JP3691527B2 - Papermaking wastewater treatment method - Google Patents

Papermaking wastewater treatment method Download PDF

Info

Publication number
JP3691527B2
JP3691527B2 JP18917094A JP18917094A JP3691527B2 JP 3691527 B2 JP3691527 B2 JP 3691527B2 JP 18917094 A JP18917094 A JP 18917094A JP 18917094 A JP18917094 A JP 18917094A JP 3691527 B2 JP3691527 B2 JP 3691527B2
Authority
JP
Japan
Prior art keywords
wastewater
treatment method
polymer flocculant
waste water
flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18917094A
Other languages
Japanese (ja)
Other versions
JPH0852477A (en
Inventor
岩宏 内本
貴宏 半谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Kurita Water Industries Ltd
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Oji Holdings Corp, Oji Paper Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP18917094A priority Critical patent/JP3691527B2/en
Publication of JPH0852477A publication Critical patent/JPH0852477A/en
Application granted granted Critical
Publication of JP3691527B2 publication Critical patent/JP3691527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、パルプ製造または抄紙工程から排出される排水の処理方法に関し、中でも凝集剤による固形分の分離に関するものである。
【0002】
【従来の技術】
水を多量に使用する紙パルプ業界では、排水処理に多大なコストと労力が掛けられており、環境保護問題が益々重視されつつある今日、その負担はさらに増大している。とりわけ、古紙利用の促進が推奨され、古紙処理設備からの排水が増加することにより、排水処理の負荷は一層増加している。
パルプ製造または抄紙工程から排出される繊維分や填料等の固形分を分離または除去する方法としては、凝集法、吸着法、活性汚泥法などの方法があり、これらを単独または適宜組み合わせて処理されている。
最も代表的なものは凝集法で、凝集剤により固形分を凝集させ、凝集物を浮上または沈降させて水から分離する方法である。活性汚泥法による場合も、その前または後に凝集法を使用することが一般的である。
凝集剤を用いて分離された固形分の高いスラリーは、更に脱水工程で固形分濃度を高めて、焼却または廃棄されるか、もしくは、他の用途への利用に供される。
【0003】
従来の代表的な凝集法の特許として、特開昭58−70883号、特開平1−151990号、特開平4−341387号などが挙げられる。これらはCOD成分の除去または凝集剤の回収などを主目的としたものである。
【0004】
【発明が解決しようとする課題】
所で、前述したように、古紙処理の増加に伴って、微細繊維、顔料、填料などの固形分成分が多くなった結果、排水の凝集性が悪くなり、また、凝集後の脱水性が悪化し、従来の単純な凝集方法では処理しきれなくなっている。
従って、脱水性の良い、大きなフロックを効率良く生成する方法が必要であるが、フロックの形成という観点に立った技術として、▲1▼特公昭58−32629号、▲2▼特公昭62−53235号、▲3▼特開平3−38204号の3つが挙げられる。
【0005】
しかし、前記▲1▼▲2▼は有機物固形分を主体とする排水には有効であるが、填料、顔料を多く含む場合には有効ではない。また、▲3▼は填料、顔料を含むものにも有効である反面、低濃度排水に対するものであるので、種々の濃度の排水が混在する近年の製紙工場の排水には適さず、また、高価な高分子系の凝集剤を多量に使用するという欠点を有する。
本発明は、種々の濃度の排水が混在しても良く、また、微細繊維などの有機分及び填料・顔料などの無機分が混在しても、効率良くかつ安価に大きなフロックを形成することができ、しかも、凝集後のスラリーの脱水性が良い凝集方法を提案することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明は、製紙排水に無機凝集剤および高分子凝集剤を添加し急速撹拌する第一工程、緩速撹拌する第二工程をこの順に含むことによって、排水中の固形分を濃縮して分離することを特徴とする製紙排水の処理方法を採用する。
【0007】
本発明で製紙排水とは、パルプ製造および抄紙を行う製紙工場の排水を指し、パルプ製造の工程としては、蒸解、漂白、洗浄、選別の各工程を含む。また、古紙を離解したり脱墨したりして、古紙パルプを製造する工程も含む。抄紙工程には、抄紙機上で行われる塗工工程も含む。
本発明の方法は、上記の排水を直接処理することにも使用され、また、上記排水を活性汚泥処理する前または後の凝集工程としても使用される。
【0008】
本発明に使用する無機凝集剤としては、硫酸、硫酸第一鉄、硫酸第二鉄、硫酸アルミニウム、塩化第一鉄、塩化第二鉄、ポリ塩化アルミニウムなどが使用される。無機凝集剤は、対排水重量で0.01〜1重量%の添加が望ましい。
本発明に使用する高分子凝集剤は、ポリアクリルアミド、変性ポリアクリルアミド、ポリアクリル酸ソーダ、変性ポリアクリル酸ソーダ、などのアニオン性高分子凝集剤、ポリアミノアルキルメタクリレート、ポリエチレンイミンなどのカチオン性高分子凝集剤が使用できる。
無機凝集剤と高分子凝集剤を併用することにより、凝集物の固形分濃度を向上することができ、また、凝集物と水の分離が容易となる。高分子凝集剤として、アニオン性ポリアクリルアミドを添加し、続いて、カチオン性ポリアクリルアミド(または両性ポリアクリルアミド)を添加すると、これらの効果が一層高まる。
高分子凝集剤の添加量としては、対排水重量で0.05〜1重量部が好ましい。
【0009】
本発明の第一の工程では、無機凝集剤および高分子凝集剤によりPH調整を行い、また、急速撹拌により凝集剤と固形分とを十分に混合し、フロックを形成させる工程である。無機凝集剤を先に添加し、PHを調整した所で高分子凝集剤を添加して急速撹拌することが好ましい。この際に、高分子凝集剤を添加するまでは撹拌速度は任意で良い。
第二の工程は、第一の工程で生成したフロックを成長させることを目的としている。この工程では、主として高分子凝集剤によるフロックの巨大化および高濃度化を行う。
従って、第一の工程で生成したフロックを破壊しないように緩速撹拌する必要があるのである。
【0010】
本発明の急速撹拌及び緩速撹拌は、略円筒形の槽内の排水を回転羽により撹拌することにより行われ、急速撹拌とは、回転羽の回転速度が100〜500回転/分であり、緩速撹拌とは、15〜30回転/分である。
500回転/分以上にしても効果の向上は無く、電力を浪費するばかりか、空気の巻き込みという問題を発生する。100回転/分未満では、凝集反応が十分に進まず、処理水(凝集物を除去した排水)の固形分濃度が高くなってしまう。緩速撹拌の速度が30回転/分より速いと、フロックが破壊される可能性があり、処理水の固形分濃度がやや高くなる傾向がある。この範囲より遅いと、フロックの巨大化またはフロック内部の高濃度化が十分に行われず、凝集物を含むスラリーの脱水性(濾水性)がやや悪くなる傾向がある。
撹拌装置としては、回転羽および凝集物を取り出す手段を有していればどのようなものであっても良いが、例えば、特開平5−192699号に記載されているような装置が好ましい。
【0011】
本発明が適用される排水の固形分濃度は0.1〜10重量%である。従って、様々な発生源の排水に対して有効であり、前工程でトラブルなどがあっても、凝集性能が衰えず、安定した操業が図れる。
本発明の方法で凝集分離した結果、固形分を含む方のスラリーの固形分濃度は3〜25重量%であり、処理前の濃度と比較して2.5〜30倍に濃縮されている。
製紙排水中に紙の填料または塗料に由来する無機粒子が存在する場合、粒子表面はアニオン性でありかつ液はアルカリ性であることが多い。このような場合、本発明による凝集を効果的に行うためには、高分子凝集剤を添加する前のPHが6.5以下、好ましくは6.0以下であることが望ましい。
PHの調整は、無機凝集剤で行えることが多いが、これで不足の時は、硫酸や塩酸などの一般的な酸を使用して差し支えない。
【0012】
第二の工程における緩速撹拌によるフロックの巨大化に際して、気泡が多量に存在していると、フロックが浮上して凝集反応が十分に進行しないことがあるので、高分子凝集剤を添加する前に、気泡を除去する工程を設けることが好ましい場合もある。気泡を除去する方法としては、本発明の急速撹拌と同様に速い速度で撹拌を行う方法が簡便である。気泡を除去する工程は、高分子凝集剤の添加前であればいつでも良く、無機凝集剤を添加する前または後のいずれでも良い。
【0013】
【実施例】
<実施例1>
古紙の脱墨工程から排出された固形分濃度3.5重量%の排水をジヤーテスターにとり、無機凝集剤として硫酸バン土(本州製紙製:アルミナ濃度8重量%)を対スラリーで0.2重量%添加しゆるやかに撹拌した。この時のPHは6.0となった。続いて、高分子凝集剤としてアニオン性ポリアクリルアミド(三井サイアナミッド社アコフロックA235H)を対スラリーで0.14重量%添加し、300回転/分で1分間の急速撹拌を行い、カチオン性ポリアクリルアミド(三井サイアナミッド社アコフロックC492H)を対スラリーで0.25重量%添加し、300回転/分で1分間急速撹拌した。
続いて、20回転/分で10分間の緩速撹拌を行い、その後、1分間静置し、上澄み液(処理水)と沈殿物を分離した。沈殿物(凝集物を含むスラリー)は下記の方法で脱水性(濾水性)を評価した。また、処理水については固形分濃度を測定した。
これらの測定値は各種条件と共に表1に記載した。
【0014】
<濾水性の測定>
市販のブフナー式漏斗にステンレス製の濾網(40メッシュ)をしき、薬品添加後、フロック生成物を含んだ凝集スラリー500CCを漏斗に入れ、30秒間濾過を行い、濾過された水の量を測定し、これを濾水性を示す指標とする。値が大きいほど濾水性が良く、即ち、脱水性が良好であることを示す。
【0015】
<実施例2>
高分子凝集剤を添加する前に300回転/分で1分間撹拌し、気泡を除去した外は全て実施例1と同様に行ったものを実施例2とする。
【0016】
<実施例3>
古紙の脱墨工程から排出された固形分濃度4.8重量%の排水をジヤーテスターにとり、無機凝集剤として硫酸を対スラリーで0.1重量%添加しゆるやかに撹拌した。この時のPHは6.0となった。続いて、高分子凝集剤としてアニオン性ポリアクリルアミド(三井サイアナミッド社アコフロックA235H)を対スラリーで0.18重量%添加し、300回転/分で1分間の急速撹拌を行い、カチオン性ポリアクリルアミド(三井サイアナミッド社アコフロックC492H)を対スラリーで0.22重量%添加し、300回転/分で1分間急速撹拌した。
【0018】
<実施例>
緩速撹拌の速度を10回転/分とした外は実施例1と同様に行ったものを実施例とする。
【0019】
<比較例1>
緩速撹拌の速度を45回転/分とした外は実施例1と同様に行ったものを比較例1とする。
【0020】
<実施例>
緩速撹拌の速度を5分間とした外は実施例1と同様に行ったものを実施例とする。
【0021】
<比較例>
実施例1において無機凝集剤を添加しない外は実施例1と同様にして行ったものを比較例とする。なお、この場合、高分子凝集剤を添加する前のPHは6.7であった。
【0022】
【表1】

Figure 0003691527
【0023】
【発明の効果】
本発明により、広い濃度範囲の排水の処理が可能になり、本発明で処理された処理水には固形分が非常に少なく、即ち、分離の効率が良い。
また、本発明により発生した凝集固形分を含むスラリーは脱水性が良く、その後の燃焼処理等のための濃縮・脱水作業が容易であるという効果がある。[0001]
[Industrial application fields]
The present invention relates to a method for treating wastewater discharged from a pulp manufacturing or papermaking process, and more particularly to separation of solid content by a flocculant.
[0002]
[Prior art]
In the pulp and paper industry, which uses a large amount of water, wastewater treatment is costly and labor intensive, and the burden of environmental protection is becoming more and more important today. In particular, it is recommended to promote the use of waste paper, and the amount of waste water from waste paper treatment facilities is increasing, so the load of waste water treatment is further increasing.
Methods for separating or removing solids such as fibers and fillers discharged from pulp manufacturing or papermaking processes include methods such as agglomeration, adsorption, and activated sludge, which can be treated alone or in combination as appropriate. ing.
The most typical method is an agglomeration method, in which a solid content is agglomerated by an aggregating agent, and the agglomerate is floated or settled and separated from water. Even in the case of the activated sludge method, it is common to use the agglomeration method before or after.
The slurry having a high solid content separated by using the flocculant is further increased in the solid content concentration in the dehydration step, and incinerated or discarded, or provided for other uses.
[0003]
JP-A-58-70883, JP-A-1-151990, JP-A-4-341387, and the like can be mentioned as conventional typical agglomeration patents. These are mainly intended to remove COD components or collect flocculants.
[0004]
[Problems to be solved by the invention]
However, as described above, as waste paper processing increases, solid content components such as fine fibers, pigments, and fillers increase, resulting in poor flocculation of the waste water and poor dewaterability after flocculation. However, the conventional simple agglomeration method cannot complete the treatment.
Accordingly, there is a need for a method for efficiently generating large flocs having good dehydration properties. However, as a technique from the viewpoint of forming flocs, (1) JP-B 58-32629, (2) JP-B 62-53235 No. 3 and JP-A-3-38204.
[0005]
However, the above (1) and (2) are effective for drainage mainly composed of organic solids, but are not effective when containing a lot of fillers and pigments. In addition, (3) is effective for those containing fillers and pigments, but it is for low-concentration wastewater, so it is not suitable for wastewater in recent paper mills where various concentrations of wastewater are mixed, and is expensive. The disadvantage is that a large amount of a high-molecular flocculant is used.
In the present invention, wastewater of various concentrations may be mixed, and even if organic components such as fine fibers and inorganic components such as fillers and pigments are mixed, large flocs can be formed efficiently and inexpensively. Further, it is an object of the present invention to propose an agglomeration method in which the slurry after agglomeration has good dewaterability.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention includes a first step in which an inorganic flocculant and a polymer flocculant are added to papermaking wastewater and rapidly stirred, and a second step in which slow stirring is performed in this order, so that the solids in the wastewater A papermaking wastewater treatment method characterized by concentrating and separating the components is adopted.
[0007]
In the present invention, the papermaking wastewater refers to the wastewater of a paper mill that performs pulp production and papermaking, and the pulp production process includes cooking, bleaching, washing, and sorting processes. Further, it includes a step of producing waste paper pulp by disaggregating or deinking waste paper. The papermaking process includes a coating process performed on a papermaking machine.
The method of the present invention is also used for directly treating the waste water, and also as a coagulation step before or after the waste water is treated with activated sludge.
[0008]
As the inorganic flocculant used in the present invention, sulfuric acid, ferrous sulfate, ferric sulfate, aluminum sulfate, ferrous chloride, ferric chloride, polyaluminum chloride and the like are used. The inorganic flocculant is preferably added in an amount of 0.01 to 1% by weight with respect to the drainage weight.
Polymer flocculants used in the present invention are anionic polymer flocculants such as polyacrylamide, modified polyacrylamide, polysodium acrylate, and modified polysodium acrylate, and cationic polymers such as polyaminoalkyl methacrylate and polyethyleneimine. A flocculant can be used.
By using the inorganic flocculant and the polymer flocculant in combination, the solid content concentration of the aggregate can be improved, and the aggregate and water can be easily separated. When anionic polyacrylamide is added as a polymer flocculant, and then cationic polyacrylamide (or amphoteric polyacrylamide) is added, these effects are further enhanced.
The addition amount of the polymer flocculant is preferably 0.05 to 1 part by weight with respect to the drainage weight.
[0009]
In the first step of the present invention, the pH is adjusted with an inorganic flocculant and a polymer flocculant, and the flocculant and solid content are sufficiently mixed by rapid stirring to form a floc. It is preferable that the inorganic flocculant is added first, and the polymer flocculant is added at a place where the pH is adjusted, and the mixture is rapidly stirred. At this time, the stirring speed may be arbitrary until the polymer flocculant is added.
The second step is aimed at growing the floc generated in the first step. In this step, the flocs are enlarged and the concentration is increased mainly by the polymer flocculant.
Therefore, it is necessary to stir slowly so as not to destroy the floc generated in the first step.
[0010]
The rapid stirring and slow stirring of the present invention is performed by stirring the drainage in the substantially cylindrical tank with rotating blades, and rapid stirring is a rotating blade rotating speed of 100 to 500 rotations / minute, Slow stirring is 15 to 30 revolutions / minute.
Even if it is 500 rpm or more, the effect is not improved, and not only power is wasted but also the problem of air entrainment occurs. If it is less than 100 revolutions / minute, the aggregation reaction does not proceed sufficiently, and the solid content concentration of the treated water (drainage from which the aggregate has been removed) becomes high. If the speed of slow stirring is higher than 30 revolutions / minute, the floc may be destroyed, and the solid content concentration of the treated water tends to be slightly higher. If it is slower than this range, the flocs will not be enlarged or the concentration inside the flocs will not be sufficiently increased, and the dewaterability (water drainage) of the slurry containing aggregates will tend to be slightly worse.
The stirring device may be any device as long as it has means for taking out rotating blades and aggregates. For example, a device described in JP-A-5-192699 is preferable.
[0011]
The solid content concentration of the wastewater to which the present invention is applied is 0.1 to 10% by weight. Therefore, it is effective for drainage of various sources, and even if there is a trouble in the previous process, the agglomeration performance does not deteriorate and stable operation can be achieved.
As a result of the aggregation and separation by the method of the present invention, the solid content concentration of the slurry containing the solid content is 3 to 25% by weight, and is concentrated 2.5 to 30 times compared to the concentration before the treatment.
When inorganic particles derived from paper filler or paint are present in papermaking wastewater, the particle surface is often anionic and the liquid is often alkaline. In such a case, in order to effectively perform the aggregation according to the present invention, it is desirable that the PH before adding the polymer flocculant is 6.5 or less, preferably 6.0 or less.
In many cases, the pH can be adjusted with an inorganic flocculant. If this is insufficient, a general acid such as sulfuric acid or hydrochloric acid may be used.
[0012]
In the second step, when the flocs are enlarged by slow stirring, if a large amount of bubbles are present, the flocs may float and the agglomeration reaction may not proceed sufficiently. It may be preferable to provide a step of removing bubbles. As a method of removing bubbles, a method of stirring at a high speed is simple as in the rapid stirring of the present invention. The step of removing bubbles may be any time before the addition of the polymer flocculant, and may be performed before or after the addition of the inorganic flocculant.
[0013]
【Example】
<Example 1>
Wastewater discharged from waste paper deinking process with a solid content of 3.5% by weight is taken up in a yarn tester, and vanadium sulfate soil (Honshu Paper: alumina concentration: 8% by weight) as an inorganic flocculant is 0.2% by weight in slurry. Added and stirred gently. The PH at this time was 6.0. Subsequently, 0.14% by weight of anionic polyacrylamide (Acifloc A235H, Mitsui Cyanamid Co., Ltd.) as a polymer flocculant was added to the slurry and rapidly stirred at 300 rpm for 1 minute. CYANAMID ACOFLOCK C492H) was added in an amount of 0.25% by weight to the slurry and rapidly stirred at 300 rpm for 1 minute.
Subsequently, the mixture was gently stirred at 20 rpm for 10 minutes, and then allowed to stand for 1 minute to separate the supernatant (treated water) and the precipitate. The precipitate (slurry containing aggregates) was evaluated for dehydration (freeness) by the following method. Moreover, solid content concentration was measured about the treated water.
These measured values are listed in Table 1 together with various conditions.
[0014]
<Measurement of drainage>
Put a filter net made of stainless steel (40 mesh) on a commercially available Buchner type funnel, add chemicals, put agglomerated slurry 500CC containing flock products into the funnel, filter for 30 seconds, and measure the amount of filtered water This is used as an index indicating drainage. Larger values indicate better drainage, that is, better dehydration.
[0015]
<Example 2>
Example 2 was carried out in the same manner as Example 1 except that stirring was performed at 300 rpm for 1 minute before the polymer flocculant was added, and bubbles were removed.
[0016]
<Example 3>
The waste water with a solid content concentration of 4.8% by weight discharged from the deinking process of the used paper was taken in a yarn tester, and 0.1% by weight of sulfuric acid as an inorganic flocculant was added to the slurry and stirred gently. The PH at this time was 6.0. Subsequently, 0.18% by weight of anionic polyacrylamide (Acifloc A235H, Mitsui Cyanamid Co., Ltd.) as a polymer flocculant was added to the slurry and rapidly stirred at 300 rpm for 1 minute. 0.22% by weight of Cyanamid Acoflock C492H) was added to the slurry and rapidly stirred at 300 rpm for 1 minute.
[0018]
<Example 4 >
Example 4 was carried out in the same manner as in Example 1 except that the slow stirring speed was 10 revolutions / minute.
[0019]
< Comparative Example 1 >
Comparative Example 1 is the same as Example 1 except that the slow stirring speed is 45 rpm.
[0020]
<Example 5 >
Example 5 was carried out in the same manner as in Example 1 except that the slow stirring speed was changed to 5 minutes.
[0021]
<Comparative Example 2 >
Comparative Example 2 is the same as Example 1 except that no inorganic flocculant is added in Example 1. In this case, the pH before adding the polymer flocculant was 6.7.
[0022]
[Table 1]
Figure 0003691527
[0023]
【The invention's effect】
According to the present invention, wastewater having a wide concentration range can be treated, and the treated water treated in the present invention has a very low solid content, that is, the separation efficiency is good.
Further, the slurry containing agglomerated solid content generated by the present invention has a good dehydrating property, and has an effect of facilitating the subsequent concentration / dehydration work for combustion processing and the like.

Claims (8)

製紙排水に無機凝集剤および高分子凝集剤を添加し、略円筒型の槽内で排水を回転羽により攪拌する処理が、回転速度を100〜500回転/分とする急速攪拌を0.5〜3分行なう第一工程回転速度を15〜30回転/分とする緩速撹拌を5分以上行なう第二工程をこの順に含むことによって、排水中の固形分を濃縮して分離することを特徴とする製紙排水の処理方法Adding an inorganic flocculant and a polymer flocculant to the papermaking waste water, process wastewater in a substantially cylindrical tank is stirred by a rotating vane is 0.5 to rapid stirring to 100 to 500 revolutions / minute rotational speed Including the first step for 3 minutes and the second step for 5 minutes or more of slow stirring at a rotational speed of 15 to 30 revolutions / minute in this order to concentrate and separate the solids in the waste water. Characteristic paper wastewater treatment method 排水中の固形分濃度が0.1〜10重量%、濃縮して分離された部分の固形分濃度が3〜25重量%であることを特徴とする請求項1に記載の排水処理方法  2. The wastewater treatment method according to claim 1, wherein the solid content concentration in the wastewater is 0.1 to 10% by weight, and the solid content concentration in the portion separated by concentration is 3 to 25% by weight. 高分子凝集剤を添加する前の排水のPHが6.5以下であることを特徴とする、請求項1〜請求項のいずれかに記載の排水処理方法The wastewater treatment method according to any one of claims 1 to 2 , wherein the pH of the wastewater before adding the polymer flocculant is 6.5 or less. 高分子凝集剤の添加前に気泡を除去する工程を有することを特徴とする請求項1〜請求項のいずれかに記載の排水処理方法The wastewater treatment method according to any one of claims 1 to 3 , further comprising a step of removing bubbles before the addition of the polymer flocculant. 気泡を除去する工程が急速撹拌することにより行われることを特徴とする請求項記載の排水処理方法The waste water treatment method according to claim 4, wherein the step of removing bubbles is performed by rapid stirring. 製紙排水が古紙処理または脱墨処理の排水である請求項1〜請求項のいずれかに記載の排水処理方法The wastewater treatment method according to any one of claims 1 to 5 , wherein the papermaking wastewater is wastewater from waste paper treatment or deinking treatment. 無機凝集剤が、硫酸、硫酸第一鉄、硫酸第二鉄、硫酸アルミニウム、塩化第一鉄、塩化第二鉄、ポリ塩化アルミニウムから選ばれた1種以上であることを特徴とする請求項1〜請求項のいずれかに記載の排水処理方法The inorganic flocculant is at least one selected from sulfuric acid, ferrous sulfate, ferric sulfate, aluminum sulfate, ferrous chloride, ferric chloride, and polyaluminum chloride. The waste water treatment method according to any one of claims 6 to 6. 急速撹拌を2段階で行い、前段はアニオン性高分子凝集剤、後段はカチオン性もしくは両性高分子凝集剤を添加することを特徴とする請求項1〜請求項のいずれかに記載の排水処理方法。The waste water treatment according to any one of claims 1 to 7 , wherein rapid stirring is performed in two stages, an anionic polymer flocculant is added in the former stage, and a cationic or amphoteric polymer flocculant is added in the latter stage. Method.
JP18917094A 1994-08-11 1994-08-11 Papermaking wastewater treatment method Expired - Fee Related JP3691527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18917094A JP3691527B2 (en) 1994-08-11 1994-08-11 Papermaking wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18917094A JP3691527B2 (en) 1994-08-11 1994-08-11 Papermaking wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH0852477A JPH0852477A (en) 1996-02-27
JP3691527B2 true JP3691527B2 (en) 2005-09-07

Family

ID=16236652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18917094A Expired - Fee Related JP3691527B2 (en) 1994-08-11 1994-08-11 Papermaking wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3691527B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574640B2 (en) * 2007-04-25 2010-11-04 株式会社トータルエス・ケー Paint waste liquid separation device and paint waste liquid separation method
JP2011121788A (en) * 2009-12-08 2011-06-23 Sanko Kk Iron fulvate-containing composition, method for producing it, fertilizer and seawater damage inhibitor
JP6464716B2 (en) * 2014-12-16 2019-02-06 王子ホールディングス株式会社 Treatment method for coliform group-containing wastewater and treatment apparatus for coliform group-containing wastewater

Also Published As

Publication number Publication date
JPH0852477A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
US5178774A (en) Purification of aqueous liquor
JP2007061718A (en) Composite flocculant
JP2011131164A (en) Method for treating oil-containing waste water
JP3550955B2 (en) Sludge treatment equipment
JP3691527B2 (en) Papermaking wastewater treatment method
US5698109A (en) Purification of aqueous liquor
JPH06239B2 (en) Dewatering method of organic sludge
JPH0390000A (en) Sludge treatment
JPH06344000A (en) Dehydration process for sludge
WO2002018281A1 (en) Method for dewatering of sludge
JP2000015300A (en) Dehydration of sludge
JP4816374B2 (en) Coagulation method of high water content sludge
JP3591077B2 (en) Sludge dewatering method
JPH1147758A (en) Treatment of water containing minute suspended substance
JPS62277200A (en) Treatment for flocculating sludge
JP2751932B2 (en) Recovery method of silver component
JPS6125700A (en) Dehydrating method of organic sludge
JP2001224906A (en) Method for reducing volume of sludge from wastewater after treatment of flue gas
JPH05317899A (en) Treatment of sludge
JP2938270B2 (en) Waste paper pulp wastewater treatment method
JP3924011B2 (en) Dewatering method for sewage digested sludge
JPS63240999A (en) Dehydration of organic sludge
JPS6041600A (en) Dehydration method of sludge
JPS5992100A (en) Dehydration of sludge
JP2003112004A (en) Flocculation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees