JP3659726B2 - Automatic peritoneal dialysis device with turbidity measurement function and circuit for peritoneal dialysis - Google Patents

Automatic peritoneal dialysis device with turbidity measurement function and circuit for peritoneal dialysis Download PDF

Info

Publication number
JP3659726B2
JP3659726B2 JP05166996A JP5166996A JP3659726B2 JP 3659726 B2 JP3659726 B2 JP 3659726B2 JP 05166996 A JP05166996 A JP 05166996A JP 5166996 A JP5166996 A JP 5166996A JP 3659726 B2 JP3659726 B2 JP 3659726B2
Authority
JP
Japan
Prior art keywords
turbidity
peritoneal dialysis
light receiving
drainage
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05166996A
Other languages
Japanese (ja)
Other versions
JPH09239023A (en
Inventor
武寿 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP05166996A priority Critical patent/JP3659726B2/en
Publication of JPH09239023A publication Critical patent/JPH09239023A/en
Application granted granted Critical
Publication of JP3659726B2 publication Critical patent/JP3659726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、腹膜透析,特に自動的に腹膜透析液の腹腔への注入と排出を繰り返す自動腹膜透析装置、および、自動腹膜透析装置に使用される腹膜透析用回路にに関する。
【0002】
【従来の技術】
腹膜透析は、腎不全患者の治療のため、腹腔内に滅菌されプラスチックバッグに入れられた腹膜透析液を注入し,注入後は注入に用いたプラスチックバッグを巻いて腹巻きなどに収め,透析液を4〜8時間と比較的長時間腹腔内に滞留させ,腹膜の半透膜としての性質を用いて腹膜を循環している血液やリンパ液を透析し,所定時間がきたならばプラスチックバッグへ排液し,新たな透析液バッグに交換し,再び新しい液を注入する操作を反復する方法である。
【0003】
近年、本治療における患者の、活動の多い日中の拘束時間を低減させる方法として、患者が就寝中、自動的に腹腔内に腹膜透析液を注入し、所定時間の後、腹腔内から透析液を排出する自動腹膜透析療法が試みられている。この方法は患者の活動上の制限が少なくなり、熟練した患者では透析液交換時のプラスチックバッグの付け替え操作による細菌の感染の恐れも少なくなり、自宅において医師や看護婦の立ち会いもなく実施できる治療方法である。
【0004】
しかし、細菌感染により一旦腹膜炎が発症した場合には、腹膜が侵され、除水能の低下、大量のタンパク質の喪失と腸管機能の低下などが起こり重篤な状態となる。腹膜炎が発症した患者の透析排液には白血球が多く含まれるようになり白濁するので、透析排液を観察することにより腹膜炎の発症を知ることができる。
【0005】
腹膜透析の排液には,脂質や白血球などが混入することで白濁が生じる。一般に透析排液中に100個/μl以上の濃度の白血球が存在すれば腹膜炎が発症していることが疑われるので、透析排液の白濁状態を確実に判断することが必要である。現在は、腹膜透析終了後、透析排液中の白濁の有無を患者が目で確認し、万一白濁が生じている時は病院に行って精密検査を受けている。しかし、腹膜透析を行っている患者には,高齢者や糖尿病により視力の衰えた人がいるため白濁状態の判断が難しく、良否の判定が曖昧となる。
【0006】
また、白濁は必ずしも白血球によっておこるものではなく、トリグリセライド等の脂質の混入によってもおこるので白濁の原因を判定することも必要である。この判定は患者自身では困難である。腹膜透析時の腹膜炎監視装置としては特公平4-25819号公報が提案されている。これは腹膜からの排液チューブに透過型の濁度検出器を取り付けたものである。一般的な液体の濁度検出の原理は、光を用いた透過型,散乱型などがセンサハンドブック(倍風館)に記載されており、特公平4-25819号公報は透過型の原理を利用したものである。
【0007】
この透過型では透析排液が尿素などで着色されることによる透過光量の変化、また脂質、タンパク質などの溶質や析出物、代謝産物による白濁の影響をさけることができないため誤報が発生しやすいが、これを解決する方法として、本発明者は特願平6-233423号に、透析排液に光線をあて、透析排液内の粒子の粒度による該光線の散乱の程度を測定し、少なくとも2カ所の散乱光の測定値の関係から透析排液の濁度を定性および/または定量する腹膜透析排液の濁度測定方法と装置を示した。
【0008】
【発明が解決しようとする課題】
上記のごとく自動腹膜透析療法は、患者の自宅で、患者自身が実施できる治療方法であるが、腹膜炎の検出は非常に重要となっている。本発明の目的は、患者自身が的確に腹膜炎の発生を認識することを容易にし、また、その際、腹膜炎の指標である白血球の濁りを、他のタンパク質や尿素などによる着色や濁りと区別して認識することのできる濁度測定機能付き自動腹膜透析装置および腹膜透析用回路を提供することにある。
【0009】
上記問題を解決した本発明は、以下の濁度測定機能付き自動腹膜透析装置により達成される。
【0010】
本発明は、腹膜透析液を患者の腹腔内へ注入する注入手段と、腹腔内の透析液を排出する排出手段と、腹膜透析液を加温する加温手段と、動作制御スイッチや情報表示部が配置された操作パネルとを有する自動腹膜透析装置において、腹腔内から排出される透析排液の経路に濁度測定部を有する透析排液の濁度を測定する濁度測定装置を有し、該濁度測定装置の測定結果を表示する濁度表示部を操作パネル上に有することを特徴とする濁度測定機能付き自動腹膜透析装置であって、
該濁度測定部は、発光素子と少なくとも2個の散乱光受光素子と該発光素子の光軸上に設けられた透過光受光素子とよりなり、
前記散乱光受光素子の光軸が、前記発光素子の光軸上における該発光素子と前記透過光受光素子との中点を通り、一つの該散乱光受光素子の光軸が、該発光素子の光軸に対し該透過光受光素子側から5〜30度の角度で散乱光を受光するように配置され、別の該散乱光受光素子の光軸が、該発光素子の光軸に対し該透過光受光素子側から30〜50度の角度で散乱光を受光するように配置され、
前記濁度測定部の該透析排液の経路の下流側が略球面状または該経路に直交する略半円筒状の空間を有することを特徴とする。
【0011】
本発明は、前記濁度測定装置の測定結果を記録として保存するための記憶手段及び出力手段を有するものである。
【0014】
さらにもう一つの本発明は、腹膜透析液を患者の腹腔内へ注入する注入回路と、腹腔内の透析液を排出する排出回路を自動腹膜透析装置に使用される腹膜透析液回路であって、該排出回路の途中に排液槽を有し、該排液槽の下流側が略球面状または該排出回路に直交する略半円筒状をなすものである。
【0015】
【実施の形態】
以下、本発明の濁度測定装置付き自動腹膜透析装置および腹膜透析用回路について、好適な実施例に基づき説明する。
図1は本発明の自動腹膜透析装置の概念図である。本自動腹膜透析装置1には、腹膜透析液の入った注液用バッグ2と、腹膜透析排液を収容する排液用バッグ7と図示しない患者の腹腔に設置された腹膜透析用カテーテルとを連絡する回路を有する腹膜透析用回路が設置されており、装置の内部には、圧力調節等の液体駆動手段、回路の流れを切り替えるクランプ等の回路開閉手段、注入前の腹膜透析液を加温する加温手段、注排液する液量を重量等により計測する液量計測手段等が組みこまれており、患者腹腔内への腹膜透析液の自動的な注排液行う手段が設けられている。
【0016】
さらに、本自動腹膜透析装置1には、腹膜透析液の排液回路を用いて透析排液の濁度を測定する濁度測定部101を有する濁度測定装置が設けられており、操作パネル8には、濁度測定の結果が表示される濁度表示部84を有する。濁度表示部84には、測定結果が「濁度なし、濁度注意、濁度警告」等の定性的な表示を文字や色、点滅等により患者に認識させる方法で表示されるので、患者が本自動腹膜透析装置1の操作を行うときに一目で、透析排液の濁度の状態を認識することができる。
【0017】
本濁度測定装置の測定結果を記録として保存するための記憶手段及び出力手段を有していても良い。記録手段及び出力手段により睡眠中に自動的に行われた透析排液の状態を起床後に確認することができると同時に、医師と面談する際の資料とすることができる。また、除水量等の他のデータと同時に保存、記録、出力してもよい。該記憶手段は、通常の電子情報を保存する半導体記憶装置(RAM)、固定式の磁気記録装置、可搬式の磁気記憶装置などが好適である。また、出力装置としては、紙に印刷する印刷装置などが用いられるが、可搬式の電子情報の記憶媒体(磁気カード、磁気テープ、RAMカード等)をそのまま用いることもできる。
【0018】
該濁度測定装置の濁度測定部101は、回路中の排液槽9を固定し位置決めする凹部を有することが好ましい。凹部は、通常、半径5〜50mmの曲面が好適である。凹部の内表面には、光源である発光素子102と、その光軸上の発光素子102と対向する位置に透過光受光素子103が設けられ、その光軸に対して異なる角度で少なくとも二つの散乱光受光素子104、105が設けられる。散乱光受光素子の一つは例えば光軸上の発光素子102と透過光受光素子103との中点を通る直線上で透過光受光素子103側から20度、もう一つは例えば40度になるように配置する。
【0019】
散乱光受光素子104は、光軸上の発光素子102と透過光受光素子103との中点を通る直線上で透過光受光素子103側から5〜30度の範囲に配置し、別の散乱光受光素子105は、光軸上の発光素子102と透過光受光素子103との中点を通る直線上で透過光受光素子103側から30〜50度の範囲に配置する。3個目の散乱光受光素子を配置する場合は、光軸上の発光素子102と透過光受光素子103との中点を通る直線上で透過光受光素子103側から40〜90度の範囲に配置することが好ましい。また、各受光素子の配置角度は、光軸上の発光素子102と透過光受光素子103との中点を通る直線として10〜30度異なることが好ましい。
【0020】
本発明の排液槽9、および対応する濁度測定部101は、図5、図6、図7、図8に示すチューブ状または排液用バッグ受け部に設けられてもよく、これらの濁度測定部からの信号から得られる測定結果は、自動腹膜透析装置本体の操作パネル上に表示される。
【0021】
この様な構成をとることにより本発明の濁度測定装置は、透析排液中を通過する光がその中の粒子の大きさによって散乱光強度の空間分布が異なるので、散乱光を異なる角度で測定するとその散乱光の分布のようすが測定でき、このため透析排液内の粒子の種類やその量を測定することができる。従って、透析排液の尿素、脂質、タンパク質などによる着色や白濁の影響をさけ、腹膜炎の指標である白血球による濁りを測定することができるのである。
【0022】
発光素子の光源は、可視光源・紫外光源であってもよいが、LED(発光ダイオード)または半導体レーザーを用いることができる。平行光あるいは光束を絞ることで光線の広がりをおさえるほうがよい。
散乱光受光素子と透過光受光素子を含む受光素子は、発光素子の種類に対応して光を電気信号に変換する光電管、光伝導セル、フォトダイオード、フォトトランジスタ、フォトマル等を使用すればよい。測定に使用できる発光素子の波長は600〜1400nmが好ましい。波長が600nm未満あるいは1400nmを越えると、バッグや液体による光の吸収が大きくなり、またコストの面でも本装置への目的には適していない。
【0023】
図3には本発明の濁度測定の電気回路の一例のブロック図を示す。この濁度測定回路の1例では、角度の異なる位置に配置した散乱光受光素子の出力電圧を、差動増幅回路を用いて増幅することで外乱光の影響を取り除く。さらに、演算回路でこの差動出力電圧を透過光受光素子の出力電圧で割った値を保存する記録手段に記録する。この際、時刻データや除水量などの他のデータとともに記録してもよい。上記測定データが、予め設定しておいた閾値を越えた時に警告として操作パネル上に表示する。この回路は一例であり、各散乱光受光素子、透過光受光素子の出力電圧を取り込んで演算するなど他の方法も使うことができる。
【0024】
図4に発光素子102と透過光、及び二つの異なる角度の散乱光を検出する受光素子からなる検出部拡大図を示す。ここで、発光素子102は半導体レーザー、透過光受光素子103および散乱光受光素子104、105はフォトダイオードであり、光軸上(透過光受光素子103)、光軸上の発光素子と透過光受光素子との中点を通る直線上で透過光受光素子側から角度θ1(散乱光受光素子104)、角度θ2(散乱光受光素子105)に配置した。原理を以下に示す。
【0025】
散乱光受光素子105で検出される散乱光の強度ISはレーリーの理論式により、
S=I0 ・f(θ){(aNV2)/(L2λ4)} ・・・1)
ここで、aは係数、Nは粒子濃度、Vは粒子体積、Lは散乱点から検出器までの距離、λは測定波長、f(θ)は散乱角に依存した強度分布関数
0はバッグを通って散乱体で減衰する前の光量
となる。また、透析排液を入れる材料による光吸収・散乱による減衰と外乱光IPを考慮すると、散乱光受光素子104で検出される散乱光の強度IS1は、
S1=I0e-at・f(θ1){(aNV2)/(L2λ4)}+IP ・・・2)
と求められる。散乱角θ1とθ2における外乱光IPがほぼ同じであるとしてこの2点の光強度の差を取ると、

Figure 0003659726
となる。ここでβ=e-at である。
【0026】
これより、角度を固定した2点での光強度測定を行うことで、粒径の異なる、つまり体積Vの違いを検出することができる。さらに、透過光受光素子103で検出される透過光Itは、
t=I0e- α t・e-( τ + γ )L ・・・4)
ここでτは散乱、γは吸収の係数
となる。よって、式3)と4)より、
ΔI/It={(aNV2)/(L2λ4e-( τ + γ )L)}F(θ12) ・・5)
が得られる。よって、ΔI/It は粒子濃度Nに依存すると共に、粒子体積Vの判別をすることができる。
【0027】
次に本発明の自動腹膜透析装置1に使用される腹膜透析用回路について説明する。
図9に示す腹膜透析用回路の構成は、透析液が充填された複数の注液用バッグ2a、2b、2c、2d、2eと、透析液を一時貯留し、加温する容器3と、透析排液を一時的に貯留する容器4と、両容器3、4の雰囲気をそれぞれ減圧状態および加圧状態とする減圧・加圧室5、6と、透析排液を回収する複数の排液用バッグ7a、7b、7c、7dと、濁度測定部にて透析排液の濁度を測定する排液槽9と、前記各バッグおよび容器を所定の配置で接続する可撓性のチューブ10〜22および分岐コネクタ30〜33と、所定のチューブ内に形成された流路を開閉しうる流路開閉手段40〜46とを有している。
【0028】
注液用バッグ2a、2b、2c、2d、2eは、それぞれ、軟質塩化ビニルのような可撓性を有する樹脂製のシート材を袋状に成形してなるものである。このうち注液用バッグ2a、2b、2c、2dには、バッグ内に連通するバッグチューブ10がそれぞれ接続されている。各注液用バッグ2a、2b、2c、2d、2eは、チューブ接続端側を下側にして、吊り下げられている。注液用バッグ2a、2b、2c、2d内には、それぞれ、実質的に同一の組成の透析液が充填されており、注液用バッグ2e内には、他の注液用バッグとは異なる組成または濃度の透析液(最終透析液)が充填されている。
【0029】
各バッグチューブ10には、それぞれ、チューブ11の一端が接続され、チューブ11の他端には、チューブ12の一端が接続され、チューブ12の他端には、T字状の分岐コネクタ31に接続されている。
【0030】
容器3および4は、いずれも可撓性(柔軟性)を有する袋状のものであり、例えば、軟質樹脂製のシート材の縁部を融着して袋状に成形してなるものである。容器3には、チューブ13の一端が接続され、チューブ13の他端は、T字状の分岐コネクタ30に接続されている。また、容器4には、チューブ14の一端が接続され、チューブ14の他端は、T字状の分岐コネクタ33に接続されている。
【0031】
容器3、4は、それぞれ、減圧・加圧室5、6内に収容されている。減圧・加圧室5、6は、それぞれ、図示しない真空ポンプおよびバルブを備えた送排気回路より、減圧状態、大気圧状態および加圧状態とすることができる。減圧・加圧室5、6内の圧力は、それぞれ、図示しない制御手段(マイクロコンピュータ)により制御されている。
【0032】
減圧・加圧室5内および減圧・加圧室6内には、それぞれ、容器3、4の重量を検出する重量検知手段51、61が設置されている。これらの重量検知手段51、61としては、ロードセルのような重量センサーが好適に使用される。重量検知手段51、61により検出された重量は、前記制御手段へ入力され、この重量値に基づいて、送液の開始・停止等が制御される。
【0033】
また、減圧・加圧室5内には、容器3内に貯留された透析液を加温する加温手段52が設置されている。この加温手段52としては、発熱体、特に板状の発熱体(例えばパネルヒーター)が好適に使用される。図示の例では、減圧・加圧室5の床面上にパネルヒーターを設置し、その上に容器3を載置する構成となっている。
なお、上記構成に代わり、減圧・加圧室5、6を1室とし、容器3を加温手段52の上に載置し、さらにその上に容器4を載置した構成で、重量検知手段51、61を共通としたものでもよい。
【0034】
排液用バッグ7a、7b、7c、7dは、それぞれ、軟質ポリ塩化ビニルのような可撓性を有する樹脂製のシート材を袋状に成形してなるものであり、これらにはバッグ内に連通するバッグチューブ15がそれぞれ接続されている。各排液用バッグ7a、7b、7c、7dは、バッグチューブ15が接続されている側を同方向に揃えて重ねられている。各バッグチューブ15には、それぞれ、チューブ16の一端が接続され、チューブ16の他端は排液槽9に接続されている。
【0035】
排液槽9は、一端がチューブ22に接続し、他端はチューブ16に接続している。チューブ22の他端はT字状分岐コネクタ33に接続されている。排液槽9は、実質的に透明であり、濁度測定部 に適合する形状に変形する軟質ポリ塩化ビニルのような軟質樹脂あるいは濁度測定部 に適合する形状を有する硬質ポリ塩化ビニル樹脂やポリカーボネート等の硬質樹脂製の成型体を用いることができる。
【0036】
患者の腹腔100内に留置された腹膜透析用カテーテルには、図示しないジョイントを介してトランスファーチューブ17の一端が接続されており、トランスファーチューブ17の他端は、コネクタ34を介してチューブ18のいったんと接続される。チューブ18の他端は、T字状の分岐コネクタ32に接続されている。
【0037】
分岐コネクタ30、31間、分岐コネクタ31、32間、分岐コネクタ32、33間は、それぞれ、チューブ19、20、21により接続されている。
分岐コネクタは、比較的剛性の高い熱可塑性材料、例えばABS系樹脂、ポリプロピレン系樹脂、ポリカーボネート系樹脂等で形成される。
【0038】
図9に示すように、チューブ11、12、18、16、13、20、21の途中には、それぞれチューブの内腔を閉塞・開放する流路開閉手段40、41、42、43、44、45、46が設けられている。これらの各流路開閉手段40〜46は、自動腹膜透析装置の本体に、所定の配置で設置されている。
流路開閉手段40〜46は、一対の狭持片を接近・離間させるように駆動するソレノイド・ピンチバルブ等で構成される。他に、電磁バルブ、空気や油圧で作動するバルブ、モーターを駆動源とするバルブ、チューブを圧閉しうるローラ等、チューブ内流路を開閉しうるものであればよい。
【0039】
次に、自動腹膜透析装置1を用いて腹膜透析を行う際の透析液の注入および排液の回収動作の一例について、説明する。
なお、腹膜透析開始前の準備として、各チューブを、各流路開閉手段40〜46の所定の位置にセットしておく。
【0040】
[1]透析液の容器への移送
流路開閉手段40、44を開、その他の流路開閉手段を閉とし、容器3が収納されている減圧・加圧室5の内部を減圧状態にする。これにより、容器3内の圧力が低下し、各注入液バッグ2a、2b、2c、2d内の透析液が、チューブ10、11、分岐コネクタ30、チューブ13を順次経て容器3内に導入される。
【0041】
容器3への透析液の導入に際しては、例えば以下のようにして透析液の流量を制御することができる。重量検知手段51により容器3の総重量を単位時間毎に検出し、その増加率から単位時間当たりの容器への透析液流入量を求め、この流入量が予め設定された設定流入量と等しくなるように減圧・加圧室5内の圧力を調節する。
【0042】
重量検知手段51により検出された容器3の総重量が、予め設定された透析液の1回の注入量(目標注入量)が導入されたときの重量(設定重量)に到達したら、全ての流路開閉手段を閉とし、減圧・加圧室5内を大気圧状態に復帰させる。
【0043】
なお、患者の就寝中における腹膜透析では、透析液の目標総注入量は、例えば、4個の注入液バッグ2a、2b、2c、2d内の透析液総量の1/10〜1/1倍程度とされる。
【0044】
[2]透析液の加温
加温手段52を作動して、容器3内の透析液を適温に加温する。この加温手段52の作動は、前記制御手段により、容器3内の透析液が所望の温度に維持されるように制御される。この場合、透析液の設定温度範囲としては、体温程度または流路内での温度低下を考慮して体温より若干高めの温度とされ、例えば、33〜40℃程度とされる。
【0045】
[3]透析液の患者への注入
流路開閉手段42、44、45を開、その他の流路開閉手段を閉とし、減圧・加圧室5の内部を加圧状態にする。これにより、容器3内の圧力が上昇し、容器3内の加温された透析液が、チューブ13、分岐コネクタ30、チューブ19、分岐コネクタ31、チューブ20、分岐コネクタ32、チューブ18、コネクタ34、トランスファーチューブ17、腹膜カテーテルを順次経て患者の腹腔100内に注入される。
【0046】
患者の腹腔100への注入に際しては、例えば以下のようにして透析液の流量を制御することができる。重量検知手段51により容器3の総重量を単位時間毎に検出し、その減少率から単位時間当たりの容器3からの透析液流出量(透析液注入量)を求め、この流出量が予め設定された設定流出量と等しくなるように減圧・加圧室5内の圧力を調節する。
【0047】
重量検知手段51により検出された容器3の総重量が、予め設定された透析液残量(例えば、容器3内の透析液残量が0)に相当する重量に到達したら、全ての流路開閉手段を閉とし、減圧・加圧室5内を大気圧状態に復帰させる。
【0048】
[4]透析の実施
患者の腹腔100内への透析液の注入を完了し、全ての流路開閉手段を閉とした状態で、所定時間(例えば30〜600分程度)経過する。これにより腹膜透析が行われる。
【0049】
[5]透析液排液の容器への排出
透析が終了したら、流路開閉手段42、46を開、その他の流路開閉手段を閉とし、容器4が収納されている減圧・加圧室6の内部を減圧状態にする。これにより、容器4内の圧力が低下し、患者の腹腔100内の透析済の排液が、腹膜カテーテル、トランスファーチューブ17、コネクタ34、チューブ18、分岐コネクタ32、チューブ21、分岐コネクタ33、チューブ14を順次経て容器4内に導入される。
【0050】
容器4への排液の導入に際しては、例えば以下のようにして排液の流量を制御することができる。重量検知手段61により容器4の総重量を単位時間毎に検出し、その増加率から単位時間当たりの容器4への排液流入量を求め、この流入量が予め設定された設定流入量と等しくなるように減圧・加圧室6内の圧力を調節する。
【0051】
なお、減圧・加圧室6内の設定圧力(保持圧力)またはその下限値は、通常、大気圧よりヘッド差が0.7〜1.3mH2O程度に相当する圧力分低い圧力(0.07〜0.13kgf/cm2程度)とするのが好ましい。これにより、吸引過多による腹膜の内壁の引き込み等を生じることなく、円滑かつ安全に腹膜内からの排液を行うことができる。
【0052】
重量検知手段61により検出された容器4の総重量が、予め設定された1回の排液量(目標排液量)が導入されたときの重量(設定重量)に到達したら、全ての流路開閉手段を閉とし、減圧・加圧室6内を大気圧状態に復帰させる。
【0053】
患者の就寝中における腹膜透析では、透析排液の目標総排液量は、前記目標注入量に除水量を加えた量とされ、例えば、4個の排液用バッグ7a、7b、7c、7dの合計容量の1/20〜1/1倍程度とされる。
【0054】
[6]排液の排液用バッグへの回収
流路開閉手段43を開、その他の流路開閉手段を閉とし、容器4が収納されている減圧・加圧室6の内部を加圧状態にする。これにより、容器4内の圧力が上昇し、容器4内の排液が、チューブ14、分岐コネクタ33、チューブ22、排液槽9、チューブ16、15を順次経て、排液用バッグ7a、7b、7c、7d内に導入され、回収される。
【0055】
排液用バッグ7a、7b、7c、7dへの排液の回収に際しては、例えば以下のようにして排液の流量を制御することができる。重量検知手段61により容器4の総重量を単位時間毎に検出し、その減少率から単位時間当たりの容器4からの排液流出量を求め、この流出量が予め設定された設定流出量と等しくなるように減圧・加圧室6内の圧力を調節する。
【0056】
重量検知手段61により検出された容器4の総重量が、予め設定された排液残量(例えば、容器4内の排液残量が0)に相当する重量に到達したら、全ての流路開閉手段を閉とし、減圧・加圧室6内を大気圧状態に復帰させる。
【0057】
なお、本工程[6]は、上記[1]〜[5]を複数回行った後、実施してもよい。
【0058】
[7]排液の濁度測定
上記[6]の動作中において、所定の時間間隔で流路開閉手段43を閉とし、排液槽9に排液を貯留する。前記濁度測定装置を作動させ、排液槽9に貯留された排液の濁度を測定し、得られた結果を時間のデータと共にデータ記憶手段に保存する。測定が終了したら、流路開閉手段43を開とし、排液の排液用バッグへの回収を継続する。
【0059】
以上のような工程[1]〜[6]を繰り返し、患者の状態により決定される積算排液量が所定値に達するまで行う。
【0060】
[8]最終透析液の容器への移送
注液用バッグ2e内に貯留された最終透析液は、起床後、患者の活動する期間、就寝時の透析液と比べ長時間、腹腔内に貯留されるので、他の注液用バッグの透析液と異なる組成、濃度のものが使用される。腹腔内への貯留、排液の動作は、上記[1]〜[7]に準じて行われる。
【0061】
[排液散乱強度の角度依存性]
(実験1)
図4に示す装置を用いて、白血球濃度970、485、242個/μlで、白血球が混濁した腹膜透析後の実際の排液(実排液)の散乱光強度の角度依存性を測定した。排液は、厚さ0.3mmのポリ塩化ビニル樹脂製の透明バッグ中に入れ測定した。
【0062】
凹部は半径30mmの半円柱状とし、発光素子は光路が半球の直径を通るように配置し、受光素子は、光軸上の発光素子と透過光受光素子との中点を通る直線上で透過光受光素子側から20、30、40、50、70、90°の各位置に配置した。発光素子から波長640nmのレーザー光を出力し、レンズを用いて球の中心に焦点を結ぶようにした。受光素子はフォトトランジスタ(各測定角度の差、Δθ=±10°)を用いた。それぞれの受光位置の光軸からの角度を横軸にとり、透明バッグを用いないで受光した出力電圧と実排液の入った透明バッグを用いて受光した出力電圧との差を縦軸にとり結果を図10に示した。図10の結果から、角度20°では出力電圧が白血球濃度に顕著に依存して変化したが、角度が90°に近づくにつれて出力電圧の濃度依存性が減少した。
【0063】
(実験2)
図4に示す装置を用いて、正常排液、トリグリセライド(TG)混濁、トリグリセライド強混濁の腹膜透析後の実際の排液の散乱光強度の角度依存性を実験1と同様に測定した。
【0064】
結果を図11に示した。図11の結果から正常排液の散乱光強度は、角度20〜40°で角度にわずかに依存するが40°以上では角度に依存しない。一方TGが混濁してくると全角度に渡って散乱光強度の角度依存性がみられ、TGの混濁が高いほど出力電圧が高いことがわかり、また、白血球とTGの散乱光強度の角度依存性が異なっていることがわかる。
【0065】
【発明の効果】
本発明は、腹膜透析液を患者の腹腔内へ注入する注入手段と、腹腔内の透析液を排出する排出手段と、腹膜透析液を加温する加温手段と、動作制御スイッチや情報表示部が配置された操作パネルとを有する自動腹膜透析装置において、腹腔内から排出される透析排液の経路に濁度測定部を有する透析排液の濁度を測定する濁度測定装置を有し、濁度測定装置の測定結果を表示する濁度表示部を操作パネル上に有することを特徴とする濁度測定機能付き自動腹膜透析装置であって、濁度測定部は、発光素子と少なくとも2個の散乱光受光素子と該発光素子の光軸上に設けられた透過光受光素子とよりなり、散乱光受光素子の光軸が、発光素子の光軸上における発光素子と透過光受光素子との中点を通り、一つの散乱光受光素子の光軸が、発光素子の光軸に対し透過光受光素子側から5〜30度の角度で散乱光を受光するように配置され、別の該散乱光受光素子の光軸が、発光素子の光軸に対し該透過光受光素子側から30〜50度の角度で散乱光を受光するように配置され、濁度測定部の透析排液の経路の下流側が略球面状または経路に直交する略半円筒状の空間を有することを特徴とするものであるので、検出部の配置が容易になり、白血球による濁りと尿素や脂質などの他の原因による排液の着色や濁りとの区別が容易になり、患者が濁度測定の結果を確実に認識することが容易になる。
【0066】
また、本発明は、前記濁度測定装置の測定結果を記録として保存するための記録手段及び出力手段を有するので、記録手段及び出力手段により睡眠中に自動的に行われた透析排液の状態を起床後に確認することができると同時に、医師と面談する際の資料とすることができる。
【図面の簡単な説明】
【図1】 本発明の自動腹膜透析装置の一実施例の概略図である。
【図2】 本発明に用いられる濁度測定部の一実施例の断面図である。
【図3】 本発明に用いられる濁度測定部を説明する要部拡大断面図である。
【図4】 本発明の自動腹膜透析装置の濁度測定装置の検出電気回路のブロック図である。
【図5】 本発明の自動腹膜透析装置の別の実施例の概略図である。
【図6】 図5に示した実施例に用いられる濁度測定部の断面図である。
【図7】 本発明の自動腹膜透析装置の別の実施例の概略図である。
【図8】 図8に示した実施例に用いられる濁度測定部の模式図である。
【図9】 本発明の腹膜透析用回路の一実施例の構成図である。
【図10】 実排液散乱光強度の角度依存性を示すグラフである。
【図11】 TG(トリグリセライド)混濁液の散乱光強度の角度依存性を示すグラフである。
【符号の説明】
1 自動腹膜透析装置
2、2a〜2e 注液用バッグ
3、4 容器
5 減圧・加圧室
51 重量検知手段
52 加温手段
6 減圧・加圧室
61 重量検知手段
7、7a〜7d 排液用バッグ
10 バッグチューブ
11〜14 チューブ
15 バッグチューブ
16 チューブ
17 トランスファーチューブ
18〜22 チューブ
23 チューブ分岐接続部
30〜33 分岐コネクタ
34 コネクタ
40〜46 流路開閉手段
8 操作パネル
81 開始ボタン
82 停止ボタン
83 除水量表示部
84 濁度判定表示部
85 記録出力部
9 排液槽
100 腹腔
101 濁度測定部
102 発光素子
103 透過光受光素子
104、105 散乱光受光素子[0001]
[Industrial application fields]
The present invention relates to peritoneal dialysis, and more particularly, to an automatic peritoneal dialysis apparatus that automatically injects and discharges peritoneal dialysis fluid into and from the abdominal cavity, and a circuit for peritoneal dialysis used in the automatic peritoneal dialysis apparatus.
[0002]
[Prior art]
Peritoneal dialysis is performed by injecting peritoneal dialysis fluid that has been sterilized into the abdominal cavity and placed in a plastic bag for the treatment of patients with renal insufficiency. It stays in the abdominal cavity for a relatively long time of 4 to 8 hours, dialyzes blood and lymph circulating in the peritoneum using the properties of the peritoneum as a semipermeable membrane, and drains it into a plastic bag when the prescribed time has elapsed. In this method, the dialysis solution bag is replaced with a new one and the new solution is injected again.
[0003]
In recent years, as a method of reducing the restraint time during the day when there is a lot of activity in this treatment, peritoneal dialysate is automatically injected into the abdominal cavity while the patient is sleeping, and after a predetermined time, the dialysate is injected from the abdominal cavity. Automatic peritoneal dialysis therapy that drains blood is being tried. This method has fewer restrictions on the activities of the patient, and for the skilled patient, there is less risk of bacterial infection due to the replacement of the plastic bag at the time of dialysate exchange, and treatment that can be performed without the presence of a doctor or nurse at home Is the method.
[0004]
However, once peritonitis develops due to bacterial infection, the peritoneum is invaded, resulting in a severe condition with reduced water removal ability, loss of a large amount of protein and intestinal tract function. Since the dialysis drainage of a patient who has developed peritonitis contains a large amount of white blood cells and becomes cloudy, the onset of peritonitis can be known by observing the dialysis drainage.
[0005]
In the peritoneal dialysis drainage, white turbidity occurs due to contamination of lipids and leukocytes. In general, if leukocytes with a concentration of 100 cells / μl or more are present in the dialysis drainage, it is suspected that peritonitis has developed. Therefore, it is necessary to reliably determine the turbid state of the dialysis drainage. Currently, after completion of peritoneal dialysis, the patient visually confirms the presence or absence of white turbidity in the dialysis drainage, and in the unlikely event that white turbidity occurs, he goes to the hospital and undergoes a close examination. However, among patients undergoing peritoneal dialysis, it is difficult to determine the cloudiness because there are elderly people or people whose vision has declined due to diabetes, and the determination of pass / fail is ambiguous.
[0006]
In addition, white turbidity is not necessarily caused by white blood cells, but is also caused by the incorporation of lipids such as triglyceride, so it is necessary to determine the cause of white turbidity. This determination is difficult for the patient himself. Japanese Examined Patent Publication No. 4-25819 has been proposed as a peritonitis monitoring apparatus during peritoneal dialysis. This is a turbidity detector attached to a drainage tube from the peritoneum. The general principle of turbidity detection of liquids is described in the sensor handbook (double wind building) for transmission type and scattering type using light, and Japanese Patent Publication No. 4-25819 uses the transmission type principle. It is a thing.
[0007]
In this permeation type, the dialysis effluent is colored with urea, etc., and the amount of transmitted light is changed, and the influence of white turbidity due to solutes, precipitates, and metabolites such as lipids and proteins cannot be avoided. As a method for solving this problem, the present inventor, in Japanese Patent Application No. Hei 6-233423, applied a light beam to the dialysis effluent and measured the degree of scattering of the light beam according to the particle size of the dialysis effluent. A method and apparatus for measuring the turbidity of peritoneal dialysis drainage, which qualitatively and / or quantifies the turbidity of dialysis drainage from the relationship between the measured values of scattered light at the place, was shown.
[0008]
[Problems to be solved by the invention]
As described above, automatic peritoneal dialysis is a treatment method that can be performed by the patient himself at the patient's home, but detection of peritonitis is very important. The object of the present invention is to make it easy for patients themselves to accurately recognize the occurrence of peritonitis, and to distinguish white blood turbidity, which is an index of peritonitis, from coloring or turbidity due to other proteins or urea. It is an object to provide an automatic peritoneal dialysis device with a turbidity measuring function and a circuit for peritoneal dialysis that can be recognized.
[0009]
The present invention that has solved the above problems is achieved by the following automatic peritoneal dialysis apparatus with a turbidity measuring function.
[0010]
The present invention relates to an injecting means for injecting peritoneal dialysis fluid into the abdominal cavity of a patient, a discharging means for discharging the intraperitoneal dialysis fluid, a heating means for heating the peritoneal dialysis fluid, an operation control switch, and an information display section. In an automatic peritoneal dialysis device having an operation panel arranged with a turbidity measuring device for measuring the turbidity of dialysis drainage having a turbidity measuring unit in the path of dialysis drainage discharged from the abdominal cavity, An automatic peritoneal dialysis device with a turbidity measuring function, characterized in that it has a turbidity display part on the operation panel for displaying the measurement result of the turbidity measuring device,
The turbidity measuring unit includes a light emitting element, at least two scattered light receiving elements, and a transmitted light receiving element provided on the optical axis of the light emitting element,
The optical axis of the scattered light receiving element passes through the midpoint between the light emitting element and the transmitted light receiving element on the optical axis of the light emitting element, and the optical axis of one scattered light receiving element is Arranged so as to receive scattered light at an angle of 5 to 30 degrees from the transmitted light receiving element side with respect to the optical axis, and the optical axis of another scattered light receiving element is transmitted through the optical axis of the light emitting element It is arranged to receive scattered light at an angle of 30 to 50 degrees from the light receiving element side,
The downstream side of the dialysis drainage path of the turbidity measuring unit has a substantially spherical shape or a substantially semi-cylindrical space orthogonal to the path.
[0011]
The present invention includes a storage means and an output means for storing the measurement result of the turbidity measuring device as a record.
[0014]
Yet another aspect of the present invention is a peritoneal dialysis fluid circuit used in an automatic peritoneal dialysis device having an injection circuit for injecting peritoneal dialysis fluid into the abdominal cavity of a patient and a drain circuit for discharging the intraperitoneal dialysis fluid, A drainage tank is provided in the middle of the discharge circuit, and the downstream side of the drainage tank has a substantially spherical shape or a substantially semi-cylindrical shape orthogonal to the discharge circuit.
[0015]
Embodiment
Hereinafter, an automatic peritoneal dialysis apparatus with a turbidity measuring apparatus and a circuit for peritoneal dialysis according to the present invention will be described based on preferred embodiments.
FIG. 1 is a conceptual diagram of the automatic peritoneal dialysis apparatus of the present invention. The automatic peritoneal dialysis device 1 includes an infusion bag 2 containing peritoneal dialysis fluid, a drainage bag 7 for containing peritoneal dialysis drainage, and a peritoneal dialysis catheter installed in the abdominal cavity of a patient (not shown). A peritoneal dialysis circuit with a circuit to communicate with is installed. Inside the device, liquid drive means such as pressure control, circuit opening and closing means such as a clamp that switches the flow of the circuit, and the peritoneal dialysate before injection are heated Incorporates warming means that measures the amount of liquid to be poured and drained by weight, etc., and a means for automatically injecting and draining peritoneal dialysis fluid into the patient's abdominal cavity is provided. Yes.
[0016]
Further, the automatic peritoneal dialysis apparatus 1 is provided with a turbidity measuring device having a turbidity measuring unit 101 for measuring the turbidity of dialysis drainage using a drainage circuit for peritoneal dialysate. Has a turbidity display section 84 for displaying the result of turbidity measurement. In the turbidity display section 84, the measurement result is displayed by a method in which the patient recognizes a qualitative display such as “no turbidity, turbidity attention, turbidity warning” by characters, colors, blinking, etc. However, when the automatic peritoneal dialysis apparatus 1 is operated, the turbidity state of the dialysis drainage can be recognized at a glance.
[0017]
You may have a memory | storage means and an output means for preserve | saving the measurement result of this turbidity measuring apparatus as a record. The state of dialysis drainage performed automatically during sleep by the recording means and the output means can be confirmed after waking up, and at the same time, it can be used as a material for an interview with a doctor. Moreover, you may preserve | save, record, and output simultaneously with other data, such as a water removal amount. The storage means is preferably a semiconductor storage device (RAM) that stores normal electronic information, a fixed magnetic recording device, a portable magnetic storage device, or the like. As the output device, a printing device for printing on paper or the like is used, but a portable electronic information storage medium (magnetic card, magnetic tape, RAM card, etc.) can be used as it is.
[0018]
The turbidity measuring unit 101 of the turbidity measuring apparatus preferably has a recess for fixing and positioning the drainage tank 9 in the circuit. In general, the concave portion is preferably a curved surface having a radius of 5 to 50 mm. The inner surface of the recess is provided with a light emitting element 102 as a light source and a transmitted light receiving element 103 at a position facing the light emitting element 102 on the optical axis, and at least two scattering at different angles with respect to the optical axis. Light receiving elements 104 and 105 are provided. One of the scattered light receiving elements is, for example, 20 degrees from the transmitted light receiving element 103 side on the straight line passing through the midpoint between the light emitting element 102 and the transmitted light receiving element 103 on the optical axis, and the other is, for example, 40 degrees. Arrange as follows.
[0019]
The scattered light receiving element 104 is arranged within a range of 5 to 30 degrees from the transmitted light receiving element 103 side on a straight line passing through the midpoint between the light emitting element 102 and the transmitted light receiving element 103 on the optical axis. The light receiving element 105 is arranged in a range of 30 to 50 degrees from the transmitted light receiving element 103 side on a straight line passing through the midpoint between the light emitting element 102 and the transmitted light receiving element 103 on the optical axis. When the third scattered light receiving element is arranged, it is within a range of 40 to 90 degrees from the transmitted light receiving element 103 side on a straight line passing through the midpoint between the light emitting element 102 and the transmitted light receiving element 103 on the optical axis. It is preferable to arrange. In addition, the arrangement angle of each light receiving element is preferably different by 10 to 30 degrees as a straight line passing through the midpoint between the light emitting element 102 and the transmitted light receiving element 103 on the optical axis.
[0020]
The drainage tank 9 and the corresponding turbidity measurement unit 101 of the present invention may be provided in a tube-like or drainage bag receiving unit shown in FIGS. 5, 6, 7, and 8, and these turbidity units may be provided. The measurement result obtained from the signal from the degree measuring unit is displayed on the operation panel of the main body of the automatic peritoneal dialysis machine.
[0021]
By adopting such a configuration, the turbidity measuring apparatus of the present invention has different spatial distributions of scattered light intensity depending on the size of the particles passing through the dialysis drainage. When measured, the distribution of the scattered light can be measured, so that the type and amount of particles in the dialysis drainage can be measured. Therefore, it is possible to measure the turbidity caused by white blood cells, which is an index of peritonitis, by avoiding the influence of coloring or white turbidity due to urea, lipid, protein, etc. in the dialysis drainage.
[0022]
The light source of the light emitting element may be a visible light source or an ultraviolet light source, but an LED (light emitting diode) or a semiconductor laser can be used. It is better to suppress the spread of light rays by narrowing parallel light or light flux.
The light receiving element including the scattered light receiving element and the transmitted light receiving element may use a phototube, a photoconductive cell, a photodiode, a phototransistor, a photomultiplier, or the like that converts light into an electric signal corresponding to the type of the light emitting element. . The wavelength of the light-emitting element that can be used for measurement is preferably 600 to 1400 nm. If the wavelength is less than 600 nm or exceeds 1400 nm, light absorption by the bag or liquid increases, and the cost is not suitable for the purpose of this apparatus.
[0023]
FIG. 3 shows a block diagram of an example of an electric circuit for turbidity measurement according to the present invention. In one example of this turbidity measurement circuit, the influence of disturbance light is removed by amplifying the output voltage of the scattered light receiving elements arranged at different positions using a differential amplifier circuit. Further, an arithmetic circuit records the value obtained by dividing the differential output voltage by the output voltage of the transmitted light receiving element in a recording means for storing. At this time, it may be recorded together with other data such as time data and water removal amount. When the measurement data exceeds a preset threshold, a warning is displayed on the operation panel. This circuit is an example, and other methods such as taking in and calculating the output voltage of each scattered light receiving element and transmitted light receiving element can also be used.
[0024]
FIG. 4 is an enlarged view of a detection unit including the light emitting element 102, the transmitted light, and a light receiving element that detects scattered light at two different angles. Here, the light emitting element 102 is a semiconductor laser, the transmitted light receiving element 103, and the scattered light receiving elements 104 and 105 are photodiodes. The angle θ from the transmitted light receiving element side on a straight line passing through the midpoint of the element1(Scattered light receiving element 104), angle θ2(Scattered light receiving element 105). The principle is shown below.
[0025]
Scattered light intensity I detected by the scattered light receiving element 105SIs based on Rayleigh's theoretical formula,
IS= I0 ・ F (θ) {(aNV2) / (L2λFour)} ... 1)
Here, a is a coefficient, N is the particle concentration, V is the particle volume, L is the distance from the scattering point to the detector, λ is the measurement wavelength, and f (θ) is the intensity distribution function depending on the scattering angle.
I0Is the amount of light before it is attenuated by the scatterer through the bag
It becomes. In addition, attenuation due to light absorption / scattering by the material containing the dialysis drainage and disturbance light IPIs considered, the intensity I of the scattered light detected by the scattered light receiving element 104 isS1Is
IS1= I0e-at・ F (θ1) {(ANV2) / (L2λFour)} + IP     ... 2)
Is required. Scattering angle θ1And θ2Disturbance light IPIf the difference in light intensity between these two points is taken as
Figure 0003659726
It becomes. Where β = e-at  It is.
[0026]
From this, it is possible to detect a difference in particle diameter, that is, a difference in volume V, by measuring light intensity at two points with fixed angles. Further, the transmitted light I detected by the transmitted light receiving element 103.tIs
It= I0e- α t・ E-( τ + γ ) L                               ... 4)
Where τ is scattering and γ is absorption coefficient
It becomes. Therefore, from equations 3) and 4)
ΔI / It= {(ANV2) / (L2λFoure-( τ + γ ) L)} F (θ1, θ2・ ・ 5)
Is obtained. Therefore, ΔI / It Depends on the particle concentration N, and the particle volume V can be determined.
[0027]
Next, a circuit for peritoneal dialysis used in the automatic peritoneal dialysis apparatus 1 of the present invention will be described.
The configuration of the peritoneal dialysis circuit shown in FIG. 9 includes a plurality of injection bags 2a, 2b, 2c, 2d, and 2e filled with dialysate, a container 3 for temporarily storing and warming dialysate, and dialysis Container 4 for temporarily storing drainage, decompression / pressurization chambers 5 and 6 for setting the atmospheres of both containers 3 and 4 to a decompressed state and a pressurized state, respectively, and a plurality of drainage for collecting dialysis waste Bags 7a, 7b, 7c, and 7d, a drainage tank 9 that measures the turbidity of dialysis drainage by a turbidity measuring unit, and a flexible tube 10 that connects the bags and containers in a predetermined arrangement. 22 and branch connectors 30 to 33, and channel opening / closing means 40 to 46 that can open and close channels formed in a predetermined tube.
[0028]
Each of the injection bags 2a, 2b, 2c, 2d, and 2e is formed by forming a flexible resin sheet material such as soft vinyl chloride into a bag shape. Of these, the bag tubes 10 communicating with the inside of the bag are connected to the injection bags 2a, 2b, 2c and 2d, respectively. Each of the injection bags 2a, 2b, 2c, 2d, and 2e is suspended with the tube connection end side facing down. The injection bags 2a, 2b, 2c, and 2d are filled with dialysate having substantially the same composition, and the injection bag 2e is different from other injection bags. Filled with dialysate of composition or concentration (final dialysate).
[0029]
One end of a tube 11 is connected to each bag tube 10, one end of a tube 12 is connected to the other end of the tube 11, and the other end of the tube 12 is connected to a T-shaped branch connector 31. Has been.
[0030]
Each of the containers 3 and 4 is a bag having flexibility (softness), and is formed, for example, by fusing the edge of a sheet material made of a soft resin into a bag. . One end of a tube 13 is connected to the container 3, and the other end of the tube 13 is connected to a T-shaped branch connector 30. One end of the tube 14 is connected to the container 4, and the other end of the tube 14 is connected to a T-shaped branch connector 33.
[0031]
The containers 3 and 4 are accommodated in the decompression and pressurization chambers 5 and 6, respectively. The decompression / pressurization chambers 5 and 6 can be brought into a decompressed state, an atmospheric pressure state, and a pressurized state, respectively, by a supply / exhaust circuit having a vacuum pump and a valve (not shown). The pressures in the decompression / pressurization chambers 5 and 6 are respectively controlled by control means (microcomputer) (not shown).
[0032]
In the decompression / pressurization chamber 5 and the decompression / pressurization chamber 6, weight detection means 51 and 61 for detecting the weights of the containers 3 and 4 are installed, respectively. As these weight detection means 51 and 61, a weight sensor such as a load cell is preferably used. The weights detected by the weight detection means 51 and 61 are input to the control means, and the start / stop of liquid feeding is controlled based on the weight value.
[0033]
A heating means 52 for heating the dialysate stored in the container 3 is installed in the decompression / pressurization chamber 5. As the heating means 52, a heating element, particularly a plate-like heating element (for example, a panel heater) is preferably used. In the illustrated example, a panel heater is installed on the floor surface of the decompression / pressurization chamber 5 and the container 3 is placed thereon.
Instead of the above configuration, the decompression / pressurization chambers 5 and 6 are one chamber, the container 3 is placed on the heating means 52, and the container 4 is placed thereon, and the weight detection means. 51 and 61 may be shared.
[0034]
Each of the drainage bags 7a, 7b, 7c, and 7d is formed by forming a flexible resin sheet material such as soft polyvinyl chloride into a bag shape. Communicating bag tubes 15 are connected to each other. Each drainage bag 7a, 7b, 7c, 7d is overlapped with the side to which the bag tube 15 is connected aligned in the same direction. One end of a tube 16 is connected to each bag tube 15, and the other end of the tube 16 is connected to the drainage tank 9.
[0035]
The drainage tank 9 has one end connected to the tube 22 and the other end connected to the tube 16. The other end of the tube 22 is connected to a T-shaped branch connector 33. The drainage tank 9 is substantially transparent and is a soft resin such as soft polyvinyl chloride deformed into a shape suitable for the turbidity measurement part or a hard polyvinyl chloride resin having a shape suitable for the turbidity measurement part. A molded body made of hard resin such as polycarbonate can be used.
[0036]
One end of the transfer tube 17 is connected to the catheter for peritoneal dialysis placed in the abdominal cavity 100 of the patient via a joint (not shown). The other end of the transfer tube 17 is temporarily connected to the tube 18 via the connector 34. Connected. The other end of the tube 18 is connected to a T-shaped branch connector 32.
[0037]
The branch connectors 30 and 31, the branch connectors 31 and 32, and the branch connectors 32 and 33 are connected by tubes 19, 20, and 21, respectively.
The branch connector is formed of a thermoplastic material having relatively high rigidity, for example, an ABS resin, a polypropylene resin, a polycarbonate resin, or the like.
[0038]
As shown in FIG. 9, in the middle of the tubes 11, 12, 18, 16, 13, 20, 21, flow path opening / closing means 40, 41, 42, 43, 44, which close and open the lumen of the tube, respectively. 45 and 46 are provided. Each of these channel opening / closing means 40 to 46 is installed in a predetermined arrangement in the main body of the automatic peritoneal dialysis apparatus.
The channel opening / closing means 40 to 46 are configured by a solenoid pinch valve or the like that drives the pair of holding pieces to approach and separate. In addition, an electromagnetic valve, a valve that operates by air or hydraulic pressure, a valve that uses a motor as a drive source, a roller that can close and close the tube, or the like may be used.
[0039]
Next, an example of the operation of injecting dialysate and collecting the drainage when performing peritoneal dialysis using the automatic peritoneal dialysis apparatus 1 will be described.
In addition, as preparation before peritoneal dialysis start, each tube is set in the predetermined position of each flow-path opening-and-closing means 40-46.
[0040]
[1] Transfer of dialysate to container
The flow path opening / closing means 40 and 44 are opened, the other flow path opening / closing means are closed, and the inside of the decompression / pressurization chamber 5 in which the container 3 is housed is brought into a decompressed state. As a result, the pressure in the container 3 decreases, and the dialysate in each of the infusate bags 2a, 2b, 2c, and 2d is introduced into the container 3 through the tubes 10, 11, the branch connector 30, and the tube 13 in this order. .
[0041]
When introducing the dialysate into the container 3, for example, the flow rate of the dialysate can be controlled as follows. The total weight of the container 3 is detected every unit time by the weight detection means 51, the dialysate inflow rate into the container per unit time is obtained from the increase rate, and this inflow amount becomes equal to a preset set inflow amount. Thus, the pressure in the decompression / pressurization chamber 5 is adjusted.
[0042]
When the total weight of the container 3 detected by the weight detection means 51 reaches the weight (set weight) when a preset injection volume (target injection volume) of dialysate is introduced, The path opening / closing means is closed, and the inside of the decompression / pressurization chamber 5 is returned to the atmospheric pressure state.
[0043]
In peritoneal dialysis while the patient is sleeping, the target total infusion volume of the dialysate is, for example, about 1/10 to 1/1 times the total dialysate volume in four infusion fluid bags 2a, 2b, 2c, and 2d. It is said.
[0044]
[2] Dialysate heating
The heating means 52 is operated to warm the dialysate in the container 3 to an appropriate temperature. The operation of the heating means 52 is controlled by the control means so that the dialysate in the container 3 is maintained at a desired temperature. In this case, the set temperature range of the dialysate is set to a temperature slightly higher than the body temperature in consideration of the body temperature or the temperature drop in the flow path, and is set to, for example, about 33 to 40 ° C.
[0045]
[3] Injection of dialysate into patients
The flow path opening / closing means 42, 44, 45 are opened, the other flow path opening / closing means are closed, and the inside of the decompression / pressurization chamber 5 is brought into a pressurized state. Thereby, the pressure in the container 3 rises, and the dialysate heated in the container 3 becomes the tube 13, branch connector 30, tube 19, branch connector 31, tube 20, branch connector 32, tube 18, connector 34. Injected into the abdominal cavity 100 of the patient through the transfer tube 17 and the peritoneal catheter.
[0046]
When injecting into the abdominal cavity 100 of the patient, for example, the flow rate of the dialysate can be controlled as follows. The total weight of the container 3 is detected every unit time by the weight detection means 51, and the dialysate outflow amount (dialysate injection amount) from the container 3 per unit time is obtained from the decrease rate, and this outflow amount is preset. The pressure in the decompression / pressurization chamber 5 is adjusted to be equal to the set outflow amount.
[0047]
When the total weight of the container 3 detected by the weight detection means 51 reaches a weight corresponding to a preset dialysate remaining amount (for example, the dialysate remaining amount in the container 3 is 0), all the channels are opened and closed. The means is closed, and the inside of the decompression / pressurization chamber 5 is returned to the atmospheric pressure state.
[0048]
[4] Implementation of dialysis
A predetermined time (for example, about 30 to 600 minutes) elapses with the injection of the dialysate into the abdominal cavity 100 of the patient being completed and all the channel opening / closing means closed. Thereby, peritoneal dialysis is performed.
[0049]
[5] Draining dialysate drainage into container
When dialysis is completed, the flow path opening / closing means 42 and 46 are opened, the other flow path opening / closing means are closed, and the inside of the decompression / pressurization chamber 6 in which the container 4 is housed is decompressed. As a result, the pressure in the container 4 is reduced, and the dialyzed effluent in the patient's abdominal cavity 100 becomes the peritoneal catheter, transfer tube 17, connector 34, tube 18, branch connector 32, tube 21, branch connector 33, tube. 14 is sequentially introduced into the container 4.
[0050]
When introducing the drainage liquid into the container 4, the flow rate of the drainage liquid can be controlled as follows, for example. The total weight of the container 4 is detected every unit time by the weight detecting means 61, the amount of drainage flowing into the container 4 per unit time is obtained from the increase rate, and this inflow amount is equal to a preset set inflow amount. The pressure in the decompression / pressurization chamber 6 is adjusted so that
[0051]
The set pressure (holding pressure) in the decompression / pressurization chamber 6 or the lower limit value thereof is usually a pressure lower than the atmospheric pressure by a pressure corresponding to about 0.7 to 1.3 mH 2 O (0.07 to It is preferably about 0.13 kgf / cm 2. Thereby, the drainage from the peritoneum can be performed smoothly and safely without causing the inner wall of the peritoneum to be pulled in due to excessive suction.
[0052]
When the total weight of the container 4 detected by the weight detector 61 reaches the weight (set weight) when a preset drainage amount (target drainage amount) is introduced once, all the flow paths The opening / closing means is closed, and the inside of the decompression / pressurization chamber 6 is returned to the atmospheric pressure state.
[0053]
In peritoneal dialysis while the patient is sleeping, the target total drainage volume of dialysis drainage is the amount obtained by adding the drainage amount to the target injection volume. For example, four drainage bags 7a, 7b, 7c, 7d The total capacity is about 1/20 to 1/1 times the total capacity.
[0054]
[6] Recovery of drainage into drainage bag
The flow path opening / closing means 43 is opened, and the other flow path opening / closing means are closed, and the inside of the decompression / pressurization chamber 6 in which the container 4 is housed is brought into a pressurized state. Thereby, the pressure in the container 4 rises, and the drainage liquid in the container 4 passes through the tube 14, the branch connector 33, the tube 22, the drainage tank 9, and the tubes 16 and 15 in this order, and the drainage bags 7a and 7b. , 7c, 7d and collected.
[0055]
When collecting the drainage liquid into the drainage bags 7a, 7b, 7c, 7d, the flow rate of the drainage can be controlled as follows, for example. The total weight of the container 4 is detected every unit time by the weight detection means 61, the drainage outflow amount from the container 4 per unit time is obtained from the decrease rate, and this outflow amount is equal to a preset set outflow amount. The pressure in the decompression / pressurization chamber 6 is adjusted so that
[0056]
When the total weight of the container 4 detected by the weight detector 61 reaches a weight corresponding to a preset drainage remaining amount (for example, the drainage remaining amount in the container 4 is 0), all the channels are opened and closed. The means is closed and the inside of the decompression / pressurization chamber 6 is returned to the atmospheric pressure state.
[0057]
In addition, you may implement this process [6], after performing said [1]-[5] in multiple times.
[0058]
[7] Turbidity measurement of drainage
During the operation [6], the flow path opening / closing means 43 is closed at a predetermined time interval, and the drainage is stored in the drainage tank 9. The turbidity measuring device is operated to measure the turbidity of the drainage stored in the drainage tank 9, and the obtained result is stored in the data storage means together with the time data. When the measurement is completed, the flow path opening / closing means 43 is opened and the collection of the drainage into the drainage bag is continued.
[0059]
The above steps [1] to [6] are repeated until the accumulated drainage amount determined by the patient's condition reaches a predetermined value.
[0060]
[8] Transfer of final dialysate to container
The final dialysate stored in the injection bag 2e is stored in the abdominal cavity for a longer period of time than the dialysis solution at bedtime after the patient wakes up. A composition or concentration different from that of the liquid is used. The operations of storing in the abdominal cavity and draining are performed according to the above [1] to [7].
[0061]
[Angle dependence of drainage scattering intensity]
(Experiment 1)
Using the apparatus shown in FIG. 4, the angular dependence of the scattered light intensity of the actual drainage (actual drainage) after peritoneal dialysis in which leukocytes became cloudy at white blood cell concentrations of 970, 485, and 242 cells / μl was measured. The drainage was measured in a transparent bag made of polyvinyl chloride resin having a thickness of 0.3 mm.
[0062]
The concave portion has a semi-cylindrical shape with a radius of 30 mm, the light emitting element is arranged so that the optical path passes through the diameter of the hemisphere, and the light receiving element transmits on a straight line passing through the midpoint between the light emitting element on the optical axis and the transmitted light receiving element. It arrange | positioned in each position of 20, 30, 40, 50, 70, 90 degrees from the light receiving element side. Laser light having a wavelength of 640 nm was output from the light emitting element, and a lens was used to focus on the center of the sphere. A phototransistor (difference between each measurement angle, Δθ = ± 10 °) was used as the light receiving element. The horizontal axis represents the angle from the optical axis of each light receiving position, and the vertical axis represents the difference between the output voltage received without using a transparent bag and the output voltage received using a transparent bag containing actual drainage. This is shown in FIG. From the results of FIG. 10, the output voltage changed significantly depending on the leukocyte concentration at an angle of 20 °, but the concentration dependency of the output voltage decreased as the angle approached 90 °.
[0063]
(Experiment 2)
Using the apparatus shown in FIG. 4, the angular dependence of the scattered light intensity of the actual drainage after peritoneal dialysis of normal drainage, triglyceride (TG) turbidity, and triglyceride turbidity was measured in the same manner as in Experiment 1.
[0064]
The results are shown in FIG. From the result of FIG. 11, the scattered light intensity of normal drainage slightly depends on the angle at an angle of 20 to 40 °, but does not depend on the angle at 40 ° or more. On the other hand, when TG becomes turbid, the angle dependence of scattered light intensity is observed over all angles. It can be seen that the higher the TG turbidity, the higher the output voltage, and the angle dependence of the scattered light intensity of leukocytes and TG. It can be seen that the gender is different.
[0065]
【The invention's effect】
  The present invention relates to an injecting means for injecting peritoneal dialysis fluid into the abdominal cavity of a patient, a discharging means for discharging the intraperitoneal dialysis fluid, a heating means for heating the peritoneal dialysis fluid, an operation control switch, and an information display section. In an automatic peritoneal dialysis device having an operation panel arranged with a turbidity measuring device for measuring the turbidity of dialysis drainage having a turbidity measuring unit in the path of dialysis drainage discharged from the abdominal cavity, An automatic peritoneal dialysis device with a turbidity measuring function, characterized in that it has a turbidity display part on the operation panel for displaying the measurement result of the turbidity measuring device,The turbidity measuring unit includes a light emitting element, at least two scattered light receiving elements, and a transmitted light receiving element provided on the optical axis of the light emitting element, and the optical axis of the scattered light receiving element is the light of the light emitting element. Light passes through the midpoint between the light emitting element and the transmitted light receiving element on the axis, and the optical axis of one scattered light receiving element is scattered at an angle of 5 to 30 degrees from the transmitted light receiving element side with respect to the optical axis of the light emitting element. The scattered light receiving element is arranged such that the optical axis of the other scattered light receiving element receives the scattered light at an angle of 30 to 50 degrees from the transmitted light receiving element side with respect to the optical axis of the light emitting element. The turbidity measurement unit has a substantially spherical or downstream side of the dialysis drainage path, which is substantially semi-cylindrical and perpendicular to the path. It is possible to distinguish between turbidity due to turbidity and coloration or turbidity due to other causes such as urea and lipids. It becomes, it becomes easy to reliably recognize the results of the patient turbidity measurement.
[0066]
In addition, since the present invention has recording means and output means for storing the measurement result of the turbidity measuring device as a record, the state of dialysis drainage performed automatically during sleep by the recording means and output means Can be confirmed after waking up, and at the same time, it can be used as a material for interviewing doctors.
[Brief description of the drawings]
FIG. 1 is a schematic view of one embodiment of the automatic peritoneal dialysis apparatus of the present invention.
FIG. 2 is a cross-sectional view of an embodiment of a turbidity measuring unit used in the present invention.
FIG. 3 is an enlarged cross-sectional view of a main part for explaining a turbidity measurement unit used in the present invention.
FIG. 4 is a block diagram of a detection electric circuit of the turbidity measuring device of the automatic peritoneal dialysis device of the present invention.
FIG. 5 is a schematic view of another embodiment of the automatic peritoneal dialysis apparatus of the present invention.
6 is a cross-sectional view of a turbidity measurement unit used in the embodiment shown in FIG.
FIG. 7 is a schematic view of another embodiment of the automatic peritoneal dialysis apparatus of the present invention.
FIG. 8 is a schematic diagram of a turbidity measuring unit used in the embodiment shown in FIG.
FIG. 9 is a configuration diagram of an embodiment of a circuit for peritoneal dialysis according to the present invention.
FIG. 10 is a graph showing the angle dependence of the actual drainage scattered light intensity.
FIG. 11 is a graph showing the angle dependence of the scattered light intensity of a TG (triglyceride) turbid solution.
[Explanation of symbols]
1 Automatic peritoneal dialysis machine
2, 2a-2e Injection bag
3, 4 containers
5 Depressurization / Pressurization chamber
51 Weight detection means
52 Heating means
6 Depressurization / Pressurization chamber
61 Weight detection means
7, 7a-7d Drainage bag
10 Bag tube
11-14 tubes
15 Bag tube
16 tubes
17 Transfer tube
18-22 tubes
23 Tube branch connection
30-33 Branch connector
34 connector
40-46 Channel opening / closing means
8 Operation panel
81 Start button
82 Stop button
83 Water removal amount display
84 Turbidity determination display
85 Recording output section
9 Drainage tank
100 abdominal cavity
101 Turbidity measurement unit
102 Light Emitting Element
103 Transmitted light receiving element
104, 105 Light receiving element for scattered light

Claims (2)

腹膜透析液を患者の腹腔内へ注入する注入手段と、腹腔内の透析液を排出する排出手段と、腹膜透析液を加温する加温手段と、動作制御スイッチや情報表示部が配置された操作パネルとを有する自動腹膜透析装置において、腹腔内から排出される透析排液の経路に濁度測定部を有する透析排液の濁度を測定する濁度測定装置を有し、該濁度測定装置の測定結果を表示する濁度表示部を操作パネル上に有することを特徴とする濁度測定機能付き自動腹膜透析装置であって、
該濁度測定部は、発光素子と少なくとも2個の散乱光受光素子と該発光素子の光軸上に設けられた透過光受光素子とよりなり、
前記散乱光受光素子の光軸が、前記発光素子の光軸上における該発光素子と前記透過光受光素子との中点を通り、一つの該散乱光受光素子の光軸が、該発光素子の光軸に対し該透過光受光素子側から5〜30度の角度で散乱光を受光するように配置され、別の該散乱光受光素子の光軸が、該発光素子の光軸に対し該透過光受光素子側から30〜50度の角度で散乱光を受光するように配置され、
前記濁度測定部の該透析排液の経路の下流側が略球面状または該経路に直交する略半円筒状の空間を有することを特徴とする濁度測定機能付き自動腹膜透析装置。
An injection means for injecting the peritoneal dialysis fluid into the patient's abdominal cavity, a discharge means for discharging the intraperitoneal dialysis fluid, a heating means for warming the peritoneal dialysis fluid, an operation control switch and an information display section are arranged. In an automatic peritoneal dialysis apparatus having an operation panel, the apparatus has a turbidity measuring device for measuring the turbidity of dialysis drainage having a turbidity measuring unit in the path of dialysis drainage discharged from the abdominal cavity, and measuring the turbidity An automatic peritoneal dialysis device with a turbidity measurement function characterized by having a turbidity display part on the operation panel for displaying the measurement result of the device,
The turbidity measuring unit includes a light emitting element, at least two scattered light receiving elements, and a transmitted light receiving element provided on the optical axis of the light emitting element,
The optical axis of the scattered light receiving element passes through the midpoint between the light emitting element and the transmitted light receiving element on the optical axis of the light emitting element, and the optical axis of one scattered light receiving element is Arranged so as to receive scattered light at an angle of 5 to 30 degrees from the transmitted light receiving element side with respect to the optical axis, and the optical axis of another scattered light receiving element is transmitted through the optical axis of the light emitting element It is arranged to receive scattered light at an angle of 30 to 50 degrees from the light receiving element side,
An automatic peritoneal dialysis apparatus with a turbidity measuring function, wherein the turbidity measuring section has a substantially spherical space or a substantially semi-cylindrical space perpendicular to the path on the downstream side of the dialysis drainage path.
前記濁度測定装置の測定結果を記録として保存するための記憶手段及び出力手段を有することを特徴とする特許請求の範囲第1項記載の濁度測定機能付き自動腹膜透析装置。The automatic peritoneal dialysis apparatus with a turbidity measuring function according to claim 1, further comprising storage means and output means for storing the measurement result of the turbidity measuring apparatus as a record.
JP05166996A 1996-03-08 1996-03-08 Automatic peritoneal dialysis device with turbidity measurement function and circuit for peritoneal dialysis Expired - Fee Related JP3659726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05166996A JP3659726B2 (en) 1996-03-08 1996-03-08 Automatic peritoneal dialysis device with turbidity measurement function and circuit for peritoneal dialysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05166996A JP3659726B2 (en) 1996-03-08 1996-03-08 Automatic peritoneal dialysis device with turbidity measurement function and circuit for peritoneal dialysis

Publications (2)

Publication Number Publication Date
JPH09239023A JPH09239023A (en) 1997-09-16
JP3659726B2 true JP3659726B2 (en) 2005-06-15

Family

ID=12893297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05166996A Expired - Fee Related JP3659726B2 (en) 1996-03-08 1996-03-08 Automatic peritoneal dialysis device with turbidity measurement function and circuit for peritoneal dialysis

Country Status (1)

Country Link
JP (1) JP3659726B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469896B1 (en) * 2002-01-28 2010-09-01 Debiotech S.A. Peritoneal dialysis system
US7935070B2 (en) 2005-01-28 2011-05-03 Fresenius Medical Care North America Systems and methods for dextrose containing peritoneal dialysis (PD) solutions with neutral pH and reduced glucose degradation product
US7865072B2 (en) * 2005-03-21 2011-01-04 General Electric Company Intravenous fluid warming system
US8801652B2 (en) 2006-07-27 2014-08-12 Fresenius Medical Care Holding, Inc. Early stage peritonitis detection apparatus and methods
US8777891B2 (en) 2006-07-27 2014-07-15 Fresenius Medical Care Holdings, Inc. Apparatus and methods for early stage peritonitis detection and for in vivo testing of bodily fluid
US8728023B2 (en) * 2006-07-27 2014-05-20 Fresenius Medical Care Holdings, Inc. Apparatus and methods for early stage peritonitis detection including self-cleaning effluent chamber
JP5596558B2 (en) * 2008-01-25 2014-09-24 フレセニウス メディカル ケア ホールディングス インコーポレーテッド Device for early detection of peritonitis and in vivo examination of body fluids
CN101678162B (en) * 2008-01-25 2013-10-09 弗雷塞尼斯医疗保健控股公司 Apparatus and methods for early stage peritonitis detection including self-cleaning effluent chamber
EP2258418A1 (en) * 2009-06-05 2010-12-08 Fresenius Medical Care Deutschland GmbH Device for collecting samples
US9585810B2 (en) 2010-10-14 2017-03-07 Fresenius Medical Care Holdings, Inc. Systems and methods for delivery of peritoneal dialysis (PD) solutions with integrated inter-chamber diffuser
JP2014083369A (en) * 2012-10-26 2014-05-12 Medica Tekku Kk Test device for peritoneal dialysis
EP3576808A4 (en) * 2017-02-01 2021-05-12 Liberdi Ltd. Smart peritoneal dialysis device
JP6959104B2 (en) * 2017-11-02 2021-11-02 日東電工株式会社 Drainage drainage management system
GB2601380A (en) * 2020-11-30 2022-06-01 Microbiosensor Ltd A diagnostic device
DE102021115737A1 (en) * 2021-06-17 2022-12-22 Franz Ferdinand Becker Apparatus and method for determining the approximate number of leukocytes in a dialysate after it has been used in peritoneal dialysis

Also Published As

Publication number Publication date
JPH09239023A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
JP3659726B2 (en) Automatic peritoneal dialysis device with turbidity measurement function and circuit for peritoneal dialysis
US11169137B2 (en) Modular reservoir assembly for a hemodialysis and hemofiltration system
US11439738B2 (en) Methods and Systems for fluid balancing in a dialysis system
US11931497B2 (en) System and method for preparing peritoneal dialysis fluid at the time of use
US7162290B1 (en) Method and apparatus for blood glucose testing from a reversible infusion line
US7776006B2 (en) Medical fluid pumping system having real time volume determination
US7905855B2 (en) Dialysis system having non-invasive temperature sensing
US7909795B2 (en) Dialysis system having disposable cassette and interface therefore
US8105266B2 (en) Mobile dialysis system having supply container detection
US8920362B2 (en) Dialysis system having disposable cassette
US8764702B2 (en) Dialysis system having dual patient line connection and prime
US8715235B2 (en) Dialysis system having disposable cassette and heated cassette interface
CA2124808A1 (en) Fluid sampling module
EP3762062B1 (en) Peritoneal dialysis systems and related methods
JP3549262B2 (en) Peritoneal dialysis drainage monitoring device
CN215821880U (en) Peritoneal dialysis device
JPH059110B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees