JP3658662B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP3658662B2
JP3658662B2 JP03916597A JP3916597A JP3658662B2 JP 3658662 B2 JP3658662 B2 JP 3658662B2 JP 03916597 A JP03916597 A JP 03916597A JP 3916597 A JP3916597 A JP 3916597A JP 3658662 B2 JP3658662 B2 JP 3658662B2
Authority
JP
Japan
Prior art keywords
belt
reinforcing material
tire
layer
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03916597A
Other languages
Japanese (ja)
Other versions
JPH10236108A (en
Inventor
耕二 高比良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP03916597A priority Critical patent/JP3658662B2/en
Publication of JPH10236108A publication Critical patent/JPH10236108A/en
Application granted granted Critical
Publication of JP3658662B2 publication Critical patent/JP3658662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0646Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0064Reinforcements comprising monofilaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2007Wires or filaments characterised by their longitudinal shape
    • D07B2201/2008Wires or filaments characterised by their longitudinal shape wavy or undulated
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/005Making ropes or cables from special materials or of particular form characterised by their outer shape or surface properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ropes Or Cables (AREA)
  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に自動車用の空気入りタイヤに関するものである。
【0002】
【従来の技術と発明が解決しようとする課題】
ラジアルタイヤ等の自動車用の空気入りタイヤにおいて、ベルト層等の内部補強層には、高炭素鋼からなるスチール製や合成樹脂製のフィラメントもしくはコード等の線状材よりなる補強材が、多数並列してゴム材に埋設されシート化されて用いられている。
【0003】
このタイヤ補強層における補強素子としては、通常、ストレート形態の線状材が一般に用いられているが、伸びや柔軟性が芳しくなく、衝撃吸収性、耐疲労性に劣るといった問題があることから、例えば、高炭素鋼からなるスチール製の単一フィラメント構造の線状材で、波状やスパイラル状の形付け加工(いわゆる捲縮加工)を施した補強材の実用化が考えられている(例えば▲1▼特開平4−304319号公報、▲2▼実開平4−84395号公報)。
【0004】
しかし、前記の捲縮加工を施したスチール製フィラメント等の補強材は、柔軟性は増すものの、低荷重負荷時の伸び特性に問題がある。例えば、形付け加工されたフィラメントを引張テストすると、引張荷重の負荷により、まず形付け加工による波形状やスパイラル形状がストレート状に伸びることから、低荷重負荷で大きな伸びを示し、ストレート状に伸び切ったところに変曲点(一次弾性限)が現われる。この変曲点は、図8の荷重−伸び特性図において(b)で示すように比較的低荷重域に存在する。そのため、前記の変曲点以上の荷重が負荷されると、捲縮加工による波形状やスパイラル形状が元の状態に復元せず、永久歪を生じてストレートのフィラメントを使用した場合と変らないことになる。
【0005】
また、一次弾性限による変曲点が、タイヤ加硫時のリフト率に近いところにある場合、加硫後の物性は、ストレートの補強材を用いた場合と同じになり、タイヤ性能上、形付け加工を施した補強材を用いたことによる特徴を発揮できないことになる。
【0006】
特に、前記▲1▼に開示の場合、形付け率が130〜300%であって、切断伸度が大きくなるため、これをタイヤのベルト層に使用した場合には、耐摩耗性やコーナリングパワーを発揮できないきらいがある。
【0007】
また前記のような問題を解消するものとして、略スパイラル状の小さいくせ付け加工と、そのくせ形状とは別の比較的大きいうねりとの2種の形付け加工を複合させて施したフィラメントが提案されたが(実開平7−24995号公報)、この場合、フィラメントワイヤー時点では大きいうねりは存在するが、ゴムに埋設するときの張力や埋設後の工程取扱時に作用する力でうねりが伸びてなくなりその結果、製品タイヤ時点では従来の単一のスパイラル加工を施したうねりを持たないフィラメントと変らない状態となる。
【0008】
なお前記のスパイラル状の加工を施した補強材を配列してベルト層に使用した場合、加硫されたタイヤにエア溜り不良が発生するおそれもある。
【0009】
本発明は、上記に鑑みてなしたもので、ベルト層における最外層の補強材を、異なった捲縮率の部分が複合する特殊な波付け加工を施したものにして、この補強材を使用したことによる効果を充分に発揮でき、製品時の伸びを適度に残して、操縦安定性、耐摩耗性および耐久性に優れる空気入りタイヤを提供するものである。
【0010】
【課題を解決するための手段】
本発明は上記の課題を解決する空気入りタイヤであり、請求項1の発明は、タイヤのベルト層における少なくとも最外層が、300kgf/mm2 以上の強度を持つ線状材であって、複数の異なった捲縮率の部分が連続するように同一平面内での二次元の波形をなす波付け加工が施され、その切断時伸度が3〜5%である線状材を補強材とし、該補強材を前記波付け加工の振幅の方向が厚み方向をなすように配列したベルトよりなることを特徴とする。
【0011】
これにより、前記ベルト層における少なくとも最外層の補強材が、荷重−伸び特性において複数の変曲点を持ち、該補強材の変曲点の一つがタイヤ加硫時のリフト率付近にあっても、加硫後のタイヤにおいて変曲点を保有でき、しかもタイヤ加工中の波形の崩れや伸びが発生しにくく、安定した物性を持つベルト層を構成でき、タイヤ性能上犠牲になる特性がなくなり、操縦安定性、耐摩耗性、耐久性等の特性が向上する
前記の強度が300kgf/mm2 未満であると、2種の波付け加工を施したものであっても、タイヤ加工中に波形形状が崩れ易く、伸びが発生し易くて、安定した物性を持つベルト層が得られない。
【0012】
さらに前記の切断時伸度が5%を越えると、タイヤベルト層での使用において、耐摩耗性が悪化し、またコーナリングパワーが得られず、操縦安定性が低下する。また切断時伸度が3%未満であると、ベルト折れが生じ易く耐久性が急激に低下する。
【0013】
請求項2の発明は、前記の空気入りタイヤにおいて、ベルト層が、補強材の方向が交叉する2層のカットベルトからなり、これら両ベルトの補強材が、その厚み方向に振幅を有する前記の波付け加工が施されてなるものである。
【0014】
請求項3の発明は、前記のベルト層が、補強材の方向が交叉する2層のカットベルトと、その上にタイヤ周方向に対し実質的に0°でスパイラル巻したベルトとからなり、前記スパイラル巻のベルトの補強材が、その厚み方向に振幅を有する前記の波付け加工が施されてなるものである。
【0015】
請求項4の発明は、前記の空気入りタイヤのベルト層にいて、波付け加工された補強材の複数の異なった捲縮率の部分が、振幅およびピッチのいずれか一方もしくは双方の変化により捲縮率を異にしたものであることを特徴とする。
【0016】
【実施例】
次に本発明の実施形態を図面に基いて説明する。
【0017】
図1は、本発明の空気入りタイヤの第1の実施例の断面図、図2は同上のベルト層の少なくとも最外層のベルトに使用する波付け加工を施した補強材を拡大して示し、図3は同補強材を多数並列させてゴムで被覆した状態のベルトを拡大した断面図を示している。
【0018】
図1において、(1)はタイヤ(T)の内周に沿って両端部が両側のビード部(2)で折返されて支持されたカーカスプライであり、(3)はトレッド部(4)におけるカーカスプライ(1)の外側に配された複数層からなるベルト層である。
【0019】
前記カーカスプライ(1)は、コードをタイヤ幅方向センター(赤道)に対して約80〜90°の角度に配列したコード配列層からなり、コードとしては、ポリエステルやレーヨン等の有機繊維コードが用いられる。
【0020】
前記のベルト層(3)は、補強材の方向が交叉する2層のカットタイプのベルト(31)(32)からなる。これら両ベルト(31)(32)の補強材(5)は、高炭素鋼からなるスチール製のストレートのフィラメントで、強度が300kgf/mm2 の線状材を素材とし、図2に示すように、複数の異なった捲縮率の部分、例えば図のように大波部(5a)と小波部(5b)とが重複することなく所要長さ毎に交互に連続するように同一平面内での二次元の波形をなす波付け加工が施されてなる線状材よりなり、その切断時伸度が3〜5%である。
【0021】
前記の補強材(5)の複数の異なった捲縮率の部分は、振幅(W1 )(W2 )またはピッチ(P1 )(P2 )のいずれか一方もしくは双方を規則的または不規則に変化させることにより捲縮率を異にしたものであり、これによりこの単一のフィラメントの補強材(5)は、複数の捲縮率の組合せにより、図8の荷重−伸び特性図において(a)で示すように複数の変曲点を有することになる。なお、図8中の(c)はストレートフィラメントの特性を示している。
【0022】
また(d)は本発明の捲縮率の上限を越えたフィラメントの荷重〜伸び曲線で低荷重部の伸びが大きすぎる例である。
【0023】
前記の複数の異なった捲縮率の部分、例えば図の大波部(5a)と小波部(5b)とは、図2のように各々の波形の1ピッチ毎に変化して連続するものに限らず、複数ピッチ等の任意の長さ毎に変化させて連続させることができ、またストレート部を介して連続させる場合もある。
【0024】
そして、それぞれ図3に示すように前記の補強材(5)を、前記波付け加工の振幅の方向が厚み方向をなすように多数並列させて、これをゴム(6)により被覆して所定の厚みのシート体(30)とし、該シート体を前記2層のベルト(31)(32)に使用して、タイヤを構成する。
【0025】
図4および図5の実施例は、タイヤ(T)のベルト層(3)において、補強材が交叉する2層のベルト(31)(32)の層上に、前記同様の補強材(5)を並列させてゴム(6)で被覆したリボン(33)を、前記補強材(5)がタイヤ周方向に対し実質的に0°の角度方向をなすようにスパイラル巻で2層に連続して巻回した場合を示している。(34)はそのスパイラル巻の最外層のベルトを示す。
【0026】
この実施例においても、前記のリボン(33)を構成する補強材(5)としては、強度が300kgf/mm2 以上のスチール製のフィラメントの線状材で、上記同様に2種の捲縮率の部分が交互に重複することなく連続するように波付け加工を施した切断時伸度が3〜5%の線状材を用いる。そして前記の補強材(5)を、図5のように前記波付け加工による振幅の方向が厚み方向をなすように並列させて、これをゴム(6)で被覆し所定幅、所定厚の長尺のリボン状に形成しておいて、このリボン(30)を前記のように通常のスチールコード等よりなるベルト(31)(32)の上にスパイラル巻してベルト(34)を形成する。
【0027】
このほか、ベルト層を構成する少なくとも1層のベルトが両端部を折曲げた所謂折曲げベルトよりなる場合、またベルト層が偏平な円環状ベルトよりなる場合においも、少なくとも最外層のベルトの補強材に上記同様の波付け加工を施した構造にして実施することができる。
【0028】
いずれの実施例においても、単一フィラメント構造の補強材(5)としては、乗用車用タイヤの場合には通常0.1〜1.0mmの線径のものが使用され、トラック、バス用タイヤ等の場合には0.1〜2.5mmの線径のものが使用される。もちろん前記以外の線径のフィラメントの使用も可能であり、さらに厚み方向に扁平状をなす平形線材を前記同様の2種の波付け加工を施したものにおいても、同様に実施可能である。
【0029】
なお、前記の複数の異なった捲縮率の部分を有する波付け加工は、図6のように歯形付きローラ(7)(8)間を通過させることにより行なうことができる。すなわち、加工前のストレートのフィラメント(50)を、前記一対の歯形ロール(7)(8)に導き通すことにより、該歯形ロール(7)(7)の外周に有する高低差のある歯形部(7a)(7b)および(8a)(8b)の噛み合せで、図2に示すように上下に凹凸状をなしかつ振幅および/またはピッチの異なる大波部(5a)と小波部(5b)とが交互に連続する波形状の捲縮加工が施される。
【0030】
この波形の振幅は、前記の歯形部(7a)(7b)および(8a)(8b)の噛み合せの深さによって決定でき、また波形のピッチは、歯形部(7a)(7b)および(8a)(8b)の間隔によって決定できる。
【0031】
また、補強材(5)の波付け加工の形状としては、図2のような略正弦波形のほか、略三角波、略台形波等の種々の波形状とすることができる。これらは図6の装置の歯形部の断面形状により設定できる。
【0032】
さらに上記の実施例においては、補強材(5)がスチール製の単一フィラメントよりなる場合を例にして説明したが、強度が300kgf/mm2 以上のものであれば、他のどのような素材の線状材であってもよい。いずれにしても、上記した波付け加工を施して、その切断時伸度を3〜5%に設定した補強材を、上記同様に配列してベルト層に使用することができる。
【0033】
上記の波付け加工は、補強材の材質等に応じて切断時伸度5%を越えない範囲で、次の式で求められる補強材全体としての捲縮率を0.05%以上に設定し、波付け加工を施したことによる効果を保持させるのが好ましい。中でも複数の捲縮率の部分のいずれもが0.05%以上の捲縮率を持つものが、耐疲労性を向上させる上で特に好適である。
【0034】
捲縮率(%)=100(B−A)/A
ここで、A;ストレート時の単位長さ当りの重量(g/m)
B:捲縮加工後の単位長さ当り重量(g/m)
またベルト層内における各補強材は、すべての補強材の捲縮率あるいは切断時伸度を同じにするほか、それぞれ個々に、あるいは1〜所要数本毎に、捲縮率や切断時伸度を異にすることもできる。
【0035】
上記のように構成されるタイヤ(T)は、前記ベルト層(3)のうちの少なくとも最外層のベルト(31)または(34)に使用されている補強材(5)が、強度300kgf/mm2 の線状材に、2種の捲縮率の部分が連続する二次元の波付け加工を施したものであって、切断時伸度が3〜5%であること、さらに波付け加工の振幅の方向がベルトの厚み方向をなすように配列されていることにより、波付け加工を施したことによる効果を失わず、しかもタイヤ加工中の形崩れや伸びが抑制され、また操縦安定性あるいは耐摩耗性や高速耐久性等といった各特性の全てが向上し満足できるものとなる。
【0036】
上記の効果を確認するために、下記のとおりの比較テストを行なった。
【0037】
(テスト1)
実施例1及び実施例2として、強度300kgf/mm2 、線径0.27mmのスチール製フィラメントを素材とし、図6の歯形ロール(7)(8)間を通して、下記表1に記載の条件で2種の異なった捲縮率の部分が交互に連続する波付け加工を施して図2のような補強材(5)を作り、この補強材(5)を、その振幅の方向が厚み方向をなすように多数並列して図3のようにゴム(6)で被覆して厚み1mmのシート体を得た。このシート体を、図1のようなベルト層の2層のベルトの双方に交叉角23°で使用し、サイズ195/60R16のタイヤを製作した。得られたタイヤについて、コーナリングパワー(CP)、上下軸加速度、ベルト折走行距離、ころがり抵抗(RR)を測定した。
【0038】
比較例として、下記表1に記載のとおり、強度280kgf/mm2 、線径0.27mmのスチール製フィラメントを素材とし、単一の波付け加工を施した補強材を、前記同様に2層のベルトに使用したもの(比較例1)と、2種の波付け加工を施した補強材を同様に2層のベルトに使用したもの(比較例2)、さらに強度300kgf/mm2 、線径0.27mmのスチール製フィラメントを素材とし、単一の波付け加工を施した補強材を前記同様に2層のベルトに用いたもの(比較例3)、さらに本発明と同様の強度300kgf/mm2 のフィラメントを素材として2種の波付け加工を施し、その切断時伸度を2.0%にした補強材を同様に2層のベルトに使用したもの(比較例4)、および切断時伸度5.5%にした補強材を2層のベルトに使用したもの(比較例5)についても、それぞれ上記同様に、コーナリングパワー(CP)、上下軸加速度、ベルト折走行距離およびころがり抵抗(RR)を測定した。
【0039】
これらの測定の結果は、下記の表1において、従来一般的な比較例1の場合を100として指数で表示した。このうち、コーナリングパワー(CP)と、ベルト折れ走行距離は、指数値が大きいものほど良好であることを示し、また上下軸加速度と、ころがり抵抗(RR)は、それぞれ数値が小さいものほど良好であることを示している。
【0040】
なお、コーナリングパワー(CP)については、ドラム試験機を使用し、タイヤを標準リムに装着し、規定の空気圧、荷重にして行ない、横すべり角を単位量変化させた時に生じるコーナリングフォースの変化量を測定(スベリ角±1°で測定)した。
【0041】
ベルト折走行距離については、空気圧1kg/cm2 とした2個のタイヤを並列に鉛直方向の軸で支持して接触させ、その荷重をJIS標準の50%に設定して、一方の軸を回転数400rpmで回転駆動させ、ベルト折れまでの走行距離を測定した。またころがり抵抗(RR)については、アメリカ自動車技術協会(SAE)の規格のJ1269の試験方法に準じて行なった。
【0042】
上下軸加速度は、突起付ドラム上で速度60km/Hでタイヤを走行させて、突起を乗り越した時に発生する上下軸方向の加速度を測定した。
【0043】
表1中で、2種の波付け加工を施したものについては、両者のピッチおよび振幅をあらわしている。
【0044】
【表1】

Figure 0003658662
上記の結果、補強材の強度が300kgf/mm2 であっても、単一の波付け加工によるものは、いずれも比較例1に比して殆ど効果がなく、また2種の波付け加工を施したものであって、補強材の強度が280kgf/mm2 のものもそれほど効果がない。さらに補強材の切断時伸度が2%の比較例4は、上下軸加速度が低下する上、ベルト折れが早期に発生することになって耐久性が著しく低下し、また切断時伸度が5.5%になると、耐久性および上下軸加速度が向上する一方、コーナリングパワーおよびころがり抵抗が低下する。
【0045】
これに対し、実施例1および実施例2は、コーナリングパワー、上下軸加速度、ベルト折走行距離およびころがり抵抗の全てが、比較例1に比して改善されている。
【0046】
(テスト2)
上記と同様の強度300kgf/mm2 、線径0.27mmのスチール製フィラメントを素材として2種の捲縮率の部分が連続する二次元の波付け加工を施した補強材を、その振幅の方向が厚み方向をなすように配列してゴムで被覆し、厚み1mm、幅9.5mmの長尺のリボンを作成した。そして2+2×0.25mmのスチールコードを配列しゴムで被覆したシート体を交叉角23°で2層のベルトに使用し、その上に前記のように製作された長尺のリポンを、タイヤ周方向に対し実質的に0°でスパイラル巻して図4に示す構造のサイズ195/60R16のタイヤを製作した。
【0047】
この構造のタイヤで、前記スパイラル巻のベルトの補強材の切断時伸度を、ピッチおよび振幅を変えることにより異にしたタイヤについて、それぞれの高速耐久性を比較した。この結果は、図7に示す通りとなった。
【0048】
なお、高速耐久性は、FMVSSの109 ステップ・スピードの試験方法に準じて行ない、故障したときまでの時間を調べた。図7におけるグラフの高速耐久力は、前記スパイラル巻のベルトがない場合を100とする指数値で表わしている。
【0049】
このテスト結果によれば、補強材の切断時伸度は5%以下が高速耐久性に優れることになる。その一方、切断時伸度が2%になると伸びや柔軟性がなくなり、かえって耐久性が低下するので、波付け加工した補強材の切断時伸度は3〜5%の範囲に設定するのがよい。
【0050】
(テスト3)
強度300kgf/mm2 、線径0.27mmのスチール製フィラメントを素材とし、異なった捲縮率の部分のピッチを5/5mm、振幅を0.5/0.27mmとする2種の波付け加工を施した切断時伸度4.3%の補強材を、その振幅の方向が厚み方向をなすように並列してゴムで被覆した厚み1mmのシート体を作り、このシート体を2層のベルトに交叉角23°で使用したタイヤ(実施例3)と、前記補強材を、その振幅の方向を横方向(面方向)にして並列してゴムで被覆したシート体を作り、このシート体を同様に2層のベルトに使用したタイヤ(比較例a)と、さらに通常のスパイラル加工を施して切断時伸度4.3%にしたシート体を作り、このシート体を同様に2層のベルトに使用したタイヤ(比較例b)とについて、交叉角23°で2層のベルトに使用したタイヤを製作した。これらのタイヤの加硫によるエア入り不良状態(100本についての不良の割合)を調べた。その結果は下記の表2のとおりとなった。
【0051】
【表2】
Figure 0003658662
このように、二次元の波付け加工を施した補強材を用いるものであっても、その振幅の方向を層厚に対し横方向(面方向)にしたもの、およびスパイラル加工した補強材を使用したものは、いずれもエア入り不良が見られたが、前記二次元の波付け加工による振幅の方向を厚み方向にした本発明の実施例の場合、エア入り不良は見られなかった。
【0052】
したがって、本発明のように、複数の捲縮率の部分が連続する特殊な二次元の波付け加工を施した補強材を、その振幅の方向を厚み方向にして配列した構造とするのが、スパイラル加工に比して加工が容易で、加硫による不良も少なく、特に好適なものとなる。
【0053】
【発明の効果】
上記したように本発明の空気入りタイヤによれば、前記ベルト層における少なくとも最外層の補強材が所定強度および切断時伸度を持つ特殊な二次元の波付け加工を施したものであるから、波付け加工した補強材を用いたことによる効果を充分に発揮でき、複雑かつ任意の伸び特性を持ち、タイヤ加工中の波形の崩れや伸びが発生しにくく、安定した物性を持つベルト層を構成でき、タイヤ性能上犠牲になる特性がなくなり、操縦安定性、耐摩耗性、耐久性等の特性が向上する。
【図面の簡単な説明】
【図1】本発明の空気入りタイヤの1実施例を示す略示断面図である。
【図2】同上のタイヤのベルト層に使用する補強材の1実施例を示す一部の拡大正面図である。
【図3】同上の補強材を並列しゴムで被覆したシート体の一部の拡大断面図である。
【図4】本発明の空気入りタイヤの他の実施例を示す一部の略示断面図である。
【図5】同上のタイヤベルト層に使用する補強材を用いたリボンの拡大断面図である。
【図6】波付け加工方法の1例を示す概略説明図である。
【図7】スパイラル巻によるベルトの補強材の切断時伸度を変えた場合の高速耐久性の比較を示すグラフである。
【図8】タイヤ用補強材の荷重−伸び特性図である。
【符号の説明】
(1) カーカスプライ
(2) ビード部
(3) ベルト層
(30) シート体
(31)(32) ベルト
(33) リボン
(34) スパイラル巻のベルト
(5) 補強材
(5a) 大波部
(5b) 小波部
(6) ゴム[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to pneumatic tires for automobiles.
[0002]
[Prior art and problems to be solved by the invention]
In pneumatic tires for automobiles such as radial tires, a number of reinforcing materials made of linear materials such as steel or synthetic resin filaments or cords made of high carbon steel are arranged in parallel in the inner reinforcing layer such as a belt layer. Then, it is embedded in a rubber material and used as a sheet.
[0003]
As a reinforcing element in this tire reinforcing layer, a linear material in a straight form is generally used, but there are problems such as poor stretch and flexibility, and poor shock absorption and fatigue resistance. For example, it is conceivable to use a reinforcing material that is made of high carbon steel and is made of a single filament structure made of steel and subjected to wave-like or spiral shaping (so-called crimping) (for example, ▲ (1) Japanese Patent Laid-Open No. 4-304319, (2) Japanese Utility Model Laid-Open No. 4-84395).
[0004]
However, a reinforcing material such as a steel filament subjected to the crimping process has a problem in elongation characteristics under a low load load, although the flexibility is increased. For example, when a tensile test is performed on a shaped filament, the wave shape or spiral shape of the shaping process is first straightened by the load of the tensile load. An inflection point (first elastic limit) appears at the cut position. This inflection point exists in a relatively low load region as shown by (b) in the load-elongation characteristic diagram of FIG. Therefore, when a load exceeding the above inflection point is applied, the wave shape and spiral shape due to crimping will not be restored to the original state, and permanent deformation will occur and it will not be different from the case where a straight filament is used. become.
[0005]
Also, if the inflection point due to the primary elastic limit is close to the lift rate during tire vulcanization, the physical properties after vulcanization will be the same as when using a straight reinforcing material. The feature due to the use of the reinforcing material that has been subjected to the attaching process cannot be exhibited.
[0006]
In particular, in the case disclosed in the above (1), since the shaping rate is 130 to 300% and the cut elongation becomes large, when this is used for a tire belt layer, the wear resistance and cornering power are increased. There is a disagreement.
[0007]
In order to solve the above-mentioned problems, a filament is proposed that combines two types of shaping, a small spiraling process with a substantially spiral shape and a relatively large waviness that is different from the shape of the bowing. However, in this case, there is a large swell at the time of the filament wire, but the swell does not extend due to the tension when embedding in rubber or the force that is applied when handling the process after embedding. As a result, at the time of the product tire, it becomes a state that is not different from the conventional filament having no undulation subjected to the spiral processing.
[0008]
In addition, when the reinforcing material subjected to the spiral processing is arranged and used for the belt layer, there is a possibility that an air accumulation defect may occur in the vulcanized tire.
[0009]
The present invention has been made in view of the above, and the reinforcing material of the outermost layer in the belt layer is subjected to a special corrugation process in which portions having different crimping ratios are combined, and this reinforcing material is used. Thus, the present invention provides a pneumatic tire that can sufficiently exhibit the effects of the above, leave moderate elongation during production, and is excellent in handling stability, wear resistance, and durability.
[0010]
[Means for Solving the Problems]
The present invention is a pneumatic tire that solves the above-mentioned problems. The invention of claim 1 is a linear material in which at least the outermost layer in the belt layer of the tire has a strength of 300 kgf / mm 2 or more, A corrugated process that forms a two-dimensional waveform in the same plane so that portions with different crimping rates are continuous, and a linear material whose elongation at cutting is 3 to 5% is used as a reinforcing material, It is characterized by comprising a belt in which the reinforcing material is arranged so that the direction of amplitude of the corrugation processing is the thickness direction.
[0011]
Thereby, even if the reinforcing material of at least the outermost layer in the belt layer has a plurality of inflection points in load-elongation characteristics, even if one of the inflection points of the reinforcing material is in the vicinity of the lift rate during tire vulcanization. The vulcanized tire can have an inflection point, and it is difficult for the corrugation to collapse or stretch during processing of the tire, making it possible to configure a belt layer with stable physical properties, and there is no sacrifice in terms of tire performance. If the strength, which improves characteristics such as handling stability, wear resistance, and durability, is less than 300 kgf / mm 2 , the corrugated shape during tire processing even if two types of corrugation processing are applied The belt layer easily breaks down and easily stretches, and a belt layer having stable physical properties cannot be obtained.
[0012]
Further, if the elongation at break exceeds 5%, wear resistance deteriorates in use in a tire belt layer, cornering power cannot be obtained, and steering stability is lowered. Further, if the elongation at cutting is less than 3%, the belt is likely to be broken and the durability is drastically lowered.
[0013]
According to a second aspect of the present invention, in the pneumatic tire, the belt layer includes a two-layer cut belt in which the directions of the reinforcing members intersect, and the reinforcing members of both belts have an amplitude in the thickness direction. Corrugation is applied.
[0014]
According to a third aspect of the present invention, the belt layer includes a two-layer cut belt in which the directions of the reinforcing material intersect, and a belt wound on the belt substantially spirally at 0 ° with respect to the tire circumferential direction. A spirally wound belt reinforcing material is subjected to the corrugating process having an amplitude in the thickness direction.
[0015]
According to a fourth aspect of the present invention, in the belt layer of the pneumatic tire, a plurality of different crimped portions of the corrugated reinforcing material are caused by a change in one or both of amplitude and pitch. It is characterized by having a different reduction ratio.
[0016]
【Example】
Next, embodiments of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a cross-sectional view of a pneumatic tire according to a first embodiment of the present invention, and FIG. 2 is an enlarged view showing a corrugated reinforcing material used for at least the outermost belt of the above belt layer. FIG. 3 shows an enlarged cross-sectional view of the belt in a state where a large number of the reinforcing members are arranged in parallel and covered with rubber.
[0018]
In FIG. 1, (1) is a carcass ply in which both ends are folded and supported by bead portions (2) on both sides along the inner periphery of the tire (T), and (3) is in the tread portion (4). It is a belt layer consisting of a plurality of layers arranged on the outside of the carcass ply (1).
[0019]
The carcass ply (1) includes a cord arrangement layer in which cords are arranged at an angle of about 80 to 90 ° with respect to the center (equator) in the tire width direction. As the cords, organic fiber cords such as polyester and rayon are used. It is done.
[0020]
The belt layer (3) is composed of two layers of cut type belts (31) and (32) in which the directions of the reinforcing material intersect. The reinforcing material (5) of these belts (31) and (32) is a straight filament made of steel made of high carbon steel, and is made of a linear material having a strength of 300 kgf / mm @ 2, as shown in FIG. Two-dimensional in the same plane so that the parts with different crimping rates, for example, the large wave part (5a) and the small wave part (5b) are alternately repeated for each required length without overlapping as shown in the figure It is made of a linear material that has been subjected to a corrugating process that forms a waveform, and its elongation at cutting is 3 to 5%.
[0021]
A plurality of different crimp ratio portions of the reinforcing member (5) change either or both of amplitude (W1) (W2) and pitch (P1) (P2) regularly or irregularly. Thus, the single filament reinforcing material (5) is indicated by (a) in the load-elongation characteristic diagram of FIG. 8 by a combination of a plurality of crimp rates. Thus, it has a plurality of inflection points. In addition, (c) in FIG. 8 has shown the characteristic of the straight filament.
[0022]
Further, (d) is an example in which the elongation of the low load portion is too large in the filament load-elongation curve exceeding the upper limit of the crimp rate of the present invention.
[0023]
The plurality of different crimp ratio portions, for example, the large wave portion (5a) and the small wave portion (5b) in the figure are limited to those that change continuously for each pitch of each waveform as shown in FIG. However, it can be changed for every arbitrary length such as a plurality of pitches, and may be continued through a straight portion.
[0024]
Then, as shown in FIG. 3, a large number of the reinforcing members (5) are juxtaposed in parallel so that the direction of the amplitude of the corrugation process is in the thickness direction, and this is covered with rubber (6). A thick sheet body (30) is used, and the sheet body is used for the two-layer belts (31) and (32) to constitute a tire.
[0025]
4 and 5 show that the same reinforcing material (5) as described above is formed on the belt layer (3) of the tire (T) on the layers of the two belts (31) and (32) intersected by the reinforcing material. The ribbon (33) covered with rubber (6) in parallel is spirally wound in two layers so that the reinforcing material (5) forms an angle direction of substantially 0 ° with respect to the tire circumferential direction. The case of winding is shown. (34) shows the outermost belt of the spiral winding.
[0026]
Also in this embodiment, the reinforcing material (5) constituting the ribbon (33) is a steel filament linear material having a strength of 300 kgf / mm 2 or more. A linear material having an elongation at cutting of 3 to 5%, which has been subjected to corrugation so that these portions are continuous without alternately overlapping, is used. Then, the reinforcing member (5) is juxtaposed so that the direction of the amplitude by the corrugation processing is the thickness direction as shown in FIG. 5, and this is covered with the rubber (6), and has a predetermined width and a predetermined thickness. The ribbon (30) is spirally wound on the belt (31) (32) made of a normal steel cord or the like as described above to form the belt (34).
[0027]
In addition, when at least one belt constituting the belt layer is formed of a so-called bent belt having both ends bent, or when the belt layer is formed of a flat annular belt, at least the outermost belt is reinforced. It can be carried out with a structure in which the same corrugation processing is applied to the material.
[0028]
In any of the examples, as the reinforcing material (5) having a single filament structure, in the case of a tire for a passenger car, one having a wire diameter of 0.1 to 1.0 mm is usually used. In this case, a wire having a wire diameter of 0.1 to 2.5 mm is used. Of course, filaments having a wire diameter other than those described above can also be used, and can also be implemented in the same manner even when a flat wire having a flat shape in the thickness direction is subjected to the same two types of corrugation.
[0029]
The corrugation process having a plurality of portions having different crimping rates can be performed by passing between the toothed rollers (7) and (8) as shown in FIG. That is, by guiding the straight filament (50) before processing through the pair of tooth profile rolls (7) (8), a tooth profile portion having a height difference on the outer periphery of the tooth profile rolls (7) (7) ( 7a) By engaging (7b) and (8a) (8b), the large wave part (5a) and the small wave part (5b) are uneven as shown in FIG. A continuous wave-shaped crimping process is applied.
[0030]
The amplitude of this waveform can be determined by the meshing depth of the tooth profiles (7a) (7b) and (8a) (8b), and the pitch of the waveform is determined by the tooth profiles (7a) (7b) and (8a) (8b) can be determined by the interval.
[0031]
Further, the corrugated shape of the reinforcing material (5) can be various wave shapes such as a substantially triangular wave and a substantially trapezoidal wave in addition to the substantially sinusoidal waveform as shown in FIG. These can be set by the cross-sectional shape of the tooth profile portion of the apparatus of FIG.
[0032]
In still above embodiment, although the reinforcing member (5) has been described as an example a case consisting of a single filament of steel, as long as the strength of 300 kgf / mm 2 or more, such as any other material It may be a linear material. In any case, the above-described corrugating process can be used for the belt layer by arranging the reinforcing members whose elongation at break is set to 3 to 5% in the same manner as described above.
[0033]
In the above corrugation processing, the crimp rate as a whole reinforcing material obtained by the following formula is set to 0.05% or more within a range not exceeding 5% at the time of cutting according to the material of the reinforcing material. It is preferable to retain the effect obtained by applying the corrugation process. Among them, those having a crimp rate of 0.05% or more in any of a plurality of crimp rate portions are particularly suitable for improving fatigue resistance.
[0034]
Crimp rate (%) = 100 (B−A) / A
Where A: weight per unit length when straight (g / m)
B: Weight per unit length after crimping (g / m)
In addition, each reinforcing material in the belt layer has the same crimp rate or elongation at cutting of all the reinforcing materials, and individually or every 1 to several required crimps, the elongation at cutting. Can be different.
[0035]
In the tire (T) configured as described above, the reinforcing material (5) used in at least the outermost belt (31) or (34) of the belt layer (3) has a strength of 300 kgf / mm. 2 linear material is subjected to two-dimensional corrugation processing in which two types of crimp ratios are continuous, and the elongation at cutting is 3 to 5%. By arranging so that the direction of the amplitude is in the thickness direction of the belt, the effect of applying the corrugation processing is not lost, and the deformation and elongation during tire processing are suppressed, and the steering stability or All the characteristics such as wear resistance and high-speed durability are improved and satisfied.
[0036]
In order to confirm the above effect, the following comparative test was performed.
[0037]
(Test 1)
As Example 1 and Example 2, a steel filament having a strength of 300 kgf / mm 2 and a wire diameter of 0.27 mm was used as a raw material, and was passed through the tooth rolls (7) and (8) in FIG. 6 under the conditions described in Table 1 below. A reinforcing material (5) as shown in FIG. 2 is formed by corrugating processing in which two different crimping rate portions are alternately continued, and this reinforcing material (5) has an amplitude direction in the thickness direction. As shown in FIG. 3, the sheet was covered with rubber (6) as shown in FIG. This sheet body was used at a crossing angle of 23 ° for both belts of a belt layer as shown in FIG. 1 to produce a tire of size 195 / 60R16. About the obtained tire, cornering power (CP), vertical axis acceleration, belt folding distance, and rolling resistance (RR) were measured.
[0038]
As a comparative example, as described in Table 1 below, a reinforcing material made of a steel filament having a strength of 280 kgf / mm 2 and a wire diameter of 0.27 mm and subjected to a single corrugation process is formed in the same manner as described above. What was used for the belt (Comparative Example 1), and what was also used for the two-layered belt with the reinforcing material subjected to two types of corrugation processing (Comparative Example 2), and further had a strength of 300 kgf / mm 2 and a wire diameter of 0 A reinforcing material made of 27 mm steel filament and subjected to a single corrugation process is used for a two-layer belt as in the above (Comparative Example 3), and the strength is 300 kgf / mm 2 as in the present invention. Two types of corrugated materials were used as a raw material, and a reinforcing material having a 2.0% elongation at break was similarly used for a two-layer belt (Comparative Example 4), and the elongation at break 5.5% of reinforcing material with two layers For even those used in the belt (Comparative Example 5), in the same manner as described above, respectively, the cornering power (CP), upper and lower shaft acceleration, the belt folding mileage and rolling resistance of the (RR) were measured.
[0039]
The results of these measurements are shown as indexes in Table 1 below, where 100 is the value of Conventional Comparative Example 1. Of these, the cornering power (CP) and the belt folding distance are better as the index value is larger, and the vertical axis acceleration and rolling resistance (RR) are better as the numerical values are smaller. It shows that there is.
[0040]
For cornering power (CP), the amount of change in cornering force that occurs when a drum tester is used, the tire is mounted on a standard rim, the specified air pressure and load are applied, and the side slip angle is changed by a unit amount. Measurement (measured at a sliding angle of ± 1 °).
[0041]
Regarding the belt folding travel distance, two tires with air pressure of 1 kg / cm 2 are supported in parallel by a vertical axis, the load is set to 50% of JIS standard, and one axis rotates. The belt was rotated at several 400 rpm, and the travel distance until the belt broke was measured. The rolling resistance (RR) was determined in accordance with the test method of J1269 of the American Automobile Engineering Association (SAE) standard.
[0042]
The vertical axis acceleration was measured by measuring the acceleration in the vertical axis direction generated when the tire was run on a drum with a protrusion at a speed of 60 km / H and the bump was passed over the protrusion.
[0043]
In Table 1, the pitches and amplitudes of the two types of corrugation processing are shown.
[0044]
[Table 1]
Figure 0003658662
As a result, even if the strength of the reinforcing material is 300 kgf / mm 2 , the single corrugation process is almost ineffective compared to Comparative Example 1, and two kinds of corrugation processes are performed. Even if the strength of the reinforcing material is 280 kgf / mm 2 , it is not so effective. Further, in Comparative Example 4 in which the elongation of the reinforcing material at the time of cutting is 2%, the vertical axis acceleration is lowered, the belt breaks at an early stage, the durability is remarkably lowered, and the elongation at the time of cutting is 5 At 0.5%, durability and vertical axis acceleration are improved, while cornering power and rolling resistance are reduced.
[0045]
On the other hand, in Example 1 and Example 2, all of cornering power, vertical axis acceleration, belt folding travel distance, and rolling resistance are improved as compared with Comparative Example 1.
[0046]
(Test 2)
The direction of the amplitude of a reinforcing material that has been subjected to two-dimensional corrugation processing using a steel filament of strength 300 kgf / mm 2 and a wire diameter of 0.27 mm as described above in which two types of crimp ratios are continuous. Were arranged in the thickness direction and covered with rubber to produce a long ribbon having a thickness of 1 mm and a width of 9.5 mm. Then, a sheet body of 2 + 2 × 0.25 mm steel cords arranged and covered with rubber is used for a two-layer belt at a crossing angle of 23 °, and a long ribbon manufactured as described above is used on the tire circumference. A tire of size 195 / 60R16 having the structure shown in FIG. 4 was manufactured by spiral winding at substantially 0 ° with respect to the direction.
[0047]
The tires having this structure were compared with each other in terms of the high-speed durability of the tires in which the elongation at break of the reinforcing material of the spiral wound belt was changed by changing the pitch and amplitude. The result was as shown in FIG.
[0048]
The high speed durability was determined according to the FMVSS 109 step speed test method, and the time until failure was examined. The high-speed durability in the graph in FIG. 7 is represented by an index value where 100 is the case where there is no spiral wound belt.
[0049]
According to this test result, the elongation at break of the reinforcing material is 5% or less, and the high-speed durability is excellent. On the other hand, if the elongation at break becomes 2%, the elongation and flexibility are lost, and the durability is rather lowered. Therefore, the elongation at break of the corrugated reinforcing material is set in the range of 3 to 5%. Good.
[0050]
(Test 3)
Two types of corrugation processing using a steel filament with a strength of 300 kgf / mm 2 and a wire diameter of 0.27 mm, a pitch of 5/5 mm and an amplitude of 0.5 / 0.27 mm with different crimp rates. A sheet material with a thickness of 1 mm is formed by coating a reinforcing material with an elongation of 4.3% at the time of cutting in parallel with rubber so that the direction of the amplitude is the thickness direction. A tire body (Example 3) used at a crossing angle of 23 ° and a reinforcing body made of a rubber sheet in parallel with the direction of amplitude of the tire in the lateral direction (plane direction) were made. Similarly, a tire (Comparative Example a) used for a two-layer belt and a sheet body that is further subjected to normal spiral processing to an elongation of 4.3% at the time of cutting are formed. For the tire used in comparison (Comparative Example b) It was manufactured tires used in the belt of two layers in square 23 °. These tires were examined for poor air entry due to vulcanization (percentage of defects for 100 tires). The results are shown in Table 2 below.
[0051]
[Table 2]
Figure 0003658662
In this way, even if a reinforcing material that has been subjected to two-dimensional corrugation processing is used, the one whose amplitude direction is transverse to the layer thickness (plane direction) and a spiral processed reinforcing material are used. In all of the examples, defective air entry was observed, but in the case of the example of the present invention in which the direction of amplitude by the two-dimensional corrugation processing was in the thickness direction, no defective air entry was observed.
[0052]
Therefore, as in the present invention, the reinforcing material subjected to a special two-dimensional corrugation process in which a plurality of crimp rate portions are continuous has a structure in which the direction of the amplitude is arranged in the thickness direction. Compared with spiral processing, processing is easy, and there are few defects due to vulcanization, which makes it particularly suitable.
[0053]
【The invention's effect】
As described above, according to the pneumatic tire of the present invention, the reinforcing material of at least the outermost layer in the belt layer is subjected to a special two-dimensional corrugation process having a predetermined strength and elongation at break. A belt layer with stable physical properties that can fully demonstrate the effects of using corrugated reinforcement, has complex and arbitrary elongation characteristics, is less likely to cause waveform collapse and elongation during tire processing This eliminates the characteristics that are sacrificed in terms of tire performance and improves characteristics such as steering stability, wear resistance, and durability.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing one embodiment of a pneumatic tire of the present invention.
FIG. 2 is a partially enlarged front view showing an embodiment of a reinforcing material used for the belt layer of the tire.
FIG. 3 is an enlarged cross-sectional view of a part of a sheet body in which the same reinforcing materials are covered and covered with rubber.
FIG. 4 is a partial schematic cross-sectional view showing another embodiment of the pneumatic tire of the present invention.
FIG. 5 is an enlarged cross-sectional view of a ribbon using a reinforcing material used for the tire belt layer.
FIG. 6 is a schematic explanatory view showing an example of a corrugating method.
FIG. 7 is a graph showing a comparison of high-speed durability when the elongation at the time of cutting the reinforcing material of the belt by spiral winding is changed.
FIG. 8 is a load-elongation characteristic diagram of a tire reinforcing material.
[Explanation of symbols]
(1) Carcass ply (2) Bead part (3) Belt layer (30) Sheet body (31) (32) Belt (33) Ribbon (34) Spiral wound belt (5) Reinforcement material (5a) Large wave part (5b ) Wavelet (6) Rubber

Claims (5)

タイヤのベルト層における少なくとも最外層が、300kgf/mm2 以上の強度を持つ線状材であって、複数の異なった捲縮率の部分が連続するように同一平面内での二次元の波形をなす波付け加工が施され、その切断時伸度が3〜5%である線状材を補強材とし、該補強材を前記波付け加工の振幅の方向が厚み方向をなすように配列したベルトよりなることを特徴とする空気入りタイヤ。At least the outermost layer of the belt layer of the tire is a linear material having a strength of 300 kgf / mm 2 or more, and a two-dimensional waveform in the same plane so that a plurality of portions having different crimping rates are continuous. A belt in which a corrugating process is performed and a linear material having an elongation at cutting of 3 to 5% is used as a reinforcing material, and the reinforcing material is arranged so that the direction of the amplitude of the corrugating process is in the thickness direction A pneumatic tire characterized by comprising: ベルト層が、補強材の方向が交叉する2層のカットベルトからなり、これら両ベルトの補強材が、その厚み方向に振幅を有する波付け加工が施されてなる請求項1に記載の空気入りタイヤ。The pneumatic layer according to claim 1, wherein the belt layer is composed of two layers of cut belts in which the directions of the reinforcing material intersect, and the reinforcing material of both belts is subjected to corrugation processing having an amplitude in the thickness direction. tire. ベルト層が、補強材の方向が交叉する2層のカットベルトと、その上にタイヤ周方向に対し実質的に0°でスパイラル巻したベルトとからなり、前記スパイラル巻のベルトの補強材が、その厚み方向に振幅を有する波付け加工が施されてなる請求項1に記載の空気入りタイヤ。The belt layer is composed of a two-layer cut belt in which the direction of the reinforcing material intersects, and a belt wound on the belt substantially spirally at 0 ° with respect to the tire circumferential direction. The pneumatic tire according to claim 1, wherein corrugation processing having an amplitude in the thickness direction is performed. 波付け加工された補強材の複数の異なった捲縮率の部分が、振幅およびピッチのいずれか一方もしくは双方の変化により捲縮率を異にしたものである請求項1〜3のいずれか1項に記載の空気入りタイヤ。4. A plurality of different crimp ratio portions of the corrugated reinforcing material have different crimp ratios due to changes in either or both of amplitude and pitch. The pneumatic tire according to item. 下記の式で求められる補強材全体としての捲縮率が0.05%以上である請求項1〜4のいずれか1項に記載の空気入りタイヤ。
捲縮率(%)=100(B−A)/A
ここで、A:ストレート時の単位長さ当りの重量(g/m)
B:捲縮加工後の単位長さ当り重量(g/m)
The pneumatic tire according to any one of claims 1 to 4, wherein a crimp rate as a whole reinforcing material calculated by the following formula is 0.05% or more.
Crimp rate (%) = 100 (B−A) / A
Where A: Weight per unit length when straight (g / m)
B: Weight per unit length after crimping (g / m)
JP03916597A 1997-02-24 1997-02-24 Pneumatic tire Expired - Fee Related JP3658662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03916597A JP3658662B2 (en) 1997-02-24 1997-02-24 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03916597A JP3658662B2 (en) 1997-02-24 1997-02-24 Pneumatic tire

Publications (2)

Publication Number Publication Date
JPH10236108A JPH10236108A (en) 1998-09-08
JP3658662B2 true JP3658662B2 (en) 2005-06-08

Family

ID=12545519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03916597A Expired - Fee Related JP3658662B2 (en) 1997-02-24 1997-02-24 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP3658662B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241282A (en) * 1997-12-25 1999-09-07 Tokyo Seiko Co Ltd Steel cord and steel radial tire
JP4656743B2 (en) * 2001-02-28 2011-03-23 金井 宏彰 Winding products of steel filament for tire reinforcement
JP4392139B2 (en) * 2001-05-09 2009-12-24 住友ゴム工業株式会社 Metal cord and pneumatic tire using the same
FR2842142A1 (en) * 2002-07-15 2004-01-16 Michelin Soc Tech TIRE FOR HEAVY VEHICLES
JP2008168807A (en) * 2007-01-12 2008-07-24 Bridgestone Corp Pneumatic tire, and method of manufacture thereof
BRPI0822862A8 (en) * 2008-06-30 2016-01-05 Michelin Rech Tech TIRE PATCH, TIRE PATCH CONTAINING NON-WOVEN REINFORCEMENTS, AND, METHOD FOR REPAIRING A DAMAGED AREA OF A TIRE
JP2019217956A (en) * 2018-06-21 2019-12-26 株式会社ブリヂストン Pneumatic tire

Also Published As

Publication number Publication date
JPH10236108A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
EP0335588B2 (en) Radial tyre
EP1066989B1 (en) Pneumatic tyre
JP4283463B2 (en) Pneumatic tire
JP4402198B2 (en) Steel cord for reinforcing rubber articles, method for producing the same, and pneumatic radial tire
JP4392139B2 (en) Metal cord and pneumatic tire using the same
JP3658662B2 (en) Pneumatic tire
CN114829703B (en) Metal reinforcing cord for a tyre of a vehicle wheel
JPH0913288A (en) Steel cord for reinforcing rubber article and pneumatic radial tire
JP2000198311A (en) Tire reinforcing material and pneumatic tire
JP3683065B2 (en) Pneumatic radial tire
JPH06192979A (en) Pneumatic tire
JP4153127B2 (en) Pneumatic tire
JP4116201B2 (en) Pneumatic radial tire
JPH06297905A (en) Pneumatic radial tire
JP2000016012A (en) Pneumatic tire
JP5280426B2 (en) Pneumatic tire
JP4471242B2 (en) Pneumatic radial tire
JP3523953B2 (en) Pneumatic radial tire
JP4132515B2 (en) Pneumatic radial tire
JP7218493B2 (en) pneumatic tire
JP3308029B2 (en) Motorcycle tires
JPH04334609A (en) Pneumatic radial tire for heavy load
JPH08282210A (en) Pneumatic radial tire
WO2020080446A1 (en) Tire
WO2020080445A1 (en) Tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees