実施の形態のLEDモジュールの幾何学的構成を示す断面図である。
【図2】 (a)はこの発明の第1の実施の形態のLEDモジュールを用いた信号灯の全体図、(b)はランプ部の拡大図、(c)は(b)のA−A′断面図である。
【図3】 この発明の第1の実施の形態の作用説明図である。
【図4】 (a)はこの発明の参考例のLEDモジュールを用いたダウンライト照明器具の全体図、(b)はそのA−A′断面図である。
【図5】 この発明の参考例のLEDモジュールの幾何学的構成を示す断面図である。
【図6】 この発明の第の実施の形態のLEDモジュールを用いたフットライト照明器具の全体図、(b)はそのA−A′断面図である。
【図7】 この発明の第の実施の形態のLEDモジュールの幾何学的構成を示す断面図である。
【図8】 (a)はこの発明の第の実施の形態のLEDモジュールを用いた視線誘導灯の全体図、(b)はそのA−A′断面図である。
【図9】 この発明の第の実施の形態のLEDモジュールの幾何学的構成を示す断面図である。
【図10】 この発明の第の実施の形態の作用説明図である。
【図11】 (a)はこの発明の第の実施の形態のLEDモジュールの全体図、(b)はそのA−A′断面図である。
【図12】 この発明の第の実施の形態のLEDモジュールの幾何学的構成を示す断面図である。
【図13】 この発明の第の実施の形態の作用説明図である。
【図14】 (a)はこの発明の参考例のLEDモジュールの全体図、(b)はそのA−A′断面図である。
【図15】 この発明の参考例のLEDモジュールの幾何学的構成を示す断面図である。
【図16】 (a)はこの発明の第の実施の形態のLEDモジュールの全体図、(b)はそのA−A′断面図である。
【図17】 この発明の第の実施の形態のLEDモジュールの幾何学的構成を示す断面図である。
【図18】 従来例1のLEDモジュールの断面図である。
【図19】 従来例2のLED光源の断面図である。
【符号の説明】
4 LEDチップ
5 樹脂製反射枠
6 アルミニウム蒸着面
7 エポキシ樹脂
c 光学系の軸
Lp レンズ面
lp 線分
Rl 反射面
rl 放物線
Ru 反射面
ru 放物線
θ′ 臨界角
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lighting device such as a foot lamp, an indicator lamp, a spotlight, a wall washer, an architectural lamp, a stand, an interior lamp, an LED module used for a signal lamp, a line-of-sight guide lamp, and the like.
[0002]
[Prior art]
Conventionally, as this type of LED module, there are those shown in Japanese Utility Model Laid-Open No. 4-92660 (Conventional Example 1) and Japanese Patent Laid-Open No. 61-188803 (Conventional Example 2). 18 is a cross-sectional view of the LED module of Conventional Example 1, and FIG. 19 is a cross-sectional view of the LED light source of Conventional Example 2. In FIG. 18, the LED chip 50 is surrounded by a reflective frame 51 and sealed with a lens 52 made of a transparent resin. In FIG. 19, a lens 54 is attached to the discrete LED 53.
[0003]
[Problems to be solved by the invention]
However, in Conventional Example 1, the light controlled by the reflection frame 51 is refracted and emitted by the front lens 52, so that many parts of the light emitted from the light source (LED chip) 50 are diffused in directions other than the front. There was a problem that.
[0004]
In Conventional Example 2, the light emitted from the light source can be efficiently controlled to parallel light, but the lens shape is complicated and difficult to manufacture. Further, there is a problem that the length of the lens 54 is increased and the size of the LED light source is increased.
[0005]
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a narrow-angle light distribution LED module that efficiently reflects light to the minimum required solid angle.
[0006]
[Means for Solving the Problems]
  In order to solve the above-described problem, an LED module according to claim 1 of the present invention includes a light distribution unit that surrounds an LED light source disposed on an axis c of an optical system with a reflecting surface and is sealed with a sealing material. In the LED module, the lens surface Lp of the sealing material is a flat surface centered on the axis c of the optical system, and the reflective surfaces are inner reflective surfaces each having a concave curved surface arranged symmetrically with respect to the axis c of the optical system. R1 and the outer reflecting surface Ru, and the radial line segment lp along the lens surface Lp is a straight line segment orthogonal to the axis c of the optical system, and the radial line segment lp along the inner reflecting surface Rl. The focal point of the parabola rl is located at a point p0 on the light source, and the distance from one end point p1 of the parabola rl to the axis c of the optical system is necessary for installing the light source.Of spaceThe other end point p2 of the parabola rl is equal to or greater than the radius, and the point c0 ′ on the light source is symmetrical to the point p0 on the light source with the line segment lp as the axis of symmetry, and the axis c of the optical system starting from the point p0 on the light source. An intersection of a straight line extending at a critical angle θ ′ with respect to the line segment lp and p5 is a point on a straight line extending from the point p0 ′ and the point p5 and extending from the line segment lp to the light source side. The radial parabola ru along Ru is positioned at the point p0 ′, and one end point p3 of the parabola ru is closer to the light source than the straight line connecting the points p0 ′ and p5 and from the parabola rl. Located on the outside, the other end point p4 of the parabola ru is the intersection of the line segment lp and the parabola ru.
[0007]
With the above configuration, light emitted from the light source is controlled to light parallel to the axis c of the optical system through two paths. First, light traveling from the light source in the direction of the reflection surface Rl is controlled to be parallel light by reflection because the reflection surface Rl is a curved surface having a focal point on the light source. The light reflected by the reflecting surface Rl is incident substantially perpendicular to the lens surface Lp and is emitted as parallel light. Further, the light traveling between the reflection surface Rl and the point p5 from the light source is first totally reflected by the lens surface Lp. Since the reflecting surface Ru is configured such that its focal point is positioned on the virtual image of the light source reflected by the lens surface Lp, the light totally reflected by the lens surface Lp is controlled to be parallel light by the reflecting surface Ru. . Since the light reflected by the reflecting surface Ru is incident substantially perpendicular to the lens surface Lp, it is emitted as parallel light with almost no deflection due to refraction. As a result, it is possible to emit almost all the light in the range from the direction of the point p5 to the direction of the end point p1 of the reflecting surface Rl as parallel light without a lens.
