JP3690275B2 - Road surface temperature estimation method - Google Patents

Road surface temperature estimation method Download PDF

Info

Publication number
JP3690275B2
JP3690275B2 JP2000380486A JP2000380486A JP3690275B2 JP 3690275 B2 JP3690275 B2 JP 3690275B2 JP 2000380486 A JP2000380486 A JP 2000380486A JP 2000380486 A JP2000380486 A JP 2000380486A JP 3690275 B2 JP3690275 B2 JP 3690275B2
Authority
JP
Japan
Prior art keywords
road
temperature
amount
heat
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000380486A
Other languages
Japanese (ja)
Other versions
JP2002181636A (en
Inventor
晃之 中村
博朗 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000380486A priority Critical patent/JP3690275B2/en
Publication of JP2002181636A publication Critical patent/JP2002181636A/en
Application granted granted Critical
Publication of JP3690275B2 publication Critical patent/JP3690275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、地中温度から路面温度を推定する方法に係り、特に、気象データを使わなくても正確に路面温度分布を推定することができる路面温度推定方法に関するものである。
【0002】
【従来の技術】
従来、一般に、路面温度は、気象データと熱伝導率、熱容量などの地中熱定数(地中内部定数ともいう)とによって求められている。以下に、その詳しい方法を説明する。
【0003】
まず、熱量が路面(地表面)へ流入する概念を説明する(なお、ここでは熱量が出ていくことも含めて流入と表現している)。図4に示されるように、地表面へ流入する熱量は、
太陽からの輻射熱Ws、
雲からの輻射熱Wc、
大気からの流入熱Wa(輻射熱Warと対流熱Wαとの和)、
地表面からの放射熱Wre、
地中からの流入熱W2
からなる。大気側から地表面へ流入する各熱量の総計をW1 とする。このとき、(1)式、(2)式が成立する。
【0004】
1 +W2 =0 (1)
1 =Ws+Wc+Wa+Wre (2)
次に、大気側からの流入熱と気象データとの関係を説明する。
【0005】
Ws=(1−Ae)
Wc=Ee・σ・Tc4 ・f(ηc)
Wre=Ee・σ・Te4
Wα=α(Ta−Te)
War=Ee・σ・Ta4
α=α0 +β・V・f(H) (3)
但し、
Ae:アルベド数(定数)
Wso:太陽からの輻射熱(日射量)
Ee:地表面の輻射率(定数)
σ:ボルツマン定数
Te:地表面温度(K)
Tc:雲の温度(K)(ほぼ一定)
ηc:雲量比率
α:対流による熱伝導率
Ta:大気温度(K)
V:風速(m/s)
α0 、β、f(H):温度依存係数
である。これらの量を計測して(2)式、(3)式に代入することにより、大気側からの流入熱W1 を求めることができる。
【0006】
次に、地中からの流入熱について説明する。地中からの流入熱W2 は、地中内部の温度分布から求まる。ここでは、基底温度T0 から求める方式で説明する。基底温度を利用する方式は、地中深い所(数10m程度の深さ)の温度が年間を通じてほぼ一定となるということを利用するものであり、この温度を基底温度T0 とする。図5に示したように、路面から基底までにn個の位置をとると、路面から基底までの熱等価回路は、熱抵抗R1 ,R2 ,…,Rn 及び熱容量C1 ,C2 ,…Cnで構成した梯子状回路となる。
【0007】
この熱等価回路における温度計算は、時間Δtごとに行う。
【0008】
k番目の位置での地中温度Tk は、(5)式で表される。
【0009】
ここで、n個の位置を等間隔にとると、各間隔における熱抵抗及び熱容量について、
k =Δh/λk
k =ρk ・Cpk ・Δh
となる。但し、
Δh:道路下深さ方向の刻み幅
λk :各間隔における地中の鉛直方向の熱伝導率
ρk :各間隔における地中構成物質の密度
Cpk :各間隔における地中構成物質の密度当り熱容量
そこで、(5)式にRk の式を代入すると、
となる。
【0010】
また、(5)式にCk の式を代入すると、
となる。実際には、(5)式にRk の式とCk の式とを両方とも代入することになる。
【0011】
境界条件は、(6)式、(7)式で表される。
【0012】
(T1−T2)/R1 =W1 (6)
n =T0 (7)
従って、(5)式、(6)式、(7)式を計算すると、T1 すなわち路面温度(地表面温度)Teが求まる。
【0013】
【発明が解決しようとする課題】
しかしながら、従来の路面温度算出方法では、以下のような問題があった。
【0014】
(1)日射、気温、風速、湿度等を計測する気象センサが必要であり、気象センサを設置していない箇所では、路面温度の精度が悪くなる。
【0015】
(2)道路長手方向の路面温度分布を算出しようとすると、予め地形データ等の周囲環境のデータを把握しておく必要があり、このデータを収集するのに非常に手間がかかる。また、予めデータを把握できたとしても、そのデータをもとに道路長手方向の気象量を補正しており、路面温度の精度が悪くなる。気象センサを道路長手方向に多数設置する案もあるが、気象センサを道路長手方向に多数設置すると非常にコストが高くなる。
【0016】
(3)路面状態(特に凍結、積雪)毎に、(3)式のアルベド数Aeが変化するため、正確に路面温度を推定することは困難である。また、正確に路面温度を推定するためには、路面状態センサを設置する必要があり、路面状態センサを設置するとコストが高くなる。
【0017】
そこで、本発明の目的は、上記課題を解決し、気象データを使わなくても正確に路面温度分布を推定することができる路面温度推定方法を提供することにある。
【0018】
【課題を解決するための手段】
上記目的を達成するために本発明は、道路下に道路長手方向に沿って埋設した光ファイバにより地中における道路長手方向の温度分布を計測し、上記光ファイバ埋設位置における温度変化量と、その埋設位置から鉛直方向に道路表面に向かっての熱伝導率及び熱容量とを使用し、道路表面に流入する熱量の変化量を求め、次に、この熱量の変化量に見合った道路表面の温度変化量を求め、この温度変化量を予め測定した初期の路面温度に加えることにより、路面温度分布を推定するものである。
【0019】
上記熱伝導率及び熱容量は、深さ方向に所定の間隔刻みで設定してもよい。
【0020】
上記熱伝導率及び熱容量は、地中構成成分に応じて設定してもよい。
【0021】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて詳述する。
【0022】
図1に示されるように、本発明の路面温度推定方法を実施するために、道路1の道路表面下に道路長手方向に沿って光ファイバ2が埋設されている。この光ファイバ2の一端には光ファイバ長手方向の温度分布を計測する光ファイバ温度計測装置3が設けられている。そして、この温度分布から路面温度分布を推定する路面温度推定装置4が設けられている。
【0023】
以下、本発明の路面温度推定方法を詳しく説明する。
【0024】
に示されるように、光ファイバ2の埋設位置(深さ)fを含んだ熱等価回路を考える。光ファイバ2の埋設位置fを、例えば、道路表面下3cmとする。この埋設位置の温度変化量(過去から現在までの温度変化量)と、その埋設位置から鉛直方向に道路表面に向かっての熱伝導率及び熱容量とを使用し、道路表面に流入する熱量の変化量を求める。次に、この熱量の変化量に見合った道路表面の温度変化量を求め、この温度変化量を予め測定した初期の路面温度に加えることにより、現在の路面温度を推定する。
【0025】
実際の大気側から路面への流入熱の変化量ΔWがΔW* のとき、光ファイバ2で計測した地中温度Tf が時間Δt当たりΔTf だけ変化したとする。このとき、ΔTf は、ΔW=0のときの光ファイバ埋設位置fでの温度変化量δTf0と、大気側から路面へΔW* が流入してきたときの温度変化量δTf との和で表される((101)式)。
【0026】
ΔTf =δTf0+δTf (101)
ΔW=0のときの光ファイバ埋設位置fでの温度変化量δTf0は、(6)式のW1 を0とし、(5)式、(7)式より求まる。
【0027】
次に、図に示すように、熱量の変化と温度の変化との関係が直線で近似される範囲内で、大気側から路面への流入熱の変化量ΔWを任意にΔWz として与える。このとき、光ファイバ埋設位置fでの仮の温度変化量ΔTfzは、(6)式のW1 をΔWz とし、(5)式、(7)式より求まる。温度変化量ΔTfzは、ΔW=0のときの光ファイバ埋設位置fでの温度変化量δTf0と、任意に定めた大気側から路面へΔWz が流入してきたときの温度変化量δTfzとの和で表される ((102)式)。
【0028】
ΔTfz=δTf0+δTfz (102)
よって、ΔW=0のときの光ファイバ埋設位置fでの温度変化量δTf0と、仮の温度変化量ΔTfzとが上記までに求められるので、温度変化量δTfzが求まる。
【0029】
次に、図より(103)式が得られる。
【0030】
δTf /ΔW* =δTfz/ΔWz (103)
(103)式より、実際に路面に入ってくる熱量変化ΔW* は、
ΔW* =(ΔWz /δTfz)・δTf (104)
(104)式において、δTf は実際の光ファイバ埋設位置fでの温度変化量から得られ、、δTfzは(102)式から得られ、また、ΔWz は任意に定めることができる値であることから、実際の熱量変化ΔW* が分かる。
【0031】
このようにして求まったΔW* を(6)式に代入し、(5)式、(7)式から、路面温度の変化量ΔTe が求まる。
【0032】
初期の路面温度Te0は、予め熱電対等で測定しておけば、下記(105)式のようにして、路面温度が算出できる。
【0033】
e =Te0+ΔTe (105)
初期の路面温度Te0は、道路長手方向の一箇所で測定すればよく、その測定点における路面温度Te0と光ファイバ埋設位置fでの温度との差(初期温度差)を求め、この初期温度差を道路長手方向各測定点における光ファイバ埋設位置fでの温度に加算して初期路面温度分布とする。爾後、各測定点について、それぞれ(105)式により路面温度を算出することになる。
【0034】
刻み幅Δhは、例えば、0.5mmとする。地中構成物質が道路表面より順にアスファルト(又はコンクリート)、砕石、土となっており、刻み幅Δh毎の熱抵抗Rk =Δh/λk は、これらの地中構成物質の熱伝導率λk により定めることになる。また、刻み幅Δh毎の熱容量Ck =ρk ・Cpk ・Δhは、地中構成物質の密度ρk 及び密度当り熱容量Cpk により定めることになる。
【0035】
図1の場合、埋設する光ファイバを1本としたが、深さ方向、道路幅方向に複数本の光ファイバを埋設してもよい。
【0036】
【発明の効果】
本発明は次の如き優れた効果を発揮する。
【0037】
(1)日射、気温、風速、湿度等を計測する気象センサがなくとも、光ファイバで計測した地中内部温度と道路下の地中内部定数(熱伝導率など)とだけで、路面温度を正確に推定できる。
【0038】
(2)地形データ(山、建物等)による情報を処理する必要がなく、システムの構築が容易である。
【0039】
(3)簡素なシステムで実施できるので、コストが安い。
【図面の簡単な説明】
【図1】本発明の路面温度推定方法を用いたシステムの構成図である。
【図2】本発明に利用する熱量変化対温度変化の特性図である。
【図3】本発明における地中の熱等価回路の図である。
【図4】地表面へ流入する熱量の概念図である。
【図5】地中の熱等価回路の図である。
【符号の説明】
1 道路
2 光ファイバ
3 光ファイバ温度計測装置
4 路面温度推定装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for estimating a road surface temperature from an underground temperature, and more particularly, to a road surface temperature estimation method capable of accurately estimating a road surface temperature distribution without using weather data.
[0002]
[Prior art]
Conventionally, in general, the road surface temperature is obtained from meteorological data and underground thermal constants (also referred to as underground internal constants) such as thermal conductivity and heat capacity. The detailed method will be described below.
[0003]
First, the concept of the amount of heat flowing into the road surface (the ground surface) will be described (herein, it is expressed as inflow including the amount of heat generated). As shown in FIG. 4, the amount of heat flowing into the ground surface is
Radiant heat Ws from the sun,
Radiant heat Wc from clouds,
Inflow heat Wa from the atmosphere (sum of radiant heat War and convection heat Wα),
Radiant heat Wre from the ground surface,
Inflow heat from the ground W 2
Consists of. Let W 1 be the total amount of heat flowing from the atmosphere side to the ground surface. At this time, the expressions (1) and (2) are established.
[0004]
W 1 + W 2 = 0 (1)
W 1 = Ws + Wc + Wa + Wre (2)
Next, the relationship between inflow heat from the atmosphere side and meteorological data will be described.
[0005]
Ws = (1-Ae)
Wc = Ee · σ · Tc 4 · f (ηc)
Wre = Ee · σ · Te 4
Wα = α (Ta-Te)
War = Ee ・ σ ・ Ta 4
α = α 0 + β · V · f (H) (3)
However,
Ae: Albedo number (constant)
Wso: Radiant heat from the sun (amount of solar radiation)
Ee: Ground surface emissivity (constant)
σ: Boltzmann constant Te: Ground surface temperature (K)
Tc: Cloud temperature (K) (almost constant)
ηc: Cloud coverage ratio α: Thermal conductivity by convection Ta: Atmospheric temperature (K)
V: Wind speed (m / s)
α 0 , β, f (H): temperature dependence coefficients. By measuring these amounts and substituting them into the equations (2) and (3), the inflow heat W 1 from the atmosphere side can be obtained.
[0006]
Next, inflow heat from the ground will be described. The inflow heat W 2 from the ground is obtained from the temperature distribution inside the ground. Here, a method of obtaining from the base temperature T 0 will be described. The system using the base temperature uses the fact that the temperature in a deep underground place (depth of about several tens of meters) is almost constant throughout the year, and this temperature is set as the base temperature T 0 . As shown in FIG. 5, when n positions are taken from the road surface to the base, the thermal equivalent circuit from the road surface to the base has thermal resistances R 1 , R 2 ,..., R n and heat capacities C 1 , C 2. ,... Cn is a ladder circuit.
[0007]
The temperature calculation in this thermal equivalent circuit is performed every time Δt.
[0008]
The underground temperature T k at the k th position is expressed by equation (5).
[0009]
Here, when n positions are equally spaced, the thermal resistance and heat capacity at each interval are as follows:
R k = Δh / λ k
C k = ρ k · Cp k · Δh
It becomes. However,
Δh: Step width in the depth direction under the road λ k : Vertical thermal conductivity ρ k in each interval ρ k : Density of underground constituents in each interval Cp k : Per density of underground constituents in each interval Heat capacity Therefore, if the equation of R k is substituted into the equation (5),
It becomes.
[0010]
Moreover, if the formula of C k is substituted into the formula (5),
It becomes. Actually, both the expression of R k and the expression of C k are substituted into the expression (5).
[0011]
The boundary condition is expressed by Equation (6) and Equation (7).
[0012]
(T1-T2) / R 1 = W 1 (6)
T n = T 0 (7)
Therefore, when the equations (5), (6), and (7) are calculated, T 1, that is, the road surface temperature (ground surface temperature) Te is obtained.
[0013]
[Problems to be solved by the invention]
However, the conventional road surface temperature calculation method has the following problems.
[0014]
(1) A weather sensor that measures solar radiation, temperature, wind speed, humidity, and the like is necessary, and the accuracy of the road surface temperature is deteriorated at a location where the weather sensor is not installed.
[0015]
(2) In order to calculate the road surface temperature distribution in the longitudinal direction of the road, it is necessary to grasp the data of the surrounding environment such as topographic data in advance, and it takes much time to collect this data. Even if the data can be grasped in advance, the weather amount in the longitudinal direction of the road is corrected based on the data, and the accuracy of the road surface temperature is deteriorated. There is a plan to install a large number of weather sensors in the longitudinal direction of the road, but if a large number of weather sensors are installed in the longitudinal direction of the road, the cost becomes very high.
[0016]
(3) Since the albedo number Ae in the equation (3) changes for each road surface condition (especially freezing and snow accumulation), it is difficult to accurately estimate the road surface temperature. In addition, in order to accurately estimate the road surface temperature, it is necessary to install a road surface state sensor, and installing the road surface state sensor increases the cost.
[0017]
Accordingly, an object of the present invention is to provide a road surface temperature estimation method capable of solving the above-described problems and accurately estimating a road surface temperature distribution without using weather data.
[0018]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention measures the temperature distribution in the road longitudinal direction in the ground with an optical fiber embedded along the road longitudinal direction under the road , the amount of temperature change at the optical fiber embedded position, and Using the thermal conductivity and heat capacity from the buried position to the road surface in the vertical direction, the amount of change in the amount of heat flowing into the road surface is obtained, and then the temperature change on the road surface commensurate with the amount of change in the amount of heat. A road surface temperature distribution is estimated by obtaining the amount and adding this temperature change amount to the previously measured initial road surface temperature .
[0019]
The thermal conductivity and heat capacity may be set at predetermined intervals in the depth direction.
[0020]
The thermal conductivity and heat capacity may be set according to the underground components.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0022]
As shown in FIG. 1, in order to implement the road surface temperature estimation method of the present invention, an optical fiber 2 is embedded along the road longitudinal direction under the road surface of the road 1. One end of the optical fiber 2 is provided with an optical fiber temperature measuring device 3 for measuring the temperature distribution in the longitudinal direction of the optical fiber. And the road surface temperature estimation apparatus 4 which estimates a road surface temperature distribution from this temperature distribution is provided.
[0023]
Hereinafter, the road surface temperature estimation method of the present invention will be described in detail.
[0024]
As shown in FIG. 3 , a thermal equivalent circuit including the buried position (depth) f of the optical fiber 2 is considered. The buried position f of the optical fiber 2 is, for example, 3 cm below the road surface. Change in the amount of heat flowing into the road surface using the amount of change in temperature at the buried position (temperature change amount from the past to the present) and the thermal conductivity and heat capacity from the buried position vertically toward the road surface Find the amount. Next, a road surface temperature change amount corresponding to the heat amount change amount is obtained, and the current road surface temperature is estimated by adding the temperature change amount to the previously measured initial road surface temperature.
[0025]
It is assumed that the underground temperature T f measured by the optical fiber 2 changes by ΔT f per time Δt when the actual change ΔW of the inflow heat from the atmosphere side to the road surface is ΔW * . In this case, the table by the sum of the [Delta] T f is the temperature change amount? T f0 of the optical fiber embedded position f in the case of [Delta] W = 0, the temperature change amount? T f at which the road surface is [Delta] W * has flowed from the atmosphere side (Equation (101)).
[0026]
ΔT f = δT f0 + δT f (101)
The temperature change amount δT f0 at the optical fiber embedding position f when ΔW = 0 is obtained from Eqs. (5) and (7), with W 1 in Eq. (6) set to 0.
[0027]
Next, as shown in FIG. 2 , the change amount ΔW of the inflow heat from the atmosphere side to the road surface is arbitrarily given as ΔW z within a range in which the relationship between the change in heat amount and the change in temperature is approximated by a straight line. At this time, the temporary temperature change amount ΔT fz at the optical fiber embedding position f is obtained from the equations (5) and (7), where W 1 in the equation (6) is ΔW z . The temperature change amount ΔT fz is a temperature change amount δT f0 at the optical fiber burying position f when ΔW = 0, and a temperature change amount δT fz when ΔW z flows into the road surface from an arbitrarily defined atmosphere side. (Equation (102)).
[0028]
ΔT fz = δT f0 + δT fz (102)
Therefore, since the temperature change amount δT f0 at the optical fiber embedding position f when ΔW = 0 and the temporary temperature change amount ΔT fz are obtained as described above, the temperature change amount δT fz is obtained.
[0029]
Then, (103) from equation 2 is obtained.
[0030]
δT f / ΔW * = δT fz / ΔW z (103)
From equation (103), the amount of heat change ΔW * actually entering the road surface is
ΔW * = (ΔW z / δT fz ) · δT f (104)
In equation (104), δT f is obtained from the temperature change amount at the actual optical fiber embedding position f, δT fz is obtained from equation (102), and ΔW z is a value that can be arbitrarily determined. From this, the actual heat quantity change ΔW * is known.
[0031]
Thus by substituting the Motoma' was [Delta] W * the expression (6), (5), (7) from the equation obtained amount of change [Delta] T e of the road surface temperature.
[0032]
If the initial road surface temperature Te0 is measured in advance with a thermocouple or the like, the road surface temperature can be calculated as in the following equation (105).
[0033]
T e = T e0 + ΔT e (105)
The initial road surface temperature T e0 may be measured at one location in the longitudinal direction of the road, and the difference (initial temperature difference) between the road surface temperature T e0 at the measurement point and the temperature at the optical fiber embedded position f is obtained. The temperature difference is added to the temperature at the optical fiber embedded position f at each measurement point in the longitudinal direction of the road to obtain an initial road surface temperature distribution. After that, the road surface temperature is calculated by the equation (105) for each measurement point.
[0034]
The step width Δh is, for example, 0.5 mm. The underground constituent materials are asphalt (or concrete), crushed stone, and soil in order from the road surface, and the thermal resistance R k = Δh / λ k for each step Δh is the thermal conductivity λ of these underground constituent materials. It is determined by k . Moreover, the heat capacity C k = ρ k · Cp k · Δh for each stride Delta] h will be determined by the density of underground construction materials [rho k, and density per heat capacity Cp k.
[0035]
In the case of FIG. 1, one optical fiber is embedded, but a plurality of optical fibers may be embedded in the depth direction and the road width direction.
[0036]
【The invention's effect】
The present invention exhibits the following excellent effects.
[0037]
(1) Even without a weather sensor that measures solar radiation, temperature, wind speed, humidity, etc., the road surface temperature can be calculated only by the underground temperature measured by optical fiber and the underground constants (thermal conductivity, etc.) below the road. Accurate estimation.
[0038]
(2) It is not necessary to process information from topographic data (mountains, buildings, etc.), and the system can be easily constructed.
[0039]
(3) Since it can be implemented with a simple system, the cost is low.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a system using a road surface temperature estimation method of the present invention.
FIG. 2 is a characteristic diagram of heat change vs. temperature change used in the present invention.
FIG. 3 is a diagram of an underground thermal equivalent circuit in the present invention.
FIG. 4 is a conceptual diagram of the amount of heat flowing into the ground surface.
FIG. 5 is a diagram of an underground thermal equivalent circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Road 2 Optical fiber 3 Optical fiber temperature measuring device 4 Road surface temperature estimation apparatus

Claims (3)

道路下に道路長手方向に沿って埋設した光ファイバにより地中における道路長手方向の温度分布を計測し、上記光ファイバ埋設位置における温度変化量と、その埋設位置から鉛直方向に道路表面に向かっての熱伝導率及び熱容量とを使用し、道路表面に流入する熱量の変化量を求め、次に、この熱量の変化量に見合った道路表面の温度変化量を求め、この温度変化量を予め測定した初期の路面温度に加えることにより、路面温度分布を推定することを特徴とする路面温度推定方法。The temperature distribution in the longitudinal direction of the road in the ground is measured by an optical fiber buried along the longitudinal direction of the road under the road. The amount of temperature change at the buried position of the optical fiber and the vertical direction from the buried position toward the road surface. The amount of change in the amount of heat flowing into the road surface is obtained using the thermal conductivity and heat capacity of the road, and then the amount of change in the temperature of the road surface corresponding to the amount of change in the amount of heat is obtained. A road surface temperature estimation method, wherein the road surface temperature distribution is estimated by adding to the initial road surface temperature . 上記熱伝導率及び熱容量は、深さ方向に所定の間隔刻みで設定することを特徴とする請求項1記載の路面温度推定方法。2. The road surface temperature estimation method according to claim 1, wherein the thermal conductivity and the heat capacity are set at predetermined intervals in the depth direction. 上記熱伝導率及び熱容量は、地中構成成分に応じて設定することを特徴とする請求項1又は2記載の路面温度推定方法。The road surface temperature estimation method according to claim 1 or 2, wherein the thermal conductivity and heat capacity are set according to an underground component.
JP2000380486A 2000-12-14 2000-12-14 Road surface temperature estimation method Expired - Fee Related JP3690275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000380486A JP3690275B2 (en) 2000-12-14 2000-12-14 Road surface temperature estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000380486A JP3690275B2 (en) 2000-12-14 2000-12-14 Road surface temperature estimation method

Publications (2)

Publication Number Publication Date
JP2002181636A JP2002181636A (en) 2002-06-26
JP3690275B2 true JP3690275B2 (en) 2005-08-31

Family

ID=18848661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000380486A Expired - Fee Related JP3690275B2 (en) 2000-12-14 2000-12-14 Road surface temperature estimation method

Country Status (1)

Country Link
JP (1) JP3690275B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677542B2 (en) * 2002-02-20 2005-08-03 国土交通省国土技術政策総合研究所長 Road surface condition estimation method

Also Published As

Publication number Publication date
JP2002181636A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
Becker et al. Estimating flow and flux of ground water discharge using water temperature and velocity
Dobhal et al. Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya, India
Hasler et al. Temperature variability and offset in steep alpine rock and ice faces
Westermann et al. The annual surface energy budget of a high-arctic permafrost site on Svalbard, Norway
Qiu et al. An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil surface
Schmid et al. Inferring snowpack ripening and melt-out from distributed measurements of near-surface ground temperatures
Alvenäs et al. Model for evaporation, moisture and temperature of bare soil: calibration and sensitivity analysis
Cellier et al. Partition of sensible heat fluxes into bare soil and the atmosphere
Roth et al. Quantifying the thermal dynamics of a permafrost site near Ny‐Ålesund, Svalbard
Gil-Rodríguez et al. Application of active heat pulse method with fiber optic temperature sensing for estimation of wetting bulbs and water distribution in drip emitters
Cao et al. A distributed measurement method for in-situ soil moisture content by using carbon-fiber heated cable
Steiner et al. Variability of air temperature over a debris-covered glacier in the Nepalese Himalaya
Oncley et al. Evaluation of surface fluxes from MM5 using observations
Utset et al. A geostatistical method for soil salinity sample site spacing
Wever et al. Simulating the influence of snow surface processes on soil moisture dynamics and streamflow generation in an alpine catchment
JP3690275B2 (en) Road surface temperature estimation method
Kojima et al. Numerical evaluation of a sensible heat balance method to determine rates of soil freezing and thawing
Basnet et al. Comparative study of design discharge calculation approaches: a case study on Padhu Khola, Kaski, Nepal
Stähli et al. Test of two SVAT snow submodels during different winter conditions
Galantowicz et al. Estimation of soil-type heterogeneity effects in the retrieval of soil moisture from radiobrightness
Jansen et al. Estimating soil heat flux using Distributed Temperature Sensing
Hasler et al. Temperature variability and thermal offset in steep alpine rock and ice faces
Al-Kayssi Spatial variability of soil temperature under greenhouse conditions
JP3809519B2 (en) Road surface condition estimation method
Tan et al. Effects of ice cover on soil water, heat, and solute movement: An experimental study

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees