JP3696294B2 - Hollow foundation foundation method using air bag - Google Patents

Hollow foundation foundation method using air bag Download PDF

Info

Publication number
JP3696294B2
JP3696294B2 JP13393995A JP13393995A JP3696294B2 JP 3696294 B2 JP3696294 B2 JP 3696294B2 JP 13393995 A JP13393995 A JP 13393995A JP 13393995 A JP13393995 A JP 13393995A JP 3696294 B2 JP3696294 B2 JP 3696294B2
Authority
JP
Japan
Prior art keywords
foundation
hole
airbag
hollow
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13393995A
Other languages
Japanese (ja)
Other versions
JPH08326068A (en
Inventor
信夫 小田
英俊 下島
隆保 飯田
好行 安江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Hitachi Cable Ltd
Toenec Corp
Original Assignee
Chubu Electric Power Co Inc
Hitachi Cable Ltd
Toenec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Hitachi Cable Ltd, Toenec Corp filed Critical Chubu Electric Power Co Inc
Priority to JP13393995A priority Critical patent/JP3696294B2/en
Publication of JPH08326068A publication Critical patent/JPH08326068A/en
Application granted granted Critical
Publication of JP3696294B2 publication Critical patent/JP3696294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、送電鉄塔、あるいは橋梁等を支える深礎基礎の工法に係り、詳しくは深礎基礎を建設するときに出た掘削土を中空部に詰めることができる中空深礎基礎の工法に関する。
【0002】
【従来の技術】
送電鉄塔、あるいは橋梁等を支えるための深礎基礎は一般に山岳地の斜面に建設されることが多い。図12は、従来の深礎基礎51の外観図であり、この従来の深礎基礎51は、中空部の無い充実型に建設されている。
その深礎基礎51を建設するため穴が掘削され、多量の掘削土が出る。その掘削土は、以前、建設場所の斜面で処理されることが多かったが、出水等により掘削土が流れ落ちて周囲の自然環境を破壊する恐れがあるため、現在では掘削土を自然環境破壊の心配の無い平地等まで運搬して処理している。
【0003】
【発明が解決しようとする課題】
従来の深礎基礎51を建設するための穴を掘削した掘削土は、山岳地から自然環境破壊の心配の無い平地等まで運搬して処理しなければならないため、運搬と処理コストが嵩むうえ、最近は残土捨て場を確保することが困難になっている。
そこで本発明では、深礎基礎建設時に出た掘削土を詰めるための中空部を有する中空深礎基礎を建設することにより、掘削土処理コストを大幅に下げるとともに、中空深礎基礎建設のためのコンクリ−ト量を少なくして総合的な建設コストを低下させるエアバッグを用いた中空深礎基礎の工法を提供することを解決すべき課題とするものである。
【0004】
【課題を解決するための手段】
本発明では上記課題を解決するための工法は、掘削された穴にコンクリ−トを打ち込んで深礎基礎を建設する工程で、複数のエアバッグを所定の形状に位置決めしたエアバッグ配置部材を、その穴の所定の位置に挿入したあと、それぞれのエアバッグの内圧が所定値に達するまでエアを供給した状態で、前記エアバッグ配置部材の外周面と前記穴の内周面との間の空間にコンクリ−トを流し込んで硬化させたあと、前記エアバッグのエアを抜いて前記エアバッグ配置部材の外周面をコンクリ−トから離間させ、そのエアバッグ配置部材を引き上げることによって中空部を形成したうえ、その中空部に前記穴を掘削したときの掘削土を詰めたあと、所定の形状に深礎基礎を形成することである。
【0006】
【作用】
上記のエアバッグを用いた中空深礎基礎の工法により形成された中空部に、穴を掘削したときの掘削土を詰めることにより掘削土処理が容易になり、且つ、中空部にはコンクリ−トの打ち込みが不要であるため、従来の充実型の深礎基礎に比較してコンクリ−トの使用量が少なくなる。
【0007】
【実施例】
次に、本発明の実施例を図面を参照しながら説明する。
図1は、送電鉄塔、あるいは橋梁等を支える中空深礎基礎1の断面図である。図1に示すように、中空深礎基礎1には中空部2が形成されており、中空深礎基礎1の建設に際して、予め穴を掘削したときの掘削土Sを中空部2に詰めることができるようになっている。以下、この中空深礎基礎1を建設する工法について図2〜図9を参照しながら説明する。
【0008】
図1に示すような中空深礎基礎1を所定の位置に建設するため、図2に示すように予め掘られた円筒形の穴Hの内周面に沿って所要の配筋Rを施工したあと、後述する円筒状のエアバッグ7を用いた内型枠8(図4、図5等を参照)の下部を位置決めするための鋼製型枠3を穴Hの底部に近い位置に取り付け、更に、その内型枠8の中間部分を支持するための内型枠支持リング4A,5Aを配筋Rに取り付ける。
【0009】
次に、図3に示すように、鋼製型枠3の下部に、下部ベ−スコンクリ−ト6を打ち込んで固める。尚、この下部ベ−スコンクリ−ト6は、エアバッグ7を用いた内型枠8の外周面と穴Hの内周面との間にコンクリ−ト12を流し込むとき(図5参照)、そのコンクリ−ト12が内型枠8の底部に回り込んで同内型枠8に浮力を与え、浮きることを防止するためのものである。
【0010】
次に、図4に示すように、円筒状のエアバッグ7を用いた内型枠8を穴Hの開口部から、図示していない昇降装置に接続されたロ−プRPを介して下ろし、内型枠8の下部が鋼製型枠3により位置決めされるように内型枠8を穴Hに垂直に挿入する。
尚、エアバッグ7の外周面を保護するために合成ゴムあるいはビニ−ル製のシ−ト9を用いるが、このシ−ト9を用いずにエアバッグ7のみを使用することも可能である。勿論、上記シ−ト9を使用した場合には、エアバッグ7の外周面に直接、コンクリ−トが接触することが少ないため、エアバッグ7が保護され寿命が延びる。
【0011】
内型枠8が所定の位置に挿入されたあと、エアバッグ7の内圧が所定値になるように、図示していないコンプレッサからエアホ−ス10とエアバルブ11とを介してエアバッグ7にエアを供給する。
【0012】
次に、図5に示すように、内型枠8の外周面と穴Hの内周面との間にコンクリ−ト12を流し込み、固まらせる。そして、コンクリ−ト12が固まったあと、エアバッグ7の空気を抜き、エアバッグ7とシ−ト9を穴Hから取り出す。
この状態で、穴Hの下半分にコンクリ−ト12により囲まれた中空部が形成される。
【0013】
次に、図6に示すように、穴Hの上半分において、内型枠8の中間部分を支持する内型枠支持リング4B,5Bを配筋Rに取り付けたあと、エアバッグ7とシ−ト9を穴Hの上半分に挿入する。そしてエアバッグ7の内圧が所定値になるように、図示していないコンプレッサからエアホ−ス10とエアバルブ11とを介してエアバッグ7にエアを供給する。
【0014】
次に、図7に示すように、穴Hの上半分において、内型枠8の外周面と穴Hの内周面との間にコンクリ−ト13を流し込んで固まらせる。そして、コンクリ−ト13が固まったあと、エアバッグ7の空気を抜き、エアバッグ7とシ−ト9を穴Hから取り出す。
この状態で、穴Hに中空部2を有する中空深礎基礎1の地中部分1Bが形成されるため、図9に示すように、中空部2に穴Hを掘削したときの掘削土Sを詰めたあと、捨てコンクリ−ト14を打ち込む。
【0015】
このように、穴Hを掘削したときの掘削土を中空深礎基礎1の中空部2に埋め戻すことができるため、従来のように掘削土を遠くの処理場まで運ぶ必要がなくなり、残土の処理コストを大幅に引き下げることができる。
【0016】
以上のように1個のエアバッグ7を用いて中空深礎基礎1の地中部分を図9に示すように施工したあと、捨てコンクリ−ト14の上に、図1に示すような地上部分1Aをコンクリ−トで形成することにより、中空深礎基礎1の全体が完成される。
【0017】
次に、複数個のエアバックを用いた中空深礎基礎の工法について、その要部を説明する。
この実施例では、図10に示すように、複数個のエアバッグ21を、合成ゴム製のシ−ト22の内径面に沿って円形状に配列した内型枠23が用いられる。
図10は、複数個のエアバッグ21を、合成ゴム製のシ−ト22の内径面に沿って円形状に配列した内型枠23を前述の穴Hに挿入し、それぞれのエアバッグ21の内圧を所定値まで加圧した状態で、内型枠23の外周面と穴Hの内周面との間にコンクリ−ト24を打ち込んだことを示す平面図であり、図11は図10の縦断面図である。尚、図10、図11は、前述の1個のエアバッグ7を用いた内型枠8による中空部2形成工程を示した図5の状態に相当する。
【0018】
図10、図11に示すように、内型枠23は、下部が前記実施例と同様の鋼製型枠3に位置決めされており、複数個のエアバッグ21が合成ゴム製のシ−ト22に沿って円形状に配列されるとともに、中心部には発泡スチロ−ルEPSが詰められている。この発泡スチロ−ルEPSは、エアバッグ21それぞれにエアを供給して所定の内圧にした状態で、コンクリ−ト24が打ち込まれても内型枠23が変形しないように詰め込まれている。尚、この発泡スチロ−ルEPSは、複数本の連結ロッド25により連結された上部連結板26と下部連結板27との押さえ力により一定の形状が確保されている。
【0019】
内型枠23の外周面と穴Hの内周面との間にコンクリ−ト24を打ち込むときに、このコンクリ−ト24がエアバッグ21それぞれの間の隙間に浸入しないように、エアバッグ21それぞれの間の隙間に内側当て材28が嵌め込まれ、エアバッグ21それぞれとシ−ト22の内周面との間の隙間に外側当て材29が嵌め込まれている。また、内型枠支持リング30A,30Bが予め配筋Rに取り付けられることは、前記実施例と同様である。
【0020】
以上のようにコンクリ−ト24が打ち込まれ、硬化したあと、エアバッグ21のエアを抜き、内圧を下げることにより、内型枠23を穴Hから引き上げることによって穴Hの下半分に中空部2が形成される。そして前記実施例と同様に穴Hの上半分においても中空部2を形成することにより、所定形状の中空部2が形成されるため、穴Hを掘削したときの掘削土を中空深礎基礎1の中空部2に埋め戻すことができる。
以上説明した工法により、穴H内での作業量が極めて少なくなるため、作業者の入り難い比較的直径の小さな深礎基礎でも建設が可能になり、且つ作業者の負担が少なくなる。
【0021】
【発明の効果】
以上のように本発明によれば、掘削された穴にコンクリ−トを打ち込んで深礎基礎を建設する工程で、その穴の所定の位置に複数個のエアバッグを用いた内型枠を挿入し、そのエアバッグの内圧が所定値に達するまでエアを供給した状態で、前記穴の内周面と前記内型枠の外周面との間の空間にコンクリ−トを流し込んで硬化させたあと、前記エアバッグのエアを抜いて内圧を低下させることにより内型枠を前記コンクリ−トから離間させ、同内型枠を穴から引き上げることによって中空部を形成したうえ、その中空部に穴を掘削したときの掘削土を詰めることができるため、掘削土処理コストを大幅に下げることができるとともに、この深礎基礎建設のためのコンクリ−ト量が少なくなり、総合的な建設コストを低下させることができるという効果がある。
【図面の簡単な説明】
【図1】中空深礎基礎の断面図である。
【図2】中空深礎基礎の建設工程説明図である。
【図3】中空深礎基礎の建設工程説明図である。
【図4】中空深礎基礎の建設工程説明図である。
【図5】中空深礎基礎の建設工程説明図である。
【図6】中空深礎基礎の建設工程説明図である。
【図7】中空深礎基礎の建設工程説明図である。
【図8】中空深礎基礎の建設工程説明図である。
【図9】中空深礎基礎の建設工程説明図である。
【図10】複数個のエアバッグを用いた中空深礎基礎の建設工程の状態を示した平面図である。
【図11】複数個のエアバッグを用いた中空深礎基礎の建設工程の状態を示した断面図である。
【図12】従来の深礎基礎の外観図である。
【符号の説明】
1 中空深礎基礎
2 中空部
21 エアバッグ
23 内型枠
H 穴
S 掘削土
[0001]
[Industrial application fields]
The present invention relates to a construction method of a deep foundation that supports a power transmission tower, a bridge, or the like, and more particularly, to a construction method of a hollow foundation that can pack excavated soil produced when constructing a foundation.
[0002]
[Prior art]
In general, deep foundations for supporting power transmission towers or bridges are often constructed on slopes in mountainous areas. FIG. 12 is an external view of a conventional deep foundation 51, and this conventional deep foundation 51 is constructed in a solid type without a hollow portion.
A hole is excavated to construct the deep foundation 51 and a large amount of excavated soil is produced. Previously, the excavated soil was often treated on the slope of the construction site. However, the excavated soil may flow down due to flooding, etc. and destroy the surrounding natural environment. It is transported to a flat area where there are no worries.
[0003]
[Problems to be solved by the invention]
The excavated soil excavated in the hole for constructing the conventional deep foundation 51 has to be transported and processed from the mountainous area to the flat ground where there is no concern about the destruction of the natural environment. Recently, it has become difficult to secure a dump site.
Therefore, in the present invention, by constructing a hollow foundation foundation having a hollow portion for stuffing excavated soil that was produced during construction of the foundation foundation, the cost for excavating soil treatment is greatly reduced, and the construction for the hollow foundation foundation construction is performed. It is an object to be solved to provide a method for a hollow deep foundation using an airbag that reduces the amount of concrete and reduces the overall construction cost.
[0004]
[Means for Solving the Problems]
In the present invention, the construction method for solving the above-described problem is the step of constructing a deep foundation by driving concrete into an excavated hole, and an airbag arrangement member in which a plurality of airbags are positioned in a predetermined shape, The space between the outer peripheral surface of the airbag placement member and the inner peripheral surface of the hole in a state where air is supplied until the internal pressure of each airbag reaches a predetermined value after being inserted into a predetermined position of the hole. After the concrete was poured and cured, the air was removed from the airbag, the outer peripheral surface of the airbag placement member was separated from the concrete, and the airbag placement member was pulled up to form a hollow portion. In addition, after filling the hollow portion with excavated soil when the hole is excavated, a deep foundation is formed in a predetermined shape.
[0006]
[Action]
By excavating the excavated soil when the hole is excavated into the hollow portion formed by the hollow foundation foundation method using the air bag described above, the excavated soil treatment becomes easy. Therefore, the amount of use of the concrete is reduced as compared with the conventional solid foundation.
[0007]
【Example】
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view of a hollow foundation foundation 1 that supports a power transmission tower or a bridge. As shown in FIG. 1, the hollow foundation foundation 1 has a hollow portion 2, and when the hollow foundation foundation 1 is constructed, the excavated soil S when the hole is excavated in advance can be packed in the hollow portion 2. It can be done. Hereinafter, the construction method for constructing the hollow foundation foundation 1 will be described with reference to FIGS.
[0008]
In order to construct the hollow foundation foundation 1 as shown in FIG. 1 at a predetermined position, the necessary reinforcement R was constructed along the inner peripheral surface of the cylindrical hole H dug in advance as shown in FIG. Then, the steel mold 3 for positioning the lower part of the inner mold 8 (see FIGS. 4 and 5 etc.) using a cylindrical airbag 7 described later is attached to a position near the bottom of the hole H, Further, inner mold support rings 4A and 5A for supporting the intermediate portion of the inner mold 8 are attached to the reinforcing bar R.
[0009]
Next, as shown in FIG. 3, the lower base concrete 6 is driven into the lower part of the steel mold 3 and hardened. This lower base concrete 6 is used when the concrete 12 is poured between the outer peripheral surface of the inner mold 8 using the airbag 7 and the inner peripheral surface of the hole H (see FIG. 5). This is to prevent the concrete 12 from going around the bottom of the inner mold 8 to give buoyancy to the inner mold 8 and to float.
[0010]
Next, as shown in FIG. 4, the inner mold frame 8 using the cylindrical airbag 7 is lowered from the opening of the hole H through a rope RP connected to a lifting device (not shown), The inner mold 8 is inserted vertically into the hole H so that the lower part of the inner mold 8 is positioned by the steel mold 3.
Although a sheet 9 made of synthetic rubber or vinyl is used to protect the outer peripheral surface of the airbag 7, it is possible to use only the airbag 7 without using the sheet 9. . Of course, when the sheet 9 is used, the concrete is less likely to come into direct contact with the outer peripheral surface of the airbag 7, so that the airbag 7 is protected and its life is extended.
[0011]
After the inner mold 8 is inserted into a predetermined position, air is supplied to the airbag 7 from the compressor (not shown) via the air hose 10 and the air valve 11 so that the internal pressure of the airbag 7 becomes a predetermined value. Supply.
[0012]
Next, as shown in FIG. 5, the concrete 12 is poured between the outer peripheral surface of the inner mold 8 and the inner peripheral surface of the hole H to be hardened. After the concrete 12 has hardened, the air in the airbag 7 is removed, and the airbag 7 and the sheet 9 are taken out from the hole H.
In this state, a hollow portion surrounded by the concrete 12 is formed in the lower half of the hole H.
[0013]
Next, as shown in FIG. 6, in the upper half of the hole H, after attaching the inner mold frame support rings 4B and 5B for supporting the intermediate portion of the inner mold frame 8 to the reinforcing bar R, the airbag 7 and the seat Insert 9 into the upper half of hole H. Then, air is supplied to the airbag 7 through the air hose 10 and the air valve 11 from a compressor (not shown) so that the internal pressure of the airbag 7 becomes a predetermined value.
[0014]
Next, as shown in FIG. 7, in the upper half of the hole H, the concrete 13 is poured between the outer peripheral surface of the inner mold 8 and the inner peripheral surface of the hole H to be hardened. After the concrete 13 has hardened, the air in the airbag 7 is removed, and the airbag 7 and the sheet 9 are taken out from the hole H.
In this state, since the underground portion 1B of the hollow foundation 1 having the hollow portion 2 in the hole H is formed, the excavated soil S when the hole H is excavated in the hollow portion 2 as shown in FIG. After stuffing, throw away discard concrete 14.
[0015]
In this way, the excavated soil when excavating the hole H can be backfilled in the hollow portion 2 of the hollow foundation 1 so that it is not necessary to transport the excavated soil to a distant treatment plant as in the prior art. Processing costs can be greatly reduced.
[0016]
After the construction of the underground portion of the hollow foundation foundation 1 as shown in FIG. 9 using one airbag 7 as described above, the ground portion as shown in FIG. By forming 1A in concrete, the entire hollow foundation foundation 1 is completed.
[0017]
Next, the main part is demonstrated about the construction method of the hollow foundation foundation using a some airbag.
In this embodiment, as shown in FIG. 10, an inner mold 23 in which a plurality of airbags 21 are arranged in a circular shape along the inner diameter surface of a synthetic rubber sheet 22 is used.
In FIG. 10, an inner mold frame 23 in which a plurality of airbags 21 are arranged in a circular shape along the inner diameter surface of a synthetic rubber sheet 22 is inserted into the above-described holes H. FIG. 11 is a plan view showing that the concrete 24 is driven between the outer peripheral surface of the inner mold 23 and the inner peripheral surface of the hole H in a state where the internal pressure is increased to a predetermined value. It is a longitudinal cross-sectional view. 10 and 11 correspond to the state of FIG. 5 showing the hollow portion 2 forming step by the inner mold 8 using the one airbag 7 described above.
[0018]
As shown in FIGS. 10 and 11, the lower part of the inner mold 23 is positioned on the same steel mold 3 as in the above embodiment, and a plurality of airbags 21 are made of synthetic rubber. Are arranged in a circular shape along the center, and the center portion is filled with foamed polystyrene EPS. The foamed polystyrene EPS is packed so that the inner mold 23 is not deformed even if the concrete 24 is driven in a state where air is supplied to each airbag 21 to a predetermined internal pressure. The foamed polystyrene EPS has a certain shape due to the pressing force between the upper connecting plate 26 and the lower connecting plate 27 connected by a plurality of connecting rods 25.
[0019]
When the concrete 24 is driven between the outer peripheral surface of the inner mold 23 and the inner peripheral surface of the hole H, the airbag 21 is prevented from entering the gaps between the airbags 21. An inner pad 28 is fitted in the gap between the two, and an outer pad 29 is fitted in the gap between each airbag 21 and the inner peripheral surface of the sheet 22. Moreover, it is the same as that of the said Example that the inner formwork support rings 30A and 30B are attached to the reinforcing bar R in advance.
[0020]
After the concrete 24 is driven and cured as described above, the air in the airbag 21 is taken out, the internal pressure is lowered, and the inner frame 23 is pulled up from the hole H, whereby the hollow portion 2 is formed in the lower half of the hole H. Is formed. And since the hollow part 2 of a predetermined shape is formed by forming the hollow part 2 also in the upper half of the hole H like the said Example, the excavated soil when excavating the hole H is made into the hollow foundation foundation 1 The hollow portion 2 can be backfilled.
By the method described above, the amount of work in the hole H is extremely small, so that it is possible to construct a foundation with a relatively small diameter that is difficult for the worker to enter, and the burden on the worker is reduced.
[0021]
【The invention's effect】
As described above, according to the present invention, an inner mold frame using a plurality of airbags is inserted into a predetermined position of a hole in a step of constructing a foundation foundation by driving concrete into an excavated hole. After the air is supplied until the internal pressure of the airbag reaches a predetermined value, the concrete is poured into the space between the inner peripheral surface of the hole and the outer peripheral surface of the inner mold and cured. The air bag is evacuated to reduce the internal pressure, thereby separating the inner mold frame from the concrete, and pulling the inner mold frame out of the hole to form a hollow portion. Since the excavated soil can be filled when excavated, the excavated soil treatment cost can be greatly reduced, and the amount of concrete for the foundation foundation construction can be reduced, reducing the overall construction cost. If you can There is a cormorant effect.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a hollow foundation foundation.
FIG. 2 is an explanatory diagram of a construction process of a hollow foundation foundation.
FIG. 3 is an explanatory view of a construction process of a hollow foundation foundation.
FIG. 4 is an explanatory view of a construction process of a hollow foundation foundation.
FIG. 5 is an explanatory diagram of a construction process of a hollow foundation foundation.
FIG. 6 is an explanatory view of a construction process of a hollow foundation foundation.
FIG. 7 is an explanatory view of a construction process of a hollow foundation foundation.
FIG. 8 is an explanatory diagram of a construction process of a hollow foundation foundation.
FIG. 9 is an explanatory diagram of a construction process of a hollow foundation foundation.
FIG. 10 is a plan view showing a state of a construction process of a hollow foundation foundation using a plurality of airbags.
FIG. 11 is a sectional view showing a state of a construction process of a hollow foundation using a plurality of airbags.
FIG. 12 is an external view of a conventional deep foundation.
[Explanation of symbols]
1 Hollow foundation foundation 2 Hollow part
21 airbags
23 formwork H hole S excavated soil

