JP3726789B2 - Organic EL display - Google Patents

Organic EL display Download PDF

Info

Publication number
JP3726789B2
JP3726789B2 JP2002242835A JP2002242835A JP3726789B2 JP 3726789 B2 JP3726789 B2 JP 3726789B2 JP 2002242835 A JP2002242835 A JP 2002242835A JP 2002242835 A JP2002242835 A JP 2002242835A JP 3726789 B2 JP3726789 B2 JP 3726789B2
Authority
JP
Japan
Prior art keywords
organic
light
sealant
light emitting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002242835A
Other languages
Japanese (ja)
Other versions
JP2004087153A (en
Inventor
克彦 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002242835A priority Critical patent/JP3726789B2/en
Publication of JP2004087153A publication Critical patent/JP2004087153A/en
Application granted granted Critical
Publication of JP3726789B2 publication Critical patent/JP3726789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は高精細で、耐環境性および生産性に優れ、携帯端末機や産業用計測器の表示など広範囲な用途に応用可能な有機ELディスプレイに関する。
【0002】
【従来の技術】
近年、情報通信の高速化と応用範囲の拡大が急速に進んでいる。この中で、表示デバイスには携帯性や動画表示の要求に対応可能な低消費電力・高速応答性を有する高精細な表示デバイスの考案が広くなされている。
中でもカラー化方式に対して、薄膜トランジスタ(TFT)を用いた駆動方式(アクティブマトリクス駆動方式)のカラー表示装置が考案されている。この場合、TFTが形成されている基板側に光を取り出す方式では、配線部分の光の遮光効果により、開口率が上がらないため、最近ではTFTが形成されている基板とは反対側に光を取り出す方式、いわゆるトップエミッション方方式が考案されている。
【0003】
トップエミッション方式の場合でも、赤、青、緑の三原色の発光体をマトリクス状に分離配置する方式では、RGB用の3種の発光材料をマトリクス状に高精細で配置しなくてはならないため、効率的かつ安価に製造することが困難であり、同時に、3種の発光材料の輝度変化特性や駆動条件が異なるために、色再現性を長時間確保することが困難であるなどの欠点はやはり解決されないまま残されている。
【0004】
白色で発光するバックライトにカラーフィルターを用い、三原色を透過分離させる方法でも、バックライトの高効率化といった問題点は依然として残されている。
唯一分離配置した蛍光体に吸収させそれぞれの蛍光体から多色の蛍光を発光させる色変換方式では、TFT駆動方式を用いたトップエミッション方式を採用することによりさらに高精細で高輝度の有機ELディスプレイを提供できる可能性を有している。
【0005】
特開平11−251059号公報や特開2000−77191号公報に開示されているカラー表示装置はこのような方式の一例である。
従来技術の有機ELディスプレイの構造(アクティブマトリクス駆動方式の場合)を示す断面概略図を図2に示す。
基板1の上にTFT2(薄膜トランジスタ:以下TFTと称す。)、陽極3、有機EL発光層4、陰極5を形成する。続いて透明基板11の上にカラーフィルター12、ブラックマスク13を形成する。次に基板1の周辺を、例えば室温硬化型2液エポキシ系接着剤を使用して封止剤31を形成し、透明基板11と貼り合せを行う。この時、2枚の基板の間には内部空間32が形成される。封止層31の硬化時間は室温24時間とかなり長い時間が必要で有機EL発光層とカラーフィルターの位置合せを行った場合、室温硬化の間、固定して位置ずれを起こさない状態にする必要があった。
【0006】
図2に示すようなカラーフィルターを用いたカラーディスプレイにおいて実用上で重要な課題は、精細なカラ−表示機能であるとともに、有機EL素子が色再現性を含め長期的安定性を有する事で、なおかつ短時間で製造することが可能な構造と封止方法を有することである。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明の有機ELディスプレイは、
基板上に形成された導電性薄膜材料からなる第一の電極、有機EL発光層、及び透明導電性材料からなる第二の電極、保護層を積層して構成される有機発光素子と、透明基板に形成されたカラーフィルターとブラックマスクとを有する積層体を、前記有機EL発光層とカラーフィルターの位置を合わせて封止接合する有機EL素子において、
封止接合する2枚の基板間に使用される封止剤は、基板間の外周に位置する封止剤外周部と、封止剤外周部の内側に位置し基板間に充填される封止剤内部とからなり、かつ該封止剤は紫外線硬化機能と室温硬化機能を有するアクリル系接着剤であり、封止剤外周部は紫外線により硬化され、紫外線を照射しない封止剤内部は室温で硬化されることとする。
【0008】
本発明は、上述の欠点に鑑みてなされたものであり、有機EL発光層とカラーフィルターの正確な位置合せを行い、なおかつ短時間硬化方法が可能な封止方法と有機EL発光層からの光を反射させずにカラーフィルターに有効に伝え、外部環境からの水分等の浸入を防止し長期にわたって安定した発光特性を維持することが可能な有機EL素子の封止構造と封止方法を提供することにある。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本発明の有機ELディスプレイは、
基板上に形成された導電性薄膜材料からなる第一の電極、有機EL発光層、及び透明導電性材料からなる第二の電極、保護層を積層して構成される有機発光素子と、透明基板に形成されたカラーフィルターとブラックマスクとを有する積層体を、前記有機EL発光層とカラーフィルターの位置を合わせて封止接合する有機EL素子において、
封止接合する2枚の基板間に使用する封止剤として紫外線硬化機能と室温硬化機能を有するアクリル系接着剤を使用することとする。
【0010】
ここで、アクリル系接着剤の屈折率は、1.2〜2.5が好ましい。
本発明では、上記2つの硬化機能をもつ接着剤を使用することで封止剤外周部では、有機EL発光層とカラーフィルターの正確な位置合せを行い、なおかつ短時間に紫外線硬化をする機能が付与される。
封止層内部については、有機EL発光層からの光をカラーフィルターに伝えるため屈折率が高い機能と、紫外線の硬化が不可能なため室温により硬化する機能が付与される。
【0011】
さて、特開2001−237066号公報には、接着剤として、紫外線硬化型樹脂を用いる場合と、室温硬化型2液混合型樹脂を用いる場合とがある旨開示されている。しかしながら、係る開示は、2種類の樹脂のどちらかを用いることを開示したものであり、本発明のような、2種類の機能を併せ持った接着剤の使用を示唆するものではない。本発明は、あくまで、紫外線硬化機能と室温硬化機能を併せ持ったアクリル系接着剤を使用することを特徴とするものである。
【0012】
この理由は、2枚の基板の位置合わせと封止とを行なうために、1つの接着剤で全面接着を行なった後に、位置合わせ完了後の外周部分の樹脂硬化を短時間で終了させ位置がずれないようにするために紫外線硬化機能を利用し、素子内部の樹脂(接着剤)については紫外線を照射することは困難であるので、室温硬化機能を利用し、位置合わせと封止との両者を完了するものである。
【0013】
本発明においては、有機ELディスプレイはアクティブマトリクス駆動でもよいし、パッシブマトリクス駆動であってもよい。アクティブマトリクス駆動を行なう場合、下部側(基板側)の例えば陽極を各発光部毎に分割し、基板上に設けたTFT(薄膜トランジスタ)のソースに接続する構成とすればよい。この時、上部電極(反基板側)の陰極は一様電極とすることができる。ここで、基板側の電極を陰極に、反基板側の電極を陽極にする構成として、TFTとの接続を取ってもよい。一方、パッシブマトリクス駆動を行なう場合には、下部電極(基板側)および上部電極(反基板側)とを、互いに直交する方向に延びるラインパターンとする構成を採用することができる。基板自体としては、アクティブマトリクス駆動の場合は、駆動用のTFTが既に形成されているTFT基板であってもよい。また、パッシブマトリクス駆動の素子を形成する場合には、ガラス基板やプラスティック基板を用いることもできる。
【0014】
【発明の実施の形態】
本発明の有機ELディスプレイを図1により説明する。
また、有機EL素子を構成する各部の材料について次に記載する。
1:基板と薄膜トランジスタ(TFT)と陽極
ガラスやプラスチックなどからなる絶縁性基板、または、半導電性や導電性基板に絶縁性の薄膜を形成した基板上にTFTがマトリックス状に配置され、各画素に対応した第一の電極である陽極にソース電極が接続される。
【0015】
TFTは、ゲート電極をゲート絶縁膜の下に設けたボトムゲートタイプで、能動層として多結晶シリコン膜を用いた構造である。
陽極は、TFT上に形成された平坦化絶縁膜上に形成される。通常の有機ELディスプレイでは透明で仕事関数が高いITOが陽極材料として用いられるが、トップエミッションの場合は、ITOの下に反射率の高いメタル電極(Al,Ag,Mo,W)などを用いる。
2:有機発光素子
TFTと陽極がパターン形成されたTFT電極基板と、有機EL発光層と、第二の電極である陰極とを備える。すなわち、色変換方式の場合、有機発光素子から発せられる近紫外から可視領域の光、好ましくは青色から青緑色領域の光を上記カラーフィルター層単体またはカラーフィルター層と蛍光色変換層またはカラーフィルター層と蛍光色変換層との積層体に入射する。有機発光素子は、一対の電極の間に有機EL発光層を挟持し、必要に応じ、正孔注入層や電子注入層を介在させた構造を有している。具体的には、下記のような層構成からなるものが採用される。尚、ここでは基板側の第一の電極を陽極とした例を記載しているが、基板側を陰極としてもよいことは勿論である。
(1)陽極/有機発光層/陰極
(2)陽極/正孔注入層/有機EL発光層/陰極
(3)陽極/有機EL発光層/電子注入層/陰極
(4)陽極/正孔注入層/有機EL発光層/電子注入層/陰極
(5)陽極/正孔注入層/正孔輸送層/有機EL発光層/電子注入層/陰極
本実施形態のトップエミッション色変換方式では、上記の層構成において、陰極は、該有機EL発光層の発する光の波長域において透明であることが必要で、この透明陰極を通して光を発する。
【0016】
透明な陰極としては、リチウム、ナトリウム等のアルカリ金属、カリウム、カルシウム、マグネシウム、ストロンチウム等のアルカリ土類金属、またはこれらのフッ化物等からなる電子注入性の金属、その他の金属との合金や化合物の極薄膜(10nm以下)を電子注入層とし、その上に、ITO、またはIZOなどの透明導電膜を形成する構成とする。
【0017】
上記有機EL発光層の各層の材料としては、公知のものが使用される。例えば、有機発光層として青色から青緑色の発光を得るためには、例えばベンゾチアゾール系、ベンゾイミダゾール系、ベンゾオキサゾール系などの蛍光増白剤、金属キレート化オキソニウム化合物、スチリルベンゼン系化合物、芳香族ジメチリディン系化合物などが好ましく使用される。
3:色変換層
1)有機蛍光色素
本発明において、有機蛍光色素としては、発光素子から発する近紫外領域ないし可視領域の光、特には青色ないし青緑色領域の光を吸収して異なる可視光を発するものであればよいが、好ましくは、少なくとも赤色領域の蛍光を発する蛍光色素の一種類以上が用いられ、緑色領域の蛍光を発する蛍光色素の一種以上と組み合わせてもよい。すなわち、有機EL発光素子としては、青色ないし青緑色領域の光を発光するものが得やすいのであるが、これを単なる赤色フィルターに通して赤色領域の光に変更しようとすると、元々赤色領域の波長の光が少ないため、極めて暗い出力光になってしまう。
【0018】
したがって、赤色領域の光は、該素子からの光を蛍光色素によって赤色領域の光に変換させることにより、十分な強度の出力が可能となる。一方、緑色領域の光は、赤色領域の光と同様に、該素子からの光を別の有機蛍光色素によって緑色領域の光に変換させて出力してもよいし、あるいは該素子の発光が緑色領域の光を十分に含むならば、該素子からの光を単に緑色フィルターを通して出力してもよい。一方、青色領域の光に関しては、有機発光素子の光を単なる青色フィルターに通して出力させることも可能である。
【0019】
発光体から発する青色から青緑色領域の光を吸収して、赤色領域の蛍光を発する蛍光色素としては、例えばローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、スルホローダミン、ベーシックバイオレット11、ベーシックレッド2などのローダミン系色素、シアニン系色素、1−エチル−2−〔4−(p−ジメチルアミノフェニル)−13−ブタジエニル〕−ピリジウム−パークロレート(ピリジン1)などのピリジン系色素、あるいはオキサジン系色素などが挙げられる。さらに、各種染料(直接染料、酸性染料、塩基性染料、分散染料など)も蛍光性があれば使用することができる。
【0020】
発光体から発する青色ないし青緑色領域の光を吸収して、緑色領域の蛍光を発する蛍光色素としては、例えば3−(2‘−ベンゾチアゾリル)−7−ジエチルアミノクマリン(クマリン6)、3−(2’−ベンゾイミダゾリル)−7−N,N−ジエチルアミノクマリン(クマリン7)、3−(2‘−N−メチルベンゾイミダゾリル)−7−N,N−ジエチルアミノクマリン(クマリン30)、2,3,5,6−1H,4H−テトラヒドロ−8−トリフルオロメチルキノリジン(9,9a,1−gh)クマリン(クマリン153)などのクマリン系色素、あるいはクマリン色素系染料であるベーシックイエロー51、さらにはソルベントイエロー11、ソルベントイエロー116などのナフタルイミド系色素などが挙げられる。さらに、各種染料(直接染料、酸性染料、塩基性染料、分散染料など)も蛍光性があれば使用することができる。
【0021】
なお、本発明に用いる有機蛍光色素を、ポリメタクリル酸エステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合樹脂、アルキッド樹脂、芳香族スルホンアミド樹脂、ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂及びこれらの樹脂混合物などに予め練り込んで顔料化して、有機蛍光顔料としてもよい。また、これらの有機蛍光色素や有機蛍光顔は単独で用いてもよく、蛍光の色相を調整するために二種以上を組み合わせて用いてもよい。本発明に用いる有機蛍光色素は、蛍光色変換膜に対して、該変換膜の重量を基準として0.01〜5重量%、より好ましくは0.1〜2重量%含有される。もし有機蛍光色素の含有量が0.01重量%未満ならば、十分な波長変換を行うことができず、あるいはまた、該含有量が5%を越えるならば、濃度消光等の効果により色変換効率の低下をもたらす。
2)マトリクス樹脂
次に、本発明の蛍光色変換膜に用いられるマトリクス樹脂は、光硬化性または光熱併用型硬化性樹脂を、光および/または熱処理して、ラジカル種やイオン種を発生させて重合または架橋させ、不溶不融化させたものである。また、従来のフォトリソグラフィー法でパターニングを行う際に必須であった硬化前の有機溶媒またはアルカリ溶液に可溶性である必要はない。
【0022】
具体的に光硬化性または光熱併用型硬化性樹脂とは、(1)アクロイル基やメタクロイル基を複数有するアクリル系多官能モノマーおよびオリゴマーと、光または熱重合開始剤からなる組成物膜を光または熱処理して、光ラジカルや熱ラジカルを発生させて重合させたもの、(2)ポリビニル桂皮酸エステルと増感剤からなる組成物を光または熱処理により二量化させて架橋したもの、(3)鎖状または環状オレフィンとビスアジドからなる組成物膜を光または熱処理によりナイトレンを発生させ、オレフィンと架橋させたもの、(4)エポキシ基を有するモノマーと光酸発生剤からなる組成物膜を光または熱処理により、酸(カチオン)を発生させて重合させたものなどが挙げられる。特に(1)の光硬化性又は光熱併用型硬化性樹脂が高精細でパターニングが可能であり、耐溶剤性、耐熱性等の信頼性の面でも好ましい。
3)形状
前記色変換層の形状は各色ごとに分離したストライプパターンがよく知られているが、可視光反射壁の効果を向上させるためには、各色ごとだけではなく、サブピクセルごとに分離させた構造を有することが、より好ましい。また、色変換層の周辺部を順テーパー形状にすることにより、取り出しの効率がさらに向上する。ただし、順テーパーの角度χはあまり小さくしすぎると、反射層にて反射した光が、横方向へ向かってしまい、取り出せなくなってしまうため、45°程度の角度が好ましい
4)カラーフィルター層
色変換層だけでは十分な色純度が得られない場合は、カラーフィルター層と上記色変換層との積層体とする。カラーフィルター層の厚さは1〜1.5μmが好ましい。
4:パッシベーション層(保護層)
パッシベーション層は可視域における透明性が高く(400〜700nmの範囲で透過率50%以上), Tgが100℃以上で、表面硬度が鉛筆硬度で2H以上あり、色変換層上に平滑に塗膜を形成でき,色変換層2〜4の機能を低下させない材料であれば良く、例えば、イミド変性シリコ−ン樹脂(特開平5−134112号公報等)、無機金属化合物(TiO、ALSiO.等)をアクリル、ポリイミド、シリコ−ン樹脂等中に分散した(特開平5−119306号公報等)、紫外線硬化型樹脂としてエポキシ変性アクリレ−トル樹脂(特開平7−48424号公報)、アクリレ−トモノマ−/オリゴマ−/ポリマ−の反応性ビニル基を有した樹脂、レジスト樹脂(特開平6−300910号公報等)、ゾル−ゲル法による無機化合物(月刊ディスプレイ1997年、3巻、7号に記載、特開平8−27934号公報等)、フッ素系樹脂(特開平5−36475号公報等)等の光硬化型樹脂及び/又は熱硬化型樹脂が挙げられる。
【0023】
パッシベーション層の形成法には特に制約はなく、例えば、乾式法(スパッタ法、蒸着法、CVD法等)と湿式法(スピンコ−ト法、ロ−ルコ−ト法、キャスト法等)等の慣用の手法により形成できる。
またパッシベーション層として、電気絶縁性を有し、水分や低分子成分に対するバリア性を有し,可視域における透明性が高く(400〜700nmの範囲で透過率50%以上),好ましくは2H以上の膜硬度を有する材料用いてもよい。
【0024】
例えば、SiOx、SiNx、SiNxOy、AlOx、TiOx、TaOx、ZnOx等の無機酸化物、無機窒化物等が使用できる。該パッシベーション層の形成方法としては特に制約はなく、スパッタ法、CVD法、真空蒸着法、ディップ法等の慣用の手法により形成できる。 上述のパッシベーション層は単層でも良いが、複数の層が積層されたものではその効果がより大きい。積層されたパッシベーション層の厚さは、1〜10μmが好ましい。
5:封止剤
封止剤としては、紫外線硬化機能と室温硬化機能の2つの機能をあわせ持った接着剤を使用する。
【0025】
この接着剤は、例えばアクリル系の2液混合型接着剤をベースに、光硬化触媒を添加し紫外線硬化機能を付与することにより達成される。紫外線硬化機能は、紫外線の照射条件については、波長365nmで照射量3000〜10000mJ/cmで硬化が完了するように設計される。照射量について詳しく説明すれば100mW/cmの照度で30〜100secの時間照射することにより達成される。
【0026】
照度については、400mW/cm以下で50mW/cm以上であれば安定な硬化が得られる。400mW/cm以上では反応が激しく発熱反応を起こす。また、50mW/cm以下では反応が生じなくなる。100mW/cm付近が良好な照度である。
具体的な接着剤としては、紫外線硬化型2液混合型アクリル系接着剤で、東洋インキ社製 商品名DX−1013Uが使用できる。
【0027】
この接着剤の室温硬化機能としては、混合後、室温(20〜28℃)で約40〜50分で硬化を完了する。
(実施例1)
図1に示すように、ガラス基板1の上にTFT2、陽極3、有機EL発光層4、陰極5、保護層6を順次形成する。次に透明ガラス基板11の上にカラーフィルター12、ブラックマスク13を順次形成する。この様にして形成された2枚の基板をグローブボックス内の乾燥窒素雰囲気下(酸素および水分濃度ともに1ppm以下)の中で次の工程を行う。
【0028】
2液混合型の室温硬化機能をもつ紫外線硬化型アクリル系接着剤(東洋インキ社製 商品名DX−1013U)を容量比1:1で計量/混合/脱泡した後にディスペンサーで有機EL発光層側のガラス基板1の上に必要量塗布した後に、カラーフィルター側の透明ガラス基板11を貼り合せる。この場合、貼り合せる2枚の基板の間隔は5μm〜50μmの間隔として必要な封止剤の量は面積から計算することができる。
【0029】
その後、有機EL発光層4とカラーフィルター12に対応させてアライメントを行い、封止剤外周部に対して紫外線硬化条件として、100mW/cm2の照度で30sec間照射して硬化を行う。
紫外線硬化の不可能な封止剤内部については、室温で約40〜50分で硬化を完了する。
【0030】
2液混合型の室温硬化機能をもつ紫外線硬化型アクリル系接着剤(東洋インキ社製 商品名DX−1013U)の屈折率は1.43で光の反射が起こらず有機EL発光層4からの光をカラーフィルター12に伝えることができる。また外部環境からの水分の浸入を防止し、長期信頼性のある有機EL素子を構成する。
パッシブマトリックス駆動の場合には、2つの電極のラインパターンの交差部分と色変換フィルタ層との位置合せを行う工程となる。
【0031】
【発明の効果】
以上に述べたとおり、本発明によれば、
基板上に形成された導電性薄膜材料からなる第一の電極、有機EL発光層、及び透明導電性材料からなる第二の電極、保護層を積層して構成される有機発光素子と、透明基板に形成されたカラーフィルターとブラックマスクとを有する積層体を、前記有機EL発光層とカラーフィルターの位置を合わせて封止接合する有機EL素子において、
封止接合する2枚の基板間に使用される封止剤は、基板間の外周に位置する封止剤外周部と、封止剤外周部の内側に位置し基板間に充填される封止剤内部とからなり、かつ該封止剤は紫外線硬化機能と室温硬化機能を有するアクリル系接着剤であり、封止剤外周部は紫外線により硬化され、紫外線を照射しない封止剤内部は室温で硬化されることとした。
【0032】
上記2つの硬化機能をもつ接着剤を使用することで封止剤外周部では、有機EL発光層とカラーフィルターの正確な位置合せを行い、なおかつ短時間に紫外線硬化をする機能が付与される。
封止層内部については、有機EL発光層からの光をカラーフィルターに伝えるため屈折率が高い機能と、紫外線が硬化が不可能なため室温により硬化する機能が付与される。
【0033】
また封止層内部については、屈折率が1.3から2.5の封止剤を使用することにより、有機EL発光層からの光の反射を防止しカラーフィルターに有効に伝える構造が達成され、同時に外部環境からの水分等の進入を防止し長期にわたって安定した発光特性を維持することが可能となった。
【図面の簡単な説明】
【図1】本発明の有機ELディスプレイの構造を示す断面概略図である。
【図2】従来技術の有機ELディスプレイの構造を示す断面概略図である。
【符号の説明】
1基板
2TFT
3陽極
4有機EL発光層
5陰極
6保護層
11透明基板
12カラーフィルタ
13ブラックマスク
21外周封止層
22内部封止層
31封止層
32内部空間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic EL display that is high-definition, excellent in environmental resistance and productivity, and applicable to a wide range of uses such as displays of portable terminals and industrial measuring instruments.
[0002]
[Prior art]
In recent years, the speed of information communication and the application range have been rapidly increasing. Among these, a high-definition display device having low power consumption and high-speed response capable of meeting the demands of portability and moving image display has been widely used.
In particular, a color display device of a driving method (active matrix driving method) using a thin film transistor (TFT) has been devised for the colorization method. In this case, in the method of extracting light to the substrate side on which the TFT is formed, the aperture ratio does not increase due to the light shielding effect of the wiring portion, and recently, the light is emitted to the side opposite to the substrate on which the TFT is formed. A so-called top emission method has been devised.
[0003]
Even in the case of the top emission method, the three primary light emitting materials of red, blue, and green must be separated and arranged in a matrix, because the three types of light-emitting materials for RGB must be arranged in a high-definition matrix. It is difficult to manufacture efficiently and cheaply, and at the same time, because the luminance change characteristics and driving conditions of the three light emitting materials are different, it is difficult to ensure color reproducibility for a long time. It remains unsolved.
[0004]
Even when a color filter is used for a backlight that emits white light and the three primary colors are transmitted and separated, there still remains a problem of improving the efficiency of the backlight.
In the color conversion method that absorbs the phosphors separately arranged and emits multiple colors of fluorescent light from each phosphor, the top emission method using the TFT drive method is adopted to achieve a higher definition and higher brightness organic EL display. Have the potential to provide.
[0005]
The color display device disclosed in Japanese Patent Laid-Open Nos. 11-251059 and 2000-77191 is an example of such a system.
FIG. 2 is a schematic cross-sectional view showing the structure of an organic EL display according to the prior art (in the case of an active matrix driving method).
On the substrate 1, a TFT 2 (thin film transistor: hereinafter referred to as TFT), an anode 3, an organic EL light emitting layer 4, and a cathode 5 are formed. Subsequently, a color filter 12 and a black mask 13 are formed on the transparent substrate 11. Next, the sealing agent 31 is formed on the periphery of the substrate 1 using, for example, a room temperature curable two-component epoxy adhesive, and is bonded to the transparent substrate 11. At this time, an internal space 32 is formed between the two substrates. The curing time of the sealing layer 31 requires a considerably long time of 24 hours at room temperature, and when the alignment of the organic EL light emitting layer and the color filter is performed, it is necessary to fix and prevent misalignment during the room temperature curing. was there.
[0006]
In a color display using a color filter as shown in FIG. 2, an important practical issue is a fine color display function, and the organic EL element has long-term stability including color reproducibility. Furthermore, it has a structure and a sealing method that can be manufactured in a short time.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the organic EL display of the present invention comprises:
An organic light emitting device formed by laminating a first electrode made of a conductive thin film material formed on a substrate, an organic EL light emitting layer, a second electrode made of a transparent conductive material, and a protective layer, and a transparent substrate In the organic EL element for sealing and bonding the laminate having the color filter and the black mask formed on the organic EL light emitting layer and the position of the color filter,
The sealant used between the two substrates to be sealed and bonded is the sealant outer peripheral portion located on the outer periphery between the substrates, and the seal placed inside the sealant outer peripheral portion and filled between the substrates The sealing agent is an acrylic adhesive having an ultraviolet curing function and a room temperature curing function, and the outer periphery of the sealing agent is cured by ultraviolet rays, and the inside of the sealing agent not irradiated with ultraviolet rays is at room temperature. It will be cured .
[0008]
The present invention has been made in view of the above-described drawbacks. The organic EL light-emitting layer and the color filter are accurately aligned, and a short-time curing method and a light from the organic EL light-emitting layer are provided. Provided are an organic EL element sealing structure and a sealing method capable of effectively transmitting light to a color filter without reflecting light, preventing intrusion of moisture and the like from the external environment, and maintaining stable light emission characteristics over a long period of time. There is.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the organic EL display of the present invention comprises:
An organic light emitting device formed by laminating a first electrode made of a conductive thin film material formed on a substrate, an organic EL light emitting layer, a second electrode made of a transparent conductive material, and a protective layer, and a transparent substrate In the organic EL element for sealing and bonding the laminate having the color filter and the black mask formed on the organic EL light emitting layer and the position of the color filter,
An acrylic adhesive having an ultraviolet curing function and a room temperature curing function is used as a sealant used between two substrates to be sealed and bonded.
[0010]
Here, the refractive index of the acrylic adhesive is preferably 1.2 to 2.5.
In the present invention, by using the adhesive having the above two curing functions, the organic EL light-emitting layer and the color filter are accurately aligned at the outer periphery of the sealant, and the ultraviolet curing is performed in a short time. Is granted.
About the inside of a sealing layer, the function from which a refractive index is high in order to transmit the light from an organic electroluminescent light emitting layer to a color filter, and the function hardened | cured at room temperature since ultraviolet curing is impossible.
[0011]
JP-A-2001-237066 discloses that an ultraviolet curable resin may be used as an adhesive and a room temperature curable two-component mixed resin may be used. However, this disclosure discloses the use of either of two types of resins, and does not suggest the use of an adhesive having both two types of functions as in the present invention. The present invention is characterized in that an acrylic adhesive having both an ultraviolet curing function and a room temperature curing function is used.
[0012]
The reason for this is that in order to align and seal the two substrates, after the entire surface is bonded with one adhesive, the resin curing of the outer peripheral portion after the alignment is completed is completed in a short time. In order to prevent misalignment, the UV curing function is used, and it is difficult to irradiate the resin (adhesive) inside the device with UV light. To complete.
[0013]
In the present invention, the organic EL display may be active matrix drive or passive matrix drive. In the case of performing active matrix driving, for example, the anode on the lower side (substrate side) may be divided for each light emitting portion and connected to the source of a TFT (thin film transistor) provided on the substrate. At this time, the cathode of the upper electrode (on the side opposite to the substrate) can be a uniform electrode. Here, as a configuration in which the substrate-side electrode is used as a cathode and the non-substrate-side electrode is used as an anode, the TFT may be connected. On the other hand, when passive matrix driving is performed, it is possible to adopt a configuration in which the lower electrode (substrate side) and the upper electrode (non-substrate side) have line patterns extending in directions orthogonal to each other. In the case of active matrix driving, the substrate itself may be a TFT substrate on which driving TFTs are already formed. In addition, when a passive matrix driving element is formed, a glass substrate or a plastic substrate can be used.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The organic EL display of the present invention will be described with reference to FIG.
Moreover, it describes below about the material of each part which comprises an organic EL element.
1: TFTs are arranged in a matrix on an insulating substrate made of a substrate, a thin film transistor (TFT), anode glass, plastic, or the like, or a substrate having an insulating thin film formed on a semiconductive or conductive substrate. The source electrode is connected to the anode which is the first electrode corresponding to the above.
[0015]
The TFT is a bottom gate type in which a gate electrode is provided under a gate insulating film, and has a structure using a polycrystalline silicon film as an active layer.
The anode is formed on a planarization insulating film formed on the TFT. In a normal organic EL display, ITO which is transparent and has a high work function is used as an anode material. In the case of top emission, a metal electrode (Al, Ag, Mo, W) having a high reflectance is used under the ITO.
2: A TFT electrode substrate on which an organic light emitting element TFT and an anode are patterned, an organic EL light emitting layer, and a cathode that is a second electrode are provided. That is, in the case of the color conversion method, the above-mentioned color filter layer alone or the color filter layer and the fluorescent color conversion layer or the color filter layer emit light in the near ultraviolet to visible region, preferably blue to blue-green region, emitted from the organic light emitting element. And the fluorescent color conversion layer. The organic light emitting device has a structure in which an organic EL light emitting layer is sandwiched between a pair of electrodes, and a hole injection layer or an electron injection layer is interposed as required. Specifically, those having the following layer structure are employed. Here, an example is described in which the first electrode on the substrate side is the anode, but it goes without saying that the substrate side may be the cathode.
(1) Anode / organic light emitting layer / cathode
(2) Anode / hole injection layer / organic EL light emitting layer / cathode
(3) Anode / organic EL light emitting layer / electron injection layer / cathode
(4) Anode / hole injection layer / organic EL light emitting layer / electron injection layer / cathode
(5) Anode / hole injection layer / hole transport layer / organic EL light emitting layer / electron injection layer / cathode In the top emission color conversion system of this embodiment, in the above layer configuration, the cathode is the organic EL light emitting layer. It is necessary to be transparent in the wavelength range of light emitted from the light source, and light is emitted through the transparent cathode.
[0016]
Transparent cathodes include alkali metals such as lithium and sodium, alkaline earth metals such as potassium, calcium, magnesium and strontium, or electron injecting metals such as fluorides thereof, alloys and compounds with other metals The ultrathin film (10 nm or less) is used as an electron injection layer, and a transparent conductive film such as ITO or IZO is formed thereon.
[0017]
As the material of each layer of the organic EL light emitting layer, known materials are used. For example, in order to obtain blue to blue-green light emission as an organic light emitting layer, for example, a fluorescent brightener such as benzothiazole, benzimidazole, benzoxazole, metal chelated oxonium compound, styrylbenzene compound, aromatic Dimethylidin compounds and the like are preferably used.
3: Color conversion layer 1) Organic fluorescent dye In the present invention, as the organic fluorescent dye, different visible light is absorbed by absorbing light in the near ultraviolet region or visible region, particularly blue or blue-green region emitted from the light emitting element. However, it is preferable that at least one fluorescent dye that emits fluorescence in the red region is used, and it may be combined with one or more fluorescent dyes that emit fluorescence in the green region. That is, it is easy to obtain an organic EL light emitting element that emits light in the blue to blue-green region. However, if this is changed to light in the red region through a simple red filter, the wavelength of the red region is originally obtained. Because there is little light, it becomes extremely dark output light.
[0018]
Accordingly, the light in the red region can be output with sufficient intensity by converting the light from the element into light in the red region by the fluorescent dye. On the other hand, the light in the green region may be output by converting the light from the element into light in the green region by another organic fluorescent dye, or the light emitted from the device is green. If the area contains enough light, the light from the element may simply be output through a green filter. On the other hand, with respect to the light in the blue region, the light from the organic light emitting element can be output through a simple blue filter.
[0019]
Examples of fluorescent dyes that absorb light in the blue to blue-green region emitted from the light emitter and emit red region fluorescence include rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, sulforhodamine, basic violet 11, Rhodamine dyes such as basic red 2, cyanine dyes, pyridine dyes such as 1-ethyl-2- [4- (p-dimethylaminophenyl) -13-butadienyl] -pyridium-perchlorate (pyridine 1), or And oxazine dyes. Furthermore, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used if they are fluorescent.
[0020]
Examples of fluorescent dyes that absorb blue to blue-green light emitted from a light emitter and emit green light include 3- (2′-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6), 3- (2 '-Benzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), 3- (2'-N-methylbenzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 30), 2, 3, 5, 6 -1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153) and other coumarin dyes, or basic yellow 51 which is a coumarin dye dye, and solvent yellow 11 And naphthalimide dyes such as Solvent Yellow 116. Furthermore, various dyes (direct dyes, acid dyes, basic dyes, disperse dyes, etc.) can be used if they are fluorescent.
[0021]
The organic fluorescent dye used in the present invention is a polymethacrylate, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer resin, alkyd resin, aromatic sulfonamide resin, urea resin, melamine resin, benzoguanamine resin, and these resins. An organic fluorescent pigment may be obtained by kneading into a mixture or the like in advance to obtain a pigment. In addition, these organic fluorescent dyes and organic fluorescent faces may be used alone or in combination of two or more in order to adjust the hue of fluorescence. The organic fluorescent dye used in the present invention is contained in the fluorescent color conversion film in an amount of 0.01 to 5% by weight, more preferably 0.1 to 2% by weight, based on the weight of the conversion film. If the content of the organic fluorescent dye is less than 0.01% by weight, sufficient wavelength conversion cannot be performed, or if the content exceeds 5%, color conversion is performed due to effects such as concentration quenching. Resulting in reduced efficiency.
2) Matrix resin Next, the matrix resin used in the fluorescent color conversion film of the present invention is a photocurable or photothermal combination type curable resin that is exposed to light and / or heat to generate radical species or ion species. Polymerized or cross-linked and insoluble and infusible. Further, it is not necessary to be soluble in an organic solvent or an alkali solution before curing, which is essential when patterning is performed by a conventional photolithography method.
[0022]
Specifically, the photocurable or photothermal combination type curable resin is (1) a composition film composed of an acrylic polyfunctional monomer and oligomer having a plurality of acryloyl groups and methacryloyl groups, and light or a thermal polymerization initiator. Heat treated to generate photoradicals and heat radicals to polymerize, (2) A composition comprising polyvinyl cinnamate ester and sensitizer dimerized by light or heat treatment, and (3) chain A composition film comprising a olefin or a cyclic olefin and a bisazide is generated by nitrene generation by light or heat treatment and crosslinked with an olefin, and (4) a composition film comprising a monomer having an epoxy group and a photoacid generator is subjected to light or heat treatment. In other words, the acid (cation) is generated and polymerized. In particular, the photocurable or photothermal combination type curable resin (1) can be patterned with high definition, and is preferable in terms of reliability such as solvent resistance and heat resistance.
3) Shape As the shape of the color conversion layer, a stripe pattern separated for each color is well known, but in order to improve the effect of the visible light reflection wall, it is separated not only for each color but also for each sub-pixel. It is more preferable to have a different structure. Further, by taking the peripheral portion of the color conversion layer into a forward tapered shape, the extraction efficiency is further improved. However, if the forward taper angle χ is too small, the light reflected by the reflective layer is directed laterally and cannot be extracted. Therefore, an angle of about 45 ° is preferable. 4) Color filter layer color conversion When sufficient color purity cannot be obtained with only a layer, a laminate of a color filter layer and the color conversion layer is formed. The thickness of the color filter layer is preferably 1 to 1.5 μm.
4: Passivation layer (protective layer)
The passivation layer has high transparency in the visible region (transmittance of 50% or more in the range of 400 to 700 nm), Tg of 100 ° C. or more, surface hardness of 2H or more in pencil hardness, and a smooth coating film on the color conversion layer Any material can be used as long as it does not deteriorate the functions of the color conversion layers 2 to 4, and examples thereof include imide-modified silicone resins (JP-A-5-134112, etc.), inorganic metal compounds (TiO, AL 2 O 3). SiO 2 etc.) are dispersed in acrylic, polyimide, silicone resin, etc. (JP-A-5-119306 etc.), and epoxy-modified acrylate resin (JP-A-7-48424) as an ultraviolet curable resin. Resin having a reactive vinyl group of acrylate monomer / oligomer / polymer, resist resin (JP-A-6-300910, etc.), sol-gel method Photo-curing resins such as organic compounds (described in monthly display 1997, Vol. 3, No. 7, JP-A-8-27934, etc.), fluorine-based resins (JP-A-5-36475, etc.) and / or thermosetting Mold resin.
[0023]
The method for forming the passivation layer is not particularly limited. For example, dry methods (sputtering method, vapor deposition method, CVD method, etc.) and wet methods (spin coating method, roll coating method, casting method, etc.) are commonly used. This method can be used.
Moreover, as a passivation layer, it has electrical insulation, has a barrier property against moisture and low molecular components, and has high transparency in the visible range (transmittance of 50% or more in the range of 400 to 700 nm), preferably 2H or more. A material having film hardness may be used.
[0024]
For example, inorganic oxides such as SiOx, SiNx, SiNxOy, AlOx, TiOx, TaOx, and ZnOx, inorganic nitrides, and the like can be used. There is no restriction | limiting in particular as a formation method of this passivation layer, It can form by usual methods, such as a sputtering method, CVD method, a vacuum evaporation method, a dip method. The above-mentioned passivation layer may be a single layer, but the effect is greater when a plurality of layers are laminated. The thickness of the laminated passivation layer is preferably 1 to 10 μm.
5: Sealant As the sealant, an adhesive having two functions of an ultraviolet curing function and a room temperature curing function is used.
[0025]
This adhesive is achieved, for example, by adding a photocuring catalyst and imparting an ultraviolet curing function based on an acrylic two-component mixed adhesive. The ultraviolet curing function is designed so that curing is completed at a wavelength of 365 nm and an irradiation amount of 3000 to 10,000 mJ / cm 2 with respect to the ultraviolet irradiation condition. If it demonstrates in detail about an irradiation amount, it will be achieved by irradiating for 30 to 100 seconds with the illumination intensity of 100 mW / cm < 2 >.
[0026]
When the illuminance is 400 mW / cm 2 or less and 50 mW / cm 2 or more, stable curing can be obtained. At 400 mW / cm 2 or more, the reaction is intense and causes an exothermic reaction. Also, no reaction occurs at 50 mW / cm 2 or less. Good illuminance is around 100 mW / cm 2 .
As a specific adhesive, an ultraviolet curable two-component mixed acrylic adhesive, trade name DX-1013U manufactured by Toyo Ink Co., Ltd. can be used.
[0027]
As the room temperature curing function of this adhesive, curing is completed in about 40 to 50 minutes at room temperature (20 to 28 ° C.) after mixing.
(Example 1)
As shown in FIG. 1, a TFT 2, an anode 3, an organic EL light emitting layer 4, a cathode 5, and a protective layer 6 are sequentially formed on a glass substrate 1. Next, a color filter 12 and a black mask 13 are sequentially formed on the transparent glass substrate 11. The following steps are performed on the two substrates thus formed in a dry nitrogen atmosphere (both oxygen and moisture concentrations of 1 ppm or less) in the glove box.
[0028]
Weighed / mixed / defoamed UV curable acrylic adhesive (trade name DX-1013U manufactured by Toyo Ink Co., Ltd.) with a two-component mixed room temperature curing function at a volume ratio of 1: 1, and then dispensed with organic dispenser on the side of organic EL After applying a necessary amount on the glass substrate 1, the transparent glass substrate 11 on the color filter side is bonded. In this case, the distance between the two substrates to be bonded is 5 μm to 50 μm, and the amount of the necessary sealant can be calculated from the area.
[0029]
Thereafter, alignment is performed in correspondence with the organic EL light emitting layer 4 and the color filter 12, and curing is performed by irradiating the sealant outer peripheral portion with an illuminance of 100 mW / cm 2 for 30 seconds as an ultraviolet curing condition.
About the inside of the sealant which cannot be cured by ultraviolet rays, curing is completed in about 40 to 50 minutes at room temperature.
[0030]
The refractive index of the two-component mixed type room temperature curing UV curing acrylic adhesive (product name DX-1013U manufactured by Toyo Ink Co., Ltd.) is 1.43 and no light reflection occurs. Can be transmitted to the color filter 12. In addition, the invasion of moisture from the external environment is prevented, and a long-term reliable organic EL element is configured.
In the case of passive matrix driving, this is a step of aligning the intersection of the line patterns of the two electrodes and the color conversion filter layer.
[0031]
【The invention's effect】
As mentioned above, according to the present invention,
An organic light emitting device formed by laminating a first electrode made of a conductive thin film material formed on a substrate , an organic EL light emitting layer, a second electrode made of a transparent conductive material, and a protective layer, and a transparent substrate In the organic EL element for sealing and bonding the laminate having the color filter and the black mask formed on the organic EL light emitting layer and the position of the color filter,
The sealant used between the two substrates to be sealed and bonded is the sealant outer peripheral portion located on the outer periphery between the substrates, and the seal placed inside the sealant outer peripheral portion and filled between the substrates The sealing agent is an acrylic adhesive having an ultraviolet curing function and a room temperature curing function, and the outer periphery of the sealing agent is cured by ultraviolet rays, and the inside of the sealing agent not irradiated with ultraviolet rays is at room temperature. It was decided to be cured .
[0032]
By using the adhesive having the above two curing functions, the sealant outer peripheral portion is provided with a function of accurately aligning the organic EL light emitting layer and the color filter and curing the ultraviolet rays in a short time.
About the inside of a sealing layer, the function from which refractive index is high in order to transmit the light from an organic electroluminescent light emitting layer to a color filter, and the function hardened | cured at room temperature since ultraviolet rays cannot be hardened | cured are provided.
[0033]
Also, for the inside of the sealing layer, by using a sealing agent having a refractive index of 1.3 to 2.5, a structure that prevents reflection of light from the organic EL light emitting layer and effectively transmits it to the color filter is achieved. At the same time, it is possible to prevent moisture and the like from entering from the outside environment and maintain stable light emission characteristics over a long period of time.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the structure of an organic EL display of the present invention.
FIG. 2 is a schematic cross-sectional view showing the structure of a conventional organic EL display.
[Explanation of symbols]
1 substrate 2 TFT
3 anode 4 organic EL light emitting layer 5 cathode 6 protective layer 11 transparent substrate 12 color filter 13 black mask 21 outer periphery sealing layer 22 inner sealing layer 31 sealing layer 32 inner space

Claims (2)

基板上に形成された導電性薄膜材料からなる第一の電極、有機EL発光層、及び透明導電性材料からなる第二の電極、保護層を積層して構成される有機発光素子と、透明基板に形成されたカラーフィルターとブラックマスクとを有する積層体を、前記有機EL発光層とカラーフィルターの位置を合わせて封止接合する有機EL素子において、
封止接合する2枚の基板間に使用される封止剤は、基板間の外周に位置する封止剤外周部と、封止剤外周部の内側に位置し基板間に充填される封止剤内部とからなり、かつ該封止剤は紫外線硬化機能と室温硬化機能を有するアクリル系接着剤であり、封止剤外周部は紫外線により硬化され、紫外線を照射しない封止剤内部は室温で硬化されることを特徴とする有機ELディスプレイ。
An organic light emitting device formed by laminating a first electrode made of a conductive thin film material formed on a substrate, an organic EL light emitting layer, a second electrode made of a transparent conductive material, and a protective layer, and a transparent substrate In the organic EL element for sealing and bonding the laminate having the color filter and the black mask formed on the organic EL light emitting layer and the position of the color filter,
The sealant used between the two substrates to be sealed and bonded is the sealant outer periphery located on the outer periphery between the substrates, and the seal that is located inside the sealant outer periphery and filled between the substrates The sealant is an acrylic adhesive having an ultraviolet curing function and a room temperature curing function, the outer periphery of the sealant is cured by ultraviolet rays, and the interior of the sealant that is not irradiated with ultraviolet rays is at room temperature. An organic EL display which is cured .
請求項1記載の封止剤として、屈折率1.2〜2.5の紫外線硬化機能と室温硬化機能を有するアクリル系接着剤を使用することを特徴とする有機ELディスプレイ。2. An organic EL display using an acrylic adhesive having a refractive index of 1.2 to 2.5 and an ultraviolet curing function and a room temperature curing function as the sealant according to claim 1.
JP2002242835A 2002-08-23 2002-08-23 Organic EL display Expired - Fee Related JP3726789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242835A JP3726789B2 (en) 2002-08-23 2002-08-23 Organic EL display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242835A JP3726789B2 (en) 2002-08-23 2002-08-23 Organic EL display

Publications (2)

Publication Number Publication Date
JP2004087153A JP2004087153A (en) 2004-03-18
JP3726789B2 true JP3726789B2 (en) 2005-12-14

Family

ID=32051757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242835A Expired - Fee Related JP3726789B2 (en) 2002-08-23 2002-08-23 Organic EL display

Country Status (1)

Country Link
JP (1) JP3726789B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731970B2 (en) * 2004-04-07 2011-07-27 株式会社半導体エネルギー研究所 Light emitting device and manufacturing method thereof
TWI367686B (en) * 2004-04-07 2012-07-01 Semiconductor Energy Lab Light emitting device, electronic device, and television device
JP4555611B2 (en) * 2004-05-26 2010-10-06 積水化学工業株式会社 Organic electroluminescence device sealant and top emission type organic electroluminescence device
US7316756B2 (en) * 2004-07-27 2008-01-08 Eastman Kodak Company Desiccant for top-emitting OLED
JP4337852B2 (en) 2006-08-30 2009-09-30 セイコーエプソン株式会社 ORGANIC ELECTROLUMINESCENT DEVICE, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP2008089634A (en) * 2006-09-29 2008-04-17 Seiko Epson Corp Electro-optical device and electronic equipment
CN101887908B (en) * 2010-03-09 2012-03-14 电子科技大学 Active drive organic electroluminescent device and preparation method thereof
TWI599630B (en) 2012-11-30 2017-09-21 Lintec Corp Adhesive composition, followed by sheet and electronic device
TWI638871B (en) 2012-11-30 2018-10-21 日商琳得科股份有限公司 Substance composition, subsequent sheet and electronic device
WO2014084349A1 (en) 2012-11-30 2014-06-05 リンテック株式会社 Adhesive agent composition, adhesive sheet, and electronic device
US9809728B2 (en) 2012-11-30 2017-11-07 Lintec Corporation Adhesive agent composition, adhesive sheet, and electronic device and production method therefor
TWI648892B (en) 2013-12-26 2019-01-21 日商琳得科股份有限公司 Sheet-like sealing material, sealing sheet, electronic device sealing body, and organic EL element
CN107221608A (en) * 2017-06-13 2017-09-29 深圳市华星光电技术有限公司 A kind of flexible display panels and preparation method
CN110190092A (en) * 2019-05-17 2019-08-30 深圳市华星光电半导体显示技术有限公司 Organic LED display panel and preparation method thereof

Also Published As

Publication number Publication date
JP2004087153A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP3501155B1 (en) Organic EL display and manufacturing method thereof
JP3594018B2 (en) Organic EL display
US7215075B2 (en) Organic el device having upper electrode including plurality of transparent electrode layers and method for manufacturing the same
JP3865245B2 (en) Manufacturing method and manufacturing apparatus for organic EL display
KR100915616B1 (en) Organic el display
JP3726789B2 (en) Organic EL display
JP2005123089A (en) Color organic el display and its manufacturing method
US20070109571A1 (en) Color filter with color conversion function, producing method thereof, and organic el display
JP3591728B2 (en) Organic EL display
JP2002216962A (en) Color conversion filter substrate, and color conversion color display having color conversion filter substrate
JP2008165108A (en) Color filter substrate combinedly having rib function, color conversion filter substrate combinedly having rib function, color organic el element using them and manufacturing method of them
JPWO2010106619A1 (en) Color conversion filter substrate
JP2008077943A (en) Multicolor light-emitting device
JP4010286B2 (en) Manufacturing method of organic EL display
JP2004103519A (en) Color conversion color filter substrate and organic color display using this
JP4419130B2 (en) Manufacturing method of color conversion filter and color filter with color conversion function
JP2003264081A (en) Red fluorescence-converting filter and organic light- emitting element using the same
JP3867914B2 (en) Organic EL display and manufacturing method thereof
JP4826939B2 (en) Color conversion filter and color conversion light emitting device using the same
JP2006216466A (en) Organic el display panel and its manufacturing method
US20040241560A1 (en) Method of manufacturing color-converting filter
JP3861821B2 (en) Organic EL display panel and manufacturing method thereof
JP2004139849A (en) Color conversion light emitting device
JP2005196075A (en) Color conversion type color display and control method for the color conversion type color display
JP3761396B2 (en) Color conversion filter and color conversion type color display having color conversion filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

R150 Certificate of patent or registration of utility model

Ref document number: 3726789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees