JP3704744B2 - Membrane deaerator - Google Patents

Membrane deaerator Download PDF

Info

Publication number
JP3704744B2
JP3704744B2 JP11101495A JP11101495A JP3704744B2 JP 3704744 B2 JP3704744 B2 JP 3704744B2 JP 11101495 A JP11101495 A JP 11101495A JP 11101495 A JP11101495 A JP 11101495A JP 3704744 B2 JP3704744 B2 JP 3704744B2
Authority
JP
Japan
Prior art keywords
water
pipe
water supply
membrane
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11101495A
Other languages
Japanese (ja)
Other versions
JPH08281253A (en
Inventor
洋 白澤
芳弘 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP11101495A priority Critical patent/JP3704744B2/en
Publication of JPH08281253A publication Critical patent/JPH08281253A/en
Application granted granted Critical
Publication of JP3704744B2 publication Critical patent/JP3704744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、耐圧容器内に膜モジュールを収容して容器内を該膜モジュールにより給水部と減圧部とに劃し、減圧部に水封式真空ポンプ、給水部の入口に市水、工業用水などの原水の給水管、給水部の出口に脱気水の排水管を接続した膜脱気装置に関する。
【0002】
【従来の技術】
膜脱気装置の脱気性能、即ち脱気率を知るには、膜モジュールに給水する原水の溶存酸素(DO)濃度と、膜モジュールから排水される脱気水のDO濃度を測定し、
脱気率=(原水DO濃度−脱気水DO濃度)/原水DO濃度
が基準値を満たしているか、どうか比較演算、若しくは確認しなければならない。このため、従来は原水の給水管と、脱気水の排出管にそれぞれ溶存酸素濃度計を接続している。
【0003】
【発明が解決しようとする課題】
このように従来の膜脱気装置では2台の溶存酸素濃度計を必要としていた。
【0004】
【課題を解決するための手段】
そこで本発明は、脱気膜により内部が給水部と減圧部とに区劃された膜モジュールと、該膜モジュール内の減圧部を減圧する真空ポンプとを備えてなる膜脱気装置において、前記膜モジュールに原水の給水管、及び脱気水の排水管を接続し、前記給水管と排水管にそれぞれ開閉弁を有する分岐管を接続し、両分岐管を溶存酸素濃度計への供給管に接続し、前記溶存酸素濃度計の出口側に貯槽を設け、該貯槽に前記真空ポンプのシール水の循環ラインを接続し、該循環ラインの途中に前記給水管中の原水と前記循環ライン中のシール水との熱交換を行う熱交換器を設けたことを特徴とする。
【0005】
【実施例】
図示の実施例において、1は耐圧容器、2は耐圧容器中に収容されて容器の内部を給水部1aと、減圧部1bとに区劃する脱気膜を有する膜モジュール、3は配管4で耐圧容器の減圧部1bに接続した水封式真空ポンプ、5は原水を補給水タンクから耐圧容器の給水部の入口に供給するための給水ポンプ6を含む給水管、7は上記給水部1aの出口から脱気水を取出すための排水管を示す。
【0006】
耐圧容器は、給水部の出口と、給水部の入口とが連管8で直列に接続した前段1−Iと後段1−IIの二つからなり、真空ポンプ3は各耐圧容器の減圧部に接続し、給水管5は前段の耐圧容器1−Iの給水部の入口に接続し、排水管7は後段の耐圧容器1−IIの給水部の出口に接続している。
【0007】
真空ポンプ3にはシール水を循環使用するためシール水の循環ライン9が接続してあり、この循環ラインの途中には小形の貯槽10と、熱交換器11とが設けてある。
そして、給水ポンプ6からの給水管5の途中は、上記熱交換器中に配管した冷却管12の入口端に接続し、前段の耐圧容器の給水部に向かう給水管5の残部は上記冷却管12の出口端に接続してある。
【0008】
これによりポンプ3,6を運転し、真空ポンプ3で耐圧容器中に負圧を生起させ、耐圧容器の給水部に供給された原水中の水蒸気ガスを含む気体を膜モジュールを透過して減圧部、真空ポンプに吸引し、こうして原水を脱気水に処理し、脱気水を排水管7からボイラー等の必要個所に供給することができる。
【0009】
そして、真空ポンプの運転中、シール水は貯槽10、熱交換器11を通って循環ライン9を循環し、熱交換器11を通過する際はその冷却管12中を流れる原水によって冷却される。又、真空ポンプが減圧部に吸引し、シール水に混ざった気泡等は貯槽10から排気する。
【0010】
給水管5には開閉弁V1 を有する第1分岐管13が接続してある。又、排水管7には開閉弁V2 を有する第2分岐管14が接続してある。そして、両分岐管13,14は溶存酸素濃度計15に至る供給管16に接続してあり、溶存酸素計15を通った水は配管17でシール水の貯槽10に流出する。
【0011】
従って、上述した膜脱気装置の運転中に、開閉弁V1 を開にすると(開閉弁V2 は閉にしておく。)、給水管5を流れる原水の一部が、第1分岐管13、供給管16を経て溶存酸素濃度計15に供給され、貯槽10に流出することによって原水中の溶存酸素濃度を測定される。又、開閉弁V2 を開にすると(開閉弁V1 は閉にしておく。)、排水管7を流れる脱気水の一部が、第2分岐管14、供給管16を経て溶存酸素濃度計15に供給され、貯槽10に流出することによって脱気水中の溶存酸素濃度を測定される。
【0012】
【発明の効果】
以上で明らかなように、本発明によれば1台の溶存酸素濃度計15を使用し、原水のDO濃度と、脱気水のDO濃度とを、開閉弁V1 ,V2 の開閉の切換えで測定でき、装置の脱気性能を求めることができる。
【図面の簡単な説明】
【図1】本発明の膜脱気装置の一実施例の系統図である。
【符号の説明】
1 耐圧容器
1a 給水部
1b 減圧部
2 膜モジュール
3 封水式真空ポンプ
5 原水の給水管
6 給水ポンプ
7 脱気水の排水管
13 第1分岐管
14 第2分岐管
15 溶存酸素濃度計
16 溶存酸素濃度計への供給管
V1 第1開閉弁
V2 第2開閉弁
[0001]
[Industrial application fields]
The present invention accommodates a membrane module in a pressure-resistant vessel, the inside of the vessel is divided into a water supply unit and a decompression unit by the membrane module, a water-sealed vacuum pump in the decompression unit, and city water and industrial water at the inlet of the water supply unit The present invention relates to a membrane deaeration device in which a drain pipe for deaerated water is connected to an outlet of a raw water supply pipe and a water supply unit.
[0002]
[Prior art]
In order to know the deaeration performance of the membrane deaerator, that is, the deaeration rate, measure the dissolved oxygen (DO) concentration of raw water supplied to the membrane module and the DO concentration of deaerated water drained from the membrane module,
Deaeration rate = (Raw water DO concentration−Deaerated water DO concentration) / Raw water DO concentration must be compared or checked to see if it satisfies the standard value. For this reason, conventionally, a dissolved oxygen concentration meter is connected to each of the raw water supply pipe and the deaerated water discharge pipe.
[0003]
[Problems to be solved by the invention]
As described above, the conventional membrane deaerator requires two dissolved oxygen meters.
[0004]
[Means for Solving the Problems]
Therefore, the present invention provides a membrane deaerator comprising a membrane module having an interior divided into a water supply unit and a decompression unit by a deaeration membrane, and a vacuum pump that decompresses the decompression unit in the membrane module. A raw water supply pipe and a deaerated water drain pipe are connected to the membrane module, a branch pipe having an open / close valve is connected to each of the water feed pipe and the drain pipe, and both branch pipes are used as a supply pipe to the dissolved oxygen concentration meter. Connected, and provided a storage tank on the outlet side of the dissolved oxygen concentration meter, connected to the storage line of the seal water of the vacuum pump to the storage tank, the raw water in the water supply pipe and the circulation line in the circulation line A heat exchanger that performs heat exchange with the sealing water is provided .
[0005]
【Example】
In the illustrated embodiment, 1 is a pressure vessel, 2 is a membrane module having a deaeration membrane that is housed in a pressure vessel and divides the inside of the vessel into a water supply part 1a and a pressure reduction part 1b, and 3 is a pipe 4. A water-sealed vacuum pump connected to the pressure reducing part 1b of the pressure vessel, 5 is a water supply pipe including a water supply pump 6 for supplying raw water from the makeup water tank to the inlet of the water supply part of the pressure vessel, and 7 is the water supply part 1a. The drain pipe for taking out deaerated water from an outlet is shown.
[0006]
The pressure vessel is composed of two parts, a front stage 1-I and a rear stage 1-II, in which the outlet of the water supply unit and the inlet of the water supply unit are connected in series by the connecting pipe 8, and the vacuum pump 3 is connected to the decompression unit of each pressure vessel. The water supply pipe 5 is connected to the inlet of the water supply section of the front pressure vessel 1-I, and the drain pipe 7 is connected to the outlet of the water supply section of the rear pressure container 1-II.
[0007]
A sealing water circulation line 9 is connected to the vacuum pump 3 in order to circulate and use the sealing water. A small storage tank 10 and a heat exchanger 11 are provided in the middle of the circulation line.
The middle of the water supply pipe 5 from the water supply pump 6 is connected to the inlet end of the cooling pipe 12 piped in the heat exchanger, and the remainder of the water supply pipe 5 toward the water supply part of the pressure vessel at the previous stage is the cooling pipe. 12 outlet ends are connected.
[0008]
Thus, the pumps 3 and 6 are operated, the vacuum pump 3 generates a negative pressure in the pressure vessel, and the gas containing the water vapor gas in the raw water supplied to the water supply portion of the pressure vessel passes through the membrane module to reduce the pressure. Then, it can be sucked into a vacuum pump, thus treating the raw water into degassed water, and supplying the degassed water from the drain pipe 7 to a necessary place such as a boiler.
[0009]
During the operation of the vacuum pump, the seal water circulates through the circulation line 9 through the storage tank 10 and the heat exchanger 11, and is cooled by the raw water flowing through the cooling pipe 12 when passing through the heat exchanger 11. Further, the vacuum pump sucks into the decompression section, and the bubbles mixed with the seal water are exhausted from the storage tank 10.
[0010]
A first branch pipe 13 having an on-off valve V1 is connected to the water supply pipe 5. The drain pipe 7 is connected to a second branch pipe 14 having an on-off valve V2. Both branch pipes 13 and 14 are connected to a supply pipe 16 leading to the dissolved oxygen concentration meter 15, and the water that has passed through the dissolved oxygen meter 15 flows out into the seal water storage tank 10 through the pipe 17.
[0011]
Therefore, when the on-off valve V1 is opened during the operation of the above-described membrane deaerator (the on-off valve V2 is kept closed), a part of the raw water flowing through the water supply pipe 5 is supplied to the first branch pipe 13. The dissolved oxygen concentration meter 15 is supplied to the dissolved oxygen concentration meter 15 through the pipe 16 and flows out into the storage tank 10 to measure the dissolved oxygen concentration in the raw water. When the on-off valve V2 is opened (the on-off valve V1 is kept closed), a part of the deaerated water flowing through the drain pipe 7 passes through the second branch pipe 14 and the supply pipe 16 and the dissolved oxygen concentration meter 15. The dissolved oxygen concentration in the deaerated water is measured by flowing out into the storage tank 10.
[0012]
【The invention's effect】
As is apparent from the above, according to the present invention, a single dissolved oxygen concentration meter 15 is used to measure the DO concentration of raw water and the DO concentration of degassed water by switching the open / close valves V1 and V2. The deaeration performance of the apparatus can be obtained.
[Brief description of the drawings]
FIG. 1 is a system diagram of an embodiment of a membrane degassing apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pressure-resistant container 1a Water supply part 1b Pressure reducing part 2 Membrane module 3 Sealed vacuum pump 5 Raw water supply pipe 6 Water supply pump 7 Deaerated water drain pipe 13 First branch pipe 14 Second branch pipe 15 Dissolved oxygen concentration meter 16 Dissolved Supply pipe to oxygen concentration meter V1 First on-off valve V2 Second on-off valve

Claims (1)

脱気膜により内部が給水部と減圧部とに区劃された膜モジュールと、該膜モジュール内の減圧部を減圧する真空ポンプとを備えてなる膜脱気装置において、
前記膜モジュールに原水の給水管、及び脱気水の排水管を接続し、前記給水管と排水管にそれぞれ開閉弁を有する分岐管を接続し、両分岐管を溶存酸素濃度計への供給管に接続し、前記溶存酸素濃度計の出口側に貯槽を設け、該貯槽に前記真空ポンプのシール水の循環ラインを接続し、該循環ラインの途中に前記給水管中の原水と前記循環ライン中のシール水との熱交換を行う熱交換器を設けたことを特徴とする膜脱気装置。
In a membrane deaerator comprising a membrane module whose interior is divided into a water supply unit and a decompression unit by a deaeration membrane, and a vacuum pump for decompressing the decompression unit in the membrane module ,
A raw water supply pipe and a deaerated water drain pipe are connected to the membrane module, a branch pipe having an open / close valve is connected to the water feed pipe and the drain pipe, and both branch pipes are supplied to a dissolved oxygen concentration meter. A storage tank is provided at the outlet side of the dissolved oxygen concentration meter, a circulation line for sealing water of the vacuum pump is connected to the storage tank, and the raw water in the water supply pipe and the circulation line are in the middle of the circulation line A membrane deaerator having a heat exchanger for exchanging heat with the sealing water .
JP11101495A 1995-04-13 1995-04-13 Membrane deaerator Expired - Fee Related JP3704744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11101495A JP3704744B2 (en) 1995-04-13 1995-04-13 Membrane deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11101495A JP3704744B2 (en) 1995-04-13 1995-04-13 Membrane deaerator

Publications (2)

Publication Number Publication Date
JPH08281253A JPH08281253A (en) 1996-10-29
JP3704744B2 true JP3704744B2 (en) 2005-10-12

Family

ID=14550217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11101495A Expired - Fee Related JP3704744B2 (en) 1995-04-13 1995-04-13 Membrane deaerator

Country Status (1)

Country Link
JP (1) JP3704744B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6633133B2 (en) * 2018-05-31 2020-01-22 株式会社アサヒテクノ Room temperature vacuum drying method

Also Published As

Publication number Publication date
JPH08281253A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
KR20010034382A (en) Cooling system and method for cooling a generator
JP3037121B2 (en) Hydrogen / oxygen generator
JP3704744B2 (en) Membrane deaerator
JP2781931B2 (en) Deoxidizer
JPH08332307A (en) Degassing apparatus
JPH0612805Y2 (en) Membrane deaerator
JPH1130564A (en) Seawater-leakage detector
JP2804734B2 (en) Cooling system
EP0788402B1 (en) An arrangement in autoclaving systems
JP3322798B2 (en) Membrane deaerator using circulation of sealing water
JPH04243175A (en) Cooler
KR200176695Y1 (en) Membrane-based OxygenRemoval System for Water Treatment of Power Plants
CN220245644U (en) Degassing equipment for circulating water
JP2543910Y2 (en) Dissolved oxygen stabilization system for deoxygenation equipment
CN215479846U (en) MVR desalination system for ship wastewater
JP2002018431A (en) Device for irradiating ultraviolet ray and device for producing ultrapure water
CN213943073U (en) Special gas distributing cylinder for reaction kettle
JP2506261Y2 (en) Degassed water production equipment
JPH11351795A (en) Ozone circulating and cleaning system for plate type heat exchanger
JP3237532B2 (en) Control method of deaerator
JP3198171B2 (en) Degassing device
JPH075844Y2 (en) Sealed water cooling system for deoxidizer
SU1418560A1 (en) Apparatus for washing heat exchanger
JP3246640B2 (en) Heat pump for membrane separation equipment
CN113582277A (en) MVR desalination system for ship wastewater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees