JP3728613B2 - 走査型露光装置の調整方法及び該方法を使用する走査型露光装置 - Google Patents

走査型露光装置の調整方法及び該方法を使用する走査型露光装置 Download PDF

Info

Publication number
JP3728613B2
JP3728613B2 JP32666996A JP32666996A JP3728613B2 JP 3728613 B2 JP3728613 B2 JP 3728613B2 JP 32666996 A JP32666996 A JP 32666996A JP 32666996 A JP32666996 A JP 32666996A JP 3728613 B2 JP3728613 B2 JP 3728613B2
Authority
JP
Japan
Prior art keywords
optical system
illumination
projection optical
scanning exposure
illumination area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32666996A
Other languages
English (en)
Other versions
JPH10172878A (ja
Inventor
哲夫 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP32666996A priority Critical patent/JP3728613B2/ja
Publication of JPH10172878A publication Critical patent/JPH10172878A/ja
Priority to US09/465,696 priority patent/US6310680B1/en
Application granted granted Critical
Publication of JP3728613B2 publication Critical patent/JP3728613B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/703Non-planar pattern areas or non-planar masks, e.g. curved masks or substrates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70641Focus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature

Description

【0001】
【発明の属する技術分野】
本発明は、例えば半導体素子、撮像素子(CCD等)、液晶表示素子、又は薄膜磁気ヘッド等を製造するためのフォトリソグラフィ工程でマスク上のパターンを感光基板上に転写するための走査型露光装置の調整方法、及びこの調整方法を使用する走査型露光装置に関し、特にその走査型露光装置の投影光学系の結像特性を調整する場合に使用して好適なものである。
【0002】
【従来の技術】
従来より半導体素子等を製造する際に、マスクとしてのレチクル(又はフォトマスク等)のパターンの像を投影光学系を介して感光性の基板としてのウエハ(又はガラスプレート等)上に転写露光するために主に一括露光型の投影露光装置(ステッパー等)が使用されていた。近年は、半導体素子等の1つのチップパターンの面積が拡大する傾向にあり、これらを製造するための投影露光装置には露光エリアの拡大が求められている。しかし、投影光学系の結像特性を維持したままで露光エリアを直接拡大することは技術的に困難であり、且つ可能であるとしても投影光学系が大型化すると共に、装置価格も上昇する。
【0003】
このため、投影光学系の有効露光フィールドを拡大することなく露光エリアを実質的に拡大できるステップ・アンド・スキャン方式の投影露光装置が開発されている。この方式は、ウエハを走査開始位置までステッピングした後、レチクルを露光光で細長い矩形、又は円弧状等のスリット状に照明した状態で、レチクルとウエハとを投影光学系に対して同期して走査することで、ウエハ上の各ショット領域に逐次レチクルのパターン像を転写露光する方法である。
【0004】
このステップ・アンド・スキャン方式のような走査露光型の投影露光装置(走査型露光装置)を使用した場合には、ウエハ上に露光される回路パターンの大きさは、走査方向に関しては投影光学系の制約を受けない。また、走査方向に直交する方向に関しても、投影光学系の例えば円形の有効露光フィールド(結像可能領域)のほぼ直径に近い長さが利用できるため、従来の一括露光型の投影露光装置のように、投影光学系の有効露光フィールドに内接する正方形あるいは長方形等の限定された領域しか利用できない場合に比較して、広い幅のパターンを一度に露光することが可能になった。
【0005】
更に、走査型露光装置では、投影光学系の有効露光フィールドの一部分しか使用しないため、投影光学系のディストーションや倍率誤差等の結像特性をスリット状の露光領域内では容易に所望のレベル内に収めることが期待でき、結果として各ショット領域(露光エリア)の全面で転写像の結像特性を高精度に目標範囲内に維持できることが期待されている。そして、従来は例えば走査型露光装置の組立調整時には、投影光学系のスリット状の露光領域内の各計測点で評価用パターンの像を投影して、投影像の位置やコントラスト等を計測し、これらの計測結果に基づいて投影光学系の結像特性を調整していた。
【0006】
【発明が解決しようとする課題】
上記の如き従来の走査型露光装置においては、投影光学系の結像特性の内で光軸からの距離等に依存しないランダムな成分に関して言えば、調整する領域が狭い分だけ調整が容易である。しかしながら、その結像特性の内で例えば光軸からの距離に比例する成分等の規則的な成分に関しては、測定する領域が狭い分だけ調整のための情報が少なくなり、一括露光型の投影露光装置の場合と比較して却って高精度な調整が困難であるという不都合があった。
【0007】
それでも従来はこのような調整誤差も許容範囲内にあったが、半導体素子等が益々微細化されるのに伴って、投影光学系の結像特性に対する要求も厳しくなっており、従来の調整方法では投影光学系の結像特性を要求されるレベル内に収めるのが困難になりつつある。
本発明は斯かる点に鑑み、投影光学系の結像特性を高精度に所望の状態に調整できる走査型露光装置の調整方法を提供することを目的とする。更に、本発明はその調整方法を使用できる走査型露光装置を提供することをも目的とする。
【0008】
【課題を解決するための手段】
本発明による走査型露光装置の調整方法は、照明光(IL)に対してマスク(R)と基板(W)とを同期走査することによりマスク(R)のパターンの像を投影光学系(PL)を介して基板(W)上に転写する走査型露光装置の調整方法において、照明光(IL)による照明領域を走査露光時と異なるように変更し(ステップ102)、この照明領域の変更後に、所定のマスクパターンの像を投影光学系(PL)を介して投影することにより投影光学系(PL)の結像特性を測定し(ステップ103)、この測定結果に基づいて投影光学系(PL)を調整する(ステップ105)ものである。
【0009】
斯かる本発明の調整方法によれば、走査露光時におけるマスク(R)の照明領域(以下、「第1の照明領域」という)と異なる領域(以下、「第2の照明領域」という)を投影光学系(PL)の結像特性を評価する際に用いることができる。その第1の照明領域は、マスク(R)上における限定された領域(例えばスリット状の領域)であり、その限定された領域のみで結像特性を測定しても、投影光学系の有効露光フィールドの全面で所定の傾向を有するような規則的な結像特性に関しては、結像特性の測定結果に誤差が生じ易い。そこで、その第2の照明領域としてその第1の照明領域外の領域を含む広い領域を設定すれば、投影光学系(PL)の特に規則的な結像特性(ディストーション、像面湾曲等)を2次元的に正確に把握することができ、それに基づいてその結像特性を所望の状態に高精度に調整できる。
【0010】
この場合、その走査露光時における照明領域の一例は、その走査の方向を短辺方向とするスリット状(22)であり、このとき投影光学系(PL)の結像特性を測定する際の照明領域はその走査の方向に関してそのスリット状の照明領域(22)の外側を含む領域(23)のように変更されることが望ましい。これにより、投影光学系(PL)の結像特性を計測する際の照明領域が走査方向に拡大され、特に光軸からの距離に依存するような規則的な結像特性が高精度に評価できる。
【0011】
また、投影光学系(PL)の結像特性を調整した後に、照明光(IL)による照明領域を走査露光時の照明領域に戻して、投影光学系(PL)の結像特性を確認することが望ましい。これにより、最終的に実際の走査露光時の照明領域での結像特性が確認できるため、照明領域の変更に伴って投影光学系(PL)の結像特性が微妙に変動するような場合でも、その変動後の結像特性で露光を行うことが防止できる。
【0012】
また、本発明による走査型露光装置は、光源(1)からの照明光(IL)に対してマスク(R)と基板(W)とを同期して移動することによりマスク(R)のパターンの像を投影光学系(PL)を介して基板(W)上に転写する走査型露光装置において、光源(1)からの照明光による照明領域を変更可能な照明光学系(3〜7,8A,9,8B,10,11)と、投影光学系(PL)の結像特性を測定するときと走査露光を行うときとで、その照明光の照明領域が異なるようにその照明光学系の光学要素を制御する制御系(32)と、その照明光の照明領域が走査露光を行うときとは異なる状態で求められた投影光学系(PL)の結像特性に応じて投影光学系(PL)を調整する調整系(18)と、を備えたものである。
【0013】
斯かる本発明の走査型露光装置によれば、投影光学系(PL)の結像特性を測定するときと走査露光を行うときとで、その照明光の照明領域が異なるようにその照明光学系の光学要素を制御することによって、本発明の走査型露光装置の調整方法が使用できる。
この場合、投影光学系(PL)を介して投影された所定のマスクパターンの像を検出するセンサ(14,37)と、このセンサの検出結果に基づいて投影光学系(PL)の結像特性を求める演算手段(16)と、を更に備えることが望ましい。このとき、その所定のマスクパターンとして、例えば照明領域内に分布する複数の評価用パターンを使用し、これらの評価用パターンの投影像の位置やコントラスト等をそのセンサで検出することによって、テストプリントを行うことなく迅速に、投影光学系(PL)のディストーションや像面傾斜等が広い領域で高精度に計測できる。
【0014】
また、その照明光学系は一例として、その照明光の照明領域を規定するための視野絞り(9)を有し、その制御系(32)は、投影光学系(PL)の結像特性を測定するときと走査露光を行うときとでその照明光の照明領域が異なるようにその視野絞りを調整するようにしてもよい。これによって、照明領域の形状が正確に調整できる。
【0015】
また、その照明光学系は一例として、その照明光の照度分布を均一化するためのオプティカル・インテグレータを切り換え可能に複数種類(6,6A)有し、投影光学系(PL)の結像特性を測定するときと走査露光を行うときとでそのオプティカル・インテグレータの切り換えを行うことが望ましい。例えばオプティカル・インテグレータとしてフライアイレンズが使用される場合、このフライアイレンズの入射面とマスク面とがほぼ共役となるため、そのフライアイレンズの各レンズエレメントの断面形状がマスク上の照明領域とほぼ相似になるときに最も照明効率が高くなる。そこで、照明領域に応じた断面形状を有するフライアイレンズに交換することによって、走査露光時には高い照明効率が得られ、結像特性の計測時には広い照明領域の全面が照明できる。
【0016】
また、その照明光学系内にオプティカル・インテグレータ用のリレーレンズや光路折り曲げ用のミラー等が備えられている場合、その照明領域の切り換え時にこれらのリレーレンズやミラー等も切り換えるようにしてもよい。
また、本発明の別の走査型露光装置の調整方法は、照明光(IL)に対してマスク(R)と基板(W)とを同期走査することによりそのマスクのパターンの像を投影光学系(PL)を介してその基板上に転写する走査型露光装置の調整方法において、走査露光時における第1の照明領域(22)と異なる第2の照明領域(23)を設定し、その第2の照明領域のもとで、その投影光学系の結像特性を測定し、この測定結果に基づいてその投影光学系を調整するものである。
本発明によれば、例えばその第2の照明領域としてその第1の照明領域外の領域を含む広い領域を設定すれば、その投影光学系の特に規則的な結像特性(ディストーション、像面湾曲等)を2次元的に正確に把握することができ、それに基づいてその結像特性を所望の状態に高精度に調整できる。
本発明において、その第2の照明領域は、その第1の照明領域外の領域を含むことができる。
また、その投影光学系の結像特性は、その第1の照明領域外における結像特性を含むことができる。
また、その投影光学系の結像特性は、ディストーション又は像面湾曲を含むことができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態の一例につき図面を参照して説明する。本例はステップ・アンド・スキャン方式の投影露光装置で結像特性の補正を行う場合に本発明を適用したものである。
図3は、本例で使用される投影露光装置の概略構成を一部を切り欠いた状態で示し、この図3において、露光光源1から射出された露光用の照明光ILはミラー2で折り曲げられた後、レンズ系よりなるビーム整形部3によりその断面形状が所定の大きさ、及び形状に整形される。照明光ILとしては、水銀ランプの紫外域の輝線(g線、i線等)、ArFエキシマレーザ光やKrFエキシマレーザ光等のエキシマレーザ光、あるいは金属蒸気レーザ光やYAGレーザの高調波等が使用される。ビーム整形部3を通過した照明光ILはミラー4で再び折り曲げられて、第1のオプティカル・インテグレータとしての第1フライアイレンズ5に入射し、第1フライアイレンズ5からの照明光は不図示のリレーレンズを介して第2のオプティカル・インテグレータとしての第2フライアイレンズ6に入射する。これらのフライアイレンズ5,6は、それぞれ複数個のレンズエレメントを2次元的に配列して構成され、それぞれのレンズエレメントの射出面に形成される2次光源からの照明光が重畳的にレチクルを照明するため、レチクル上で均一な照度分布が得られる。
【0018】
そして、第2フライアイレンズ6の射出面に開口絞り7が配置され、第2フライアイレンズ6から射出されて開口絞り7の開口を通過した照明光ILは、リレーレンズ8Aを介して開口形状が可変のレチクルブラインド(可変視野絞り)9を通過する。レチクルブラインド9を通過した照明光ILは、リレーレンズ8B、光路折り曲げ用のミラー10、及びコンデンサーレンズ11を介してレチクルRを落射照明する。以上のミラー2からコンデンサーレンズ11までの光学部材より照明光学系が構成され、露光時には露光光源1、及びその照明光学系により生成された照明光ILのもとで、レチクルR上のパターンの像が投影光学系PLを介して、フォトレジスト等の感光材料が塗布されたウエハW上に投影倍率β(βは1/4又は1/5等)で投影される。以下、投影光学系PLの光軸AXに平行にZ軸を取り、Z軸に垂直な平面内で図3の紙面に平行にX軸を、図3の紙面に垂直にY軸を取って説明する。そのY軸に沿った方向(Y方向)が走査露光時のレチクルR及びウエハWの走査方向である。
【0019】
この場合、本例のレチクルブラインド9は、一例として4枚の可動ブレードで矩形の開口を囲む構成であり、装置全体の動作を統轄制御する主制御系16が駆動装置32を介してそれら4枚の可動ブレードの位置を制御することによって、その開口の形状を変更できるように構成されている。レチクルブラインド9の配置面はレチクルRのパターン形成面(レチクル面)と共役であり、レチクルブラインド9の開口形状によってレチクルR上の照明領域が最終的に決定される。また、本例の投影露光装置はステップ・アンド・スキャン方式であるため、ウエハ上の各ショット領域に対する走査露光時に各ショット領域(露光エリア)外に不要なパターンを露光してしまわないように、走査露光の開始時又は終了時にそれぞれレチクルR上の照明領域の幅を次第に開けたり、又は次第に閉じたりする必要がある。このために、主制御系16は露光動作に同期して、駆動装置32を介してレチクルブラインド9の開口の開閉動作を制御する。
【0020】
更に本例では、投影光学系PLの結像特性の計測時には、レチクルR上を一括露光型の投影露光装置の場合と同様な正方形の照明領域で照明できるように構成されている。レチクルR上の照明領域は、第2フライアイレンズ6の各レンズエレメントの断面形状によってほぼその外形が決定されるため、レチクルR上の照明領域を正方形にする場合には、後述のように第2フライアイレンズ6の交換を行うと共に、駆動装置32を介してレチクルブラインド9の開口形状を大きく設定する必要がある。ここで、走査露光時及び結像特性の計測時におけるレチクル上の照明領域につき説明する。
【0021】
図2は、本例のレチクルR上の2種類の照明領域を示し、この図2において、図3の軸対称な投影光学系PLのウエハW上での円形の有効露光フィールドと共役な領域が円形の有効照明領域21で表されている。本例では、通常の走査露光時には、レチクルR上での照明領域は、その有効照明領域21に内接するX方向に細長い矩形(以下、「スリット状」と呼ぶ)の照明領域22であり、この照明領域22に対してレチクルRを例えば+Y方向に走査し、これに同期してウエハWを−Y方向に走査することによって、レチクルR上のパターン領域24内のパターン像が逐次ウエハW上に露光される。
【0022】
一方、投影光学系PLの結像特性の計測時には、レチクルR上の照明領域はその有効照明領域21に内接する正方形の照明領域23、即ち一括露光型の投影露光装置の場合と同じ照明領域に設定される。その照明領域23は一括露光型の場合のパターン領域でもあり、このパターン領域に比べて走査露光方式で露光できるパターン領域24は拡大されていることが分かる。
【0023】
これに関して、図3の照明光学系中の光路折り曲げ用のミラー10は、レチクルR上の正方形の照明領域23を照明する際の照明光ILを全て反射できる大きさに形成されている。このように本例では、結像特性の計測時には第2フライアイレンズ6を交換して、レチクルブラインド9の開口形状を大きくするのみでよいため、作業付加が少なくなっている。但し、その開口形状を大きく設定する代わりに、レチクルブラインド9を取り外してもよい。また、そのミラー10の大きさを、レチクルR上のスリット状の照明領域22が照明される場合の照明光ILのみを反射できる大きさに形成し、例えば第2フライアイレンズ6を交換し、レチクルブラインド9の開口形状を切り換えて正方形の照明領域23が選択された場合に、そのミラー10をより大きな別のミラーと交換するようにしてもよい。これらの交換作業は、投影光学系PLの調整のためだけに行われるものであるため、できるだけ作業付加を少なくすることが望ましい。
【0024】
次に、レチクルR上の照明領域の大きさが変更される場合のフライアイレンズの交換について説明する。
図3の構成例では、第1フライアイレンズ5の各レンズエレメントからの照明光が重畳的に第2フライアイレンズ6の入射面を照明し、更に第2フライアイレンズ6の各レンズエレメントからの照明光が重畳的にレチクルRを照明する、所謂ダブルフライアイ方式が採用されている。従って、レチクルR上での照度分布の均一性が極めて高くなっている。この場合、第2フライアイレンズ6の各レンズエレメントの入射面とレチクル面とが共役である。そこで、照明効率を高めるために、第2フライアイレンズ6の各レンズエレメントの断面形状は照明領域22より僅かに広い領域とほぼ相似(より正確には共役)の細長い矩形に設定されている。
【0025】
即ち、図4(b)は第2フライアイレンズ6の射出面の形状を示し、図4(b)に示すように、第2フライアイレンズ6は断面形状が細長い矩形の多数のレンズエレメント26aを2次元的に配列して形成されている。また、第2フライアイレンズ6の射出面は、図3の投影光学系PLの瞳面(レチクル面に対する光学的フーリエ変換面)と共役であり、その瞳面を均一に照明するために、第2フライアイレンズ6の全体の断面形状は等方的な正方形に設定されている。
【0026】
更に、図3において、第1フライアイレンズ5の各レンズエレメントの入射面と第2フライアイレンズ6の入射面とが共役で、第1フライアイレンズ5の射出面がレチクル面と共役である。そこで、照明効率を高めるためには、第1フライアイレンズ5の各レンズエレメントの断面形状が第2フライアイレンズ6の全体の断面形状と相似な正方形で、且つ第1フライアイレンズ5の全体の断面形状が、スリット状の照明領域22と相似な細長い矩形に設定されることが望ましい。
【0027】
図4(a)及び図5(a)は、共に第1フライアイレンズ5の射出面を示し、図4(a)及び図5(a)に示すように、本例の第1フライアイレンズ5は断面形状が正方形の多数のレンズエレメント25aを2次元的に配列して形成され、且つ全体の断面形状が細長い矩形に形成されている。従って、第1フライアイレンズ5の全体の断面形状は、図2のスリット状の照明領域22と相似で、レンズエレメント25aの断面形状は第2フライアイレンズ26の全体の断面形状と相似であるため、高い照明効率が得られている。
【0028】
また、本例では、投影光学系PLの結像特性の計測時にはレチクルR上の照明領域を図2の正方形の照明領域23に切り換えるようにしているため、その照明領域23の全体を照明できるように、第2フライアイレンズ6は、例えば回転方式の交換装置31により別の各レンズエレメントの断面形状が正方形の第2フライアイレンズ6Aと切り換え自在に構成されている。
【0029】
図5(b)はその第2フライアイレンズ6Aの射出面を示し、この図5(b)に示すように、その第2フライアイレンズ6Aは断面形状が正方形の多数のレンズエレメント27aを2次元的に配列して形成され、且つ全体の断面形状も正方形に形成されている。レンズエレメント27aの断面形状は、結像特性の計測時の正方形の照明領域23より僅か広い領域と相似であり、これによって、結像特性の計測時にその照明領域23の全体を照明できる。即ち、その結像特性の計測時には、交換装置31を介して第2フライアイレンズ6の代わりに、第2フライアイレンズ6Aが照明光ILの光路上に配置される。
【0030】
但し、そのフライアイレンズの交換は全自動である必要は必ずしもなく、最終的な位置決めは作業者が行う半自動でもよい。この際に、位置決めの再現性を保障するために、フライアイレンズ6,6Aはそれぞれ当て駒等で正確に位置決めが行われている。更に、投影露光装置の製造コストを低減するために、その交換装置31を省略して第2フライアイレンズ6と6Aとを手動で交換するようにしてもよい。
【0031】
また、フライアイレンズを交換した場合でも、図5(a)の第1フライアイレンズ5の射出面と、レチクル面とは共役であるため、第1フライアイレンズ5の全面から射出される照明光の内で、太線の正方形の枠内の領域29内から射出される照明光しか正方形の照明領域23に入射できない。このため、照明効率(照明光量)は大幅に低下しているが、これは露光時間を長くするか、又は後述の光電センサのゲインの変更等で容易に対処できる。
【0032】
次に、本例の投影露光装置のステージ系等につき説明する。
図3において、レチクルRはレチクルホルダRHを介して走査方向(Y方向)に一定速度で移動自在で、且つX方向、Y方向及び回転方向に微動可能なレチクルステージ12上に載置されている。レチクルステージ12の位置は不図示のレーザ干渉計により高精度に計測されて、その計測値は主制御系16に供給されている。主制御系16はその計測値に基づいて不図示の駆動系を介してレチクルステージ12の走査速度や位置を制御する。一方、ウエハWは不図示のウエハホルダ上に真空吸着されており、そのウエハホルダは、走査方向(Y方向)に一定速度で移動すると共に、X方向、Y方向へのステッピングも可能なウエハステージ13上に固定されている。ウエハステージ13の位置はその上端に固定された移動鏡17m及び外部のレーザ干渉計17により高精度に計測され、その計測値は主制御系16に供給され、主制御系16はその計測値に基づいて不図示の駆動系を介してウエハステージ13(ウエハW)の走査速度及び位置を制御する。
【0033】
レチクルステージ12、及びウエハステージ13によって、ウエハW上の各ショット領域を走査開始位置にステッピング移動する動作と、レチクルR及びウエハWを投影光学系PLに対して同期走査する動作とがステップ・アンド・スキャン方式で繰り返されて、ウエハW上の各ショット領域にレチクルRのパターンの像が逐次転写される。
【0034】
更に、不図示であるが投影光学系PLの両側にはウエハWの表面のZ方向の位置(フォーカス位置)を検出するための送光光学系及び受光光学系からなる斜入射方式の焦点位置検出系が備えられている。この焦点位置検出系からのウエハWのフォーカス位置の情報は主制御系16に供給され、走査露光時には主制御系16はその情報に基づいてウエハステージ13を駆動して、オートフォーカス方式でウエハWの表面を投影光学系PLの像面に合わせ込む。
【0035】
また、ウエハステージ13上のウエハWの近傍には、ウエハWの表面と同じ高さの表面を有する開口板14が固定されている。開口板14は照明光ILを透過する基板より形成されている。
図7(a)はその開口板14の周辺の拡大図を示し、この図7(a)において、ウエハステージ13の上板13aに固定された開口板14の表面の遮光膜中にはY方向に細長いスリット36、及びX方向に細長いスリット(不図示)が形成され、これらのスリットの底部にフォトダイオード等からなる光電センサ37が設置されている。開口板14及び光電センサ37は空間像センサとして、投影光学系PLの結像特性の計測時に使用され、光電センサ37の検出信号(光電変換信号)S1は、図3の主制御系16内の信号処理系に供給されている。
【0036】
また、本例の投影露光装置は、結像特性の補正機構を備えている。即ち、図3において、レチクルホルダRHとレチクルステージ12との間に例えば3個のピエゾ素子等からなる伸縮自在のアクチュエータ19が装着され、投影光学系PL内の最もレチクル側のレンズエレメント15のレンズホルダと鏡筒本体との間にも例えば3個の伸縮自在のアクチュエータ20が装着されている。そして、主制御系16からの指令のもとに結像特性制御系18がアクチュエータ19の伸縮量を個々に制御することによって、レチクルホルダRH(レチクルR)を光軸AX方向に微動できると共に所定範囲で傾斜させることができ、且つアクチュエータ20の伸縮量を個々に制御することによって、レンズエレメント15を光軸AX方向に微動できると共に所定範囲で傾斜させることができる。これらの動作によって、投影光学系PLによるレチクルRのパターンの投影像の結像特性の内で、ディストーション(倍率誤差を含む)、像面湾曲(像面傾斜を含む)、非点収差、及びコマ収差等を或る程度補正できるようになっている。また、像面傾斜の補正用に投影光学系PLは或る程度傾斜できるように構成されている。
【0037】
なお、レチクルRやレンズエレメント15を駆動する機構としては、ピエゾ素子等の他に、スピンドルを突没させる自動制御の駆動モータ、手動のマイクロメータ、又は手動で介装するワッシャの枚数を増減する機構等が使用できる。また、結像特性の補正機構としては、投影光学系PL内の所定の2枚のレンズエレメント間の密閉空間内の気体圧力を制御する機構や、投影光学系内の2枚以上のレンズエレメントを独立に駆動する機構等が使用できる。更に、これらの機構を組み合わせた機構を使用することによって、より多種類の結像特性を補正できる。
【0038】
次に、本例の投影露光装置の投影光学系PLの調整を行う場合の基本的な動作につき説明する。投影光学系PLの調整に際しては、先ず照明光学系を調整して投影光学系PLによる投影像が観察できる状態にした後、その投影像の結像特性の計測を行い、その計測値に基づいて結像特性の補正量を計算して補正を行い、補正後再び結像特性の計測を行うという工程を結像特性が予め定められた規格内に入るまで繰り返す。ステップ・アンド・スキャン方式においては、最終的な結像特性の規格は、走査露光後に得られる転写像に関するものであるため、投影光学系PLだけでなく、レチクルRとウエハWとの同期精度、及びそれらの相対回転角等の条件も関係してくるが、先ず静止状態において投影光学系PLの結像特性が所定の規格値を満たすことが前提である。本例では静止状態で投影光学系PLの結像特性を計測する方法につき説明する。
【0039】
投影光学系PLの計測すべき結像特性としては、例えばディストーション、像面湾曲、非点収差、及びコマ収差等があるが、ここでは一例として、ディストーション及び像面湾曲の計測方法につき説明する。図2を参照して説明したように本例では、走査露光時にはレチクルをスリット状の照明領域22で照明し、結像特性の計測時には基本的にレチクルを正方形の照明領域23で照明する。このようにするのは以下の理由による。
【0040】
即ち、図9は、投影光学系PLのディストーション中の台形歪みの説明図であり、この図9において、投影光学系PLに収差が無いものとすると、投影光学系PLの円形の有効露光フィールド51内の2点鎖線で囲まれたスリット状の露光領域52が図2のスリット状の照明領域22と共役であり、2点鎖線で囲まれた正方形の露光領域53が図2の正方形の照明領域23と共役である。これに対して、投影像に台形歪みがあると、露光領域52は実線で囲まれた台形状の領域52’に歪み、同様に露光領域53も実線で囲まれた台形状の領域53’に歪む。
【0041】
この場合、スリット状の露光領域52で結像特性を計測するとして、その領域52から台形状の領域52’への歪量は小さいために、測定誤差を考慮すると、明確に台形状に歪んでいるとは判定できないことがある。また、台形状に歪んでいることが分かるときでも、その歪みの量を高精度に計測するのは困難である。
これに対して、一括露光型の投影露光装置の場合と同等に正方形の露光領域53で結像特性を計測する場合には、その領域53から台形状の領域53’への歪量はY方向の両端部で十分に大きくなっている。即ち、正方形の露光領域53はスリット状の露光領域52に比べて、走査方向に対して光軸から大きく離れているため、正方形の露光領域53を使用することによって、台形歪のような光軸からの距離に依存する規則的なディストーションを定量的により正確に計測できることになる。言い換えると、ステップ・アンド・スキャン方式で、スリット状の露光領域52内での結像特性の計測結果のみから補正を行うのでは、正方形の露光領域53内での結像特性の計測結果から補正を行う一括露光型の投影露光装置と比べて補正精度が低くなってしまう恐れがある。そこで、本例では正方形の露光領域53内で結像特性を計測する。なお、光軸からの距離に依存しないランダムなディストーション等の成分は、スリット状の露光領域52でも正方形の露光領域53でもほぼ同等に計測できる。同様な結果が像面湾曲についても生ずる。
【0042】
図10(a)は、投影光学系PLの有効露光フィールド51を示し、図10(b)は図10(a)の有効露光フィールド51の光軸を通りY方向(走査方向)に平行な直線に沿った断面での像面湾曲(像面傾斜を含む)を表している。図10(b)において、横軸は光軸からY方向(走査方向)への位置y、縦軸は位置yでの像面のZ方向への変位Δhを示す。図10(b)には、曲線54で示す狭義の像面湾曲成分、及び直線55で示す像面傾斜成分が併記されている。
【0043】
この場合も、図10(a)のスリット状の露光領域52内で結像特性の計測を行うときには、その領域52の走査方向の両端部A1,A2での像面の変位Δhは、図10(b)に示すように曲線54又は直線55の何れに対しても小さく、計測誤差を考慮すると正確に像面湾曲か像面傾斜かを判定するのが困難であることがある。また、像面湾曲か像面傾斜かが判定できても、走査方向に対してこれらを定量的に正確に求めるのは困難である。
【0044】
これに対して一括露光型の投影露光装置の場合と同等の正方形の露光領域53内で結像特性を計測するときには、その十分広い領域53の両端部B1,B2での像面の変位Δhは、図10(b)に示すように、曲線54又は直線55の何れに対しても十分大きくなり、露光領域53の全面での像面湾曲を比較的正確に計測できることが分かる。即ち、走査方向で大きく変位する像面湾曲についても、正方形の露光領域53内で結像特性を計測することによって、スリット状の露光領域52内で計測するよりも高精度にその量を計測できるという結果になる。
【0045】
次に、図2に示すようにレチクルを正方形の照明領域23で照明して結像特性を計測する場合の基本的な動作につき説明する。この場合、図3のレチクルRの代わりに評価用マークの形成されたテストレチクルを載置する。
図6(b)は、図3のレチクルホルダRH上に保持されたテストレチクルTRの平面図を示し、この図6(b)において、テストレチクルTR上の正方形の照明領域23内には、X方向及びY方向にそれぞれ所定間隔で同一の多数の評価用マーク34A,34B,34C,…,34Oが形成されている。評価用マーク34Aは、図6(c)に示すように、遮光膜中でそれぞれY方向に細長い5本の開口パターンをX方向に所定ピッチで配列してなるX軸の評価用マーク35Xと、この評価用マークを90°回転した形状のY軸の評価用マーク35Yとから構成されている。また、テストレチクルTR上での評価用マーク34A,34B,…,34Oの位置関係は予め座標測定装置等によって高精度に計測されて、主制御系16の記憶部に記憶されている。
【0046】
なお、本例では後述のように図2の正方形の照明領域23で照明して結像特性を計測した後、照明領域をスリット状の照明領域22に戻して再び結像特性を確認するようにしている。そのため、図6(a)に示すように、テストレチクルTRをスリット状の照明領域22で照明した場合に、その照明領域22内にはX方向、Y方向に所定ピッチで多数の同一の評価用マーク33A,33B,33C,…,33Iが形成されている。評価用マーク33Aは、図6(c)に示すように評価用マーク34Aと同一形状である。この場合、評価用マーク33A〜33Iと評価用マーク34A〜34Oとは一部が兼用されていてもよい。なお、通常の露光用のレチクル(例えば図3のレチクルR)上の転写用のパターンの一部に評価用マークを形成しておき、これらの評価用マークを用いて結像特性を計測してもよい。
【0047】
そして、テストレチクルTRを図3のレチクルホルダRH上に載置し、照明光ILの照射を開始して図6(b)に示すように正方形の照明領域23でテストレチクルTRを照明すると、評価用マーク34A〜34Oの像が投影光学系PLを介してウエハステージ13上に投影される。この際に、これらの像の位置を図7(a)の開口板14及び光電センサ37よりなる空間像センサで検出することによって、投影像のディストーションを計測する。
【0048】
そのため、評価用マーク34A〜34Oの既知の配列に投影光学系PLの設計上の投影倍率β0 を乗じて得られる配列に基づいてウエハステージ13を駆動することによって、評価用マーク34A〜34Oの像の投影位置の目標値の手前に図7(a)の開口板14上のスリットを移動する。そして、評価用マーク34A〜34O内のX軸の評価用マークの像の位置を検出するためには、ウエハステージ13を駆動して開口板14上のスリット36でその像をX方向に走査して、光電センサ37の検出信号S1を取り込む。
【0049】
図7(b)はこのように取り込まれた検出信号S1を示し、この図7(b)において、主制御系16内の信号処理系で検出信号S1を所定のスライスレベルで2値化して5個のパルスの平均的なX座標Xnを求めることによって、そのX軸の評価用マークの像の位置が計測される。同様に、開口板14上のX方向に長いスリットでY軸の評価用マークの像をY方向に走査することによって、その像のY座標を計測できる。この場合の評価用マークの像のX座標、Y座標は図3のレーザ干渉計17によって極めて高い分解能で高精度に計測される。その後主制御系16で、計測された評価用マーク34A〜34Oの投影像のX座標、Y座標を、設計上の配列座標と比較することによって、図6(b)の正方形の照明領域23に対応する露光領域内での投影像の位置ずれ量の分布、即ちディストーションが定量的に高精度に計測できる。
【0050】
また、空間像センサを用いて像面湾曲を計測する場合には、図6(b)のようにテストレチクルRを正方形の照明領域23で照明した状態で、ウエハステージ13のZ方向の位置を次第に変えて開口板14のフォーカス位置をずらしながら、評価用マーク34A〜34Oの投影像のコントラストを検出すればよい。即ち、或る1つの評価用マークについて、開口板14のフォーカス位置を例えばZ1,Z2,Z3,…と変化させて、それぞれ開口板14でその評価用マークの像をX方向(及びY方向)に走査して光電センサ37の検出信号S1を取り込むと、得られる検出信号S1のコントラストはそれぞれ図8(a),(b),(c)に示すように変化する。そこで、最もコントラストが高くなるフォーカス位置(ベストフォーカス位置)Ziをその評価用マークの投影像の位置での像面位置とすることによって、正方形の照明領域23と共役な露光領域内の各点での像面位置の分布、即ち像面湾曲が計測できる。この際に、X軸の評価用マークの像面位置とY軸の評価用マークの像面位置との差分から非点収差も計測できる。
【0051】
なお、そのように空間像センサを使用する代わりに、そのテストレチクルTRのパターン像を評価用のウエハ上に露光(テストプリント)して、現像後に得られるレジストパターンの位置を別の座標測定装置、又は図3の投影露光装置で測定することによって投影像のディストーションを計測してもよい。また、そのテストレチクルTRを用いる代わりに、X方向、Y方向に一定ピッチで所定の評価用マークが形成されたテストレチクルを使用し、このテストレチクルの像を評価用のウエハ上に露光した後、このウエハをその評価用マークのピッチに相当する分だけX方向、Y方向に順次ずらして多重露光を行うようにしてもよい。この場合、現像後に得られたレジストパターンの各計測点で多重露光された像の位置ずれ量を次第に加算することによって、光軸から離れた位置でのディストーションが高精度に計測される。
【0052】
また、テストプリントによって像面湾曲を計測する場合には、図6(b)のテストレチクルTRの像を評価用のウエハの1番目のショット領域上に露光した後、ウエハをX方向、又はY方向にステッピングすると共に、そのウエハのフォーカス位置を僅かに変えてそのテストレチクルTRの像をウエハ上の2番目のショット領域に露光し、以下ウエハのフォーカス位置をずらしながら3番目以降のショット領域に順次そのテストレチクルTRの像を露光していけばよい。そして、現像後に、各評価用マークの像の内で最もコントラストが良好になるフォーカス位置を検出することによって像面位置の分布が計測できる。
【0053】
次に、以上の方法で得られたディストーション、及び像面湾曲の補正方向につき説明する。先ず、ディストーションについては、通常ディストーションの成分毎に異なる補正機構が使用されるため、計測されたディストーションを成分毎に区分する。その成分としては、倍率誤差、台形歪み成分、糸巻歪成分、及び樽型歪み成分等がある。
【0054】
図3の投影露光装置では、レチクルRに近い投影光学系PLのレンズエレメント15を光軸AX方向に駆動することで倍率誤差の補正を行うことができる。また、レンズエレメント15を光軸AXに垂直な平面から傾斜させることで、ディストーションの台形歪み成分を補正できる。更に、レチクルホルダRH(レチクルR)の光軸AX方向の位置を調整することで、ディストーションの糸巻、及び樽型歪み成分を補正できる。このように、補正機構で補正できる成分は、光軸AXに対して軸対称成分かあるいは、光軸から傾斜した軸に対して対称な成分となる。そこで、これらを組み合わせて各点のディストーションの最大誤差が最も小さくなるようにディストーションの成分毎に補正値を計算し、この計算値に基づき各成分の補正を行う。
【0055】
次に、像面湾曲の補正を行う場合、計測された像面位置のデータをディストーションと同様に成分毎に区分し、各成分を対応する補正機構による補正する。像面位置の成分には、図10(b)の直線55で表されるような像面傾斜成分と、図10(b)の曲線54で表されるような狭義の像面湾曲成分とがある。例えば像面傾斜成分に関しては投影光学系PLを傾斜させる方法により補正でき、狭義の像面湾曲に関しては投影光学系PLのレンズエレメント15を光軸AX方向に駆動する方法により補正できる。但し、レンズエレメント15を駆動するとディストーションも変化するので、例えば投影光学系PL内の複数枚のレンズエレメントを駆動可能にしておき、像面とディストーションとを独立に補正する方法を用いてもよい。
【0056】
次に、本例の投影露光装置で投影光学系PLによる投影像の結像特性を調整する場合の全体の動作の一例につき、図1のフローチャートを参照して説明する。先ず、図1のステップ101で、図3のレチクルホルダRH上に図6(b)のテストレチクルTRをロードして、照明光学系の調整を行う。具体的に、例えば照明光ILのレチクル上での照度分布の均一性、あるいはレチクルへの入射角(テレセントリシティ)の調整が必要であり、これらはフライアイレンズ5,6、及びリレーレンズ8A等を光軸方向に微動、あるいは傾斜させる方法等により調整される。また、第1フライアイレンズ5の射出面とレチクル面とが共役関係になるようにリレーレンズ8Bの調整等を行う。
【0057】
次に、ステップ102で照明領域を変更する。即ち、本例はステップ・アンド・スキャン方式であるが、投影光学系PLを調整するときのみ、図2に示す正方形の照明領域23を使用して結像特性を計測し、その計測値に基づいて主に光軸からの距離に応じて定まる軸対称な、又は傾斜した軸に対して軸対称な成分の結像特性を補正しようというものである。ところが、図3の第2フライアイレンズ6を用いて照明できる領域は、照明効率を高めるためにレチクル上のスリット状の照明領域22である。
【0058】
そこで、照明光学系の構成を変更するために、先ず図3の第2フライアイレンズ6を交換装置31を介して第2フライアイレンズ6Aに交換する。この際に再現性のある方法で位置決めが行われる。第2フライアイレンズ6Aは、図5(b)で示したように断面形状が正方形のレンズエレメント27aを束ねたものであるため、これによってレチクル上の正方形の照明領域23の全体が照明できるようになる。更に、駆動装置32を介してレチクルブラインド9の開口をその照明領域23に合わせて大きくする。但し、レチクルブラインド9を取り外すようにしてもよい。また、光路折り曲げ用のミラー10については、本例では正方形の照明領域に対応できるように形成されているため特に交換等をする必要はない。但し、ミラー10がスリット状の照明領域に対応しているときには、ミラー10の交換も行う。第2フライアイレンズ6A以降のリレーレンズ8A,8B、及びコンデンサーレンズ11は軸対称であるため、特に交換する必要はない。
【0059】
但し、図5(a)を参照して説明したように、第1フライアイレンズ5から射出される照明光ILの内、太線枠で示す領域29内を通過する光束のみがその正方形の照明領域23を照明する。このため、照明光量は大幅に低下するが、空間像センサを使用する場合にはその分だけ光電センサ37のゲインを上げればよい。また、テストプリント方式で結像特性を計測する際には、露光時間を長くすればよい。なお、そのような光量低下を避けたいときには、ビーム整形部3及び第1フライアイレンズ5等も交換するようにしてもよい。
【0060】
以上の調整により、一括露光型の場合と同様の正方形の照明領域23のもとで、投影光学系PLの投影像を観察することが可能になり、次のステップ103において、図7(a)の開口板14及び光電センサ37よりなる空間像センサを用いて、テストレチクルTR上の評価用マーク34A〜34Oの像の位置、及び開口板14のフォーカス位置を変えた場合のそれらの像のベストフォーカス位置を計測する。そして、これらの計測結果より、投影光学系PLのディストーション、及び像面湾曲等の結像特性を求める。測定が終了するとステップ104において、計測された結像特性が予め設定された結像特性の規格内に入っているかどうかが判定される。なお、この結像特性の規格の設定に際しては、照明領域を広げていることと、実際の回路パターンが形成されたレチクルの露光に使用される照明光学系ではないことを考慮して設定する必要がある。即ち、照明光学系を元に戻したときに手直しの必要がないように、その規格は実際の走査露光時と同程度、又はそれ以上に厳しく設定しておくのが望ましい。
【0061】
ステップ104において結像特性が規格外であると判定された場合はステップ105に進み、図3の結像特性制御系18を駆動して投影光学系PLの結像特性を補正する。結像特性が規格内に入るまでステップ103〜105が繰り返され、ステップ104で結像特性が規格内に入ったことが確認され後、ステップ106に移行して、照明領域が元のスリット状の照明領域22に戻される。即ち、第2フライアイレンズ6Aを第2フライアイレンズ6に交換すると共に、レチクルブラインド9の開口形状をスリット状の照明領域22に対応した形状にする。この際に、当て駒等を利用して第2フライアイレンズ6は再現性のある形で位置決めが行われる。
【0062】
次に、ステップ107で最終的に照明光学系の照明特性(照度分布等)と投影光学系PLの結像特性の確認を行う。前述のように第2フライアイレンズ6の位置は再現性があるため、通常の場合は照明光学系の照明特性の変化は無い。しかしながら、照明特性が変化しているときには、照明光学系の各光学部材の位置の調整等を行う。そして、照明特性が所定の規格内に入っている状態で、図6(a)に示すように、テストレチクルTR上のスリット状の照明領域22内の評価用マーク33A〜33Iの像の位置、及びベストフォーカス位置を計測し、この計測結果より投影光学系PLの結像特性を確認する。これは、照明領域の相違、及び照明光学系の変更された光学部材の位置の微妙な相違等で結像特性が若干変化している可能性があるためである。
【0063】
それに続くステップ108においてその結像特性が予め定められた規格に入っているかどうかを判定する。結像特性がその規格に入らない場合は、ステップ109に進み、第2フライアイレンズ6Aを使用して照明領域を変更しなければならない程の大幅な調整が必要なレベルか否かを判定する。この場合の判定は投影光学系PLの結像特性によって判定される。即ち、ステップ109で結像特性が大幅にその規格を超えている場合には、ステップ102に戻って照明領域を正方形の照明領域23に変更して、結像特性が規格を大きく外れないレベルになるまでステップ102〜109が繰り返される。
【0064】
一方、ステップ109で結像特性が僅かに規格を超えている程度であるときには、ステップ110に進んで、図3の結像特性制御系18を介して結像特性を僅かに補正してステップ107に戻る。そして、結像特性がその規格内に入るまでステップ110〜108が繰り返される。その後、ステップ108で結像特性が規格内に入ったときに、投影光学系PLの調整作業は終了する。
【0065】
以上のように、本例ではステップ・アンド・スキャン方式にも拘らず、ステップ102に示すように、第2フライアイレンズ6を第2フライアイレンズ6Aで交換することにより、一括露光型と同様の正方形の照明領域23に変更して結像特性を計測しているため、台形状のディストーション等のように光軸からの距離に依存する規則的な結像特性や、像面傾斜のように傾斜した軸に対して対称な規則的な結像特性が定量的に高精度に計測できる。従って、正確な結像特性の計測値に基づいて投影光学系PLの結像特性を高精度に所望の規格内に補正できる利点がある。また、正方形の照明領域23のもとでより正確に規則的な結像特性が計測できるため、ステップ105における結像特性の補正が高精度に行われる。従って、その後のステップ109では殆どの場合結像特性の小さい修正が必要になるだけであり、その修正の量も僅かであるため、結果として投影光学系PLの調整に要する時間が短縮される利点もある。
【0066】
なお、本例ではステップ105の投影光学系PLの結像特性の補正が終了した後、ステップ106において、本来の照明領域22に復帰しているが、この際の照明領域、及び照明特性は実際の露光時の状態とほぼ同一である必要がある。この意味からも、照明領域の変更時に動かす光学部材は少ない程好ましい。本例では第2フライアイレンズ6Aを第2フライアイレンズ6に戻しているが、前述のように第2フライアイレンズ6の光軸方向の位置及び角度は照明光学系の性能を高精度に保つため厳密に再現される必要がある。本例では当て駒等によってその位置等が厳密に再現されている。
【0067】
更に、調整用の第2フライアイレンズ6Aに交換したときも基本的な照明光学系の性能が損なわれないように、第2フライアイレンズ6Aの取り付け基準面と他の光学素子との位置関係が厳密に管理されている。
なお、照明領域を変更する際の各光学部材間の位置ずれ等を防止するために、照明光学系全体を調整用の照明光学系に交換する方法も考えられる。投影光学系PLの調整が例えば投影露光装置の組立調整時に行われるものとすれば、共通の調整用の照明光学系を用いて多数の投影露光装置の投影光学系の調整を行うことができる。
【0068】
また、本例では第2フライアイレンズ6を交換装置31で自動的、又は半自動的に第2フライアイレンズ6Aに交換しているが、上述のように製造コストを低減するため、及び投影露光装置の構成を簡素化するために、作業者が手動で第2フライアイレンズ6,6Aの交換をするようにしてもよい。このように手動でフライアイレンズの交換を行う場合には、フライアイレンズを位置決めする面には基準面を有する部材を設けると共に、その基準面に各フライアイレンズを位置決めするための目盛り等を付して位置決めの再現性を保障するのが望ましい。
【0069】
また、調整用の照明領域も図2の照明領域23のような正方形の照明領域に限定されず、投影光学系PLの有効露光フィールド21をそのまま利用するようにしてもよい。また、スリット状の照明領域22より走査方向に広い照明領域であれば何れの照明領域を使用してもよい。このように、本発明は上述の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
【0070】
【発明の効果】
本発明の走査型露光装置の調整方法によれば、走査露光時におけるマスクの照明領域(以下、「第1の照明領域」という)と異なる領域(以下、「第2の照明領域」という)を投影光学系の結像特性を評価する際に用いることができる。走査型露光装置における第1の照明領域は、そのマスク上におけるその投影光学系の有効露光フィールドと共役な領域に対して限定された領域であり、その限定された領域における結像特性の測定値は誤差が生じ易い。そこで、例えば第2の領域としてその限定された領域外の領域を含む照明領域を設定すれば、例えば光軸からの距離に依存するような規則的な結像特性の測定誤差が小さくなり、その投影光学系の結像特性を所望の状態に高精度に調整できる利点がある。
【0071】
また、その走査露光時における照明領域は、その走査の方向を短辺方向とするスリット状であり、その投影光学系の結像特性を測定する際の照明領域はその走査の方向に関してそのスリット状の照明領域の外側を含むように変更される場合には、特に規則的な結像特性が高精度に計測できる。
また、その投影光学系の結像特性を調整した後に、その照明光による照明領域を走査露光時の照明領域に戻して、その投影光学系の結像特性を確認する場合には、仮に照明領域を元に戻すこと等に伴う結像特性の変動があった場合でも、その変動を補正できる利点がある。
【0072】
次に、本発明による走査型露光装置によれば、本発明の走査型露光装置の調整方法が使用できる。
このとき、投影光学系を介して投影された所定のマスクパターンの像を検出するセンサと、このセンサの検出結果に基づいてその投影光学系の結像特性を求める演算手段と、を更に備えた場合には、空間像センサを用いる方法でテストプリントを行うことなく迅速に結像特性を計測できる。
【0073】
また、照明光学系は、その照明光の照明領域を規定するための視野絞りを有し、制御系は、その投影光学系の結像特性を測定するときと、走査露光を行うときとでその照明光の照明領域が異なるようにその視野絞りを調整する場合には、変更後の照明領域の形状が正確に所望の形状に設定できる。
また、その照明光学系は、その照明光の照度分布を均一化するためのオプティカル・インテグレータを切り換え可能に複数種類有し、その投影光学系の結像特性を測定するときと走査露光を行うときとでそのオプティカル・インテグレータの切り換えを行う場合には、通常の走査露光時に高い照明効率を得ることができると共に、結像特性の計測時には広い照明領域の全面を照明できる利点がある。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示すフローチャートである。
【図2】その実施の形態において使用される2種類の照明領域の説明に供する図である。
【図3】その実施の形態において使用される投影露光装置を示す一部を切り欠いた概略構成図である。
【図4】図3の投影露光装置において使用される2つのフライアイレンズ5,6の射出面を示す図である。
【図5】本発明の実施の形態において、投影光学系の調整時に使用される2つのフライアイレンズ5,6Aの射出面を示す図である。
【図6】(a)は本発明の実施の形態で使用されるテストレチクルTR上の評価用マークの配列を示す平面図、(b)はそのテストレチクルTR上の別の評価用マークの配列を示す平面図、(c)は評価用マークを示す拡大平面図である。
【図7】(a)は図3のウエハステージ13中に備えられた空間像センサを示す拡大断面図、(b)はその空間像センサ中の光電センサから出力される検出信号の一例を示す図である。
【図8】空間像センサのZ方向の位置を変えた場合に得られる光電センサからの検出信号の一例を示す図である。
【図9】投影光学系の有効露光フィールド内の2つの露光領域でのディストーションの相違を示す平面図である。
【図10】(a)は投影光学系の有効露光フィールドを示す平面図、(b)は図10(a)の光軸を通る断面における像面位置を示す図である。
【符号の説明】
1 露光光源
5 第1フライアイレンズ
6,6A 第2フライアイレンズ
9 レチクルブラインド
11 コンデンサーレンズ
R レチクル
TR テストレチクル
PL 投影光学系
W ウエハ
12 レチクルステージ
13 ウエハステージ
14 開口板
15 レンズエレメント
16 主制御系
18 結像特性制御系
22 照明領域(走査露光時)
23 照明領域(結像特性調整時)
34A〜34O 評価用マーク
37 光電センサ

Claims (11)

  1. 照明光に対してマスクと基板とを同期走査することにより前記マスクのパターンの像を投影光学系を介して前記基板上に転写する走査型露光装置の調整方法において、
    前記照明光による照明領域を走査露光時と異なるように変更し、
    該照明領域の変更後に、所定のマスクパターンの像を前記投影光学系を介して投影することにより前記投影光学系の結像特性を測定し、
    該測定結果に基づいて前記投影光学系を調整することを特徴とする走査型露光装置の調整方法。
  2. 前記走査露光時における照明領域は、前記走査の方向を短辺方向とするスリット状であり、前記投影光学系の結像特性を測定する際の照明領域は前記走査の方向に関して前記スリット状の照明領域の外側を含むように変更されることを特徴とする請求項1に記載の走査型露光装置の調整方法。
  3. 前記投影光学系の結像特性を調整した後に、前記照明光による照明領域を走査露光時の照明領域に戻して、前記投影光学系の結像特性を確認することを特徴とする請求項1又は2に記載の走査型露光装置の調整方法。
  4. 光源からの照明光に対してマスクと基板とを同期して移動することにより前記マスクのパターンの像を投影光学系を介して前記基板上に転写する走査型露光装置において、
    前記光源からの照明光による照明領域を変更可能な照明光学系と、
    前記投影光学系の結像特性を測定するときと走査露光を行うときとで、前記照明光の照明領域が異なるように前記照明光学系の光学要素を制御する制御系と、
    前記照明光の照明領域が走査露光を行うときとは異なる状態で測定された前記投影光学系の結像特性に応じて前記投影光学系を調整する調整系と、
    を備えたことを特徴とする走査型露光装置。
  5. 前記投影光学系を介して投影された所定のマスクパターンの像を検出するセンサと、該センサの検出結果に基づいて前記投影光学系の結像特性を求める演算手段と、を更に備えたことを特徴とする請求項4に記載の走査型露光装置。
  6. 前記照明光学系は、前記照明光の照明領域を規定するための視野絞りを有し、
    前記制御系は、前記投影光学系の結像特性を測定するときと走査露光を行うときとで前記照明光の照明領域が異なるように前記視野絞りを調整することを特徴とする請求項4又は5に記載の走査型露光装置。
  7. 前記照明光学系は、前記照明光の照度分布を均一化するためのオプティカル・インテグレータを切り換え可能に複数種類有し、前記投影光学系の結像特性を測定するときと走査露光を行うときとで前記オプティカル・インテグレータの切り換えを行うことを特徴とする請求項4、5、又は6に記載の走査型露光装置。
  8. 照明光に対してマスクと基板とを同期走査することにより前記マスクのパターンの像を投影光学系を介して前記基板上に転写する走査型露光装置の調整方法において、
    走査露光時における第1の照明領域と異なる第2の照明領域を設定し、
    前記第2の照明領域のもとで、前記投影光学系の結像特性を測定し、
    該測定結果に基づいて前記投影光学系を調整することを特徴とする走査型露光装置の調整方法。
  9. 前記第2の照明領域は、前記第1の照明領域外の領域を含むことを特徴とする請求項8に記載の走査型露光装置の調整方法。
  10. 前記投影光学系の結像特性は、前記第1の照明領域外における結像特性を含むことを特徴とする請求項9に記載の走査型露光装置の調整方法。
  11. 前記投影光学系の結像特性は、ディストーション又は像面湾曲を含むことを特徴とする請求項8〜10のいずれか一項に記載の走査型露光装置の調整方法。
JP32666996A 1996-12-06 1996-12-06 走査型露光装置の調整方法及び該方法を使用する走査型露光装置 Expired - Fee Related JP3728613B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32666996A JP3728613B2 (ja) 1996-12-06 1996-12-06 走査型露光装置の調整方法及び該方法を使用する走査型露光装置
US09/465,696 US6310680B1 (en) 1996-12-06 1999-12-17 Method of adjusting a scanning exposure apparatus and scanning exposure apparatus using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32666996A JP3728613B2 (ja) 1996-12-06 1996-12-06 走査型露光装置の調整方法及び該方法を使用する走査型露光装置

Publications (2)

Publication Number Publication Date
JPH10172878A JPH10172878A (ja) 1998-06-26
JP3728613B2 true JP3728613B2 (ja) 2005-12-21

Family

ID=18190351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32666996A Expired - Fee Related JP3728613B2 (ja) 1996-12-06 1996-12-06 走査型露光装置の調整方法及び該方法を使用する走査型露光装置

Country Status (2)

Country Link
US (1) US6310680B1 (ja)
JP (1) JP3728613B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI283798B (en) * 2000-01-20 2007-07-11 Asml Netherlands Bv A microlithography projection apparatus
JP2001265000A (ja) * 2000-03-16 2001-09-28 Toray Eng Co Ltd レーザー露光装置
US7561270B2 (en) * 2000-08-24 2009-07-14 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
TW527526B (en) * 2000-08-24 2003-04-11 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and device manufactured thereby
US6753963B1 (en) * 2000-10-26 2004-06-22 General Phosphorix Method of calibration of magnification of optical devices
JP4191923B2 (ja) 2001-11-02 2008-12-03 株式会社東芝 露光方法および露光装置
EP3301511A1 (en) 2003-02-26 2018-04-04 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP1467253A1 (en) * 2003-04-07 2004-10-13 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
SG2012050829A (en) 2003-04-10 2015-07-30 Nippon Kogaku Kk Environmental system including vacuum scavange for an immersion lithography apparatus
EP3062152B1 (en) * 2003-04-10 2017-12-20 Nikon Corporation Environmental system including vaccum scavenge for an immersion lithography apparatus
WO2005006418A1 (ja) 2003-07-09 2005-01-20 Nikon Corporation 露光装置及びデバイス製造方法
JP3959383B2 (ja) 2003-10-17 2007-08-15 株式会社東芝 露光装置補正システム、露光装置補正方法及び半導体装置製造方法
JP4400200B2 (ja) * 2003-12-10 2010-01-20 セイコーエプソン株式会社 画像表示方法、画像表示装置および画像表示プログラム
TW201816844A (zh) 2004-03-25 2018-05-01 日商尼康股份有限公司 曝光裝置、曝光方法、及元件製造方法
CN1954202A (zh) * 2004-06-08 2007-04-25 株式会社爱德万测试 图像传感器用试验装置
TWI396225B (zh) * 2004-07-23 2013-05-11 尼康股份有限公司 成像面測量方法、曝光方法、元件製造方法以及曝光裝置
JPWO2007043535A1 (ja) * 2005-10-07 2009-04-16 株式会社ニコン 光学特性計測方法、露光方法及びデバイス製造方法、並びに検査装置及び計測方法
JP5006711B2 (ja) * 2007-06-27 2012-08-22 キヤノン株式会社 露光装置、露光方法及びデバイス製造方法
JP6338377B2 (ja) * 2014-01-08 2018-06-06 キヤノン株式会社 露光装置、および物品の製造方法
JP2018045060A (ja) * 2016-09-13 2018-03-22 キヤノン株式会社 照明装置、露光装置及び物品の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117255A (en) 1990-09-19 1992-05-26 Nikon Corporation Projection exposure apparatus
US5473410A (en) 1990-11-28 1995-12-05 Nikon Corporation Projection exposure apparatus
US6078380A (en) * 1991-10-08 2000-06-20 Nikon Corporation Projection exposure apparatus and method involving variation and correction of light intensity distributions, detection and control of imaging characteristics, and control of exposure
JP2946950B2 (ja) * 1992-06-25 1999-09-13 キヤノン株式会社 照明装置及びそれを用いた露光装置
US5591958A (en) * 1993-06-14 1997-01-07 Nikon Corporation Scanning exposure method and apparatus
JP3255312B2 (ja) * 1993-04-28 2002-02-12 株式会社ニコン 投影露光装置
US5581324A (en) 1993-06-10 1996-12-03 Nikon Corporation Thermal distortion compensated projection exposure method and apparatus for manufacturing semiconductors
JP3374991B2 (ja) 1993-06-14 2003-02-10 株式会社ニコン 投影光学系の調整方法、露光方法、及び露光装置
JP3451604B2 (ja) 1994-06-17 2003-09-29 株式会社ニコン 走査型露光装置
JPH08115872A (ja) 1994-10-13 1996-05-07 Nikon Corp 露光装置
US5739899A (en) 1995-05-19 1998-04-14 Nikon Corporation Projection exposure apparatus correcting tilt of telecentricity

Also Published As

Publication number Publication date
US6310680B1 (en) 2001-10-30
JPH10172878A (ja) 1998-06-26

Similar Documents

Publication Publication Date Title
JP3728613B2 (ja) 走査型露光装置の調整方法及び該方法を使用する走査型露光装置
US5739899A (en) Projection exposure apparatus correcting tilt of telecentricity
US6771350B2 (en) Exposure apparatus and exposure method capable of controlling illumination distribution
EP1413928B1 (en) Apparatus and method for scanning exposure
US6333776B1 (en) Projection exposure apparatus
US5483056A (en) Method of projecting exposure with a focus detection mechanism for detecting first and second amounts of defocus
US6456377B1 (en) Method for measuring optical feature of exposure apparatus and exposure apparatus having means for measuring optical feature
JP3513842B2 (ja) 投影露光装置
JPWO2008132799A1 (ja) 計測方法、露光方法及びデバイス製造方法
JP2001274080A (ja) 走査型投影露光装置及びその位置合わせ方法
JP4692862B2 (ja) 検査装置、該検査装置を備えた露光装置、およびマイクロデバイスの製造方法
EP1024522A1 (en) Exposure method and aligner
JPH10294268A (ja) 投影露光装置及び位置合わせ方法
JPH0757991A (ja) 走査型投影露光装置
JP3506155B2 (ja) 投影露光装置
JP3551570B2 (ja) 走査型露光装置及び露光方法
JP3448819B2 (ja) 走査型露光装置
JP2000114145A (ja) 露光システム及び走査型露光装置並びにその露光方法
JP3092732B2 (ja) 投影露光装置及び投影露光方法
JP2001338866A (ja) 露光装置、デバイスの製造方法および露光装置における精度測定方法
JPH0992601A (ja) 投影露光装置
JP2006080444A (ja) 測定装置、テストレチクル、露光装置及びデバイス製造方法
JPH08222495A (ja) 走査型投影露光方法及び装置
JPH07219243A (ja) 露光装置の評価方法
JPH1083953A (ja) 露光量調整方法及び走査型露光装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees