JP3674234B2 - Large solar cell module - Google Patents

Large solar cell module Download PDF

Info

Publication number
JP3674234B2
JP3674234B2 JP10180497A JP10180497A JP3674234B2 JP 3674234 B2 JP3674234 B2 JP 3674234B2 JP 10180497 A JP10180497 A JP 10180497A JP 10180497 A JP10180497 A JP 10180497A JP 3674234 B2 JP3674234 B2 JP 3674234B2
Authority
JP
Japan
Prior art keywords
solar cell
frame
rib
cell module
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10180497A
Other languages
Japanese (ja)
Other versions
JPH10294485A (en
Inventor
英雄 山岸
淳 竹中
正隆 近藤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP10180497A priority Critical patent/JP3674234B2/en
Publication of JPH10294485A publication Critical patent/JPH10294485A/en
Application granted granted Critical
Publication of JP3674234B2 publication Critical patent/JP3674234B2/en
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14310334&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3674234(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/20Peripheral frames for modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Description

【0001】
【発明の属する技術分野】
本発明は、太陽光発電に用いられる太陽電池モジュールに関し、特に、大面積の大型太陽電池モジュールに関するものである。
【0002】
【従来の技術】
近年、太陽光発電システムの実用化と低コスト化技術の開発が進められている。特に次世代の太陽電池として注目を集めているのが、薄膜系の太陽電池である。薄膜系太陽電池は、単結晶シリコン太陽電池や多結晶シリコン太陽電池などに比べて、製造に要する原材料が少なく、大面積の集積型太陽電池として絶縁体基板上に直接作成することが容易なことから、低コストの太陽電池として注目されている。薄膜系太陽電池には、薄膜多結晶シリコン太陽電池、アモルファスシリコン太陽電池、化合物多結晶太陽電池(CdS, CdTe, CIGS)などがあるが、そのなかで最も実用化が進んでいるのがアモルファスシリコン太陽電池である。ただし、アモルファスシリコン太陽電池は、屋外で長時間使用すると太陽光の影響で変換効率が低下してしまう現象、いわゆる光劣化が生じるという問題があった。このため、従来の実用例としては、電卓や腕時計など屋内で使用する用途に限られていた。
【0003】
近年、光劣化はゼロにはならないものの、光劣化後の変換効率が10%前後と高いアモルファスシリコン太陽電池が開発されている。それに伴い、太陽電池を屋根に載せて家庭の電力を賄うといった、屋外で使用する太陽電池発電システムの需要が拡大しつつある。こうした太陽電池は、単体の光電変換素子(太陽電池素子)の形ではなく、力学的な強度および耐候性を持たせた太陽電池パネルの形で利用される。この太陽電池パネルは、フレームにはめ込まれて太陽電池モジュールの形で用いられる。図9に示すように、従来の太陽電池モジュール21は、太陽電池パネル22と、このパネル22をはめ込む枠状フレーム23と、パネルから光電変換された電力を取り出すための端子ボックス24とから構成される。枠状フレームは、パネルの保護および屋根などに据え付けるときのために用いられる。枠状フレームの素材には、アルミニウム合金、または樹脂製のものを使うことが多い。
【0004】
【発明が解決しようとする課題】
しかし、従来の大型太陽電池モジュールでは、枠状フレームを構成するアルミニウム合金は、鉄などと比較して、耐候性に優れ軽量ではあるが、高価な材料なので、太陽電池モジュールの製作コストを上昇させる原因の一つとなっている。また、樹脂製の素材を使う場合でも、押出し成型法によるものでは、フレーム構成材の板厚の下限に制限があり、それ以上板厚を薄くできないので、材料費を上昇させて、製作コストを上昇させる一因となっている。
【0005】
また、大型のモジュールを用いると、配線の簡素化や発電面積の増大に関して有利ではあるが、モジュールの強度を維持するために、枠状フレームの板厚を増加させたり、パネルの構成部材の厚みを増加させたり、特殊な強化ガラスなどの軽量で強度のあるものを用いる必要があり、小面積のパネルを複数枚使用することと比べて、全体の重量の増加や、構成部材のコストの増加に結びつき易かった。しかも、光入射側にガラス板などの透明部材を用いる太陽電池パネルの場合、必要な強度を得るために透明部材の厚みを増やすと、それに伴う光吸収の増加により、太陽電池素子に入射する光量が減り、光電変換効率が大幅に減少する問題が生じていた。
【0006】
本発明は、従来技術の有するこのような問題点に鑑みなされたものであり、太陽電池パネルの大面積化の際に、太陽電池パネルの構成部材の厚みをほとんど増やすことなく、太陽電池モジュールの力学的強度を維持する手段を提供し、それによって、軽量、かつ安価で出力特性の優れた太陽電池モジュールを提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る大型太陽電池モジュールは、基板上に太陽電池素子を形成してなる一枚の太陽電池パネルの外縁部全周にわたって、当該外縁部を支持する枠状フレームを設けるとともに、該枠状フレームで囲まれた内部空間に単又は複数のリブを渡設し、前記一枚の太陽電池パネルを、前記枠状フレーム内側に位置する裏面側から、前記リブの上面により支持させてなる構成を有する。
【0008】
ここで、前記太陽電池パネルの端子ボックスを、裏面側における前記リブが位置しない部位に設けることが好ましく、また、アニール効果を促すべく前記太陽電池パネルの裏面側に断熱材を設け、該断熱材を介して前記リブ上面により支持させることが好ましい。
また、一枚の略方形の太陽電池パネルの四方を取り囲む枠状フレームを設け、前記リブを、該枠状フレームの互いに対向する辺、または隅部の間に渡設することが好ましく、より具体的には、前記リブを十字形、梯子形または筋交い形に配置することで、モジュールの力学的強度が高まる。さらに、前記リブの断面形状をI型またはH型、もしくは、中空円筒形状、中空三角形、または中空四角形状とすると、リブの力学的強度が高まり、モジュールの力学的強度が向上する。
【0009】
【発明の実施の形態】
以下、図面を参照しながら、具体的に本発明に係る太陽電池モジュールの種々の実施例を説明する。図1は、本発明に係る大型太陽電池モジュール1を裏面側から見た場合の図である。この太陽電池モジュール1は、太陽電池パネル2と、この太陽電池パネルの裏面に設けられたフォーム基材8と、この太陽電池パネル2から電力を出力する手段である端子ボックス5と、この太陽電池パネル2の外縁部を保持する枠状フレーム3と、この枠状フレーム3に固定したリブ6とからなる。このリブ6は、フォーム基材8および太陽電池パネル2の裏面を支持するとともに、モジュールの変形を防止して剛性を持たせ、モジュールの強度を高める役割を果たすものである。リブ6には、その断面がH型のアルミ棒を採用する。枠状フレーム3は、ロール成形加工により作られたアルミニウム合金製の構成部材3a〜3dを、太陽電池パネルの外縁形状に合わせて矩形に継ぎ合わせて作られたものである。
【0010】
また、図2に、図1に示した太陽電池モジュール1のA−A断面図を示すとともに、図3に、太陽電池パネル2、H型リブ6、および枠状フレーム3が互いに固定されている様子を示す。太陽電池モジュール1は、太陽電池パネル2と、クッション性および断熱性に優れたアクリル系フォーム基材8と、H型リブ6とを順次積層したものが、枠状フレーム3に嵌入接着されて構成されるものである。ここで、太陽電池パネル2の裏面とフォーム基材8、およびフォーム基材8とH型リブ6とは、アクリル系の接着剤を用いた両面テープで互いに粘着固定される。フォーム基材8は、パネル2とH型リブ6との間に挟まれることで、太陽電池モジュールにかかる外力の一部を吸収したり、後述するアニール効果を高める役目をも果たす。また、太陽電池パネル2の外縁部は、ブチルゴムなどの接着剤7でもって枠状フレーム上部に形成した溝部4a, 4aに嵌入接着されるとともに、リブ6の両端部は、接着性樹脂でもって枠状フレーム下部に形成した溝部4b, 4bに嵌入接着される。但し、本発明では、リブの端部とフレーム下部に形成した溝部4bとの固定方法を接着性樹脂によるものに限らず、単に、ネジで固定する方法を採用しても良い。枠状フレーム3には、太陽電池モジュール1を屋上等などに据え付けるための穴9, 9が開けられている。
【0011】
このように、枠状フレームにリブを設ける構造を採用することによって、ガラス板にかかる力学的負荷が減るため、ガラス板の板厚を薄くすることができる。ガラスの板厚が大きくなると、光の吸収、特に近赤外域の波長についての吸収が大きくなり、これがロスとなってパネルの発電特性が低下する問題も、この様に厚みを薄くすることで解決するのである。
【0012】
また、太陽電池パネル2は、光入射側にガラス板などからなる透光性基板10を配置し、この透光性基板10の裏面側に、アモルファスシリコン膜を含む光電変換素子11、接着性を有する充填材12、および光入射側の反対面を保護する封止材13を順次積層して構成されるものである。ここで、充填材には、EVA(エチレンビニールアセテート)、PVB(ポリビニールブチラール)、ポリイソブチレン系樹脂、シリコン樹脂などを用い、封止材には、テドラー(フッ化ビニールでデュポン社の登録商標)、またはこのテドラーとアルミニウム箔をサンドイッチ状に積層したものなど用いる。
【0013】
本実施例では、最も好ましい光電変換素子11として、アモルファス系半導体太陽電池素子を採用する。なぜならば、アモルファス太陽電池に代表される薄膜系太陽電池は、上述したように、単結晶シリコン太陽電池や多結晶シリコン太陽電池などに比べて、製造に要する原材料が少なく安価に製作でき、しかも大面積の集積型太陽電池として絶縁体基板上に直接作成することが容易であるという利点を有するからである。また、そのセル面積が広ければ、太陽電池を架台に取り付けるコストなどが低くなり、太陽電池モジュール製作の低コスト化に貢献し得る。アニール効果を生ぜしめるために断熱材を密着させた太陽電池パネル(例えば、特開平7ー297435号)を採用する場合、枠状フレームにリブを設けると太陽電池モジュールの強度が増すので、パネル内の断熱材の量を増やし、断熱層の形状をより効果的に定めることができて、アニール効果を向上させることが可能となる。
【0014】
但し、本発明では、薄膜系太陽電池として、CdTe/CdS 太陽電池、CIGS(Cu(InGa)Se2) 太陽電池をも採用することができる。これらは、アモルファスシリコン太陽電池よりも変換効率を高くすることができて、光劣化が少なくという特徴を有するが、CdやInを含むため、環境に悪影響を与えやすいという欠点も有する。また、太陽電池パネルとして、ガラスに直接薄膜太陽電池素子を形成する構造、薄膜系太陽電池素子以外の結晶系太陽電池素子を有する構造、および鉄板にフレキシブルな素子を張り付けた構造などの、太陽電池の機能を有する板状の形状を有するもの全てを適用することも可能である。
【0015】
また、枠状フレームの素材は、アルミニウム合金に限らない。他に、木材、鋼材、または合成樹脂製のものからなる枠状フレームを採用することも可能であり、さらに、耐候性を向上させるために、塩化ビニル樹脂、フッ素系樹脂、またはアクリル系樹脂などから成る樹脂皮膜で被覆した金属板を用いることも可能である。また、リブの断面はH型に限るものではなく、I型の断面を有するリブを用いることも有効である。I型およびH型の棒のように、座屈やねじれが生じない程度に、棒の中立面から遠い位置に材料が集まるように構成すると、棒の強度が増すので好ましい。さらに、リブとして中空円筒、中空三角柱、中空四角柱などを採用することも、リブの力学的強度の点から有効である。
【0016】
図1では、一本のリブが枠状フレームの構成部材3c−3d間に架けられて、その両端部が固定されている。しかし、枠状フレームに固定するリブの数は一本に限らず、複数本でも良いし、リブの配置方法は図1に示したものに限らず、図4〜図8に示すように、種々の配置方法が可能である。図4では、2本のリブが構成部材3c−3d間に、これらの構成部材を三等分する位置に梯子形に架けられている。また、図5では、2本のリブが構成部材3c−3d間および3a−3b間に、これらの構成部材の中間位置に十字形に架けられている。そして、図6では、1本のリブが枠状フレーム対角間に筋交い状に架けられている状態を示す。
【0017】
そして、図1、図4、図5で示した本発明に係る大型太陽電池モジュールと、枠状フレームにリブを用いなかった従来型太陽電池モジュールとの比較実験について以下に説明する。この実験は、太陽電池モジュールの表面が風速60 mの風圧を受けた場合に、透光性基板であるガラス板の中央部が、どの程度変位するのかを計測したものである。一般に、透光性基板であるガラス板の中央部の変位がガラス板の板厚を越えないことが、安全基準内にあるとされている。図4および図5に示した太陽電池モジュール1は、リブの配置方法とガラス板の板厚を除いて、図1に示した太陽電池モジュールの構造と同じものを使用する。この比較試験に用いた太陽電池モジュールには、1メートル角の大きさのものを使用した。
【0018】
図7は、図2と同じ断面図であって、リブを除いた図である。この図に示すように、パネルには一辺の長さSが略1000 mm の正方形状のものを使用し、枠状フレームには、肉厚が略1 mm、高さHが略30 mm 、上部固定部14aおよび中間固定部14bの横幅T1が略7 mm、下部固定部14cの横幅T2が略20 mm 、枠状フレーム上部に形成した溝部の幅D1がガラス板の板厚に略2 mm加えたものを使用した。そして、図8は、図1、図4、および図5で用いたリブの断面を示す図である。この図に示すように、リブは、肉厚が略2 mm、幅kが略20 mm のものを用いた。その比較試験結果を表1に示す。
【0019】
【表1】
【0020】
ここで、実施例1が図1、実施例2が図4、実施例3が図5のモジュール構造に相当する。従来例の場合、安全基準内にあるためには、ガラスの板厚が6 mmのものを必要とした。しかし、本発明の場合、安全基準内にあるためには、実施例1の場合が4 mmの板厚、実施例2の場合が3 mmの板厚、実施例3の場合が2 mmの板厚で充分な強度を得られることが分かり、ガラスの板厚を少なくとも3割程度薄くして、軽量化できることが分かった。従って、上述したように、ガラスが表面にある構造を有する太陽電池パネルの場合には、ガラスの板厚を薄くして、パネルの発電効率を向上させることができ、断熱層を設けた非晶質半導体太陽電池パネルの場合には、断熱材の量や断熱層の形状を定める自由度が増すので、アニーリングの効果を高めることが可能となる。
【0021】
さらに、本発明では、図1〜図4のリブの配置を組み合わせたものを使用することも可能であることは、云うまでもない。このようにリブの形状を組み合わせることで、リブにかかる荷重が分散されるため、より細い形状のリブを採用することが可能となる。
【0022】
【発明の効果】
以上の如く、本発明によれば、基板上に太陽電池素子を形成してなる一枚の太陽電池パネルの外縁部全周にわたって、当該外縁部を支持する枠状フレームを設けるとともに、該枠状フレームで囲まれた内部空間に単又は複数のリブを渡設し、前記一枚の太陽電池パネルを、前記枠状フレーム内側に位置する裏面側から、前記リブの上面により支持させることによって、太陽電池パネルの大面積化をする際に、太陽電池パネルを構成する部材、特に透光性基板などのガラス板の板厚を増やすことなく力学的強度を維持できるので、軽量かつ低コストの太陽電池モジュールを製作することが可能となり、また、ガラス板の厚みを薄くすることが可能になるため、入射光の近遠赤外領域の波長についての吸収が減り、出力特性の優れた太陽電池パネルを製作することが可能になる。さらに、太陽電池パネルにかかる力学的負荷が減るため、断熱材の使用量や断熱層の形状を定める自由度が増すので、アニーリングの効果を高めることが可能となる。
【0023】
そして、枠状フレームに、単または複数本のリブを十字形または梯子形に配置して設ける方法や、単または複数本のリブを筋交い形に配置して設ける方法を採用すると、モジュールの力学的強度が高まり、上記した効果を一層高めることが可能となる。さらに、前記リブの断面形状をI型またはH型、もしくは、中空円筒形、中空三角形、または中空四角形状とすると、リブおよび太陽電池モジュールの力学的強度が向上し、上記した効果をさらに高めることが可能となる。
【図面の簡単な説明】
【図1】本発明に係る太陽電池モジュールの第1の実施例を示す図。
【図2】第1の実施例を示す図のA−A断面を示す図。
【図3】第1の実施例での枠状フレーム、パネル、およびリブの接合状態を示す斜視図。
【図4】本発明に係る太陽電池モジュールの第2の実施例を示す図。
【図5】本発明にに係る太陽電池モジュールの第3の実施例を示す図。
【図6】本発明に係る太陽電池モジュールの第4の実施例を示す図。
【図7】太陽電池モジュールを示す断面図。
【図8】本発明に係るリブの断面図。
【図9】従来の太陽電池モジュールを示す図。
【符号の説明】
1 太陽電池モジュール 2 太陽電池パネル
3 枠状フレーム
3a〜3b フレーム構成部材
4a, 4b 枠状フレームに形成した溝部
5 端子ボックス 6 リブ
7 接着剤 8 フォーム基材
9 据え付け穴 10 透光性基板
11 光電変換素子 12 充填材
13 封止材 14a 上部固定部
14b 中間固定部 14c 下部固定部
21 従来の太陽電池モジュール
22 太陽電池パネル 23 枠状フレーム
24 端子ボックス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solar cell module used for photovoltaic power generation, and more particularly to a large-area large-sized solar cell module.
[0002]
[Prior art]
In recent years, practical use of photovoltaic power generation systems and development of cost reduction technologies have been promoted. In particular, thin-film solar cells are attracting attention as next-generation solar cells. Thin-film solar cells require fewer raw materials to manufacture than single crystal silicon solar cells and polycrystalline silicon solar cells, and can be easily fabricated directly on an insulator substrate as a large-area integrated solar cell Therefore, it is attracting attention as a low-cost solar cell. Thin film solar cells include thin film polycrystalline silicon solar cells, amorphous silicon solar cells, compound polycrystalline solar cells (CdS, CdTe, CIGS), among which amorphous silicon is the most practically used. It is a solar cell. However, the amorphous silicon solar cell has a problem that when it is used outdoors for a long time, the conversion efficiency is lowered due to the influence of sunlight, so-called light degradation occurs. For this reason, as a conventional practical example, it was limited to the use used indoors, such as a calculator and a wristwatch.
[0003]
In recent years, amorphous silicon solar cells having high conversion efficiency of about 10% after photodegradation have been developed, although photodegradation does not become zero. Along with this, there is an increasing demand for solar cell power generation systems used outdoors, such as providing solar power on the roof to cover household electricity. Such a solar cell is used not in the form of a single photoelectric conversion element (solar cell element) but in the form of a solar cell panel having mechanical strength and weather resistance. This solar cell panel is fitted into a frame and used in the form of a solar cell module. As shown in FIG. 9, the conventional solar cell module 21 includes a solar cell panel 22, a frame-like frame 23 into which the panel 22 is fitted, and a terminal box 24 for taking out photoelectrically converted electric power from the panel. The The frame-like frame is used for protecting the panel and installing it on a roof or the like. The frame-shaped frame is often made of aluminum alloy or resin.
[0004]
[Problems to be solved by the invention]
However, in the conventional large-sized solar cell module, the aluminum alloy constituting the frame-shaped frame is superior in weather resistance and lightweight compared to iron and the like, but is an expensive material, which increases the manufacturing cost of the solar cell module. One of the causes. Even when resin materials are used, the extrusion molding method has a limit on the lower limit of the thickness of the frame components, and the thickness cannot be reduced any further. It contributes to the increase.
[0005]
The use of a large module is advantageous in terms of simplifying wiring and increasing the power generation area, but in order to maintain the strength of the module, the thickness of the frame-shaped frame is increased, and the thickness of the panel components It is necessary to use a lightweight and strong material such as special tempered glass, which increases the overall weight and cost of components compared to using multiple small-area panels. It was easy to connect to. In addition, in the case of a solar cell panel using a transparent member such as a glass plate on the light incident side, the amount of light incident on the solar cell element is increased by increasing the thickness of the transparent member in order to obtain the required strength. There has been a problem that the photoelectric conversion efficiency is greatly reduced.
[0006]
The present invention has been made in view of the above-described problems of the prior art. When the area of the solar cell panel is increased, the thickness of the solar cell panel is hardly increased, and the solar cell module is increased. An object of the present invention is to provide a means for maintaining the mechanical strength, thereby providing a solar cell module that is lightweight, inexpensive and excellent in output characteristics.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a large-sized solar cell module according to the present invention has a frame shape that supports the outer edge portion over the entire outer edge portion of a single solar cell panel in which a solar cell element is formed on a substrate. provided with a frame, bridgingly a single or a plurality of ribs in the internal space surrounded by the frame-shaped frame, the single solar panel from the back side located inside the frame-like frame, said ribs The structure is supported by the upper surface.
[0008]
Here, it is preferable that the terminal box of the solar cell panel is provided in a portion where the rib on the back surface side is not located, and a heat insulating material is provided on the back surface side of the solar cell panel in order to promote an annealing effect, and the heat insulating material It is preferable that the rib is supported by the upper surface of the rib.
Further, it is preferable to provide a frame-like frame that surrounds four sides of a substantially rectangular solar cell panel, and to extend the rib between the opposite sides or corners of the frame-like frame. Specifically, the mechanical strength of the module is increased by arranging the ribs in a cross shape, a ladder shape, or a brace shape. Further, when the cross-sectional shape of the rib is an I-type or H-type, or a hollow cylindrical shape, a hollow triangle, or a hollow square shape, the mechanical strength of the rib increases and the mechanical strength of the module improves.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various embodiments of the solar cell module according to the present invention will be specifically described with reference to the drawings. FIG. 1 is a view of a large solar cell module 1 according to the present invention as viewed from the back side. The solar cell module 1 includes a solar cell panel 2, a foam base 8 provided on the back surface of the solar cell panel, a terminal box 5 which is a means for outputting power from the solar cell panel 2, and the solar cell. It consists of a frame-like frame 3 that holds the outer edge of the panel 2 and a rib 6 fixed to the frame-like frame 3. The rib 6 supports the foam substrate 8 and the back surface of the solar cell panel 2 and plays a role of increasing the strength of the module by preventing deformation of the module and providing rigidity. The rib 6 employs an aluminum bar having an H-shaped cross section. The frame-like frame 3 is made by joining aluminum alloy component members 3a to 3d made by roll forming into a rectangular shape in accordance with the outer edge shape of the solar cell panel.
[0010]
2 is a cross-sectional view taken along the line AA of the solar cell module 1 shown in FIG. 1. In FIG. 3, the solar cell panel 2, the H-shaped rib 6, and the frame-like frame 3 are fixed to each other. Show the state. The solar cell module 1 is configured by sequentially laminating a solar cell panel 2, an acrylic foam base material 8 having excellent cushioning properties and heat insulation properties, and an H-shaped rib 6, and is fitted and bonded to the frame-like frame 3. It is what is done. Here, the back surface of the solar cell panel 2 and the foam base material 8, and the foam base material 8 and the H-shaped rib 6 are adhesively fixed to each other with a double-sided tape using an acrylic adhesive. The foam base 8 is sandwiched between the panel 2 and the H-shaped rib 6 so as to absorb a part of the external force applied to the solar cell module and to increase the annealing effect described later. Further, the outer edge portion of the solar cell panel 2 is fitted and bonded to the groove portions 4a and 4a formed on the upper portion of the frame-like frame with an adhesive 7 such as butyl rubber, and both ends of the rib 6 are framed with an adhesive resin. Is fitted and bonded to the grooves 4b and 4b formed in the lower part of the frame. However, in the present invention, the fixing method between the end portion of the rib and the groove portion 4b formed in the lower portion of the frame is not limited to using an adhesive resin, and a method of simply fixing with a screw may be employed. The frame-shaped frame 3 is provided with holes 9 and 9 for installing the solar cell module 1 on a rooftop or the like.
[0011]
Thus, by adopting the structure in which the rib is provided on the frame-like frame, the mechanical load applied to the glass plate is reduced, so that the thickness of the glass plate can be reduced. As the glass thickness increases, light absorption, especially absorption in the near-infrared region, increases, and the problem of reduced power generation characteristics due to this loss can be solved by reducing the thickness. To do.
[0012]
Moreover, the solar cell panel 2 arrange | positions the translucent board | substrate 10 which consists of a glass plate etc. in the light-incidence side, the photoelectric conversion element 11 containing an amorphous silicon film, adhesiveness on the back surface side of this translucent board | substrate 10. The filler 12 and the sealing material 13 for protecting the opposite surface on the light incident side are sequentially laminated. Here, EVA (ethylene vinyl acetate), PVB (polyvinyl butyral), polyisobutylene resin, silicon resin, etc. are used for the filler, and Tedlar (vinyl fluoride is a registered trademark of DuPont) for the sealing material. Or a laminate of this tedlar and aluminum foil in a sandwich shape.
[0013]
In this embodiment, an amorphous semiconductor solar cell element is employed as the most preferable photoelectric conversion element 11. This is because, as described above, thin-film solar cells represented by amorphous solar cells can be manufactured inexpensively with less raw materials required for manufacturing compared to single crystal silicon solar cells and polycrystalline silicon solar cells. This is because an area-integrated solar cell can be easily produced directly on an insulator substrate. In addition, if the cell area is large, the cost for attaching the solar cell to the pedestal becomes low, which can contribute to the cost reduction of the solar cell module production. When a solar cell panel (for example, Japanese Patent Laid-Open No. 7-297435) in which a heat insulating material is closely attached in order to generate an annealing effect is adopted, the strength of the solar cell module is increased by providing a rib on the frame-like frame. The amount of the heat insulating material can be increased, the shape of the heat insulating layer can be determined more effectively, and the annealing effect can be improved.
[0014]
However, in the present invention, CdTe / CdS solar cells and CIGS (Cu (InGa) Se 2 ) solar cells can also be employed as the thin film solar cells. These have the characteristics that the conversion efficiency can be made higher than that of the amorphous silicon solar cell and the light deterioration is small, but since they contain Cd and In, they also have a drawback that they are liable to adversely affect the environment. Moreover, as a solar cell panel, a solar cell such as a structure in which a thin film solar cell element is directly formed on glass, a structure having a crystalline solar cell element other than a thin film solar cell element, and a structure in which a flexible element is attached to an iron plate It is also possible to apply all those having a plate-like shape having the above function.
[0015]
The material of the frame-shaped frame is not limited to aluminum alloy. In addition, it is also possible to adopt a frame-like frame made of wood, steel, or synthetic resin, and in order to improve weather resistance, vinyl chloride resin, fluorine resin, acrylic resin, etc. It is also possible to use a metal plate covered with a resin film comprising: Further, the rib cross section is not limited to the H type, and it is also effective to use a rib having an I type cross section. As in the case of the I-type and H-type rods, it is preferable that the material is gathered at a position far from the neutral surface of the rod to the extent that buckling or twisting does not occur, because the strength of the rod increases. Furthermore, it is effective from the viewpoint of the mechanical strength of the rib to adopt a hollow cylinder, a hollow triangular column, a hollow quadrangular column or the like as the rib.
[0016]
In FIG. 1, one rib is spanned between the structural members 3c-3d of the frame-shaped frame, and both ends thereof are fixed. However, the number of ribs fixed to the frame-like frame is not limited to one, and a plurality of ribs may be used. The rib arrangement method is not limited to that shown in FIG. Are possible. In FIG. 4, two ribs are bridged between the constituent members 3 c-3 d at positions where these constituent members are divided into three equal parts. In FIG. 5, two ribs are cruciformly placed between the constituent members 3c-3d and 3a-3b at the intermediate position between these constituent members. FIG. 6 shows a state in which one rib is straddled between the frame-shaped frame diagonals.
[0017]
A comparative experiment between the large-sized solar cell module according to the present invention shown in FIGS. 1, 4, and 5 and the conventional solar cell module in which no rib is used in the frame-like frame will be described below. In this experiment, when the surface of the solar cell module is subjected to a wind pressure of 60 m, the amount of displacement of the central portion of the glass plate that is a translucent substrate is measured. In general, it is considered that it is within safety standards that the displacement of the central portion of the glass plate which is a translucent substrate does not exceed the thickness of the glass plate. The solar cell module 1 shown in FIGS. 4 and 5 uses the same structure as that of the solar cell module shown in FIG. 1 except for the rib arrangement method and the plate thickness of the glass plate. A solar cell module having a size of 1 meter square was used for the comparative test.
[0018]
FIG. 7 is a cross-sectional view similar to FIG. 2, but without the ribs. As shown in this figure, a square panel with a side length S of approximately 1000 mm is used for the panel, and the frame frame has a thickness of approximately 1 mm and a height H of approximately 30 mm. The horizontal width T1 of the fixing portion 14a and the intermediate fixing portion 14b is about 7 mm, the horizontal width T2 of the lower fixing portion 14c is about 20 mm, and the width D1 of the groove formed in the upper part of the frame-like frame is added to the thickness of the glass plate by about 2 mm. Used. And FIG. 8 is a figure which shows the cross section of the rib used in FIG.1, FIG4 and FIG.5. As shown in this figure, a rib having a thickness of about 2 mm and a width k of about 20 mm was used. The comparison test results are shown in Table 1.
[0019]
[Table 1]
[0020]
Here, Example 1 corresponds to the module structure of FIG. 1, Example 2 corresponds to FIG. 4, and Example 3 corresponds to the module structure of FIG. In the case of the conventional example, in order to be within the safety standards, a glass having a thickness of 6 mm was required. However, in the case of the present invention, in order to be within safety standards, the plate thickness of 4 mm in the case of Example 1, the plate thickness of 3 mm in the case of Example 2, and the plate of 2 mm in the case of Example 3 It has been found that sufficient strength can be obtained with the thickness, and that it is possible to reduce the weight by reducing the thickness of the glass by at least 30%. Therefore, as described above, in the case of a solar cell panel having a structure in which glass is on the surface, it is possible to reduce the plate thickness of the glass, improve the power generation efficiency of the panel, and provide an amorphous layer provided with a heat insulating layer. In the case of a high-quality semiconductor solar cell panel, the degree of freedom for determining the amount of the heat insulating material and the shape of the heat insulating layer is increased, so that the effect of annealing can be enhanced.
[0021]
Furthermore, it goes without saying that in the present invention, it is possible to use a combination of the rib arrangements shown in FIGS. By combining the rib shapes in this way, the load applied to the ribs is dispersed, so that a thinner rib can be employed.
[0022]
【The invention's effect】
As described above, according to the present invention, a frame-like frame that supports the outer edge portion is provided over the entire circumference of the outer edge portion of a single solar cell panel in which a solar cell element is formed on a substrate. and bridgingly single or a plurality of ribs in the internal space surrounded by the frame, wherein the single solar panel, from the back side located inside the frame-like frame, by supporting the upper surface of the rib, the sun When increasing the area of a battery panel, it is possible to maintain the mechanical strength without increasing the thickness of a glass plate such as a translucent substrate such as a member constituting the solar cell panel. Modules can be manufactured, and the thickness of the glass plate can be reduced. Therefore, absorption of near-infrared wavelengths of incident light is reduced, and the solar cell panel has excellent output characteristics. It is possible to manufacture a. Furthermore, since the mechanical load applied to the solar cell panel is reduced, the degree of freedom for determining the amount of heat insulating material used and the shape of the heat insulating layer is increased, so that the effect of annealing can be enhanced.
[0023]
Then, when adopting a method in which a single or a plurality of ribs are arranged in a cross shape or a ladder shape, or a method in which a single or a plurality of ribs are arranged in a brace form on a frame-like frame, the dynamics of the module The strength is increased, and the above effects can be further enhanced. Furthermore, when the cross-sectional shape of the rib is I-type or H-type, or a hollow cylindrical shape, a hollow triangle, or a hollow square shape, the mechanical strength of the rib and the solar cell module is improved, and the above-described effects are further enhanced. Is possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of a solar cell module according to the present invention.
FIG. 2 is a cross-sectional view taken along line AA of the drawing showing the first embodiment.
FIG. 3 is a perspective view showing a joined state of a frame-like frame, a panel, and a rib in the first embodiment.
FIG. 4 is a diagram showing a second embodiment of the solar cell module according to the present invention.
FIG. 5 is a view showing a third embodiment of the solar cell module according to the present invention.
FIG. 6 is a diagram showing a fourth embodiment of the solar cell module according to the present invention.
FIG. 7 is a cross-sectional view showing a solar cell module.
FIG. 8 is a cross-sectional view of a rib according to the present invention.
FIG. 9 is a view showing a conventional solar cell module.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solar cell module 2 Solar cell panel 3 Frame-shaped frame 3a-3b Frame structural member 4a, 4b Groove part 5 Terminal box 6 Rib 7 Adhesive 8 Foam base material 9 Mounting hole 10 Translucent board | substrate 11 Photoelectricity Conversion element 12 Filler 13 Sealing material 14a Upper fixed part 14b Intermediate fixed part 14c Lower fixed part 21 Conventional solar cell module 22 Solar cell panel 23 Frame-shaped frame 24 Terminal box

Claims (7)

  1. 基板上に太陽電池素子を形成してなる一枚の太陽電池パネルの外縁部全周にわたって、当該外縁部を支持する枠状フレームを設けるとともに、
    該枠状フレームで囲まれた内部空間に単又は複数のリブを渡設し、
    前記一枚の太陽電池パネルを、前記枠状フレーム内側に位置する裏面側から、前記リブの上面により支持させてなることを特徴とする大型太陽電池モジュール。
    While providing a frame-like frame that supports the outer edge part of the entire periphery of the outer edge part of one solar cell panel formed by forming solar cell elements on the substrate,
    Single or multiple ribs are provided in the internal space surrounded by the frame-shaped frame,
    The large-sized solar cell module, wherein the single solar cell panel is supported by the upper surface of the rib from the back side located inside the frame-like frame.
  2. 前記太陽電池パネルの端子ボックスを、裏面側における前記リブが位置しない部位に設けてなる請求項1記載の大型太陽電池モジュール。  The large-sized solar cell module according to claim 1, wherein a terminal box of the solar cell panel is provided in a portion where the rib on the back surface side is not located.
  3. 前記太陽電池パネルの裏面側に断熱材を設け、該断熱材を介して前記リブ上面により支持させてなる請求項1または請求項2記載の大型太陽電池モジュール。  The large-sized solar cell module according to claim 1 or 2, wherein a heat insulating material is provided on a back surface side of the solar cell panel and is supported by the upper surface of the rib via the heat insulating material.
  4. 一枚の略方形の太陽電池パネルの四方を取り囲む枠状フレームを設け、前記リブを、該枠状フレームの互いに対向する辺、または隅部の間に渡設してなる請求項1〜3の何れか1項に記載の大型太陽電池モジュール。 The frame-shaped frame which surrounds four sides of one substantially square solar cell panel is provided, The said rib is extended between the mutually opposing edge | sides or corner part of this frame-shaped frame. The large-sized solar cell module according to any one of the above.
  5. 前記リブを十字形、梯子形または筋交い形に配置してなる請求項1〜4の何れか1項に記載の大型太陽電池モジュール。  The large-sized solar cell module according to any one of claims 1 to 4, wherein the ribs are arranged in a cross shape, a ladder shape, or a brace shape.
  6. 前記リブの断面形状をI型またはH型とすることを特徴とする請求項1〜5の何れかの項に記載の大型太陽電池モジュール。  The large-sized solar cell module according to any one of claims 1 to 5, wherein a cross-sectional shape of the rib is an I type or an H type.
  7. 前記リブの断面形状が中空円筒形状、中空三角形状、または中空四角形状であることを特徴とする請求項1〜5の何れかの項に記載の大型太陽電池モジュール。  The large-sized solar cell module according to any one of claims 1 to 5, wherein a cross-sectional shape of the rib is a hollow cylindrical shape, a hollow triangular shape, or a hollow rectangular shape.
JP10180497A 1997-04-18 1997-04-18 Large solar cell module Expired - Lifetime JP3674234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10180497A JP3674234B2 (en) 1997-04-18 1997-04-18 Large solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10180497A JP3674234B2 (en) 1997-04-18 1997-04-18 Large solar cell module

Publications (2)

Publication Number Publication Date
JPH10294485A JPH10294485A (en) 1998-11-04
JP3674234B2 true JP3674234B2 (en) 2005-07-20

Family

ID=14310334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10180497A Expired - Lifetime JP3674234B2 (en) 1997-04-18 1997-04-18 Large solar cell module

Country Status (1)

Country Link
JP (1) JP3674234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019435A3 (en) * 2007-07-23 2015-09-02 Kaneka Corporation Solar cell module

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006625A (en) * 2002-03-27 2004-01-08 Kyocera Corp Solar cell module and solar cell array
JP2005150318A (en) * 2003-11-14 2005-06-09 Canon Inc Solar cell module and its manufacturing method
CN101600839A (en) * 2006-12-27 2009-12-09 道康宁公司 The solar energy module of realizing by the glass assembling is connected with the structure of framework
CN101663763B (en) 2007-04-24 2012-10-03 三菱电机株式会社 Solar battery module
EP2157619A4 (en) * 2007-05-14 2012-03-07 Mitsubishi Electric Corp Solar battery module device
WO2008139610A1 (en) * 2007-05-14 2008-11-20 Mitsubishi Electric Corporation Solar battery module device
JP5089300B2 (en) * 2007-08-31 2012-12-05 シャープ株式会社 Solar cell module
JP5089354B2 (en) * 2007-11-30 2012-12-05 シャープ株式会社 Solar cell module
WO2009119774A1 (en) 2008-03-26 2009-10-01 京セラ株式会社 Solar cell module
JP4722164B2 (en) * 2008-06-17 2011-07-13 シャープ株式会社 Solar cell module and solar cell module mount
JP4515514B2 (en) * 2008-07-30 2010-08-04 シャープ株式会社 Solar cell module
JPWO2010061878A1 (en) * 2008-11-27 2012-04-26 シャープ株式会社 Solar cell module
US20120037214A1 (en) * 2009-04-08 2012-02-16 Kenichi Sagayama Solar cell module, solar cell attachment stand, photovoltaic power generating system
EP2469607B1 (en) * 2009-04-21 2016-04-20 Mitsubishi Electric Corporation Solar cell module
DE102009035644A1 (en) * 2009-07-29 2011-02-03 Anicca Ag Arrangement for reduction of deflection of frame-enclosed laminates of photovoltaic modules, comprises rod-shaped component connected to frame under laminate, where sliding block is guided in rod-shaped component
JPWO2011039863A1 (en) * 2009-09-30 2013-02-21 三菱重工業株式会社 Solar panel
JP5230585B2 (en) * 2009-11-24 2013-07-10 三菱電機株式会社 Solar cell module and manufacturing method thereof
US8933325B2 (en) 2010-01-21 2015-01-13 Kyocera Corporation Solar cell module
JP5159832B2 (en) * 2010-06-21 2013-03-13 三菱電機株式会社 Solar cell module device
JP5191519B2 (en) * 2010-09-22 2013-05-08 シャープ株式会社 Manufacturing method, construction method, and reinforcing method of solar cell module
KR101172315B1 (en) * 2010-10-11 2012-08-14 한국철강 주식회사 Photovoltaic module and manufacturing method of the same
KR101303235B1 (en) 2010-10-28 2013-09-04 엘지전자 주식회사 Photovoltaic module
EP2672524B1 (en) * 2011-01-31 2019-10-30 Kyocera Corporation Solar cell module
JP5535169B2 (en) * 2011-10-11 2014-07-02 株式会社アクト Solar panel
KR101969033B1 (en) 2012-11-20 2019-04-15 엘지전자 주식회사 Solar cell module and photovoltaic power generation system including the same
WO2014129053A1 (en) * 2013-02-22 2014-08-28 三洋電機株式会社 Solar cell module
CN103236460B (en) * 2013-03-27 2016-03-09 友达光电股份有限公司 Frame structure and the solar energy module with frame structure
JP6260765B2 (en) * 2013-09-27 2018-01-17 パナソニックIpマネジメント株式会社 Solar cell module
JP6350859B2 (en) * 2014-05-30 2018-07-04 パナソニックIpマネジメント株式会社 Solar power plant
CN105322878A (en) * 2015-12-09 2016-02-10 江苏宇兆能源科技有限公司 Aluminum alloy frame with reinforcement ribs of solar component

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445587A (en) * 1977-08-24 1979-04-10 Exxon Research Engineering Co Solar battery array supporting structure
JPS59217378A (en) * 1983-05-25 1984-12-07 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JPS60160387A (en) * 1984-01-31 1985-08-21 Shimizu Constr Co Ltd Solar light power generator
JPS61158186A (en) * 1984-12-28 1986-07-17 Standard Oil Co Ohio Semi-rigid optical battery module assembly
JPS6211100U (en) * 1985-07-05 1987-01-23
JPS62158845U (en) * 1986-03-31 1987-10-08
JPH0114080B2 (en) * 1981-08-05 1989-03-09 Gen Electric
JPH0181400U (en) * 1987-11-24 1989-05-31
JPH067261U (en) * 1990-12-27 1994-01-28 昭和アルミニウム株式会社 Solar cell module
JPH0610705Y2 (en) * 1988-12-27 1994-03-16 シャープ株式会社 Solar cell module
JPH0790995A (en) * 1993-09-28 1995-04-04 Sharp Corp Solar cell panel
JPH07292908A (en) * 1994-04-26 1995-11-07 Kanegafuchi Chem Ind Co Ltd Roof with power generating function
JPH07297435A (en) * 1994-04-26 1995-11-10 Kanegafuchi Chem Ind Co Ltd Solar battery panel
JPH08120827A (en) * 1994-10-20 1996-05-14 Topcon:Kk Precast concrete panel
JPH08186280A (en) * 1994-12-28 1996-07-16 Kinden:Kk Solar-cell module and solar-cell device
JPH08260639A (en) * 1995-03-23 1996-10-08 Kanegafuchi Chem Ind Co Ltd Cladding panel for construction having power generation function
JPH0996071A (en) * 1995-09-29 1997-04-08 Sharp Corp Fitting structure of solar battery module
JPH09148612A (en) * 1995-11-28 1997-06-06 Sharp Corp Solar battery module and its mount fixing structure

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445587A (en) * 1977-08-24 1979-04-10 Exxon Research Engineering Co Solar battery array supporting structure
JPH0114080B2 (en) * 1981-08-05 1989-03-09 Gen Electric
JPS59217378A (en) * 1983-05-25 1984-12-07 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JPS60160387A (en) * 1984-01-31 1985-08-21 Shimizu Constr Co Ltd Solar light power generator
JPS61158186A (en) * 1984-12-28 1986-07-17 Standard Oil Co Ohio Semi-rigid optical battery module assembly
JPS6211100U (en) * 1985-07-05 1987-01-23
JPS62158845U (en) * 1986-03-31 1987-10-08
JPH0181400U (en) * 1987-11-24 1989-05-31
JPH0610705Y2 (en) * 1988-12-27 1994-03-16 シャープ株式会社 Solar cell module
JPH067261U (en) * 1990-12-27 1994-01-28 昭和アルミニウム株式会社 Solar cell module
JPH0790995A (en) * 1993-09-28 1995-04-04 Sharp Corp Solar cell panel
JPH07292908A (en) * 1994-04-26 1995-11-07 Kanegafuchi Chem Ind Co Ltd Roof with power generating function
JPH07297435A (en) * 1994-04-26 1995-11-10 Kanegafuchi Chem Ind Co Ltd Solar battery panel
JPH08120827A (en) * 1994-10-20 1996-05-14 Topcon:Kk Precast concrete panel
JPH08186280A (en) * 1994-12-28 1996-07-16 Kinden:Kk Solar-cell module and solar-cell device
JPH08260639A (en) * 1995-03-23 1996-10-08 Kanegafuchi Chem Ind Co Ltd Cladding panel for construction having power generation function
JPH0996071A (en) * 1995-09-29 1997-04-08 Sharp Corp Fitting structure of solar battery module
JPH09148612A (en) * 1995-11-28 1997-06-06 Sharp Corp Solar battery module and its mount fixing structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019435A3 (en) * 2007-07-23 2015-09-02 Kaneka Corporation Solar cell module

Also Published As

Publication number Publication date
JPH10294485A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
US20200304063A1 (en) High efficiency configuration for solar cell string
US20190386603A1 (en) Photovoltaic module for roofs
US9000714B2 (en) Photovoltaic module
US9553543B2 (en) Photovoltaic system
EP2378565B1 (en) Deployable solar panel system
US5679176A (en) Group of solar cell elements, and solar cell module and production method thereof
US8584406B2 (en) Hole-thru-laminate mounting supports for photovoltaic modules
JP2017201710A (en) Novel solar module, support layer stack, and method of manufacturing the same
US6914182B2 (en) Method of installing solar cell modules, and solar cell module
JP2974513B2 (en) Roof material integrated solar cell module
JP5687506B2 (en) Solar cell and solar cell module
US20140030841A1 (en) Flexible High-Voltage Adaptable Current Photovoltaic Modules And Associated Methods
AU741432B2 (en) Solar cell module and method for manufacturing same
US7557291B2 (en) Photovoltaic module for roofs
US8927850B2 (en) Photovoltaic module
CN100377367C (en) Solar cell module and manufacturing method therefor
EP2253022B1 (en) Solar module with enhanced bending stiffness
US20130160824A1 (en) Roof integrated solar module assembly
US20080257399A1 (en) Bifacial thin film solar cell and method for making the same
US6291761B1 (en) Solar cell module, production method and installation method therefor and photovoltaic power generation system
EP1763088B1 (en) Photovoltaic module
US7960642B2 (en) CIS based thin-film photovoltaic module and process for producing the same
AU2005224794B2 (en) Electric energy generating modules with a two-dimensional profile and method of fabricating the same
WO2011093383A1 (en) Solar cell module
KR101215694B1 (en) Solar Cell Module And Manufacturing Method Thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term