Claims (2)

掘削された穴にコンクリ−トを打ち込んで深礎基礎を建設する工程で、複数のエアバッグを所定の形状に位置決めしたエアバッグ配置部材を、その穴の所定の位置に挿入したあと、それぞれのエアバッグの内圧が所定値に達するまでエアを供給した状態で、前記エアバッグ配置部材の外周面と前記穴の内周面との間の空間にコンクリ−トを流し込んで硬化させたあと、前記エアバッグのエアを抜いて前記エアバッグ配置部材の外周面をコンクリ−トから離間させ、そのエアバッグ配置部材を引き上げることによって中空部を形成したうえ、その中空部に前記穴を掘削したときの掘削土を詰めたあと、所定の形状に深礎基礎を形成することを特徴とするエアバッグを用いた中空深礎基礎の工法。In the process of constructing the foundation foundation by driving concrete into the excavated hole, after inserting the airbag placement members in which a plurality of airbags are positioned in a predetermined shape into the predetermined positions of the holes, In a state in which air is supplied until the internal pressure of the airbag reaches a predetermined value, the concrete is poured into the space between the outer peripheral surface of the airbag placement member and the inner peripheral surface of the hole and cured, When the air of the air bag is drawn out, the outer peripheral surface of the air bag arrangement member is separated from the concrete, and the air bag arrangement member is pulled up to form a hollow portion, and when the hole is excavated in the hollow portion A method of constructing a hollow foundation using an air bag, which is characterized by forming a foundation foundation in a predetermined shape after filling with excavated soil. エアバッグ配置部材を穴に挿入する前に、その穴の底部にコンクリ−トを流し込み、更にエアバッグ配置部材を位置決めする位置決め部材をその底部コンクリ−ト面に設置することを特徴とする請求項1記載のエアバックを用いた中空深礎基礎の工法。 2. A method of pouring concrete into the bottom of the hole before inserting the airbag placement member into the hole, and further installing a positioning member for positioning the airbag placement member on the bottom concrete surface. A construction method of a hollow foundation using the airbag described in 1 .
JP13393995A 1995-05-31 1995-05-31 Hollow foundation foundation method using air bag Expired - Fee Related JP3696294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13393995A JP3696294B2 (en) 1995-05-31 1995-05-31 Hollow foundation foundation method using air bag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13393995A JP3696294B2 (en) 1995-05-31 1995-05-31 Hollow foundation foundation method using air bag

Publications (2)

Publication Number Publication Date
JPH08326068A JPH08326068A (en) 1996-12-10
JP3696294B2 true JP3696294B2 (en) 2005-09-14

Family

ID=15116611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13393995A Expired - Fee Related JP3696294B2 (en) 1995-05-31 1995-05-31 Hollow foundation foundation method using air bag

Country Status (1)

Country Link
JP (1) JP3696294B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100944873B1 (en) 2009-06-05 2010-03-04 이영암 Manufacturing method of grounding stone made from concrete

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136798B2 (en) * 2009-03-03 2013-02-06 東京電力株式会社 Construction method of steel tower foundation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100944873B1 (en) 2009-06-05 2010-03-04 이영암 Manufacturing method of grounding stone made from concrete

Also Published As

Publication number Publication date
JPH08326068A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
US20070215383A1 (en) Hydraulic Pile Cap Removal
KR101311803B1 (en) Slurry wall underpinning construction method using underpinning concrete tube with uneven surface
JP3696294B2 (en) Hollow foundation foundation method using air bag
KR100289256B1 (en) Tunnel construction method in shallow toffee area
JP4349708B2 (en) Structural underground wall and its construction method
JP3888956B2 (en) Casting concrete pile construction method
JPH0786225B2 (en) Building foundation ground improvement method
JP3776987B2 (en) Vertical shaft construction method using a manhole wall combined tubular body
JP2005213963A (en) Pile head constructing method
JP2004169485A (en) Ground improvement method
JP2000129696A (en) Pile foundation method and pile foundation constructed by the method
JP3275191B2 (en) Mountain retaining method
JP4248716B2 (en) Caisson top end construction method
CN113430964B (en) In-situ suspension protection construction method for box culvert spanning foundation pit in long distance
CN212336050U (en) Anchoring structure of deformation side slope
JPH08209686A (en) Pile head processing tool and pile head processing construction method for cast-in-place pile
JPH05132930A (en) Developing method of foundation pile with drain layer
JPH0726569A (en) Pile foundation construction method for structure exposed to partial earth pressure
JP2004003317A (en) Reinforced earth retaining wall
JP2000352053A (en) Existing pile dismantling construction method
JP3794097B2 (en) Construction method for underground structures
JP2004132124A (en) Pneumatic caisson and pneumatic caisson constructing method
JPH10219680A (en) Work execution method of cast-in-place concrete pile
JP4146561B2 (en) Construction method of shaft
JP3787536B2 (en) Foundation construction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees