JP3679039B2 - Explosion-resistant high-strength cementitious cured body and method for producing the same - Google Patents

Explosion-resistant high-strength cementitious cured body and method for producing the same Download PDF

Info

Publication number
JP3679039B2
JP3679039B2 JP2001265572A JP2001265572A JP3679039B2 JP 3679039 B2 JP3679039 B2 JP 3679039B2 JP 2001265572 A JP2001265572 A JP 2001265572A JP 2001265572 A JP2001265572 A JP 2001265572A JP 3679039 B2 JP3679039 B2 JP 3679039B2
Authority
JP
Japan
Prior art keywords
explosion
strength
fiber
cured
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001265572A
Other languages
Japanese (ja)
Other versions
JP2003073159A5 (en
JP2003073159A (en
Inventor
正己 佐藤
泰雄 井澤
宣人 上田
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to JP2001265572A priority Critical patent/JP3679039B2/en
Publication of JP2003073159A publication Critical patent/JP2003073159A/en
Publication of JP2003073159A5 publication Critical patent/JP2003073159A5/ja
Application granted granted Critical
Publication of JP3679039B2 publication Critical patent/JP3679039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]

Description

【0001】
【発明の属する技術分野】
本発明は、耐爆裂性高強度セメント質硬化体及びその製造方法に関し、特に、特定量の有機質繊維を添加することによって、火災時における安全性を改良した耐爆裂性高強度セメント質硬化体およびその製造方法に関する。
【0002】
【従来の技術】
近年、通常のコンクリ−トに比べ圧縮強度が著しく改良された高強度セメント質硬化体が開発され、様々な構造物への適用が期待されている。
しかしながら、その高強度セメント質硬化体が緻密質であるために、その周辺で火災が発生し高温状態になった場合、該硬化体内部の水が水蒸気に変化し体積が膨張しても、外部へ飛散できず蓄積されて膨張圧が高まり、ついには爆裂を起こし該硬化体自体を部分的・全体的に破壊する、という現象が生じる。
以上のように、高強度セメント質硬化体は、高強度を具備する一方で、火災安全性に対する信頼性が低い、という問題点を有していた。
【0003】
通常のセメント質硬化体に対する火災時の爆裂防止手段として、以下のような技術が知られている。
特許第2620910号公報には、火災曝露したとき150〜300℃の温度で軟化、収縮、溶融、又は分解し毛細管孔を形成できる材料として、直径0.003〜0.35mm、長さ5〜35mmの有機繊維(例;ポリプロピレン繊維)をコンクリ−ト1mについて0.05〜1容量%含有させ耐スポ−リング性を改良したコンクリ−ト製プレハブ部材(圧縮強度90〜105N/mm)が記載されている。
【0004】
そのほか特開平11−1973号公報には、コンクリ−ト構造物の火災時に発生する爆裂を正確に制御する方法として、水セメント比および合成繊維(爆裂防止用材料)の混入量を制御因子とし、最初に前者で調整し、それで不十分な場合に後者を原材料に添加して調整する方法であって、該合成繊維(例;ポリエチレン、ビニロン)として、長さ5〜50mm、太さ10〜100μmのものを用いる旨、が知られている。
【0005】
【発明が解決しようとする課題】
前記特許第2620910号公報に開示された技術は、圧縮強度が比較的低い105MPa以下のセメント質硬化体を対象として、その原材料に有機繊維を混入することにより、該硬化体の耐スポ−リング性を改良する点にある。
しかし、この方法では、105MPa以上の高強度の発現を期待して設計された原材料に該有機繊維を添加し製造された硬化体は、緻密過ぎて火災熱による毛細管孔の形成が不十分なために爆裂するという、という問題点を有していた(後記表4の比較例1および比較例4参照)。
【0006】
また、圧縮強度が105MPaを超える高強度セメント質硬化体を製造する場合、水セメント比は配合設計時に決められ自由に変更できないので、前記特開平11−1973号公報に開示される方法を高強度セメント質硬化体の爆裂防止手段として採用することができない。
【0007】
一般的に、通常のコンクリ−ト・モルタル原材料に有機質繊維を配合する目的は、コンクリ−ト・モルタルの引張強度、曲げ強度等の向上を図ることにあり、圧縮強度は該有機質繊維を配合しなかった場合に比して低下するから、コンクリ−ト・モルタルの用途に応じて、いずれの特性を重視するかにより有機質繊維の配合の適否が決められている。
【0008】
本発明は、上記従来技術の問題点、知見に鑑みなされたものであって、その目的は、圧縮強度が105MPaを超える高強度セメント質硬化体について、
・火災熱による爆裂性を改良(爆裂防止)すること
にあり、もって火災に対する安全性を向上させた耐爆裂性高強度セメント質硬化体およびその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、一定の圧縮強度を発現できるセメント質硬化体中に有機質繊維の特定量を均一に分散させたことを特徴とし、これにより、
前記目的を達成することのできる耐爆裂性高強度セメント質硬化体およびその製造方法を提供することにある。
【0010】
すなわち、本発明(耐爆裂性高強度セメント質硬化体)は、
「・圧縮強度が105MPaを超える高強度セメント質硬化体を製造する配合物に、
イ)長さが5.0〜30.0mm、直径が0.04〜0.05mmの有機質繊維、または
ロ)長さが0.5〜5.0mm未満、直径が0.1〜0.2mmの有機質繊維を
・1.0体積%を超え10体積%以下添加したのち、
・混練し成形し硬化させたものであること」(請求項1)
を要旨とする。
【0011】
また、本発明(耐爆裂性高強度セメント質硬化体の製造方法)は、
「・圧縮強度が105MPaを超える高強度セメント質硬化体を製造する配合物に、
イ)長さが5.0〜30.0mm、直径が0.04〜0.05mmの有機質繊維、または
ロ)長さが0.5〜5.0mm未満、直径が0.1〜0.2mmの有機質繊維を
・1.0体積%を超え10体積%以下添加したのち、
・混練し成形し硬化させたものであること」(請求項2)
をも要旨とするものである。
【0012】
さらに、上記本発明(耐爆裂性高強度セメント質硬化体の製造方法)は、
有機質繊維が、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維 から選ばれる1種または2種以上の混合繊維であること(請求項
を特徴とする。
【0013】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の耐爆裂性高強度セメント質硬化体は、大まかに言えば、圧縮強度が105MPa、特に110MPaを超えるような高強度セメント質硬化体を製造するために予め配合設計されたセメント配合物に、有機質繊維を特定量添加して製造された硬化体であって、圧縮強度のある程度の低下を認めつつ、耐爆裂性を改良させた硬化体である。
耐爆裂性高強度セメント質硬化体は、その用途にもよるが圧縮強度が90MPa以上発現することが望ましい。
【0014】
耐爆裂性高強度セメント質硬化体は、有機質繊維が均一に分散されているために、火災熱によって硬化体内部に容易に毛細管孔が形成され、逐次発生する水蒸気を誘導・飛散させ膨張圧を上昇させず、また、硬化体に不規則な熱応力を生じさせないので、爆裂が発生することがない。
【0015】
有機質繊維の割合は、配合物に対して1.0体積%を超え10体積%以下の範囲に添加することが重要である。
1.0体積%未満の場合、該繊維量が過少なために爆裂防止効果が低下するので、逆に、10体積%を超える場合、硬化体の圧縮強度が極端に低下するほか製造時における作業性も低下するので、いずれの場合も好ましくない。
【0016】
有機質繊維の好ましい割合は、製造時の作業性、コストなどの観点から1.0を超え9.0体積%以下、より好ましいのは1.5〜8.0体積%、さらに好ましいのは1.5〜6.0体積%である。
なお、有機質繊維の添加は、圧縮強度の低下を伴う場合が多いので、硬化体の用途も勘案してその量を決めることが望ましい場合もある。
【0017】
耐爆裂性を改良できるのは、高強度セメント質硬化体を製造するために配合設計された配合物に含まれる有機質繊維の割合が
(イ)ゼロの場合、
(ロ)1.0体積%以下の場合
などである。
なお、配合物中の有機質繊維の割合が1.0体積%を超える場合は、本発明が規定する全有機質繊維量が10体積%以下の割合まで添加することは差し支えない。
【0018】
有機質繊維は、硬化体製造時の作業性(例;成形時における打設の難易)、混練時におけるファイバーボール形成の防止、該繊維の入手のし易さなどの観点を考慮すると、繊維長さは0.5〜30.0mmが好ましい。
【0019】
本発明では、有機質繊維の入手のし易さなどの観点から、長さが5.0〜30.0mmの範囲の繊維を用いる場合は直径が0.04〜0.05mmのものを、長さが0.5〜5.0mm未満の繊維を用いる場合は直径が0.1〜0.2mmのものを用いる
【0020】
有機質繊維は、火災熱(具体的には、300℃以下の温度)を受けて分解、溶融などにより硬化体中の水蒸気が容易に流動できる大きさの毛細管孔を形成させることのできる繊維である。
そのような繊維として天然繊維、合成繊維いずれも使用でき、好ましくは合成繊維である。合成繊維は、具体的に、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維などが挙げられる。
また、有機質繊維は、2種以上の混合繊維であっても良く、爆裂防止効果の点から、ビニロン繊維および/またはポリプロピレン繊維が好ましい。
【0021】
耐爆裂性高強度セメント質硬化体を製造するために用いる原材料(有機質繊維を除く)、および配合・混練・成形・養生の各方法は、従来の高強度セメント質硬化体を製造する場合と同じであり、それらについて限定するものではない。
【0022】
【実施例】
(実施例1〜16、比較例1〜4)
以下、実施例により本発明を説明する。
1.使用材料
以下に示す材料を使用した。
【0023】
2.混練物の製造
表1、表2および表3に示す原材料を使用した配合物(配合番号No.1〜No.20)を二軸練りミキサ−に投入し混練して、モルタルおよびコンクリ−トの各混練物を製造した。なお、表中、No.1〜16はモルタル混練物、No.17〜20はコンクリ−ト混練物である。
【0024】
【表1】
【0025】
【表2】
【0026】
【表3】
【0027】
得られた各混練物およびその硬化体について、下記の特性を測定し、結果を表4に列記した。
1)モルタル(No.1〜16)
・フロ−値:JIS R 5201「セメントの物理試験方法、11.フロ−試験」に規定された方法に準じて測定した(ただし、15回行うべき落下運動については、操作しなかった)。
・圧縮強度:有機質繊維を添加した場合および無添加の場合のそれぞれのモルタル混練物をφ50×100mmの型枠に流し込み、20℃で48時間前置き後、90℃で48時間蒸気養生し、得た各硬化体の圧縮強度(3本の平均値)を測定した。
・爆裂:全てのモルタル混練物をφ50×100mmの型枠に流し込み、20℃で48時間前置き後、90℃で48時間蒸気養生して得た硬化体を電気炉(30kW)に挿入し1時間で1000℃まで昇温させ冷却させたのち、爆裂の有無を観察した。
【0028】
2)コンクリ−ト(No.17〜20)
・スランプ:JIS A 1101「コンクリ−トのスランプ試験方法」に準じて測定した。
・圧縮強度:有機質繊維を添加した場合及び無添加の場合のそれぞれのコンクリ−ト混練物をφ10×20cmの型枠に流し込み、20℃で48時間前置き後、90℃で48時間蒸気養生し、得た各硬化体の圧縮強度(3本の平均値)を測定した。
・爆裂:全てのコンクリ−ト混練物をφ10×20cmの型枠に流し込み、20℃で48時間前置き後、90℃で48時間蒸気養生して得た硬化体を電気炉(30kW)に挿入し1時間で1000℃まで昇温させ冷却させたのち、爆裂の有無を観察した。
【0029】
【表4】
【0030】
表4より、
1)実施例1〜16から、圧縮強度が105MPaを超える高強度セメント質硬化体製造用原材料に、有機質繊維を規定量添加し製造したモルタル・コンクリ−ト硬化体は、爆裂の形跡が観察されず、目的を達成できることが判明した。
【0031】
2)比較例1、3および4から、有機質繊維が無添加の場合および有機質繊維を0.7体積%添加した場合のモルタル・コンクリ−ト硬化体は、爆裂が認められた。
また、比較例2から、有機質繊維の添加量が過多の場合は、爆裂は起こらなかったものの、混練物の流動性および圧縮強度とが急激に低下し、好ましい配合でないことが確認された。
【0032】
【発明の効果】
以上詳記したように、本発明の耐爆裂性高強度セメント質硬化体は、高強度セメント質硬化体製造用原材料の配合物に、有機質繊維を1.0体積%を超え10体積%(外割)以下添加してなる硬化体およびその製造方法を特徴とし、これにより、
高強度セメント質硬化体の耐爆裂性の向上(爆裂防止)という効果を奏し、もって、火災に対する安全性の実を上げることができる。
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an explosion-resistant high-strength cementitious hardened body and a method for producing the same, and in particular, by adding a specific amount of organic fiber, the explosion-resistant high-strength cementitious hardened body improved in safety in the event of a fire and It relates to the manufacturing method.
[0002]
[Prior art]
In recent years, a high-strength cementitious hardened body with significantly improved compressive strength compared to ordinary concrete has been developed and is expected to be applied to various structures.
However, because the high-strength hardened cementitious body is dense, when a fire occurs around it and the temperature rises, the water inside the hardened body changes to water vapor and the volume expands. A phenomenon occurs in which the expansion pressure increases due to the fact that it cannot be scattered, and eventually explodes, causing the cured body itself to be partially or totally destroyed.
As described above, the high-strength cementitious cured body has a problem that it has high strength but has low reliability for fire safety.
[0003]
The following techniques are known as means for preventing explosion of a normal hardened cementitious body at the time of fire.
Japanese Patent No. 2620910 discloses a material having a diameter of 0.003 to 0.35 mm and a length of 5 to 35 mm as a material that can be softened, shrunk, melted, or decomposed at a temperature of 150 to 300 ° C. when exposed to a fire to form a capillary hole. A concrete prefabricated member (compressive strength: 90 to 105 N / mm 2 ) containing 0.05 to 1% by volume of an organic fiber (for example, polypropylene fiber) in an amount of 0.05 to 1% by volume with respect to concrete 1 m 3 Has been described.
[0004]
In addition, in JP-A-11-1973, as a method for accurately controlling the explosion generated at the time of fire of the concrete structure, the water cement ratio and the mixing amount of the synthetic fiber (explosion prevention material) are used as control factors. First, the former is adjusted, and if the latter is insufficient, the latter is added to the raw material for adjustment, and the synthetic fiber (eg, polyethylene, vinylon) has a length of 5 to 50 mm and a thickness of 10 to 100 μm. It is known that the product is used.
[0005]
[Problems to be solved by the invention]
The technique disclosed in Japanese Patent No. 2620910 is directed to a cementitious hardened body having a relatively low compressive strength of 105 MPa or less, and organic fiber is mixed into the raw material thereof, thereby preventing the spalling resistance of the hardened body. Is to improve.
However, in this method, the cured product produced by adding the organic fiber to the raw material designed with the expectation of high strength of 105 MPa or more is too dense to sufficiently form capillary holes due to fire heat. (See Comparative Example 1 and Comparative Example 4 in Table 4 below).
[0006]
Further, when producing a high strength cementitious hardened body having a compressive strength exceeding 105 MPa, the water cement ratio is determined at the time of blending design and cannot be freely changed. It cannot be used as a means for preventing explosion of hardened cementitious materials.
[0007]
In general, the purpose of blending organic fibers into ordinary concrete and mortar raw materials is to improve the tensile strength and bending strength of concrete and mortar, and the compressive strength is blended with the organic fibers. Therefore, the suitability of the organic fiber blending is determined depending on which property is important according to the use of the concrete mortar.
[0008]
The present invention has been made in view of the above-mentioned problems and knowledge of the prior art, and its purpose is for a high-strength cementitious cured body having a compressive strength exceeding 105 MPa.
The purpose is to provide an explosion-resistant high-strength cementitious hardened body with improved safety against fire and to improve the explosive property due to fire heat (explosion prevention), and a method for producing the same.
[0009]
[Means for Solving the Problems]
The present invention is characterized in that a specific amount of organic fiber is uniformly dispersed in a cementitious hardened body capable of expressing a certain compressive strength.
An object of the present invention is to provide an explosion-resistant high-strength cementitious cured body that can achieve the above object and a method for producing the same.
[0010]
That is, the present invention (explosion-resistant high-strength cementitious cured body)
"・ To the compound that produces high strength cementitious hardened body with compressive strength exceeding 105 MPa,
A ) Organic fiber having a length of 5.0 to 30.0 mm and a diameter of 0.04 to 0.05 mm , or b) Length of less than 0.5 to 5.0 mm and a diameter of 0.1 to 0 .After adding 2 mm organic fiber more than 1.0 volume% and 10 volume% or less,
"Kneaded, molded and cured" (Claim 1)
Is the gist.
[0011]
In addition, the present invention (a method for producing an explosion-resistant high-strength cementitious cured body)
"・ To the compound that produces high strength cementitious hardened body with compressive strength exceeding 105 MPa,
A ) Organic fiber having a length of 5.0 to 30.0 mm and a diameter of 0.04 to 0.05 mm , or b) Length of less than 0.5 to 5.0 mm and a diameter of 0.1 to 0 .After adding 2 mm organic fiber more than 1.0 volume% and 10 volume% or less,
"Kneaded, molded and cured" (Claim 2)
Is also a summary.
[0012]
Furthermore, the present invention (method for producing anti-explosion resistant high strength cementitious hardened body) is
The organic fiber is one or more mixed fibers selected from vinylon fiber, polypropylene fiber, polyethylene fiber, and aramid fiber (Claim 3 ).
It is characterized by.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The explosion-resistant high-strength cementitious hardened body of the present invention can be roughly divided into a cement composition that has been pre-designed to produce a high-strength cementitious hardened body having a compressive strength exceeding 105 MPa, particularly 110 MPa. A cured product produced by adding a specific amount of organic fiber, which has improved explosion resistance while observing a certain decrease in compressive strength.
The explosion-resistant high-strength cementitious hardened body desirably has a compressive strength of 90 MPa or more, depending on its use.
[0014]
Explosion-resistant high-strength cementitious hardened bodies are uniformly dispersed with organic fibers, so capillary holes are easily formed inside the hardened body due to fire heat, and the generated water vapor is induced and scattered to increase the expansion pressure. Since it does not rise and does not cause irregular thermal stress on the cured body, explosion does not occur.
[0015]
It is important that the organic fiber is added in a range of more than 1.0% by volume and not more than 10% by volume with respect to the blend.
If the amount is less than 1.0% by volume, the explosion prevention effect is reduced because the amount of the fiber is too small. Conversely, if the amount exceeds 10% by volume, the compressive strength of the cured body is extremely reduced and work during production is also performed. In any case, it is not preferable.
[0016]
A desirable ratio of the organic fiber is more than 1.0 and 9.0% by volume or less, more preferably 1.5 to 8.0% by volume, and still more preferably 1. 5 to 6.0 vol%.
In addition, since the addition of the organic fiber is often accompanied by a decrease in the compressive strength, it may be desirable to determine the amount in consideration of the use of the cured body.
[0017]
Explosion resistance can be improved when the proportion of organic fibers contained in the compound designed to produce a high-strength hardened cementitious material is (i) zero.
(B) The case of 1.0% by volume or less.
In addition, when the ratio of the organic fiber in a formulation exceeds 1.0 volume%, it does not interfere, and the total organic fiber quantity prescribed | regulated by this invention may add to the ratio of 10 volume% or less.
[0018]
The organic fiber has a fiber length in consideration of workability at the time of producing a cured product (eg, difficulty in placing at the time of molding), prevention of fiber ball formation at the time of kneading, and availability of the fiber. Is preferably 0.5 to 30.0 mm .
[0019]
In the present invention, from the viewpoint of easy availability of the organic fiber, when using a fiber having a length in the range of 5.0 to 30.0 mm, a fiber having a diameter of 0.04 to 0.05 mm is used. When using fibers having a thickness of less than 0.5 to 5.0 mm , those having a diameter of 0.1 to 0.2 mm are used .
[0020]
The organic fiber is a fiber that can form a capillary hole having a size that allows the water vapor in the cured body to easily flow by being decomposed and melted by receiving fire heat (specifically, a temperature of 300 ° C. or lower). .
As such fibers, both natural fibers and synthetic fibers can be used, and synthetic fibers are preferred. Specific examples of the synthetic fiber include vinylon fiber, polypropylene fiber, polyethylene fiber, and aramid fiber.
Further, the organic fiber may be a mixed fiber of two or more types, and vinylon fiber and / or polypropylene fiber are preferable from the viewpoint of the explosion preventing effect.
[0021]
The raw materials (excluding organic fibers) used for producing explosion-resistant high-strength cementitious hardened bodies and the methods of compounding, kneading, molding and curing are the same as those for producing conventional high-strength hardened cementitious hardened bodies. However, there is no limitation on them.
[0022]
【Example】
(Examples 1-16, Comparative Examples 1-4)
Hereinafter, the present invention will be described by way of examples.
1. Materials used The following materials were used.
[0023]
2. Manufacture of kneaded products The blends using the raw materials shown in Table 1, Table 2 and Table 3 (Formulation Nos. 1 to 20) were put into a biaxial kneader and kneaded to prepare mortar and concrete. Each kneaded material was manufactured. In the table, No. 1-16 are mortar kneaded materials, No.1. 17-20 are concrete kneaded materials.
[0024]
[Table 1]
[0025]
[Table 2]
[0026]
[Table 3]
[0027]
The following characteristics were measured for each of the kneaded materials and their cured products, and the results are listed in Table 4.
1) Mortar (No. 1-16)
Flow value: Measured according to the method specified in JIS R 5201 “Cement physical test method, 11. Flow test” (however, the drop motion to be performed 15 times was not operated).
Compressive strength: Each of the mortar kneaded materials with and without the addition of organic fibers was poured into a mold of φ50 × 100 mm, pre-positioned at 20 ° C. for 48 hours, and then steam-cured at 90 ° C. for 48 hours. The compressive strength (average value of 3 pieces) of each cured product was measured.
Explosion: All the mortar kneaded material was poured into a φ50 × 100 mm mold, pre-set at 20 ° C. for 48 hours, and then cured by steam curing at 90 ° C. for 48 hours, and inserted into an electric furnace (30 kW) for 1 hour. After raising the temperature to 1000 ° C. and cooling, the presence or absence of explosion was observed.
[0028]
2) Concrete (No. 17-20)
Slump: Measured according to JIS A 1101 “Concrete slump test method”.
Compressive strength: Each of the concrete kneaded materials with and without organic fibers was poured into a mold of φ10 × 20 cm, pre-positioned at 20 ° C. for 48 hours, and then steam-cured at 90 ° C. for 48 hours. The compressive strength (average value of three) of each obtained cured body was measured.
Explosion: All the concrete kneaded material was poured into a mold of φ10 × 20 cm, pre-set at 20 ° C. for 48 hours, and then cured at 90 ° C. for 48 hours, and the cured product was inserted into an electric furnace (30 kW). After raising the temperature to 1000 ° C. in 1 hour and cooling, the presence or absence of an explosion was observed.
[0029]
[Table 4]
[0030]
From Table 4,
1) From Examples 1 to 16, the mortar and concrete cured body produced by adding a specified amount of organic fiber to the raw material for producing a high-strength cementitious cured body with a compressive strength exceeding 105 MPa showed signs of explosion. It was found that the objective could be achieved.
[0031]
2) From Comparative Examples 1, 3 and 4, explosion was observed in the cured mortar and concrete when the organic fiber was not added and when 0.7% by volume of the organic fiber was added.
Moreover, from the comparative example 2, when the addition amount of the organic fiber was excessive, although explosion did not occur, it was confirmed that the fluidity and compressive strength of the kneaded material were drastically decreased, and the blending was not preferable.
[0032]
【The invention's effect】
As described above in detail, the explosion-resistant high-strength cementitious hardened body of the present invention contains organic fiber in an amount of more than 1.0 vol% to 10 vol% (outside %) A hardened body added by the following and its manufacturing method,
The effect of improving the explosion resistance (explosion prevention) of the high-strength cementitious hardened body can be obtained, thereby improving the safety of fire.

Claims (3)

圧縮強度が105MPaを超える高強度セメント質硬化体を製造する配合物に、イ)長さが5.0〜30.0mm、直径が0.04〜0.05mmの有機質繊維、またはロ)長さが0.5〜5.0mm未満、直径が0.1〜0.2mmの有機質繊維を1.0体積%を超え10体積%以下添加したのち、混練し成形し硬化させたものであることを特徴とする耐爆裂性高強度セメント質硬化体。In a compound for producing a high-strength hardened cementitious body having a compressive strength exceeding 105 MPa, a) an organic fiber having a length of 5.0 to 30.0 mm and a diameter of 0.04 to 0.05 mm, or b) a length. Of organic fibers having a diameter of 0.5 to less than 5.0 mm and a diameter of 0.1 to 0.2 mm are added after exceeding 1.0% by volume and not more than 10% by volume, kneaded, molded and cured. Explosion-resistant high-strength cementitious hardened material. 圧縮強度が105MPaを超える高強度セメント質硬化体を製造する配合物に、イ)長さが5.0〜30.0mm、直径が0.04〜0.05mmの有機質繊維、またはロ)長さが0.5〜5.0mm未満、直径が0.1〜0.2mmの有機質繊維を1.0体積%を超え10体積%以下添加したのち、混練し成形し硬化させたものであることを特徴とする耐爆裂性高強度セメント質硬化体の製造方法。In a compound for producing a high-strength hardened cementitious body having a compressive strength exceeding 105 MPa, a) an organic fiber having a length of 5.0 to 30.0 mm and a diameter of 0.04 to 0.05 mm, or b) a length. Of organic fibers having a diameter of 0.5 to less than 5.0 mm and a diameter of 0.1 to 0.2 mm are added after exceeding 1.0% by volume and not more than 10% by volume, kneaded, molded and cured. A method for producing an explosion-resistant high-strength cementitious hardened body. 前記有機質繊維が、ビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維から選ばれる1種または2種以上の混合繊維であることを特徴とする請求項2に記載の耐爆裂性高強度セメント質硬化体の製造方法。The explosion-resistant high-strength cementitious cured product according to claim 2, wherein the organic fiber is one or two or more mixed fibers selected from vinylon fiber, polypropylene fiber, polyethylene fiber, and aramid fiber. Manufacturing method.
JP2001265572A 2001-09-03 2001-09-03 Explosion-resistant high-strength cementitious cured body and method for producing the same Expired - Lifetime JP3679039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265572A JP3679039B2 (en) 2001-09-03 2001-09-03 Explosion-resistant high-strength cementitious cured body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001265572A JP3679039B2 (en) 2001-09-03 2001-09-03 Explosion-resistant high-strength cementitious cured body and method for producing the same

Publications (3)

Publication Number Publication Date
JP2003073159A JP2003073159A (en) 2003-03-12
JP2003073159A5 JP2003073159A5 (en) 2005-04-28
JP3679039B2 true JP3679039B2 (en) 2005-08-03

Family

ID=19092018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265572A Expired - Lifetime JP3679039B2 (en) 2001-09-03 2001-09-03 Explosion-resistant high-strength cementitious cured body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3679039B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089561A (en) * 2001-09-14 2003-03-28 Taiheiyo Cement Corp Method for producing bursting resistant high strength cement hardened body
JP2003112958A (en) * 2001-10-09 2003-04-18 Taiheiyo Cement Corp Method for producing explosion resistant high strength cement hardened body

Also Published As

Publication number Publication date
JP2003073159A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
JP3679039B2 (en) Explosion-resistant high-strength cementitious cured body and method for producing the same
JP5629629B2 (en) Explosion-proof ultra-high-strength concrete
JP4071983B2 (en) Explosion resistant concrete
JP6408454B2 (en) Geopolymer composition and method for producing the same
JP6633282B2 (en) Hydraulic composition and heat-resistant structure
JP3549507B2 (en) Explosion-resistant high-strength cementitious cured product and method for producing the same
JP4090762B2 (en) Explosion-resistant hydraulic hardened body
JP4045169B2 (en) Explosion-resistant high-strength cementitious cured body and method for producing the same
JP6803775B2 (en) Hydraulic composition and heat resistant structure
JP5885973B2 (en) Low shrinkage explosion-resistant hydraulic hardened body
JP6959796B2 (en) Concrete composition and hardened concrete
JP2017014085A (en) Concrete and manufacturing method of concrete
JP5366695B2 (en) Refractory concrete
KR101626860B1 (en) High Strength concreat with hybrid fiber
JP3714705B2 (en) Method for producing hardened magnesia cement
JP2012153584A (en) Explosion-resistant hydraulic hardening body
JP2003089561A (en) Method for producing bursting resistant high strength cement hardened body
KR100857510B1 (en) Artificial aggregate composition for enhancing fire-resistance of high-strength concretes, method for producing the same and concrete compositions using the same
JP2012193075A (en) Blastproof hydraulic hardened body
JP6961872B2 (en) High-strength cement hardened fiber Explosion prevention fiber and high-strength cement hardened fiber containing it
JP2003192416A (en) Bursting resistant high strength cement hardened body
JP2012166968A (en) Explosion-proof hydraulic hardened body
JP2003160366A (en) Synthetic fiber for explosive fracture resistant cement structure and explosive fracture resistant cement structure
JP2016003148A (en) Engineering method and manufacturing method for polymer cement mortar having explosive fracture resistance and polymer cement mortar having explosive fracture resistance
JP2003112958A (en) Method for producing explosion resistant high strength cement hardened body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040618

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040618

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040618

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent or registration of utility model

Ref document number: 3679039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term