[0009]
  Claim2The LED module according to claim1, The distance from the optical system axis c of the end point p1 of the parabola rl is equal to the radius of the space necessary for installing the LED light source, and the distance from the optical system axis c of one end point p4 of the parabola ru The intersection of the straight line lp extending from the upper point p0 and the end point p2 of the parabola rl and the line segment lp is defined as p4 ', and the distance from the point c4' to the axis c of the optical system is equal to or greater.
[0010]
Thereby, when viewed from the light source, the reflection surface Ru is hidden by the shadow of the reflection surface Rl, and the component that directly enters the reflection surface Ru from the light source is eliminated. For this reason, when there is light that directly reaches the reflection surface Ru from the light source, the reflection surface Ru has a function of controlling only incident light from the p0 ′ direction to parallel light, and thus light incident directly from the light source direction is parallel light. It is no longer converted to.
[0011]
  Claim3The LED module described includes an LED module that includes a light distribution unit that surrounds an LED light source disposed on an axis c of an optical system with a reflective surface and is sealed with a sealing material, and the lens surface of the sealing material is optical. Each lens has an inner lens surface LE formed of a convex curved surface centered on the system axis c and an outer lens surface Lp formed of a flat surface, and the reflecting surfaces are symmetrically arranged with respect to the axis c of the optical system. The radial curve lE along the inner lens surface LE has a critical point with respect to the axis c of the optical system starting from the point p0 on the light source. The line segment lp in the radial direction along the outer lens surface Lp that is outside the straight line extending at the angle θ ′ is a straight line segment that passes through the point p5 ′ and is orthogonal to the axis c of the optical system. The radial parabola rl along the reflective surface Rl of Is located at a point p0 on the light source, and the distance from the optical system axis c of one end point p1 of the parabola rl is equal to or greater than the distance from the optical system axis c of the end point p5 'of the curve lE. The other end point p2 is a straight line extending from the point p0 'to the point p5' and a parabola rl with the point symmetric with respect to the point p0 on the light source as a point p0 'with the line segment lp as the axis of symmetry. The parabola ru in the radial direction along the outer reflecting surface Ru is located at the intersection point, the focal point thereof is located at the point p0 ′, and one end point p3 of the parabola ru extends by connecting the points p0 ′ and p5 ′. The other end point p4 of the parabola ru is located at the light source side of the straight line and outside the parabola rl, and is the intersection of the line segment lp and the parabola ru.
[0012]
Thus, since the lens surface LE covering the range of the point p5 from the light source is added, in this optical system, the light irradiated between the end point p1 and the point p5 ′ of the reflection surface Rl from the light source is claimed in claim 1. It is controlled to parallel light by the same mechanism. In addition, the light irradiated in the direction of the lens surface LE is refracted in the direction of focusing on the axis c of the optical system because the lens surface LE forms a convex lens. For this reason, when the element which controls the light irradiated to the point p5 and the axis | shaft of an optical system from a light source to the parallel light is not given, the light irradiated to this range does not turn into a parallel light, but in the lens surface Lp. There will be no refraction in the direction of diffusion.
[0013]
  Claim 4The LED module according to claim3The curve lE is a part of an ellipse, and the ratio of the major axis aE to the minor axis bE is nE is the refractive index of the lens medium and n is the refractive index of the air, and bE / aE = (n ′2-N2)1 / 2/ N ′, one focus of the ellipse is located at the point p0 on the LED light source, the center of the ellipse is on the irradiation direction side from the point p0 on the axis c of the optical system, and the end point p5 ′ of the curve lE is the ellipse And its minor axis bE.
[0014]
It is known that such an elliptic lens having a lens surface LE has a property of controlling light emitted from the focal point to parallel light. In this optical system, light emitted from the light source between the end points p1 and p5 ′ of the reflecting surface Rl is controlled to parallel light by the same mechanism as in the first aspect. In addition, the light irradiated in the direction of the lens surface LE is controlled to be parallel light because the lens surface LE is an elliptic lens having the above properties. For this reason, light in a range from the axis c of the optical system to the direction of the end point p1 of the reflection surface Rl can be controlled to be almost parallel light and emitted.
[0016]
  Claim5The LED module according to claim4, The distance from one end point p1 of the parabola rl from the axis c of the optical system is equal to the distance from the axis c of the end point p5 ′ of the curve lE to the axis of the optical system at one end point p4 of the parabola ru. The distance from c is equal to or greater than the distance from the axis c of the optical system of p4 ′, where p4 ′ is the intersection of a straight line extending from the point p0 on the LED light source and the end point p2 of the parabola rl and the line segment lp.
[0017]
Thereby, when viewed from the light source, the reflection surface Ru is hidden by the shadow of the reflection surface Rl, and the component that directly enters the reflection surface Ru from the light source is eliminated. For this reason, when there is light that directly reaches the reflection surface Ru from the light source, the reflection surface Ru has a function of controlling only incident light from the p0 ′ direction to parallel light, and thus light incident directly from the light source direction is parallel light. It is no longer converted to.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An LED module according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view showing a geometric configuration of an LED module according to the first embodiment of the present invention. FIG. 2A is an overall view of a signal lamp using the LED module according to the first embodiment of the present invention. (B) is an enlarged view of a lamp part, (c) is AA 'sectional drawing of (b), FIG. 3 is operation | movement explanatory drawing of 1st Embodiment of this invention.
[0019]
As shown to Fig.2 (a), in this embodiment, the lamp | ramp part 1 of a signal lamp is comprised with the LED module. The LED module includes a large number of light distribution units 2 as shown in FIG. 2B, and one configuration thereof is shown in FIG. In FIG. 2C, 3 is a printed circuit board, 4 is an LED chip, 5 is a resin reflecting frame, 6 is an aluminum vapor deposition surface, and 7 is an epoxy resin. The LED chip 4 is used as an LED light source, is surrounded by a reflective surface formed by an aluminum vapor deposition surface 6 or the like, and is sealed with a sealing material such as an epoxy resin 7 or the like.
[0020]
As shown in FIG. 1, the light distribution part 2 of the LED module has a lens surface Lp of a sealing material having a plane centered on the axis c of the optical system, and the reflection surface is symmetric with respect to the axis c of the optical system Each having an inner reflection surface Rl and an outer reflection surface Ru each formed of a concave curved surface. In this case, the sealing material has a lens surface Lp obtained by rotating a line segment lp satisfying all the following conditions around the axis c of the optical system. Here, the axis c of the optical system is a straight line that passes through the light source and extends in the irradiation direction of the optical system.
[0021]
(1) The line segment lp is a line segment on a straight line orthogonal to the axis c of the optical system.
[0022]
(2) The end point p4 of the line segment lp is an intersection of the line segment lp and the parabola ru.
[0023]
(3) The end point p6 of the line segment lp is an intersection of the line segment lp and the axis c of the optical system.
[0024]
The reflecting surface has a reflecting surface Rl obtained by rotating a parabola rl that satisfies all of the following conditions around the axis c of the optical system. Here, the parabolas rl and ru include an approximate line of a parabola that is a straight line or a curve that passes between a parabola and a straight line that connects both end points of the parabola and does not have a reverse bending to the parabola.
[0025]
(1) The focal point of the parabola rl is located at the point p0 on the light source.
[0026]
(2) The distance of one end point p1 of the parabola rl from the axis c of the optical system is equal to or longer than the radius necessary for installing the light source.
[0027]
(3) One end point p2 of the parabola rl is a point on a straight line extending from the points p0 ′ and p5 and is closer to the light source than the line segment lp. Here, p0 ′ and p5 are points that satisfy the following conditions. The point p0 ′ is a point on the light source in a line symmetric position with respect to p0 with the line segment lp as the symmetry axis, and is a point on the virtual image of the light source by the plane Lp. Point p5 is the intersection of a line segment lp and a straight line starting from point p0 on the light source and extending at an angle of critical angle θ ′ given by equation 1 with respect to axis c of the optical system. Here, n ′ is the refractive index of the lens medium, and n is the refractive index of air.
[0028]
θ ′ = sin-1(N / n ′) (Formula 1)
The reflecting surface has a reflecting surface Ru obtained by rotating a parabola ru that satisfies all of the following conditions about the axis c of the optical system.
[0029]
(1) The focal point of the parabola ru is located at a point p0 ′ on the virtual image of the light source by the plane Lp.
[0030]
(2) One end point p3 of the parabola ru is located on the light source side from the straight line extending from the points p0 'and p5 and outside the parabola rl (opposite the light source).
[0031]
(3) One end point p4 of the parabola ru is an intersection of the line segment lp and the parabola ru.
[0032]
Next, the operation of the above configuration will be described. As shown in FIG. 3, the light emitted from the light source is controlled to light parallel to the axis c of the optical system through two paths. First, light traveling from the light source in the direction of the reflection surface Rl is controlled to be parallel light by reflection because the reflection surface Rl is a curved surface having a focal point on the light source. The light reflected by the reflecting surface Rl is incident substantially perpendicular to the lens surface Lp and is emitted as parallel light (the light beam A in FIG. 3). Further, the light traveling between the reflection surface Rl and the point p5 from the light source is first totally reflected by the lens surface Lp. Since the reflecting surface Ru is configured such that its focal point is positioned on the virtual image of the light source reflected by the lens surface Lp, the light totally reflected by the lens surface Lp is controlled to be parallel light by the reflecting surface Ru. . Since the light reflected by the reflecting surface Ru is incident substantially perpendicular to the lens surface Lp, it is emitted as parallel light with almost no deflection due to refraction (the light beam B in FIG. 3). In this optical system, the light emitted from the light source between p5 and the axis c of the optical system is not particularly controlled.
[0033]
As described above, almost all light in the range from the direction of the point p5 to the direction of the end point p1 of the reflecting surface Rl can be controlled and emitted as parallel light without a lens. For this reason, since it can irradiate light to a narrow range when used as a light source for illumination, an instrument with high illumination efficiency can be realized. In addition, when used as a signal, when viewed from an observer in front of the optical system, the entire reflecting surface appears to emit light, and a high-intensity signal lamp can be realized.
[0034]
  Of this inventionReference exampleWill be described with reference to FIGS. FIG. 4 (a) shows the present invention.Reference example(B) is a sectional view taken along the line AA ′ of FIG. 5, and FIG.Reference exampleIt is sectional drawing which shows the geometrical structure of LED module.
[0035]
  As shown in FIG.Reference exampleThen, the downlight lighting fixture is comprised with the LED module. The LED module includes a large number of light distribution units 2a, and one configuration thereof is shown in FIG. In FIG. 4B, 3 is a printed circuit board, 4 is an LED chip, 5a is a resin reflecting frame, 6a is an aluminum vapor deposition surface, and 7 is an epoxy resin.
[0036]
As shown in FIG. 5, in addition to the conditions of the first embodiment, the light distribution unit 2a of the LED module includes a straight line in which one end point p3 of the parabola ru extends between points p0 ′ and p5. , Located at the intersection of parabola rl. As a result, the optical system has the smallest diameter within the range of the first embodiment.
[0037]
  First of this invention2The embodiment will be described with reference to FIGS. FIG. 6A is an overall view of a footlight illuminator using the LED module of the third embodiment of the present invention, FIG. 6B is a sectional view taken along the line AA ′, and FIG.2It is sectional drawing which shows the geometric structure of the LED module of embodiment.
[0038]
As shown to Fig.6 (a), in this embodiment, the footlight lighting fixture is comprised with the LED module. The LED module includes a large number of light distribution portions 2b, and one configuration thereof is shown in FIG. In FIG. 6B, 3 is a printed circuit board, 4 is an LED chip, 5b is a resin reflecting frame, 11 is a silver vapor deposition surface, and 7 is an epoxy resin.
[0039]
As shown in FIG. 7, the light distribution unit 2b of the LED module needs a distance from the axis c of the optical system at the end point p1 of the parabola rl in addition to the conditions of the first embodiment. Equal to the radius. Further, the distance from one end point p4 of the parabola ru to the axis c of the optical system is equal to or longer than the distance of p4 ′ from the axis c of the optical system. However, p4 'is an intersection of a straight line lp and a straight line extending by connecting the point p0 on the light source and the end point p2 of the parabola rl.
[0040]
Thereby, when viewed from the light source, the reflection surface Ru is hidden by the shadow of the reflection surface Rl, and the component that directly enters the reflection surface Ru from the light source is eliminated. For this reason, when there is light that directly reaches the reflection surface Ru from the light source, the reflection surface Ru has a function of controlling only incident light from the p0 ′ direction to parallel light, and thus light incident directly from the light source direction is parallel light. It is no longer converted to.
[0041]
  First of this invention3The LED module of this embodiment will be described with reference to FIGS. FIG. 8 (a) shows the first aspect of the present invention.3FIG. 9 is an overall view of a line-of-sight guide lamp using the LED module of the embodiment, FIG.3Sectional drawing which shows the geometrical structure of the LED module of embodiment of FIG., FIG.3It is operation | movement explanatory drawing of this embodiment.
[0042]
As shown in FIG. 8A, in this embodiment, the line-of-sight guide lamp is formed of an LED module. The LED module includes a large number of light distribution portions 2c, and one configuration thereof is shown in FIG. In FIG. 8B, 3 is a printed circuit board, 4 is an LED chip, 10 is an aluminum reflecting frame, and 7a is an epoxy resin.
[0043]
As shown in FIG. 9, the light distribution part 2c of the LED module includes an inner lens surface LE that is a convex curved surface centered on the axis c of the optical system, and an outer lens surface that is a plane. Each of the reflecting surfaces has an inner reflecting surface Rl and an outer reflecting surface Ru, each of which is made up of a concave curved surface, which has Lp and the reflecting surfaces are arranged symmetrically with respect to the axis c of the optical system. In this case, the sealing material has a lens surface LE obtained by rotating a curve lE that satisfies all the following conditions about the axis c of the optical system.
[0044]
(1) The end point p5 ′ of the curve lE starts from the point p0 on the light source and extends from the straight line extending at an angle of the critical angle θ ′ given by the expression 1 of the first embodiment with respect to the axis c of the optical system. It exists on the outside (opposite side of the axis c of the optical system).
[0045]
(2) The end point p6 of the curve lE is a point on the axis c of the optical system. From the intersection of the perpendicular line drawn on the axis c of the optical system from the other end point p5 'and the axis c of the optical system, Long distance.
[0046]
(3) The curve lE is a curve that is convex to the opposite side of the light source from the straight line connecting the points p5 ′ and p6.
[0047]
The sealing resin has a lens surface Lp obtained by rotating a line segment lp satisfying all the following conditions around the axis c of the optical system.
[0048]
(1) The line segment lp is a line segment on a straight line passing through the point p5 'and orthogonal to the axis c of the optical system.
[0049]
(2) One end point of the line segment lp is a point p5.
[0050]
(3) The end point p4 of the line segment lp is an intersection with the parabola ru.
[0051]
The reflecting surface has a reflecting surface Rl obtained by rotating a parabola rl satisfying all of the following conditions around the axis c of the optical system.
[0052]
(1) The focal point of the parabola rl is located at the point p0 on the light source.
[0053]
(2) The distance of one end point p1 of the parabola rl from the axis c of the optical system is equal to or longer than the distance of the end point p5 ′ of the curve lE from the axis c of the optical system.
[0054]
(3) One end point p2 of the parabola rl is located at the intersection of a straight line extending from the points p0 'and p5 and the parabola rl. However, the point p0 ′ is a point on the light source with respect to the point p0 on the light source across the straight line including the line segment lp, and is a point on the virtual image of the light source by the plane Lp.
[0055]
The reflecting surface has a reflecting surface Ru obtained by rotating a parabola ru that satisfies all of the following conditions about the axis c of the optical system.
[0056]
(1) The focal point of the parabola ru is located at a point p0 ′ on the virtual image of the light source by the plane Lp.
[0057]
(2) One end point p3 of the parabola ru is located on the light source side with respect to the straight line extending from the points p0 'and p5' and outside the parabola rl (on the opposite side to the light source).
[0058]
(3) One end point p4 of the parabola ru is an intersection of the line segment lp and the parabola ru.
[0059]
Next, the operation of the above configuration will be described. As shown in FIG. 10, since the lens surface LE covering the range of the point p5 from the light source is added, in this optical system, the light irradiated between the end point p1 and the point p5 ′ of the reflection surface Rl from the light source is It is controlled to parallel light by the same mechanism as in the first aspect. In addition, the light irradiated in the direction of the lens surface LE is refracted in the direction of focusing on the axis c of the optical system because the lens surface LE forms a convex lens (the light of C in FIG. 10). ). For this reason, when the element which controls the light irradiated from the light source to the point p5 and the axis c of the optical system to parallel light is not given, the light irradiated to this range does not become parallel light, and the lens surface Lp. Refracting in the diffusing direction is eliminated. For this reason, when it is used as a light source for illumination, it is possible to irradiate light in a narrow range and does not leak much light to the periphery, so that an instrument with high illumination efficiency can be realized. In addition, when used as a signal light source, when viewed from an observer in front of the optical system, a signal lamp that emits light from the entire reflecting surface and has high brightness, and is not visible by an observer in other directions. realizable. The description of A and B light is the same as in the first embodiment.
[0060]
  First of this invention4The embodiment will be described with reference to FIGS. FIG. 11 (a) shows the first aspect of the present invention.4FIG. 12 is an overall view of the LED module according to the embodiment of the present invention, FIG.4Sectional drawing which shows the geometrical structure of the LED module of embodiment of FIG. 13, FIG.4It is operation | movement explanatory drawing of this embodiment.
[0061]
As shown in FIG. 11 (a), the LED module includes a number of light distribution units 2d, and one configuration thereof is shown in FIG. 11 (b). In FIG. 11B, 3 is a printed circuit board, 4 is an LED chip, 5 is a resin reflecting frame, 6 is an aluminum vapor deposition surface, and 7b is an epoxy resin.
[0062]
  As shown in FIG. 12, the light distribution part 2d of the LED module3In addition to the conditions of the embodiment, the curve lE is a part of an ellipse that satisfies all of the following conditions.
[0063]
(1) The ratio of the major axis aE to the minor axis bE of the ellipse almost satisfies the value obtained by Equation 2. Here, n ′ is the refractive index of the lens medium, and n is the refractive index of air.
[0064]
bE / aE = (n ′2-N2)1/2/ N '(Formula 2)
(2) One focal point of the ellipse is located at a point p0 on the LED light source.
[0065]
(3) The center of the ellipse is on the irradiation direction side of the point p0 on the axis c of the optical system.
[0066]
(4) The end point p6 of the curve lE is a point closer to the irradiation direction than the point p0 among the two intersections of the ellipse and the axis c of the optical system.
[0067]
(5) The end point p5 'of the curve lE is one of the intersections of the ellipse and its end diameter bE.
[0068]
Next, the operation of the above configuration will be described. As shown in FIG. 13, it is known that such an elliptical lens having a lens surface LE has a property of controlling light emitted from the focal point to parallel light. In this optical system, light emitted from the light source between the end points p1 and p5 ′ of the reflecting surface Rl is controlled to parallel light by the same mechanism as in the first aspect. In addition, the light irradiated in the direction of the lens surface LE is controlled to be parallel light because the lens surface LE is an elliptic lens having the above-described properties (light C in FIG. 13). For this reason, light in a range from the axis c of the optical system to the direction of the end point p1 of the reflection surface Rl can be controlled to be almost parallel light and emitted. The description of A and B light is the same as in the first embodiment.
[0069]
  Of this inventionReference exampleWill be described with reference to FIGS. 14 and 15. FIG. 14 (a) shows the present invention.Reference example(B) is a cross-sectional view taken along the line AA 'of FIG. 15, and FIG.Reference exampleIt is sectional drawing which shows the geometrical structure of LED module.
[0070]
As shown to Fig.14 (a), an LED module is provided with many light distribution parts 2e, and the structure of one is shown in FIG.14 (b). In FIG. 14B, 3 is a printed circuit board, 4 is an LED chip, 5a is a resin reflective frame, 6a is an aluminum vapor deposition surface, and 7b is an epoxy resin.
[0071]
  As shown in FIG. 15, the light distribution part 2e of the LED module4In addition to the conditions of the embodiment, the distance from the optical system axis c of one end point p1 of the parabola rl is equal to the distance from the optical system axis c of the end point p5 ′ of the curve lE. In addition, one end point p3 of the parabola ru is located at the intersection of the parabola rl and a straight line connecting the points p0 ′ and p5 ′. This allows the optical system to4The diameter becomes the smallest within the range of the embodiment.
[0072]
  First of this invention5The embodiment will be described with reference to FIGS. 16 and 17. FIG. FIG. 16 (a) shows the first aspect of the present invention.5FIG. 17 is an overall view of the LED module according to the embodiment, FIG.5It is sectional drawing which shows the geometric structure of the LED module of embodiment.
[0073]
As shown in FIG. 16A, the LED module includes a light distribution unit 2f, and the configuration thereof is shown in FIG. In FIG. 16B, 3 is a printed circuit board, 4 is an LED chip, 5b is a resin reflective frame, 6b is an aluminum vapor deposition surface, and 7b is an epoxy resin.
[0074]
As shown in FIG. 17, the light distribution unit 2f of the LED module has a distance from one end point p1 of the parabola rl from the axis c of the optical system to a distance from the axis c of the end point p5 ′ of the curve lE. Is equal to Further, the distance from one end point p4 of the parabola ru to the axis c of the optical system is equal to or longer than the distance of p4 ′ from the axis c of the optical system. However, p4 'is an intersection of a line segment lp and a straight line extending by connecting the point p0 on the light source and the end point p2 of the parabola rl.
[0075]
Thereby, when viewed from the light source, the reflection surface Ru is hidden by the shadow of the reflection surface Rl, and the component that directly enters the reflection surface Ru from the light source is eliminated. For this reason, when there is light that directly reaches the reflection surface Ru from the light source, the reflection surface Ru has a function of controlling only incident light from the p0 ′ direction to parallel light, and thus light incident directly from the light source direction is parallel light. It is no longer converted to.
[0076]
Note that the LED module having the above configuration can be applied to lighting fixtures other than the lighting fixtures described in the embodiment. The reflection frame may be made of metal in addition to resin, and the lens may be made of resin other than epoxy resin.
[0077]
【The invention's effect】
According to the LED module of the first aspect of the present invention, the light emitted from the light source is controlled to light parallel to the axis c of the optical system through two paths. As a result, it is possible to emit almost all the light in the range from the direction of the point p5 to the direction of the end point p1 of the reflecting surface Rl as parallel light without a lens. For this reason, since it can irradiate light to a narrow range when used as a light source for illumination, an instrument with high illumination efficiency can be realized. In addition, when used as a signal, when viewed from an observer in front of the optical system, the entire reflecting surface appears to emit light, and a high-intensity signal lamp can be realized.
[0078]
Further, since most of the light totally reflected on the lens surface can be emitted by one reflection by the reflecting surface, there is little loss of light due to repeated reflection, and the instrument efficiency is good. Moreover, since a convex lens is not comprised at all, a thin lighting fixture and a signal lamp can be realized, and manufacture is easy.
[0080]
  Claim2Then, when viewed from the light source, the reflection surface Ru is hidden by the shadow of the reflection surface Rl, and there is no light beam that reaches the reflection surface Ru directly from the light source, so that the parallel light can be controlled more efficiently. Further, since the reflection surface Rl is closest to the light source, the solid angle when the reflection surface Rl is viewed from the light source is the largest, and a wider range of light flux can be controlled to parallel light.
[0081]
  Claims of the invention3According to the described LED module, since the lens surface LE covering the range of the point p5 from the light source is added, in this optical system, the light irradiated between the end point p1 and the point p5 ′ of the reflection surface Rl from the light source is The parallel light is controlled by a mechanism similar to that of the first aspect. In addition, the light irradiated in the direction of the lens surface LE is refracted in the direction of focusing on the axis c of the optical system and diffuses by reaching the lens surface because the lens surface LE forms a convex lens. The light that has been used can be collected. For this reason, when it is used as a light source for illumination, it is possible to irradiate light in a narrow range and does not leak much light to the periphery, so that an instrument with high illumination efficiency can be realized. In addition, when used as a signal light source, when viewed from an observer in front of the optical system, a signal lamp that emits light from the entire reflecting surface and has high brightness, and is not visible by an observer in other directions. realizable.
[0082]
Further, since most of the light totally reflected on the lens surface can be emitted by one reflection by the reflecting surface, there is little loss of light due to repeated reflection, and the instrument efficiency is good. In addition, since the lens shape is simple compared to the conventional example 2, it is easy to manufacture.
[0083]
  Claim 4Then, the light emitted from the light source between the end point p1 and the point p5 ′ of the reflection surface Rl is controlled to be parallel light by the same mechanism as in the first aspect. In addition, the light irradiated in the direction of the lens surface LE is controlled to be parallel light because the lens surface LE is an elliptical lens having the property of controlling light emitted from the focal point to parallel light. For this reason, light in a range from the axis c of the optical system to the direction of the end point p1 of the reflection surface Rl can be controlled to be almost parallel light and emitted.
[0085]
  Claim5Then, when viewed from the light source, the reflection surface Ru is hidden by the shadow of the reflection surface Rl and there is no light beam that reaches the reflection surface Ru directly from the light source, so that the light emitted from the light source can be more efficiently controlled to parallel light. Further, since the reflection surface Rl is closest to the light source, the solid angle when the reflection surface Rl is viewed from the light source is the largest, and a wider range of light flux can be controlled to parallel light.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a geometric configuration of an LED module according to a first embodiment of the present invention.
2A is an overall view of a signal lamp using the LED module according to the first embodiment of the present invention, FIG. 2B is an enlarged view of a lamp portion, and FIG. 2C is an AA ′ view of FIG. It is sectional drawing.
FIG. 3 is an operation explanatory diagram of the first embodiment of the present invention.
FIG. 4 (a) shows the present invention.Reference exampleThe whole figure of a downlight lighting fixture using the LED module of (b) is the AA 'sectional view.
FIG. 5 of the present inventionReference exampleIt is sectional drawing which shows the geometrical structure of LED module.
FIG. 6 shows the first aspect of the present invention.2The whole figure of the footlight lighting fixture using the LED module of embodiment of this, (b) is the AA 'sectional drawing.
FIG. 7 shows the first of the present invention.2It is sectional drawing which shows the geometric structure of the LED module of embodiment.
FIG. 8 (a) is the first of the present invention.3The whole line-of-sight guide light using the LED module of embodiment of this, (b) is the AA 'sectional drawing.
FIG. 9 shows the first aspect of the present invention.3It is sectional drawing which shows the geometric structure of the LED module of embodiment.
FIG. 10 shows the first of the present invention.3It is operation | movement explanatory drawing of this embodiment.
FIG. 11 (a) is the first of the present invention.4The whole LED module of embodiment of this, (b) is the AA 'sectional drawing.
FIG. 12 shows the first aspect of the present invention.4It is sectional drawing which shows the geometric structure of the LED module of embodiment.
FIG. 13 shows the first aspect of the present invention.4It is operation | movement explanatory drawing of this embodiment.
FIG. 14 (a) shows the present invention.Reference example(B) is an AA ′ sectional view of the LED module of FIG.
FIG. 15 shows the present invention.Reference exampleIt is sectional drawing which shows the geometrical structure of LED module.
FIG. 16 (a) is the first of the present invention.5The whole LED module of embodiment of this, (b) is the AA 'sectional drawing.
FIG. 17 shows the first of the present invention.5It is sectional drawing which shows the geometric structure of the LED module of embodiment.
18 is a cross-sectional view of an LED module of Conventional Example 1. FIG.
FIG. 19 is a cross-sectional view of an LED light source of Conventional Example 2.
[Explanation of symbols]
4 LED chips
5 Resin reflective frame
6 Aluminum deposition surface
7 Epoxy resin
c Optical system axis
Lp Lens surface
lp line segment
Rl reflecting surface
rl parabola
Ru reflecting surface
ru parabola
θ ′ critical angle

Claims (5)

光学系の軸cに配置されたLED光源を反射面で囲みかつ封止物質で封止された配光部を備えたLEDモジュールにおいて、前記封止物質のレンズ面Lpが光学系の軸cを中心とする平面からなり、前記反射面が光学系の軸cに対して対称に配置されたそれぞれ凹曲面からなる内側の反射面Rlと外側の反射面Ruを持ち、
レンズ面Lpに沿った径方向の線分lpは光学系の軸cと直交する直線上の線分であり、
内側の反射面Rlに沿った径方向の放物線rlはその焦点が前記光源上の点p0に位置し、放物線rlの一方の端点p1の光学系の軸cからの距離は前記光源の設置に必要なスペースの半径以上で、放物線rlの他方の端点p2は、線分lpを対称軸として前記光源上の点p0と線対称の位置にある点をp0′、前記光源上の点p0を起点とし光学系の軸cに対する臨界角θ′の角度で延びる直線と線分lpとの交点をp5として、点p0′と点p5を結んで延長した直線上の点で線分lpより前記光源側にあり、
外側の反射面Ruに沿った径方向の放物線ruはその焦点が点p0′に位置し、放物線ruの一方の端点p3は、点p0′と点p5を結んで延長した直線より前記光源側で、かつ放物線rlより外側に位置し、放物線ruの他方の端点p4は線分lpと放物線ruの交点であることを特徴とするLEDモジュール。
In an LED module including a light distribution unit which is surrounded by a reflective surface and is sealed with a sealing material, the LED light source disposed on the optical system axis c, and the lens surface Lp of the sealing material is connected to the optical system axis c. An inner reflecting surface Rl and an outer reflecting surface Ru, each of which is a concave curved surface, the reflecting surface being symmetrically arranged with respect to the axis c of the optical system.
A radial line segment lp along the lens surface Lp is a line segment on a straight line orthogonal to the axis c of the optical system,
The parabola rl in the radial direction along the inner reflection surface Rl has its focal point located at the point p0 on the light source, and the distance from one end point p1 of the parabola rl from the axis c of the optical system is necessary for the installation of the light source. The other end point p2 of the parabola rl is greater than or equal to the radius of the space, and the point p0 'is a point symmetrical to the point p0 on the light source with the line segment lp as the axis of symmetry, and the point p0 on the light source is the starting point. An intersection of a straight line extending at an angle of the critical angle θ ′ with respect to the axis c of the optical system and the line segment lp is p5, and a point on the straight line extending from the point p0 ′ and the point p5 to the light source side from the line segment lp. Yes,
The parabola ru in the radial direction along the outer reflective surface Ru has a focal point located at the point p0 ', and one end point p3 of the parabola ru is closer to the light source than a straight line extending between the points p0' and p5. The LED module is located outside the parabola rl, and the other end point p4 of the parabola ru is an intersection of the line segment lp and the parabola ru.
放物線rlの端点p1の光学系の軸cからの距離が、LED光源の設置に必要なスペースの半径に等しく、放物線ruの一方の端点p4の光学系の軸cからの距離は、光源上の点p0と放物線rlの端点p2を結んで延長した直線と線分lpの交点をp4′として、点p4′の光学系の軸cからの距離以上とした請求項1記載のLEDモジュール。 The distance from the axis c of the optical system at the end point p1 of the parabola rl is equal to the radius of the space necessary for installing the LED light source, and the distance from the axis c of the optical system at one end point p4 of the parabola ru 2. The LED module according to claim 1, wherein an intersection of a straight line extending from the point p0 and the end point p2 of the parabola rl and the line segment lp is defined as p4 ′ and the distance from the axis c of the optical system at the point p4 ′ is equal to or greater than the distance . 光学系の軸cに配置されたLED光源を反射面で囲みかつ封止物質で封止された配光部を備えたLEDモジュールにおいて、前記封止物質のレンズ面が光学系の軸cを中心とする凸曲面からなる内側のレンズ面LEと平面からなる外側のレンズ面Lpを持ち、前記反射面が光学系の軸cに対して対称に配置されたそれぞれ凹曲面からなる内側の反射面Rlと外側の反射面Ruを持ち、
内側のレンズ面LEに沿った径方向の曲線lEはその端点p5′が前記光源上の点p0を起点とし光学系の軸cに対する臨界角θ′の角度で延びる直線より外側にあり、
外側のレンズ面Lpに沿った径方向の線分lpは点p5′を通り光学系の軸cに直交する直線上の線分であり、
内側の反射面Rlに沿った径方向の放物線rlはその焦点が前記光源上の点p0に位置し、放物線rlの一方の端点p1の光学系の軸cからの距離は曲線lEの端点p5′の光学系の軸cからの距離以上で、放物線rlの他方の端点p2は、線分lpを対称軸として前記光源上の点p0と線対称の位置にある点をp0′として、点p0′と点p5′を結んで延長した直線と放物線rlの交点に位置し、
外側の反射面Ruに沿った径方向の放物線ruはその焦点が点p0′に位置し、放物線ruの一方の端点p3は、点p0′と点p5′を結んで延長した直線より前記光源側で、かつ放物線rlより外側に位置し、放物線ruの他方の端点p4は線分lpと放物線ruの交点であることを特徴とするLEDモジュール。
In an LED module including a light distribution portion that is surrounded by a reflecting surface and is sealed with a sealing material, the lens surface of the sealing material is centered on the axis c of the optical system. An inner lens surface LE made of a convex curved surface and an outer lens surface Lp made of a flat surface, and the inner reflective surface Rl made of a concave curved surface in which the reflecting surface is arranged symmetrically with respect to the axis c of the optical system. And the outer reflective surface Ru,
The radial curve lE along the inner lens surface LE is outside the straight line whose end point p5 'starts from the point p0 on the light source and extends at an angle of the critical angle θ' with respect to the axis c of the optical system,
A radial line segment lp along the outer lens surface Lp is a line segment on a straight line passing through the point p5 ′ and orthogonal to the axis c of the optical system,
The radial parabola rl along the inner reflection surface Rl has its focal point located at the point p0 on the light source, and the distance from one end point p1 of the parabola rl to the axis c of the optical system is the end point p5 ′ of the curve lE. The other end point p2 of the parabola rl is a point p0 ′ with a point symmetric with respect to the point p0 on the light source with the line segment lp as the axis of symmetry, p0 ′. Is located at the intersection of a straight line extending from the point p5 'and the parabola rl,
The radial parabola ru along the outer reflecting surface Ru has its focal point located at the point p0 ', and one end point p3 of the parabola ru is closer to the light source side than the straight line connecting the points p0' and p5 '. The LED module is located outside the parabola rl, and the other end point p4 of the parabola ru is an intersection of the line segment lp and the parabola ru .
曲線lEは楕円の一部で長径aEと短径bEの比が、n′をレンズの媒質の屈折率、nを空気の屈折率として、bE/aE=(n′ −n / /n′を満たし、楕円の一方の焦点がLED光源上の点p0に位置し、楕円の中心は光学系の軸c上で点p0より照射方向側にあり、曲線lEの端点p5′は楕円とその短径bEの交点である請求項3記載のLEDモジュール。 A curve lE is a part of an ellipse, where the ratio of the major axis aE to the minor axis bE is nE is the refractive index of the lens medium and n is the refractive index of the air, bE / aE = (n ′ 2 −n 2 ) 1 / 2 / n ′, one focal point of the ellipse is located at the point p0 on the LED light source, the center of the ellipse is on the irradiation direction side of the point p0 on the axis c of the optical system, and the end point p5 ′ of the curve lE is 4. The LED module according to claim 3, wherein the LED module is an intersection of an ellipse and a short diameter bE thereof . 放物線rlの一方の端点p1の光学系の軸cからの距離は、曲線lEの端点p5′の光学系の軸cからの距離と等しく、放物線ruの一方の端点p4の光学系の軸cからの距離は、LED光源上の点p0と放物線rlの端点p2を結んで延長した直線と線分lpの交点をp4′として、p4′の光学系の軸cからの距離以上である請求項4記載のLEDモジュール。 The distance from the optical system axis c of one end point p1 of the parabola rl is equal to the distance from the optical system axis c of the end point p5 'of the curve lE, and from the optical system axis c of the one end point p4 of the parabola ru. 5 is equal to or greater than the distance from the axis c of the optical system of p4 ′, where p4 ′ is an intersection of a straight line extending from the point p0 on the LED light source and the end point p2 of the parabola rl and the line segment lp. The LED module described .
JP2000046951A 2000-02-24 2000-02-24 LED module Expired - Fee Related JP3729012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046951A JP3729012B2 (en) 2000-02-24 2000-02-24 LED module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046951A JP3729012B2 (en) 2000-02-24 2000-02-24 LED module

Publications (2)

Publication Number Publication Date
JP2001237463A JP2001237463A (en) 2001-08-31
JP3729012B2 true JP3729012B2 (en) 2005-12-21

Family

ID=18569278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046951A Expired - Fee Related JP3729012B2 (en) 2000-02-24 2000-02-24 LED module

Country Status (1)

Country Link
JP (1) JP3729012B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791323B2 (en) * 2000-10-26 2006-06-28 オムロン株式会社 Optical device for optical elements
JP3813509B2 (en) * 2001-12-28 2006-08-23 株式会社東芝 Lens-integrated light emitting device and aviation obstacle light
EP1564819B1 (en) 2002-11-05 2008-01-09 Matsushita Electric Industrial Co., Ltd. Light emitting diode
JP4307094B2 (en) * 2003-02-04 2009-08-05 パナソニック株式会社 LED light source, LED illumination device, and LED display device
JP4534074B2 (en) * 2003-11-27 2010-09-01 青木電器工業株式会社 High brightness LED light emitting part
JP2005310911A (en) * 2004-04-19 2005-11-04 Kyocera Corp Package for housing light emitting element, light emitting device, and lighting apparatus
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US8669572B2 (en) 2005-06-10 2014-03-11 Cree, Inc. Power lamp package
JP4845474B2 (en) * 2005-10-20 2011-12-28 三菱電機株式会社 LIGHT SOURCE DEVICE AND VIDEO DISPLAY DEVICE USING LIGHT SOURCE DEVICE
US7675145B2 (en) 2006-03-28 2010-03-09 Cree Hong Kong Limited Apparatus, system and method for use in mounting electronic elements
KR100775574B1 (en) * 2006-04-20 2007-11-15 알티전자 주식회사 LED package with high efficiency
US8748915B2 (en) 2006-04-24 2014-06-10 Cree Hong Kong Limited Emitter package with angled or vertical LED
US8735920B2 (en) 2006-07-31 2014-05-27 Cree, Inc. Light emitting diode package with optical element
US9711703B2 (en) 2007-02-12 2017-07-18 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
US8866169B2 (en) 2007-10-31 2014-10-21 Cree, Inc. LED package with increased feature sizes
US8791471B2 (en) 2008-11-07 2014-07-29 Cree Hong Kong Limited Multi-chip light emitting diode modules
US8368112B2 (en) 2009-01-14 2013-02-05 Cree Huizhou Opto Limited Aligned multiple emitter package
JP5724757B2 (en) * 2011-08-29 2015-05-27 豊田合成株式会社 Semiconductor light emitting device
CN102330948B (en) * 2011-08-31 2014-09-10 华南理工大学 Reflector and combined headlamp for LED automobile illumination
JP5228217B1 (en) * 2012-06-19 2013-07-03 鈴木 優一 Lens, illumination device, light receiving device, and optical device
US9601670B2 (en) 2014-07-11 2017-03-21 Cree, Inc. Method to form primary optic with variable shapes and/or geometries without a substrate
US10622522B2 (en) 2014-09-05 2020-04-14 Theodore Lowes LED packages with chips having insulated surfaces
JP2017130588A (en) * 2016-01-21 2017-07-27 旭化成株式会社 Ultraviolet light-emitting device
JP6887255B2 (en) * 2017-01-13 2021-06-16 シチズン電子株式会社 Light emitting device and imaging device using light emitting device
CN107062026B (en) * 2017-03-30 2022-12-27 佛山指南针光学科技有限公司 Compound total reflection LED shot-light lens

Also Published As

Publication number Publication date
JP2001237463A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP3729012B2 (en) LED module
KR100474233B1 (en) Optical sight optical structure
TWI294023B (en) Reflective illumination device
US7524091B2 (en) Led bulb refractive relector
US20070236950A1 (en) Headlight assembly having strongly trained cut-off
JP4976218B2 (en) Light emitting unit
US7645061B2 (en) Headlight assembly
US5997156A (en) Lighting device for generating a rectangular pattern at the work area, E. G. for illuminating pedestrian crossings
JP2011508380A (en) Light emitting diode lighting device
JP2007513382A (en) Reflected light coupler
JP2010021001A (en) Lighting fixture
KR970071075A (en) Backlight for liquid crystal display
US5725296A (en) Light head assembly with remote light source
JP2002148688A (en) Illuminating device
US5217299A (en) Reflection type lighting apparatus
US20010046365A1 (en) Light unit with a light guiding element
JP6407407B2 (en) Light source device and illumination device
CN211043831U (en) Optical beam expanding lens and lamp
JP2018081806A (en) Optical lens, light source device and luminaire
CN111911828A (en) Grading subassembly, illumination lamps and lanterns and illumination module
JP2009245601A (en) Lighting fixture
US20180292062A1 (en) Light-projecting device
CN218565287U (en) Optical device and lighting device
CN210624441U (en) Light condensing device and lamp
CN216383992U (en) Side direction reflection of light cup system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees