JP3658685B2 - Subject distance measuring device - Google Patents

Subject distance measuring device Download PDF

Info

Publication number
JP3658685B2
JP3658685B2 JP2001158205A JP2001158205A JP3658685B2 JP 3658685 B2 JP3658685 B2 JP 3658685B2 JP 2001158205 A JP2001158205 A JP 2001158205A JP 2001158205 A JP2001158205 A JP 2001158205A JP 3658685 B2 JP3658685 B2 JP 3658685B2
Authority
JP
Japan
Prior art keywords
value
measurement
output
measurement data
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001158205A
Other languages
Japanese (ja)
Other versions
JP2002350126A (en
Inventor
淳一 永井
聖 宮崎
憲 矢川
Original Assignee
株式会社アルティア橋本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルティア橋本 filed Critical 株式会社アルティア橋本
Priority to JP2001158205A priority Critical patent/JP3658685B2/en
Publication of JP2002350126A publication Critical patent/JP2002350126A/en
Application granted granted Critical
Publication of JP3658685B2 publication Critical patent/JP3658685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えばアライメントテスタやタイヤ等の外形状計測装置等に好適で、簡単な構成でタイヤのサイドウォ−ルの凹凸部等の影響を除去し、正確な距離測定値を合理的かつ速やかに得られるとともに、これを安価に製作できるようにした被検体の距離測定装置に関する。
【0002】
【従来の技術】
出願人は、複数の超音波センサを用い、該センサから発する超音波を回転下のタイヤ側面の所定位置に照射し、前記センサとタイヤ側面との距離を計測して、ト−およびキャンバ値を演算するようにしたホイ−ルアライメントテスタを開発し、これを既に実公平5−28484号公報に提案している。
【0003】
しかし、この従来のホイ−ルアライメントテスタは、超音波を照射するタイヤのサイドウォ−ルにロゴマ−ク等の凹凸部が存在すると、その凹凸分の誤差を生じて、センサとタイヤ側面との距離が変化し、正確なアライメント測定値を得られない、という問題があった。
【0004】
このような問題を解決するものとして、例えば特公平7−111333号公報には、凹凸部を有するタイヤの測定部位を走査する光学式変位計と、前記凹凸部に対応するサンプリングデ−タを除去補正する信号補正手段と、補正された信号に基いて所定の形状計測を行なう計測手段とを備え、前記信号補正手段として、サンプリングデ−タを高速フ−リエ変換により、周波数領域に変換する変換機能と、予め設定された周波数以上の成分を除去する除去機能と、周波数領域から逆高速フ−リエ変換により、時間領域に変換する逆変換機能とを備え、除去周波数を予め設定するだけで、再現性の良い凹凸成分を除去するようにした、タイヤ等の外形状計測装置が示されている。
【0005】
しかし、前記計測装置は、高速フ−リエ変換と逆高速フ−リエ変換を行なうため、かなりの処理時間を要し、しかも高価である等の問題があった。
【0006】
【発明が解決しようとする課題】
本発明はこのような問題を解決し、例えばアライメントテスタやタイヤ等の外形状計測装置等に好適で、簡単な構成でタイヤのサイドウォ−ルの凹凸部等の影響を除去し、正確な距離測定値を合理的かつ速やかに得られるとともに、これを安価に製作できる被検体の距離測定装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
このため、請求項1の発明は、距離センサと被検体の複数位置との間の各測定デ−タと、その直前の測定位置における測定デ−タとの変化量を演算可能で、かつその変化量の絶対値の所定範囲を基に、所定範囲内の正常な測定デ−タと所定範囲外の異常な測定デ−タとに判定し、前記異常な測定デ−タに対し、その直前の測定位置における出力値を補正値として仮出力可能にし、また前記正常な測定デ−タに対し、その直前の測定位置における出力値に当該変化量を加算した補正値を仮出力可能にし、かつ前記各補正値と測定デ−タとの差を演算して、最終的な出力値を出力可能にした、制御装置を有する被検体の距離測定装置において、前記補正値と測定デ−タとの差が所定値以上か否かによって、当該測定デ−タまたは補正値を最終的な出力値として選択的に出力可能にし、前記補正値と測定デ−タとの差が所定値以上の場合に、前記補正値を最終的な出力値として出力可能にして、測定デ−タの正常または異常を検出後、全ての測定デ−タを補正値として仮出力可能にし、異常デ−タの当否を再評価して最終的な出力値の合理性と信頼性を確保し、例えばタイヤ側面のロゴによる異常な測定デ−タの採否を決定して、計測の信頼性向上を図り、アライメントテスタやタイヤ等の外形状計測装置に好適にしている。
【0010】
【発明の実施の形態】
以下、本発明をアライメントテスタに適用した図示の実施形態について説明すると、図1乃至図6において1,2は自動車製造工場内の検査ライン、車検場、自動車整備工場等の床面に回転可能に設置された一対のロ−ラで、この一方をモ−タ等の駆動源に連係しており、前記ロ−ラ1,2上に被検体である車両の車輪3(タイヤ)が回転可能に載置されている。
図中、4は前記車輪3のサイドウォ−ルの所定位置に形成したロゴ等の凹凸部である。
【0011】
前記各車輪3の外側に、距離センサである複数の超音波センサ5〜7が設けられ、これらのセンサ5〜7は同一円周上に等角度(90°)位置に配置され、このうち超音波センサ5,7は水平面上に配置され、超音波センサ6はそれらより上方に配置されている。
【0012】
前記超音波センサ5〜7は、例えば1秒間に100回の割合で超音波を発射し、車輪3が回転する場合は、車輪3が1/100回転する毎に、換言すれば車輪3の外周を100等分した各位置で、ト−およびキャンバに関する情報、すなわち距離L1〜L3 を計測可能にしており、この信号を後述の制御装置の演算器へ入力可能にしている。
なお、超音波センサ5,7から車輪3の中心位置までの距離Lは、前記距離L1,L2信号を基に演算器で演算され、L=(L1+L2)/2として求められる。
【0013】
すなわち、超音波センサ5〜7は、超音波を発射してからその反射波が得られるまでの時間を計測することで、超音波の発射位置から車輪3の外側面所定位置までの距離L1〜L3 を計測可能にしている。
前記距離信号はA/D変換器8を介して制御装置9へ入力され、該装置9は記憶機能と演算機能を備えたマイクロコンピュ−タを内蔵し、該装置9に図に示す制御フロ−が記憶されている。
【0014】
前記制御装置9は、被検車両の各車輪3が所定の計測位置へ移動したところで、制御作動を開始し、超音波センサ5〜7をONし、各センサ5〜7から対応する車輪3に向けて超音波を発射し、その反射波が得られるまでの時間を計測して、超音波の発射位置から車輪3の外側面の各位置までの距離L1〜L3 を測定するようにしている。
【0015】
前記距離の測定デ−タは、刻々と制御装置9の演算部に入力され、該演算部で相前後する前記測定デ−タの変化量を演算される。
すなわち、図4の連続する各測定位置P1〜P7において、相前後する測定デ−タの差である変化量Δ1〜Δ7を演算し、その絶対値が所定範囲内であるか否かを判定する。
【0016】
前記変化量Δの許容限界を規定する規定値は、前記凹凸部4の略凹凸変位に相当して設定され、これは各測定デ−タに対し等しく設定されていて、前記変化量Δがその所定値を逸脱している場合、例えば図4のP3,P5,P6の場合は、一つ前、すなわち直前の測定位置における最終的な出力値を補正値として仮出力するようにしている。
【0017】
一方、前記変化量Δがその所定値以内の場合、例えば図4のP2,P4,P7の場合は、一つ前、すなわち直前の測定箇所における出力値にそれらの変化量Δ2,Δ4,Δ7を加算した値を、補正値として仮出力するようにしている。
【0018】
次に前記仮出力値、つまり補正値を各測定デ−タと比較し、それらの差δ1〜δ7を演算し、その絶対値が所定値以内であるか否かを判定する。
前記所定値は、前記変化量判定時の規定値と略等値に設定され、前記仮出力値と各測定デ−タとの差が所定値以内の場合、例えばδ6の場合は、当該測定デ−タを最終的な出力値として出力するようにしている。
【0019】
一方、仮出力値、つまり補正値と各測定デ−タとの差が所定値を逸脱する場合、例えばδ3およびδ6の場合は、前記仮出力値を最終的な出力値として出力するようにしている。
【0020】
そして、前記制御装置9は、各測定位置P1〜P7における前記距離L1〜L3の最終的な出力値を基に、記憶部に記憶されたト−およびキャンバの演算式によってト−およびキャンバを演算し、それらをCRT等に出力して表示可能にしている。
【0021】
その他、図中10は超音波センサ5〜7を内部に収容した空気吹出管で、空気導管を介してエア−チャンバ(共に図示略)に連通し、超音波の伝搬路の温度変化を抑制し、超音波の伝搬速度のバラツキを防止するようにしている。
【0022】
なお、前述の実施形態では車輪3をロ−ラ1,2上で回転し、車輪3の多点位置で各距離L1〜L3を測定しているが、アライメント調整下の車輪3を揺動可能なタ−ンテ−ブル上に載せ、前記調整作業下で車輪3を揺動または回動させながら、車輪3の一定域の多点位置で各距離L1〜L3を測定するようにしてもよい。
【0023】
このように構成した被検体の距離測定装置は、後述のように各測定デ−タ同士の差や、各測定デ−タと許容値との差といった簡単な演算処理で行ない、従来の高速フ−リエ変換や逆高速フ−リエ変換のような高度な演算処理を要せず、処理時間の高速化と制御装置9の低廉化を図れる。
【0024】
次に前記アライメントテスタによって、車輪3のアライメントを測定する場合は、被検車両の車輪3をロ−ラ1,2上に乗り込ませ、該ロ−ラ1,2を回転して車輪3を回転する。
そして、超音波センサ5〜7をONし、各超音波センサ5〜7から対応する車輪3に向けて超音波を発射し、例えば1秒間に100回の割合で超音波を発射し、車輪3が1/100回転する毎に、換言すれば車輪3の外周を100等分した各位置で、超音波の発射位置から車輪3の外側面の各位置までの距離L1〜L3 を測定する。その際、各吹出管10から空気を吹き出し、超音波の伝搬路の温度変化を抑制する。
【0025】
前記距離L1〜L3の計測信号は、測定デ−タとして刻々と制御装置9の演算部に入力され、該演算部で相前後する前記測定デ−タの変化量Δを演算する。
すなわち、連続する各測定位置P1〜P7において、相前後する測定デ−タ同士の差である変化量Δ1〜Δ7を演算し、その絶対値が所定範囲内であるか否かを判定する。
【0026】
そして、前記変化量Δが所定値を逸脱しているP3,P5,P6の場合は、その一つ前の測定位置、つまりP2,P4,P5における最終的な出力値を補正値として仮出力する。このような場合として、例えばP3,P5,P6が凹凸部4位置であることが推測される。
このようにすることで、図(b)のように異常な変化量Δを検出した測定位置では、当該測定デ−タをキャンセルし、図(c)のように異常検出部におけるデ−タを零値にし、当該異常デ−タによるアライメント測定値の信頼性低下を未然に防止する。
【0027】
一方、前記変化量Δが所定値以内の場合、例えば図4のP2,P4,P7の場合は、一つ前の測定位置、つまり直前のP1,P3,P6における出力値に、前記変化量Δ2,Δ4,Δ7(Δ7=0)加算した値を、補正値として仮出力する。
この場合、Δ7は零であるから、P7の補正値は測定デ−タと等値である。
このようにすることで、正常な変化量Δを許容し、これを正常なデ−タとして採用して、アライメント測定値の信頼性を維持する。
【0028】
次に前記仮出力値、つまり補正値を各測定デ−タと比較し、それらの差δ1〜δ7を演算して、その絶対値が所定値以内であるか否かを判定する。
前記所定値は、前記変化量判定時の所定値と等値に設定され、前記仮出力値と各測定デ−タとの差が所定値以内の場合、例えばP6の場合は、当該測定デ−タを最終的な出力値として出力する。
【0029】
一方、仮出力値、つまり補正値と各測定デ−タとの差が所定値を逸脱する場合、例えばP3およびP6の場合は、前記補正値を最終的な出力値として出力する。このように一旦キャンセルした異常デ−タに対し、直前位置の出力値との異常の有無をチェックすることで、異常デ−タの当否を再評価し、その真偽を確認して当該デ−タの採否を決定し、アライメント測定値の信頼性を維持する。
【0030】
したがって、例えば測定デ−タが図5(a)のように漸増若しくは漸減傾向から、微少な増減を繰り返す通常傾向へ移行し、または漸増若しくは漸減傾向から反転して反対側傾向へ移行する場合の測定デ−タの動態を、正確かつ合理的に評価する。
【0031】
このような点を踏まえて前記各測定距離L1〜L3を補正すると、図(a)の異常デ−タ位置に相当する凹凸は、図(d)の最終出力デ−タから消去され、また各測定デ−タの増減傾向が確認できる。したがって、異常な測定デ−タによるアライメント測定値の信頼性低下を免れ、アライメント調整を正確に行なえる。
【0032】
前記制御装置9は、超音波センサ5,7から車輪3の中心位置までの距離Lを、前記距離L1,L2信号を基に演算器において、L=(L1+L2)/2として演算し、該演算値と各測定箇所P1〜P7における前記距離L1〜L3の最終的な出力値を基に、記憶部に記憶されたト−およびキャンバの演算式によってト−およびキャンバを演算し、それらをCRT等に出力して表示する。
【0033】
【発明の効果】
以上のように、請求項1の発明は、補正値と測定デ−タとの差が所定値以上か否かによって、当該測定デ−タまたは補正値を最終的な出力値として選択的に出力可能にし、前記補正値と測定デ−タとの差が所定値以上の場合に、前記補正値を最終的な出力値として出力可能にしたから、測定デ−タの正常または異常を検出後、全ての測定デ−タを補正値として仮出力可能にし、異常デ−タの当否を再評価して最終的な出力値の合理性と信頼性を確保することができ、例えばタイヤ側面のロゴによる異常な測定デ−タの採否を決定して、計測の信頼性向上を図り、アライメントテスタやタイヤ等の外形状計測装置に好適な効果がある。
【図面の簡単な説明】
【図1】 本発明によるアライメント測定の状況を示す説明図である。
【図2】 本発明によるト−の測定状況を示す説明図である。
【図3】 本発明によるキャンバの測定状況を示す説明図である。
【図4】 本発明による距離信号の補正状況を示す説明図である。
【図5】 本発明による距離信号の処理状況を順に示すタイミングチャ−トである。
【図6】 本発明の制御装置による制御フロ−を示すチャ−トである。
【符号の説明】
3 被検体(車輪)
5〜7 距離センサ
制御装置
1〜L3 距離信号
[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable for, for example, an outer shape measuring device such as an alignment tester or a tire, and removes the influence of the uneven portion of the tire side wall with a simple configuration, so that an accurate distance measurement value can be rationally and promptly obtained. The present invention relates to a distance measuring apparatus for a subject that can be obtained at a low cost.
[0002]
[Prior art]
The applicant uses a plurality of ultrasonic sensors, irradiates ultrasonic waves emitted from the sensors to a predetermined position on the tire side surface under rotation, measures the distance between the sensor and the tire side surface, and calculates the toe and camber values. A wheel alignment tester designed to be operated has been developed, and this has already been proposed in Japanese Utility Model Publication No. 5-28484.
[0003]
However, this conventional wheel alignment tester, when there is an uneven part such as a logo mark on the side wall of the tire irradiated with ultrasonic waves, an error of the uneven part occurs, and the distance between the sensor and the tire side surface Changed, and there was a problem that an accurate alignment measurement value could not be obtained.
[0004]
In order to solve such problems, for example, Japanese Patent Publication No. 7-11333 discloses the removal of an optical displacement meter that scans a measurement site of a tire having an uneven portion and sampling data corresponding to the uneven portion. A signal correcting means for correcting, and a measuring means for measuring a predetermined shape based on the corrected signal, and converting the sampling data into the frequency domain by high-speed Fourier transform as the signal correcting means. With a function, a removal function that removes components above a preset frequency, and an inverse transform function that transforms from the frequency domain to the time domain by inverse fast Fourier transform, just set the removal frequency in advance, An external shape measuring device such as a tire is shown which removes uneven components with good reproducibility.
[0005]
However, since the measuring apparatus performs high-speed Fourier conversion and inverse high-speed Fourier conversion, it requires a considerable processing time and is expensive.
[0006]
[Problems to be solved by the invention]
The present invention solves such a problem, and is suitable for, for example, an outer shape measuring device such as an alignment tester or a tire, and removes the influence of the uneven portion of the tire side wall with a simple configuration, thereby accurately measuring the distance. An object of the present invention is to provide a distance measuring apparatus for a subject which can obtain a value reasonably and promptly and which can be manufactured at low cost.
[0007]
[Means for Solving the Problems]
For this reason, the invention of claim 1 can calculate the amount of change between each measurement data between the distance sensor and a plurality of positions of the subject and the measurement data at the measurement position immediately before the measurement data. Based on the predetermined range of the absolute value of the change amount, it is judged as normal measurement data within the predetermined range and abnormal measurement data outside the predetermined range, and the abnormal measurement data is immediately before The output value at the measurement position can be temporarily output as a correction value, and the correction value obtained by adding the change amount to the output value at the immediately previous measurement position can be temporarily output for the normal measurement data, and measurements de and the correction values - by calculating the difference between the data, the final output value to be output, in the distance measuring apparatus of the subject with a control device, before Kiho positive value and the measured de - data Depending on whether or not the difference between Selectively enabling the output as a force value, the correction value and the measurement de - when the difference between the motor is a predetermined value or more, said enabling output correction value as the final output value, measured de - normal motor Alternatively, after detecting an abnormality, all measurement data can be temporarily output as correction values, and the validity of the abnormality data is re-evaluated to ensure the rationality and reliability of the final output value. The determination of whether or not to use abnormal measurement data with the logo of the above is determined to improve the reliability of measurement, making it suitable for external shape measuring devices such as alignment testers and tires.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention applied to an alignment tester will be described below. In FIGS. 1 to 6, 1 and 2 can be rotated on the floor of an inspection line, vehicle inspection station, automobile maintenance plant, etc. in an automobile manufacturing factory. A pair of installed rollers, one of which is linked to a drive source such as a motor, so that the wheels 3 (tires) of the subject vehicle can rotate on the rollers 1 and 2. It is placed.
In the figure, reference numeral 4 denotes an uneven portion such as a logo formed at a predetermined position on the side wall of the wheel 3.
[0011]
A plurality of ultrasonic sensors 5 to 7 which are distance sensors are provided outside each wheel 3, and these sensors 5 to 7 are arranged at equiangular (90 °) positions on the same circumference. The ultrasonic sensors 5 and 7 are disposed on a horizontal plane, and the ultrasonic sensor 6 is disposed above them.
[0012]
For example, the ultrasonic sensors 5 to 7 emit ultrasonic waves at a rate of 100 times per second, and when the wheel 3 rotates, every time the wheel 3 rotates 1/100, in other words, the outer periphery of the wheel 3. each position 100 equal portions, bets - and camber information about, that is, to allow measuring the distance L 1 ~L 3, and enables inputs the signal to the arithmetic unit of the control apparatus described later.
The distance L from the ultrasonic sensors 5 and 7 to the center position of the wheel 3 is calculated by a calculator based on the distance L 1 and L 2 signals, and is obtained as L = (L 1 + L 2 ) / 2. .
[0013]
That is, the ultrasonic sensors 5 to 7 measure the time from when the ultrasonic wave is emitted until the reflected wave is obtained, so that the distance L 1 from the ultrasonic wave emission position to the predetermined position on the outer surface of the wheel 3. the ~L 3 are to be measured.
The distance signal is inputted to the controller 9 via the A / D converter 8, the apparatus 9 microcomputer has an arithmetic function and the storage function - a built-in motor, control shown in FIG. 6 in the device 9 furo -Is stored.
[0014]
The control device 9 starts the control operation when each wheel 3 of the vehicle to be tested has moved to a predetermined measurement position, turns on the ultrasonic sensors 5 to 7, and applies the corresponding wheel 3 from each sensor 5 to 7. The ultrasonic wave is emitted toward the surface, the time until the reflected wave is obtained is measured, and the distances L 1 to L 3 from the ultrasonic wave emission position to each position on the outer surface of the wheel 3 are measured. Yes.
[0015]
The distance measurement data is input to the calculation unit of the control device 9 every moment, and the change amount of the measurement data is calculated by the calculation unit.
That is, at the respective continuous measurement positions P 1 to P 7 in FIG. 4, the amounts of change Δ 1 to Δ 7 that are differences between the measurement data before and after are calculated, and whether or not the absolute value is within a predetermined range. Determine whether.
[0016]
The specified value that defines the allowable limit of the change amount Δ is set corresponding to the substantially uneven displacement of the uneven portion 4, which is set equal to each measurement data, and the change amount Δ is In the case of deviating from the predetermined value, for example, in the case of P 3 , P 5 , and P 6 in FIG. Yes.
[0017]
On the other hand, when the amount of change Δ is within the predetermined value, for example, in the case of P 2 , P 4 , and P 7 in FIG. 4, the change amount Δ 2 , A value obtained by adding Δ 4 and Δ 7 is temporarily output as a correction value.
[0018]
Next, the temporary output value, that is, the correction value is compared with each measurement data, and the difference δ 1 to δ 7 is calculated to determine whether or not the absolute value is within a predetermined value.
The predetermined value is set to be approximately equal to the specified value at the time of the change amount determination, and when the difference between the temporary output value and each measurement data is within a predetermined value, for example, δ 6 The data is output as the final output value.
[0019]
On the other hand, if the difference between the temporary output value, that is, the correction value and each measurement data deviates from a predetermined value, for example, δ 3 and δ 6 , the temporary output value is output as the final output value. I have to.
[0020]
Then, the control device 9 uses the toe and camber arithmetic expressions stored in the storage unit based on the final output values of the distances L 1 to L 3 at the measurement positions P 1 to P 7 . The camber is calculated and output to a CRT or the like so that it can be displayed.
[0021]
In addition, reference numeral 10 in the figure denotes an air blowing pipe containing ultrasonic sensors 5 to 7, which communicates with an air chamber (both not shown) through an air conduit to suppress temperature changes in the ultrasonic propagation path. In addition, variations in the propagation speed of ultrasonic waves are prevented.
[0022]
In the above-described embodiment, the wheel 3 is rotated on the rollers 1 and 2 and the distances L 1 to L 3 are measured at the multipoint positions of the wheel 3, but the wheel 3 under the alignment adjustment is shaken. The distances L 1 to L 3 are measured at multiple points in a certain range of the wheel 3 while being placed on a movable turn table and swinging or rotating the wheel 3 under the adjustment operation. May be.
[0023]
The object distance measuring apparatus configured as described above performs simple arithmetic processing such as a difference between each measurement data and a difference between each measurement data and an allowable value as will be described later. -Sophisticated arithmetic processing such as Fourier transform or inverse high-speed Fourier transform is not required, and the processing time can be increased and the control device 9 can be made inexpensive.
[0024]
Next, when measuring the alignment of the wheel 3 by the alignment tester, the wheel 3 of the vehicle to be tested is put on the rollers 1 and 2 and the rollers 1 and 2 are rotated to rotate the wheels 3. To do.
Then, the ultrasonic sensors 5 to 7 are turned ON, and ultrasonic waves are emitted from the ultrasonic sensors 5 to 7 toward the corresponding wheels 3. For example, ultrasonic waves are emitted at a rate of 100 times per second. In other words, every time the motor rotates 1/100, distances L 1 to L 3 from the ultrasonic emission position to each position on the outer surface of the wheel 3 are measured at each position obtained by equally dividing the outer periphery of the wheel 3 by 100. . At that time, air is blown out from each blowing pipe 10 to suppress the temperature change of the ultrasonic propagation path.
[0025]
The measurement signals of the distances L 1 to L 3 are input as measurement data to the calculation unit of the control device 9 every moment, and the calculation data change amount Δ is calculated by the calculation unit.
That is, at each successive measurement position P 1 to P 7 , change amounts Δ 1 to Δ 7 , which are differences between successive measurement data, are calculated, and whether or not the absolute value is within a predetermined range. judge.
[0026]
In the case of P 3 , P 5 , P 6 where the change amount Δ deviates from the predetermined value, the final output values at the previous measurement positions, that is, P 2 , P 4 , P 5 are obtained. Temporarily output as a correction value. In such a case, for example, it is estimated that P 3 , P 5 , and P 6 are the positions of the uneven portion 4.
By doing so, the measurement position to detects an abnormal variation Δ as shown in FIG. 5 (b), the said measuring de - Cancel the data, de by the abnormality detecting portion as shown in FIG. 5 (c) - The data is set to zero to prevent a decrease in the reliability of the alignment measurement value due to the abnormal data.
[0027]
On the other hand, when the amount of change Δ is within a predetermined value, for example, in the case of P 2 , P 4 , and P 7 in FIG. 4, the output values at the previous measurement position, that is, the immediately preceding P 1 , P 3 , and P 6 . In addition, a value obtained by adding the change amounts Δ 2 , Δ 4 , Δ 77 = 0) is temporarily output as a correction value.
In this case, since Δ 7 is zero, the correction value of P 7 is equivalent to the measurement data.
In this way, a normal change amount Δ is allowed, and this is used as normal data to maintain the reliability of the alignment measurement value.
[0028]
Next, the temporary output value, that is, the correction value is compared with each measurement data, and the difference δ 1 to δ 7 is calculated to determine whether or not the absolute value is within a predetermined value.
The predetermined value is set to be equal to the predetermined value at the time of the change amount determination, and when the difference between the temporary output value and each measurement data is within a predetermined value, for example, P 6 , the measurement data Output the final output value.
[0029]
On the other hand, when the difference between the temporary output value, that is, the correction value and each measurement data deviates from a predetermined value, for example, in the case of P 3 and P 6 , the correction value is output as a final output value. The abnormal data once canceled in this way is checked for the presence or absence of an abnormality with the output value at the immediately preceding position, thereby re-evaluating the validity of the abnormal data, confirming its authenticity, and checking the data. The reliability of alignment measurement values is maintained.
[0030]
Thus, for example, measuring de - data from gradually increasing or gradually decreasing as in FIG. 5 (a), the process proceeds to the normal tendency to repeat a minute increase or decrease, or the increasing or decreasing tendency of migrating to the opposite side tends inverted The dynamics of the measurement data is accurately and reasonably evaluated.
[0031]
When this point to correct each measured distance L 1 ~L 3 Based on the abnormal data of FIG. 5 (a) - irregularities corresponding to data locations, the final output data of FIG. 5 (d) - deleted from data In addition, the increasing / decreasing tendency of each measurement data can be confirmed. Therefore, the reliability of the alignment measurement value due to abnormal measurement data can be avoided, and alignment adjustment can be performed accurately.
[0032]
The control device 9 sets the distance L from the ultrasonic sensors 5 and 7 to the center position of the wheel 3 as L = (L 1 + L 2 ) / 2 in the calculator based on the distance L 1 and L 2 signals. Based on the calculated values and the final output values of the distances L 1 to L 3 at the measurement points P 1 to P 7 , the to and the camber calculation formulas stored in the storage unit The camber is calculated and output to a CRT or the like for display.
[0033]
【The invention's effect】
As described above, a first aspect of the invention, the compensation values measured de - depending on whether the difference between the motor is equal to or greater than a predetermined value, the measurement de - selectively the data or correction value as a final output value enabling output, the correction value and the measurement de - when the difference between the motor is a predetermined value or more, because the output can be the correction value as a final output value, measured de - after detecting normal or abnormal in data All the measurement data can be temporarily output as correction values, and the validity and reliability of the final output value can be ensured by re-evaluating the validity of the abnormal data. Therefore, it is possible to improve the reliability of the measurement by determining whether or not the abnormal measurement data is used, and it is suitable for an outer shape measuring device such as an alignment tester or a tire.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the state of alignment measurement according to the present invention.
FIG. 2 is an explanatory view showing a state of measuring a toe according to the present invention.
FIG. 3 is an explanatory view showing a measurement situation of a camber according to the present invention.
FIG. 4 is an explanatory diagram showing a correction state of a distance signal according to the present invention.
FIG. 5 is a timing chart sequentially showing the processing status of distance signals according to the present invention.
FIG. 6 is a chart showing a control flow by the control device of the present invention.
[Explanation of symbols]
3 Subject (wheel)
5-7 Distance sensor
9 Controllers L 1 to L 3 Distance signal

Claims (1)

距離センサと被検体の複数位置との間の各測定デ−タと、その直前の測定位置における測定デ−タとの変化量を演算可能で、かつその変化量の絶対値の所定範囲を基に、所定範囲内の正常な測定デ−タと所定範囲外の異常な測定デ−タとに判定し、前記異常な測定デ−タに対し、その直前の測定位置における出力値を補正値として仮出力可能にし、また前記正常な測定デ−タに対し、その直前の測定位置における出力値に当該変化量を加算した補正値を仮出力可能にし、かつ前記各補正値と測定デ−タとの差を演算して、最終的な出力値を出力可能にした、制御装置を有する被検体の距離測定装置において、前記補正値と測定デ−タとの差が所定値以上か否かによって、当該測定デ−タまたは補正値を最終的な出力値として選択的に出力可能にし、前記補正値と測定デ−タとの差が所定値以上の場合に、前記補正値を最終的な出力値として出力可能にしたことを特徴とする被検体の距離測定装置。The amount of change between each measurement data between the distance sensor and multiple positions of the subject and the measurement data at the immediately preceding measurement position can be calculated, and the absolute value of the amount of change is based on a predetermined range. In addition, normal measurement data within a predetermined range and abnormal measurement data outside the predetermined range are determined, and the output value at the immediately preceding measurement position is used as a correction value for the abnormal measurement data. Temporary output is possible, and for the normal measurement data, a correction value obtained by adding the amount of change to the output value at the immediately preceding measurement position can be provisionally output, and each correction value and measurement data difference by calculating the, the final output value to be output, in the distance measuring apparatus of the subject with a control device, before Kiho positive value and the measured de - difference between the data whether more than a predetermined value Accordingly, the measurement de - selectively enable output data or the correction value as a final output value And, the correction value and the measurement de - when the difference between the motor is a predetermined value or more, the correction value output possible and the distance measuring apparatus of the subject, characterized in that the as the final output value.
JP2001158205A 2001-05-28 2001-05-28 Subject distance measuring device Expired - Lifetime JP3658685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001158205A JP3658685B2 (en) 2001-05-28 2001-05-28 Subject distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001158205A JP3658685B2 (en) 2001-05-28 2001-05-28 Subject distance measuring device

Publications (2)

Publication Number Publication Date
JP2002350126A JP2002350126A (en) 2002-12-04
JP3658685B2 true JP3658685B2 (en) 2005-06-08

Family

ID=19001961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001158205A Expired - Lifetime JP3658685B2 (en) 2001-05-28 2001-05-28 Subject distance measuring device

Country Status (1)

Country Link
JP (1) JP3658685B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8712720B2 (en) 2008-12-19 2014-04-29 Michelin Recherche at Technigue S.A. Filtering method for improving the data quality of geometric tire measurements
WO2010071657A1 (en) * 2008-12-19 2010-06-24 Michelin Recherche Et Technique, S.A. Filtering method to eliminate tread features in geometric tire measurements
JP5371848B2 (en) * 2009-12-07 2013-12-18 株式会社神戸製鋼所 Tire shape inspection method and tire shape inspection device
WO2011159272A1 (en) 2010-06-14 2011-12-22 Michelin Recherche Et Technique, S.A. Method for prediction and control of harmonic components of tire uniformity parameters
JP5831592B2 (en) 2014-05-09 2015-12-09 横浜ゴム株式会社 Tire trimming apparatus and method

Also Published As

Publication number Publication date
JP2002350126A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP5255012B2 (en) Calibration method of gear measuring device
US20110102811A1 (en) Apparatus and method for measuring cylindrically-shaped object and apparatus for inspecting tire appearance
US20120222465A1 (en) Calibration method and angle measuring method for an angle measuring device, and angle measuring device
JP2006509194A5 (en)
JP2004177154A (en) Rotation angle detector
US7206716B2 (en) Wheel alignment with surface-oriented runout determination
CN111060061A (en) Involute gear sample plate tooth profile measuring and correcting method
JP3658685B2 (en) Subject distance measuring device
US7460950B2 (en) System for establishing a vehicle parameter
US9207256B2 (en) Auto-calibration of acceleration sensors
CN109581961B (en) Rotating shaft rotating angle measuring device and method
US7578181B2 (en) Method for correcting concave-convex exhibited on a surface of a body of rotation
JP5484669B2 (en) A method for measuring the notable angular position of sensors mounted on tires
EP3205999B1 (en) Use of a method for estimating load model in a tyre uniformity tester
KR100796332B1 (en) Dynamic rolling radius inspection method of tire
KR100426143B1 (en) Rortable Measuring Device of the tread profile and depth
JP2008094137A (en) Spoke angle adjusting method of steering wheel
JPS6361167A (en) Method for detecting speed of railroad vehicle
JP3855734B2 (en) 3D cam profile measuring apparatus and 3D cam profile measuring method
JP4235897B2 (en) Multi-rotation detection method and apparatus
JP2004020481A (en) Cam profile measuring device and cam profile measuring method
JP2024516069A (en) Method and system for calibrating tire sensors - Patents.com
JP2000045985A (en) Line flow fan shape inspection device and shape inspection method thereof
CN115182221A (en) Full-automatic roadbed pavement rebound deflection tester and testing method
CN117450896A (en) Method for checking slope of rear bearing of stern tube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050301

R150 Certificate of patent or registration of utility model

Ref document number: 3658685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250