JP3656481B2 - Threaded joint for oil well pipe formed with anti-rust oil composition and coating film - Google Patents

Threaded joint for oil well pipe formed with anti-rust oil composition and coating film Download PDF

Info

Publication number
JP3656481B2
JP3656481B2 JP27969599A JP27969599A JP3656481B2 JP 3656481 B2 JP3656481 B2 JP 3656481B2 JP 27969599 A JP27969599 A JP 27969599A JP 27969599 A JP27969599 A JP 27969599A JP 3656481 B2 JP3656481 B2 JP 3656481B2
Authority
JP
Japan
Prior art keywords
film
rust
rust preventive
pin
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27969599A
Other languages
Japanese (ja)
Other versions
JP2001099364A (en
Inventor
秀男 山本
和行 中筋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP27969599A priority Critical patent/JP3656481B2/en
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to EP00954946A priority patent/EP1211451B1/en
Priority to EP07020123A priority patent/EP1882874B1/en
Priority to PCT/JP2000/005661 priority patent/WO2001016516A1/en
Priority to CA002383894A priority patent/CA2383894C/en
Priority to AU67271/00A priority patent/AU6727100A/en
Publication of JP2001099364A publication Critical patent/JP2001099364A/en
Priority to US10/082,212 priority patent/US6679526B2/en
Priority to NO20020955A priority patent/NO336986B1/en
Application granted granted Critical
Publication of JP3656481B2 publication Critical patent/JP3656481B2/en
Priority to NO20141507A priority patent/NO337618B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、従来使用されてきたコンパウンドグリスを含む液体潤滑被膜の代わりに固体潤滑被膜を形成した油井管用ねじ継手の耐焼付き性の向上、防錆性向上、更に、締付けトルクの安定化に関するものである。
【0002】
【従来の技術】
油井掘削時に使用するチュービングやケーシングでは一般的にねじ継手が用いられている。通常、油井の深さは2000m〜3000mであるが、近年の海洋油田などの深油井では8000m〜10000mにも達する。
【0003】
これらの油井管を繋ぐねじ継手には、使用環境下で油井管および継手自体の重量に起因する軸方向引張力や内外面圧力などの複合した圧力や熱が作用するため、このような環境下においても破損することなく気密性を保持することが要求される。
【0004】
更に、チュービングやケーシングの降下作業時には、一度締め込んだ継手を緩め、再度締め直すことがあり、API (米国石油協会) ではチュービング継手においては10回の、ケーシング継手においては3回の締付け (メイクアップ) 、緩め戻し (ブレークアウト) を行ってもゴーリングと呼ばれる焼付きの発生が無く、気密性が保持されることが要求されている。
【0005】
ところで、ねじ継手としては、通常、油井管の端部に形成した雄ねじの先端にねじ無し金属接触部を形成し、これと、ねじ継手部材の内面の雌ねじの基部に形成したねじ無し金属接触部とをはめ合わせ、締め付けることによりねじ無し金属接触部同士を当接してメタルシール部を形成した構造で、ねじ部やねじ無し金属接触部に表面処理を施したねじ継手が使用される。また、締付けの際にはコンパウンドグリスを塗布して耐焼付き性と気密性の向上を図っている。
【0006】
しかしながら、コンパウンドグリス中にはPb、Znといった重金属粉が含まれているため、塗布されていたグリスが洗い流されるような状態が生じた場合には環境汚染を引き起こす懸念がある。また、コンパウンドグリスの塗布は作業環境を悪化させるとともに作業効率を低下させるている。従って、このようなコンパウンドグリスを使用しないねじ継手が望まれている。
【0007】
コンパウンドグリスを使用しないねじ継手として、特開平8−233164号公報、特開平9−72467号公報には、樹脂の固体潤滑被膜を形成したねじ継手が提示されている。
【0008】
【発明が解決しようとする課題】
しかしながら、上記公報に開示された固体潤滑被膜を形成したねじ継手は、コンパウンドグリスを用いる場合に比べ、締付けトルクが変動し易く締付けが不安定になるといった問題を抱えている。更に、ねじ継手は、工場出荷時から現地使用までの期間において、継手を防錆する作用がコンパウンドグリスを用いる場合に比べ劣り、錆の発生およびそれに伴う固体被膜の膨らみ、あるいは剥離が生じて継手締結時の締付けが一層不安定になり、焼付きが発生したり気密性が低下するという問題がある。
【0009】
図1は油井管出荷時の油井管とねじ継手部材の組立構成を模式的に示す概要図である。符号1Aは油井管、1Bはねじ継手部材、2はピン、3はボックス、4はねじ部を示す。
【0010】
図1に示すように、通常、油井管1Aは、その両端部外面に形成されたねじ部4を有するピン2の一方に、ねじ継手部材1Bの内面に形成されたねじ部4を有するボックスを締め付けた状態で出荷される。
【0011】
しかしながら、露出したピンやボックスは、錆が発生しやすい。出荷時から、防錆の目的を兼ねてコンパウンドグリスが塗布されている場合には、錆の発生は少ないが、固体潤滑被膜のみでコンパウンドグリスを使用しない場合には、その被膜の防錆性が低いため錆が発生し易い。
【0012】
錆は潤滑性に乏しく、また、表面に凹凸ができるので締付けの際の焼付きの原因となる。
【0013】
本発明の課題は、上記従来の問題を解決し、コンパウンドグリスを使用することなく、錆の発生を抑制し、締付けトルクの不安定を解消して耐焼付き性と気密性に優れた油井管用ねじ継手を提供することにある。
【0014】
更に、本発明の別の課題は、上記油井管用ねじ継手の防錆性を高めるために用いる防錆油組成物を提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため、固体潤滑被膜の形成とともに防錆被膜の形成を想到し、その防錆被膜に関する基礎的検討を行い以下の知見を得た。
【0016】
(イ)カルボン酸とアルカリ金属との塩やアルカリ土類金属との塩を含有した被膜は、常温で半固体状または固体状であり長期防錆に有効である。なお、以下、上記塩を単に「カルボン酸の金属塩」ともいう
(ロ)上記被膜は、鹸化価が高く、かつ全塩基価が高いほど長期防錆に有効である。
【0017】
(ハ)上記塩を含有し、更に、黒鉛、二硫化モリブデンや有機Mo化合物などの潤滑剤を含有した被膜は、継手締付けの際の接触面の摩擦係数を低下させ継手の締付けトルクを低位に安定させることができる。
【0018】
以上の基礎的検討結果を基に、固体潤滑被膜と防錆被膜とを形成したねじ継手の防錆性と潤滑性に関し、防錆性はJIS−Z2371で規定されている塩水噴霧試験により、また、潤滑性はリング/ブロック接触方式の摩擦試験により、更に詳細な検討を行い、以下の知見を得た。
【0019】
図2は、塩水噴霧試験による錆発生面積と鹸化価、全塩基価、アルカリ金属含有量、防錆被膜厚との関係を示すグラフで、同図(a)は錆発生面積と鹸化価、同図(b)は錆発生面積と全塩基価、同図(c)は錆発生面積とアルカリ金属含有量、同図(d)は錆発生面積と防錆被膜厚のグラフである。
【0020】
図3は、摩擦試験による摩擦係数と鹸化価、全塩基価、アルカリ金属含有量、防錆被膜厚との関係を示すグラフで、同図(a)は摩擦係数と鹸化価、同図(b)は摩擦係数と全塩基価、同図(c)は摩擦係数とアルカリ金属含有量、同図(d)は摩擦係数と防錆被膜厚のグラフである。なお、図2、図3において、防錆被膜はカルボン酸のアルカリ金属塩を含有する固体状被膜で、標準の被膜形成条件は、上記アルカリ金属塩の含有量が10mass%、鹸化価が50mgKOH/g、全塩基価が50mgKOH/g、被膜厚が10μmとした。
【0021】
(ニ)図2(a)〜(c)ならびに図3(a)〜(c)に示すように、防錆被膜は、鹸化価が20〜150mgKOH/g、全塩基価が15〜100mgKOH/g、アルカリ金属の含有量が2〜20mass%において、防錆性に優れ、かつ、摩擦係数が低下し良好な摩擦性能を示す。
【0022】
(ホ)カルボン酸の金属塩を含有した防錆被膜を形成する際、前記金属塩を有機溶剤で希釈し、希釈後の40℃での粘度が2〜30cStである防錆油を用いると、防錆油の付着性が向上する。
【0023】
(ヘ)固体潤滑被膜の上に防錆被膜を形成する場合には、図2(d)ならびに図3(d)に示すように、防錆被膜の厚さを1μm〜50μmとすることにより、防錆性と潤滑性の両方の性能を良好に保つことができる。
【0024】
(ト)ボックスとピンの一方に固体潤滑被膜を形成し、他方に防錆被膜を形成する場合には、防錆被膜の厚さは5μm〜50μmとすることにより、上記性能を良好に維持することができる。
【0025】
(チ)防錆被膜に黒鉛や二硫化モリブデンあるいは有機Mo化合物の潤滑剤を含有させると、摩擦係数が更に低く安定し、締付けトルクを一層低位に安定させることができる。その含有量は5〜30mass%である。
【0026】
また、本発明者らは、固体潤滑被膜を構成する潤滑剤とバインダ(結合剤)に関し下記の知見を得た。
【0027】
(リ)二硫化モリブデン、黒鉛や有機Mo化合物は優れた潤滑性を示す。
(ヌ)潤滑剤のバインダとして樹脂を用いることができる。
【0028】
(ル)チタンやシリコンなどの金属アルコキシド(M(OR)4、M:シリコンやチタンなどの金属、R:アルキル基)は、アルキル基を有するため有機物的な特性を示し、バインダとしての機能がある。この物質は大気中では不安定であり、水分を吸収して共加水分解が起こり、分解物はお互いに結合して網目構造のM−Oを骨格とした熱的に安定な無機高分子化合物に変化する。(1)式に代表的なその無機高分子化合物の分子構造式を例示する。
【0029】
【化1】

Figure 0003656481
【0030】
(オ)従って、潤滑剤にバインダとして上記金属アルコキシドを混合して塗布し、加湿処理を施すことにより、潤滑剤を含有し、M−Oを骨格とする無機高分子化合物の固体潤滑被膜を形成させることができる。
【0031】
本発明は、上記知見に基づいて完成されたもので、その要旨は以下の通りである。
【0032】
(1)カルボン酸のアルカリ金属塩および/またはカルボン酸のアルカリ土類金属塩を含有し、鹸化価が20〜150mgKOH/g、全塩基価が15〜100mgKOH/gで、アルカリ金属とアルカリ土類金属の含有量が合計で2〜20mass%であることを特徴とする油井管ねじ継手用防錆油組成物。
【0033】
(2)上記防錆油組成物は黒鉛と二硫化モリブデンと有機Mo化合物の1種以上からなる潤滑剤を5〜30mass%含有することを特徴とする上記(1)に記載の油井管ねじ継手用防錆油組成物。
【0034】
(3)ねじ部とねじ無し金属接触部とをそれぞれ有するボックスとピンとで構成されるねじ継手において、ボックスとピンのいずれか一方に形成された固体潤滑被膜と、他方に形成された防錆被膜とを有し、前記固体潤滑被膜が樹脂またはM(金属)−Oを骨格とする無機高分子化合物の被膜であり、前記防錆被膜が上記(1)項または(2)項に記載の防錆油組成物の被膜であることを特徴とする油井管用ねじ継手。
【0035】
(4)上記防錆被膜の厚さが5μm〜50μmであることを特徴とする上記(3)項に記載の油井管用ねじ継手。
【0036】
(5)ねじ部とねじ無し金属接触部とをそれぞれ有するボックスとピンとで構成されるねじ継手において、ボックスとピンの双方に形成された固体潤滑被膜と、ボックスとピンの少なくともいずれか一方の固体潤滑被膜の上に形成された防錆被膜とを有し、前記固体潤滑被膜が樹脂またはM(金属)−Oを骨格とする無機高分子化合物の被膜であり、前記防錆被膜が上記(1)項または(2)項に記載の防錆油組成物の被膜であることを特徴とする油井管用ねじ継手。
【0037】
(6)上記防錆被膜の厚さが1μm〜50μmであることを特徴とする上記(5)項に記載の油井管用ねじ継手。
【0038】
【発明の実施の形態】
以下、本発明の防錆油組成物と油井管用ねじ継手(以下、ねじ継手ともいう)の実施の形態を詳細に説明する。
最初に、本発明の防錆油組成物を構成する各要素について説明する。
【0039】
[カルボン酸の金属塩]
本発明の防錆油組成物はカルボン酸のアルカリ金属塩とカルボン酸のアルカリ土類金属塩を1種以上含有する。これらの金属塩は塩基性を有して防錆性に優れ、かつ潤滑性にも優れる。
【0040】
アルカリ金属として、ナトリウム、リチウムおよびカリウムを、また、アルカリ土類金属としては、カルシウム、マグネシウム、およびバリウムを挙げることができる。 カルボン酸としては、カルボキシル基が1のモノカルボン酸やカルボキシル基が2のジカルボン酸がよく、また、炭化水素基の炭素数は潤滑性や防錆性の観点から5〜19が好ましい。モノカルボン酸としては、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、リノレン酸、ナフテン酸、安息香酸などを挙げることができる。ジカルボン酸としては、スベリン酸、アゼライン酸、セバシン酸がある。
【0041】
[アルカリ金属とアルカリ土類金属の含有量]
アルカリ金属とアルカリ土類金属の含有量は合計で2mass%以上、20mass%以下である。含有量が2mass%未満や20mass%超では図3(c)に示すように摩擦係数が大きくなり潤滑性が低下する。また、2mass%未満では図2(c)に示すように防錆性が低く錆が発生しやすい。したがって、上記含有量が2mass%以上、20mass%以下である防錆油組成物の防錆被膜をねじ継手に形成することにより、ねじ継手の防錆性を高め、耐焼付き性を向上させることができる。なお、上記含有量は原子吸光分析法などで元素別に分析して求めることができる。
【0042】
[鹸化価]
鹸化価が20mgKOH/g未満では、図2(a)に示すように防錆性が低く錆が発生しやすく、更に、図3(a)に示すように摩擦係数が大きくなり潤滑性が低下する。また、鹸化価が150mgKOH/gを超えると、防錆被膜が硬質化して、き裂が入り易くなる。そのため、フレーク状に剥離が生じ防錆性が低下する。したがって、鹸化価が20mgKOH/g以上、150mgKOH/g以下である防錆油組成物の防錆被膜をねじ継手に形成することにより、防錆性を高め、耐焼付き性を向上させることができる。
【0043】
[全塩基価]
全塩基価が15mgKOH/g未満では、図2(b)に示すように防錆性が低く錆が発生しやすく、更に、図3(b)に示すように摩擦係数が大きくなり潤滑性が低下する。また、全塩基価が100mgKOH/gを超えると、図3(b)に示すように摩擦係数が大きくなり潤滑性が低下する。したがって、全塩基価が15mgKOH/g以上、100mgKOH/g以下の防錆油組成物の防錆被膜をねじ継手に形成することにより防錆性を高め、耐焼付き性を向上させることができる。
【0044】
[潤滑剤]
防錆油組成物は黒鉛、二硫化モリブデンおよび有機Mo化合物の1種または2種以上を混合した潤滑剤を5〜30mass%含有するのが望ましい。これらの潤滑剤は防錆油組成物の潤滑性を高め、耐焼付き性を向上させる作用がある。上記有機Mo化合物としては、下記(2)と(3)式にそれぞれ分子構造を示すMoジアルキルチオフォスヘートとMoジアルキルチオカルバメートなどを挙げることができる。
【0045】
【化2】
Figure 0003656481
【0046】
【化3】
Figure 0003656481
【0047】
上記潤滑剤の含有量が5mass%未満では潤滑性の向上効果が少なく、30mass%を超えると防錆油の被膜形成を阻害し、被膜がポーラスとなり防錆性が低下する。また、黒鉛や二硫化モリブデンは平均粒径が0.4μm以上、3μm以下の粉末とするとよい。0.4μm未満では潤滑性の向上効果が少なく、3μmを超えると防錆性が低下する。
【0048】
なお、本発明の防錆油組成物には、上記のカルボン酸の金属塩や潤滑剤の外にスルホン酸のアルカリ金属塩、スルホン酸のアルカリ土類金属塩、パラフィンワックス、ワックス酸化物エステル、高級脂肪酸モノエステル、天然ろうなどを含有させてもよい。
【0049】
スルホン酸のアルカリ金属塩やアルカリ土類金属塩は、塩基性を有し防錆性に優れており、例えば、石油留出成分中の芳香族成分をスルホン化して得られる石油スルホン酸または合成スルホン酸のアルカリ金属塩やアルカリ土類金属塩、アミン塩を挙げることができる。合成スルホン酸としては、ドデシルベンゼンスルホン酸、ジノニルナフタレンスルホン酸などがある。
【0050】
パラフィンワックスとしては分子量が150〜500のものがよい。
高級脂肪酸モノエステルとしては、ミリスチン酸、パルミチン酸、ステアリン酸、エライジン酸、アラキン酸、ベヘン酸、エルカ酸、リグノセリン酸、セロチン酸、モンタン酸、ラノリン酸などのカルボン酸と、オクチルアルコール、カプリルアルコール、ノニルアルコール、デシルアルコール、ラウリルアルコール、トリデシルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、イソステアリルアルコール、オレイルアルコール、デシルアルコール、セリルアルコール、メリシルアルコールなどとの合成モノエステルを挙げることができる。
【0051】
天然ろうとしては、カーナバろう、ラノリン、密ろう、木ろう、モンタンなどを挙げることができる。
【0052】
また、本発明の防錆油組成物に40℃での粘度が10〜50cStの鉱油あるいは合成鉱油を添加してもよい。
【0053】
次に、本発明の油井管用ねじ継手を構成する各要素について説明する。
図4は、本発明の油井管用ねじ継手の締付け部を模式的に示す概要図である。同図において、符号5はねじ無し金属接触部、6はショルダー部で、図1と同じ要素は同一の符号で示す。
【0054】
図5は、本発明の油性管用ねじ継手に係る固体潤滑被膜と防錆被膜の形成状況例を示す断面拡大図で、同図(a)はボックスのねじ無し金属接触部、同図(b)はピンのねじ無し金属接触部である。符号7は固体潤滑被膜、8はバインダ、9は潤滑剤、10は防錆被膜で、図4と同じ要素は同一の符号で示す。
【0055】
図6は、本発明の別の油井管用ねじ継手に係る固体潤滑被膜と防錆被膜の形成状況例を示す断面拡大図で、同図(a)はボックスのねじ無し金属接触部、同図(b)はピンのねじ無し金属接触部である。図4、5と同じ要素は同一の符号で示す。
【0056】
図4に示すように、本発明の油井管用ねじ継手は、ねじ継手部材の内面に形成されるねじ部4とねじ無し金属接触部5からなるボックス3と、油井管端部の外面に形成されるねじ部4とねじ無し金属接触部5からなるピン2とで構成される。
【0057】
更に、本発明のねじ継手においては、図5(a)、(b)に示すように、ピン2のねじ部とねじ無し金属接触部の双方の表面に潤滑剤9を樹脂や無機高分子化合物のバインダ8に分散混合した固体潤滑被膜7を形成し、ボックス3のねじ部とねじ無し金属接触部の双方の表面に防錆被膜10を形成する。なお、図示例は、ピン2に固体潤滑被膜7を形成し、ボックス3に防錆被膜10を形成する場合を示したが、ピンに防錆被膜を形成し、ボックスに潤滑被膜を形成してもよい。
【0058】
本発明の別のねじ継手は、図4に示すように、上記本発明のねじ継手と同様に構成され、更に、図6(a)、(b)に示すように、ピン2とボックス3の双方のねじ部とねじ無し金属接触部の双方の表面に潤滑剤9を樹脂や無機高分子化合物のバインダ8に分散混合した固体潤滑被膜7を形成し、更にピン2の固体潤滑被膜7の上に防錆被膜10を形成する。なお、図示例は、ピンに防錆被膜を形成する場合を示したが、ボックスに防錆被膜を形成してもよい。なお、以下、固体潤滑被膜を単に潤滑被膜ともいう。
【0059】
[潤滑剤]
潤滑剤は二硫化モリブデン、黒鉛、有機Mo化合物の1種を、あるいは2種以上を混合して用いる。これら潤滑剤は樹脂あるいはM−Oを骨格とする無機高分子化合物中に分散し、それらを介してねじ継手表面に強固に接着しており、かつ、締付け作業の際の締付け圧力で薄く伸ばされるため、潤滑被膜の潤滑性を高め、耐焼付き性を向上させる作用がある。したがって、コンパウンドグリスの使用なしでねじ継手の繰返しの締付けが可能となる。なお、有機Mo化合物としては、前記(2)式に示す分子構造式のMoジアルキルチオフォスヘートや前記(3)式に示すMoジアルキルチオカルバメートなどを用いることができる。
【0060】
[樹脂]
樹脂としては、二硫化モリブデンや黒鉛などの潤滑剤のバインダとしての機能を有し、耐熱性と適度な硬さと耐摩耗性を有する材料を用いる。このような材料には、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルサルホン、ポリエーテルエーテルケトンなどの熱硬化性樹脂やフェノール樹脂、ポリエチレン樹脂およびシリコン樹脂などを例示できる。好ましくは、熱硬化性樹脂である。
【0061】
[M−Oを骨格とする無機高分子化合物]
M−Oを骨格とする無機高分子化合物(以下、単に無機高分子化合物ともいう)としては、二硫化モリブデンや黒鉛などの潤滑剤のバインダとしての機能を有し、耐熱性と適度な硬さと耐摩耗性を有する材料を用いる。このような材料には、前記(1)式に例示する分子構造を備え、(1)式のアルキル基がメチル、エチル、イソプロピル、プロピル、イソブチルなどのアルキル基を備えたTi−O、Si−O、Zr−O、Mn−O、Ce−OやBa−Oなどを骨格とする無機高分子化合物を挙げることができる。好ましくは、Ti−Oを骨格とする無機高分子化合物である。更に好ましくは、アルキル基がメチルやエチルあるいはイソプロピルのTi−Oを骨格とする無機高分子化合物である。
【0062】
樹脂あるいは無機高分子化合物の含有量(A)と、二硫化モリブデンと黒鉛の合計の含有量(B)との重量比(B/A)は0.3以上、9.0以下とするのが望ましい。重量比が0.3未満では形成される潤滑被膜の潤滑性向上の効果が少なく、耐焼付き性の改善が不十分であり、また、重量比が9.0より大きくなると、固体潤滑被膜の密着性が低下し、特に潤滑被膜からの潤滑剤の剥離が著しいなどの問題が生じる。より好ましくは、重量比は0.5以上、7.0以下であり、更に好ましくは3.0以上、6.5以下である。
【0063】
潤滑被膜の厚さは5μm以上、30μm以下とすることが望ましい。潤滑被膜の厚さが5μm未満では潤滑性向上の効果が少なく、一方、30μmより大きくなると潤滑被膜形成の処理コストが嵩むとともに潤滑性向上の効果が飽和するため経済的に不利といった問題や潤滑被膜が剥離しやすくなるといった欠点がある。より好ましくは、潤滑被膜の膜厚は5μm以上、15μm以下であり、更に好ましくは6μm以上、10μm以下である。
【0064】
[防錆被膜]
防錆被膜は、前述の本発明の防錆油組成物を溶剤で希釈した防錆油を塗布することにより形成される防錆油組成物からなる被膜である。すなわち、防錆被膜は、カルボン酸のアルカリ金属塩とカルボン酸のアルカリ土類金属塩の1種以上を含有し、アルカリ金属とアルカリ土類金属の含有量の合計が2〜20mass%で、鹸化価が20〜150mgKOH/g、全塩基価が15〜100mgKOH/gであり、好ましくは、更に、黒鉛や二硫化モリブデンや有機Mo化合物の1種または2種以上からなる潤滑剤を5〜30mass%含有する。
【0065】
[防錆被膜厚]
防錆被膜の厚さが過小だと防錆効果が少なく、過大だと潤滑被膜の潤滑作用が阻害され、摩擦係数が高くなり、焼付きが発生する。したがって、図6に示すように、ピンとボックスの双方に潤滑被膜を形成し、その上に防錆被膜を形成する場合には、防錆被膜の厚さは1μm以上、50μm以下とする。また、図5に示すように、ピンとボックスの一方に潤滑被膜を形成し、他方に防錆被膜を形成する場合には、防錆被膜の厚さは5μm以上、50μm以下とする。すなわち、潤滑被膜の上に防錆被膜を形成する場合には、潤滑被膜の防錆効果が作用するため、防錆被膜厚の下限値を小さくすることができる。
【0066】
次に、本発明に係る潤滑被膜と防錆被膜の形成方法を、ピンとボックスの双方に無機高分子化合物の潤滑被膜を形成し、その潤滑被膜の上に防錆被膜を形成する例で説明する。
【0067】
潤滑被膜の形成においては、金属アルコキシドと二硫化モリブデンや黒鉛などの潤滑剤とに分散媒を加えて混合し、これらをピンとボックスの双方の表面に塗布し、更に加湿処理を施して共加水分解させて、無機高分子化合物の潤滑被膜を形成する。なお、樹脂の潤滑被膜を形成する場合は、例えば熱硬化性樹脂などの有機高分子材料と上記潤滑剤とに分散媒を加えて混合し、これらを上記と同様に塗布すればよい。次いで、本発明の防錆油組成物を有機溶剤で希釈した防錆油を、潤滑被膜の上に塗布し、防錆被膜を形成する。
【0068】
金属アルコキシドとしては、アルキル基がメチル、エチル、イソプロピル、プロピル、イソブチル、ブチルなどのアルキル基を備えたチタンやシリコンなどの金属アルコキシドを用いることができる。
【0069】
金属アルコキシドの分散剤としては、キシレン、塩化メチレン、イソプリピル、ブチルアルコールおよびメチルエチルケトンなどの低沸点液を単独にあるいは2種類以上組み合わせて用いることができる。
【0070】
樹脂材料の分散剤としては、トルエン、イソプロピルアルコールなどの低沸点液を単独にあるいは混合して用いることができる。
【0071】
加湿処理は、大気中に所定時間放置することにより行うことができるが、湿度が70%以上の雰囲気下で行うのが望ましい。更に、加湿処理後に加熱処理を行うことが望ましい。加熱処理により共加水分解が促進され、加水分解物であるアルキル物質の潤滑被膜内からの排出を促進することができ、潤滑被膜の密着性が強固となり、耐焼付き性が向上する。また、加熱は分散媒が蒸発した後に行うことが好ましい。加熱温度はアルキル物質の沸点に近い100〜200℃の温度とするのがよく、熱風を当てるとより効果的である。
【0072】
防錆油組成物の有機溶剤としては、特に限定しないが、例えば、各種のソルベント、揮発油、ベンジン、ケロシン、ヘキサンなどを用いることができる。
【0073】
防錆油組成物を有機溶剤で希釈した防錆油は、40℃での粘度が2cSt以上、30cSt以下とするとよい。粘度が2cSt未満では防錆被膜厚が薄くなりすぎ、十分な防錆性が得られない。また、30cStを超えると防錆被膜が厚くなりすぎ、潤滑被膜の形成による潤滑性の向上効果が減少し、焼付きが発生しやすい。なお、有機溶剤の量は防錆油の30mass%以上、80mass%以下とするとよい。
【0074】
【実施例】
以下、実施例により、本発明を更に詳しく説明する。
表1に示す成分組成のねじ継手(外径:7インチ、肉厚:0.408インチ)のピンやボックスのねじ部と金属接触部に各種の下地処理、潤滑被膜の形成および防錆被膜の形成などの表面処理を施した。
【0075】
表2、3に防錆被膜の形成に用いた防錆油組成物の組成と性状を、表4に防錆油の組成と性状を、表5に表面処理条件の詳細をそれぞれ示す。
【0076】
【表1】
Figure 0003656481
【0077】
【表2】
Figure 0003656481
【0078】
【表3】
Figure 0003656481
【0079】
【表4】
Figure 0003656481
【0080】
【表5】
Figure 0003656481
【0081】
次いで、上記表面処理を施したねじ継手を用い、ピンとボックスを締め付けない状態で、JIS−Z2371に規定されている塩水噴霧試験を行い、336時間後の錆の発生状況を調査した。
【0082】
次いで、上記塩水噴霧試験を実施したねじ継手を用い、表6に示す要領で最大20回の締付け・締戻しの繰り返し作業を行い、焼付きの発生状況ならびに繰り返し締め付ける際の締付けトルクの変動状況を調査した。
【0083】
【表6】
Figure 0003656481
【0084】
すなわち、表6に示すように、1〜10回目、12〜15回目、17〜20回目は常温にて締付け・締戻しを行い、一方、11回目、16回目は常温にて締付け後、350℃で24時間の加熱処理を行いその後冷却して常温で締戻しを実施した。締付け速度と締付けトルクの標準条件を表7に示す。
【0085】
【表7】
Figure 0003656481
【0086】
表8に、上記試験結果を示す。なお、以下、ピンのねじ部と金属接触部の双方の表面をピン表面といい、ボックスのねじ部と金属接触部の双方の表面をボックス表面という。また、表面粗さはRmaxの値で示す。
【0087】
【表8】
Figure 0003656481
【0088】
(本発明例1)
表2に示す炭素鋼製のねじ継手に以下の表面処理を施した。ピン表面は機械研削仕上げのままで表面粗さを3μmとし、そのピン表面に表4に示す種類X1の防錆油を塗布し、厚さ10μmの防錆被膜を形成した。ボックス表面は#80番のサンドを吹き付け表面粗さを15μmとし、そのボックス表面に平均分子量が15000のエポキシ樹脂と平均粒径が1.5μmの二硫化モリブデン粉末を樹脂1に対し二硫化モリブデン3の重量割合で混合し、トルエン、イソプロピルアルコールの混液を分散媒として塗布し、潤滑被膜を形成した。乾燥状態で潤滑被膜厚を測定すると40μmであった。次いで、潤滑被膜の上に表4に示す種類X1の防錆油を塗布し、厚さ10μmの防錆被膜を形成した。
【0089】
表8に示すように、塩水噴霧試験試験では、ピンおよびボックスの双方に錆の発生は認められなかった。締付け・締戻し試験では、表6の20回の締付け・締戻しにおいて、焼付きの発生は無く、極めて良好であった。また、20回の締付け・締戻し試験を通して、締付けトルクのバラツキは±13%程度で安定しており良好であった。
【0090】
(本発明例2)
表2に示す炭素鋼製のねじ継手に以下の表面処理を施した。ピン表面とボックス表面の双方に#120番のサンドを吹き付け、双方の表面粗さを5μmとした。次いで、その双方の表面に化成処理で厚さ10μmの燐酸マンガン被膜を形成した。更に、ボックス側は燐酸マンガン被膜の上に、平均分子量が15000のポリアミドイミド樹脂と平均粒径が1.0μmの二硫化モリブデンの粉末をポリアミドイミド樹脂1に対し二硫化モリブデン2.5の重量割合で混合し、トルエン、メチルエチルケトンの混液を分散媒として塗布し、潤滑被膜を形成した。乾燥後180℃で20分の加熱を行った後、潤滑被膜厚を測定すると25μmであった。次いで、ピン側は燐酸マンガン被膜の上に、ボックス側は潤滑被膜の上に、表4に示す種類X2の防錆油を塗布し、厚さ15μmの防錆被膜を形成した。
【0091】
表8に示すように、塩水噴霧試験では、ピンとボックスの双方とも錆の発生は認められなかった。締付け・締戻し試験では、表6の20回の締付け・締戻しにおいて、焼付きの発生は無く、極めて良好であった。また、20回の締付け・締戻し試験を通して、締付けトルクのバラツキは±10%程度で安定しており良好であった。
【0092】
(本発明例3)
表2に示すCr−Mo鋼製のねじ継手に以下の表面処理を施した。ピン表面は機械研削仕上げで表面粗さを3μmとし、そのピン表面に化成処理で厚さ10μmの燐酸亜鉛被膜を形成した。ボックス表面は#80番のショットを吹き付け、表面粗さを15μmとし、そのボックス表面にアルキル基がエチルのシリコンアルコキシドと、平均粒径が1.8μmの二硫化モリブデンの粉末をシリコンアルコキシド1に対し二硫化モリブデン2.3の重量割合で混合し、キシレン、塩化メチレンおよびブチルアルコールの混液を分散媒として塗布し、潤滑被膜を形成した。次いで、大気中で3時間放置後に165℃の熱風を30分間吹き付けた。乾燥状態でボックス表面に形成された潤滑被膜の組成を測定したところ、含有量は重量割合でSi−Oを骨格とする無機高分子化合物1に対し二硫化モリブデン3であり、被膜厚さは20μmであった。次いで、ピン側は燐酸亜鉛被膜の上に、ボックス側は潤滑被膜の上に、表4に示す種類X3の防錆油を塗布し、厚さ40μmの防錆被膜を形成した。
【0093】
表8に示すように、塩水噴霧試験では、ピンとボックスの双方とも錆の発生は認められなかった。締付け・締め戻し試験では、表6の19回目の締付け・締戻し終了までは焼付きの発生が無く良好であり、20回目の締付け時に軽度の焼付きが発生したが、手入れ可能であった。また、20回の締付け・締戻しを通して、締付けトルクのバラツキは±10%程度で安定しており良好であった。
【0094】
(本発明例4)
表2に示す炭素鋼製のねじ継手に以下の表面処理を施した。ピン表面、ボックス表面の双方とも#120番のサンドを吹き付け表面粗さを5μmとした後、そのボックス表面に化成処理で厚さ8μmの燐酸マンガン被膜を形成した。次いで、ピン表面ならびに燐酸マンガン被膜の上にアルキル基がエチルのチタンアルコキシドと、平均粒径が1.0μmの二硫化モリブデンの粉末をチタンアルコキシド1に対し二硫化モリブデン2.3重量割合で混合し、キシレン、塩化メチレンおよびブチルアルコールの混液を分散媒として塗布して潤滑被膜を形成した。次いで、大気中で4時間放置後に加湿した150℃の熱風を20分間吹き付けた。乾燥後の潤滑被膜の組成を測定したところ、含有量はTi−Oを骨格とする無機高分子化合物1に対し二硫化モリブデン3.5であり、被膜厚は10μmであった。次いで、ピン側とボックス側の双方の潤滑被膜の上に、表4に示す種類X4の防錆油を塗布し、厚さ15μmの防錆被膜を形成した。
【0095】
表8に示すように、塩水噴霧試験では、ピンとボックスの双方とも錆の発生は認められなかった。締付け・締戻し試験では、表6の20回の締付け・締戻しにおいて、焼付きの発生は無く、極めて良好であった。また、20回の締付け・締戻し試験を通して、締付けトルクのバラツキは±10%未満で安定しており良好であった。
【0096】
(本発明例5)
表2に示すCr−Mo鋼製のねじ継手に以下の表面処理を施した。ピン表面は械研削仕上げで表面粗さを3μmとし、その上にアルキル基がイソプロピルのチタンアルコキシドと、平均粒径が2.6μmの二硫化モリブデンの粉末と平均粒径が1.3μmの黒鉛の粉末をチタンアルコキシド1に対し二硫化モリブデン1.8、黒鉛0.9の重量割合で混合し、メチルエチルケトン、塩化メチレンおよびブチルアルコールの混液を分散媒として塗布し、潤滑被膜を形成した。次いで、大気中で3時間放置後に加湿した150℃の熱風を10分間吹き付けた。乾燥状態で潤滑被膜の組成を測定したところ、含有量は重量割合でTi−Oを骨格とする無機高分子1に対し二硫化モリブデン3、黒鉛1.5であり、被膜厚さは15μmであった。一方、ボックス表面は#80番のサンドを吹き付けて表面粗さを10μmとし、その表面に化成処理で厚さ15μmの燐酸マンガン被膜を形成した。次いで、ピン側は潤滑被膜の上に、ボックス側は燐酸マンガン被膜の上に、表4に示す種類X5の防錆油を塗布し、厚さ15μmの防錆被膜を形成した。
【0097】
表8に示すように、塩水噴霧試験では、ピンとボックスの双方とも錆の発生は認められなかった。締付け・締戻し試験では、表6の20回の締付け・締戻しにおいて、焼付きの発生は無く、極めて良好であった。また、20回の締付け・締戻し試験を通して、締付けトルクのバラツキは±10%未満で安定しており良好であった。
【0098】
(本発明例6)
表2に示す炭素鋼製のねじ継手に以下の表面処理を施した。ピン表面、ボックス表面とも#80番のサンドを吹き付け表面粗さを10μmとした後、その双方に化成処理で厚さ8μmの燐酸マンガン被膜を形成した。次いで、その燐酸マンガン被膜の上に、平均分子量が10000のエポキシ樹脂と、平均粒径が1.8μmの二硫化モリブデンの粉末をエポキシ樹脂1に対し二硫化モリブデン1.5の重量割合で混合し、トルエン、キシレンの混液を分散媒として塗布した。次いで、乾燥後180℃で20分間の加熱処理を行った。加熱処理後のピン表面とボックス表面に形成された潤滑被膜の組成を測定したところ、ピン側、ボックス側のいずれも含有量は重量割合でエポキシ樹脂1に対し二硫化モリブデン3であり、被膜厚さは10μmであった。次いで、ピン表面とボックス表面に形成された潤滑被膜の上に表4に示す種類X6の防錆油を塗布し、厚さ2μmの防錆被膜を形成した。
【0099】
表8に示すように、塩水噴霧試験では、ピンとボックスの双方とも錆の発生は認められなかった。締付け・締戻し試験では、表6の19回目の締付け・締戻し終了までは焼付きの発生が無く良好であり、20回の締付け時に軽度の焼付きが発生したが、手入れ可能であった。また、20回の締付け・締戻し試験を通して、締付けトルクのバラツキは±10%程度で安定しており良好であった。
【0100】
(本発明例7)
ボックス側に防錆被膜を形成しない以外は本発明例2と同じ条件で表面処理を施した。
【0101】
表8に示すように、塩水噴霧試験では、ピンとボックスの双方とも錆の発生は認められなかった。締付け・締戻し試験では、表6の20回の締付け・締戻しにおいて、焼付きの発生は無く、極めて良好であった。また、20回の締付け・締戻し試験を通して、締付けトルクのバラツキは±13%程度で安定しており良好であった。
【0102】
(本発明例8)
ピン側に防錆被膜を形成しない以外は本発明例6と同じ条件で表面処理を施した。
【0103】
表8に示すように、塩水噴霧試験では、ピンとボックスの双方とも錆の発生は認められなかった。締付け・締戻し試験では、表6の20回の締付け・締戻しにおいて、焼付きの発生は無く、極めて良好であった。また、20回の締付け・締戻し試験を通して、締付けトルクのバラツキは±15%程度と安定しており良好であった。
【0104】
(比較例1)
表2に示す炭素鋼製のねじ継手に、防錆被膜を形成しないとした以外は上記本発明例6と同じ条件の表面処理を施した。すなわち、ピン表面ならびにボックス表面に、厚さ8μmの燐酸マンガン被膜を形成し、その燐酸マンガン被膜の上に、エポキシ樹脂と二硫化モリブデンからなる厚さ15μmの潤滑被膜を形成した。
【0105】
表8に示すように、ピンとボックスの双方とも潤滑被膜のほぼ全面に錆が浮き出ており、一部の潤滑被膜に剥離が見られた。締付け・締戻しの試験では、13回目の締付けで軽度の焼付きが認められ、15回目では完全に焼付き、試験を中止した。また、14回目までの締付け・締戻し試験において、締付けトルクのバラツキは約±50%と大きく、不安定であった。
【0106】
(比較例2)
表2に示す炭素鋼製のねじ継手に以下の表面処理を施した。ピン表面は機械研削仕上げのままで表面粗さを3μmとし、そのピン表面に表4に示す種類X7の防錆油を塗布し、厚さ15μmの防錆被膜を形成した。ボックス表面は#80番のサンドを吹き付け表面粗さを15μmとし、そのボックス表面に平均分子量が15000のエポキシ樹脂と平均粒径が1.5μmの二硫化モリブデン粉末を樹脂1に対し二硫化モリブデン3の重量割合で混合し、トルエン、イソプロピルアルコールの混液を分散媒として塗布し、潤滑被膜を形成した。乾燥状態で潤滑被膜厚を測定すると40μmであった。次いで、潤滑被膜の上に表4に示す種類X7の防錆油を塗布し、厚さ15μmの防錆被膜を形成した。
【0107】
表8に示すように、塩水噴霧試験では、ピン側、ボックス側ともそれぞれ面積で約30%、約7%の領域において錆の発生が認められ、また被膜の膨れも部分的に認められた。締付け・締戻しの試験では、11回目の締付け時に軽度の焼付きが認められ、13回目の締付けで完全に焼付き、試験の継続が不可となった。また、12回目までの締付け・締戻し試験において、締付けトルクのバラツキは約±35%と大きく、不安定であった
(比較例3)
表1に示す炭素鋼製のねじ継手に下記の表面処理を施した。ピン表面は機械研削仕上げで表面粗さを3μmとした。#80番のサンドを吹き付け表面粗さを10μmとしたボックス表面に化成処理を施し厚さ15μmの燐酸マンガン被膜を形成した。次いで、ピン表面と燐酸マンガン被膜の上面の双方にAPI−Bul5A2に相当するコンパウンドグリスを単位面積(1dm2 )当たり約20gの割合で塗布した。
【0108】
表8に示すように、塩水噴霧試験では、ピン側、ボックス側ともに錆の発生はなかった。締付け・締戻し試験では、8回目の締付けから軽度の焼付きが発生したが手入れを実施して試験を継続した。しかし、11回目の締戻し時に焼付きが発生したため、試験の継続は不可となった。なお、10回目までの締付け・締戻し試験において、締付けトルクのバラツキは±10%未満で安定していた。
【0109】
以上のように、本発明例はコンパウンドグリスを塗布したねじ継手と同等の優れた防錆性を有するとともに、比較例に比べ、耐焼付き性に優れ、かつ締付けトルク変動を抑制する効果のあることが分かった。
【0110】
【発明の効果】
本発明の防錆油組成物は、コンパウンドグリスと同等の防錆性を備えており、、コンパウンドグリスを使用しないねじ継手の防錆被膜として用いることができる。また、本発明の油井管用ねじ継手は、コンパウンドグリスを塗布した従来のねじ継手と同等の防錆性を有し、従来のねじ継手に比べ繰り返しの締付け・締戻しの際の耐焼付き性が著しく向上する。したがって、本発明の油井管用ねじ継手は、出荷前やメークアップ前に塗布していたコンパウンドグリスを一切使用することなく、防錆性を確保し、耐焼付き性を改善することができる。
【図面の簡単な説明】
【図1】油井管出荷時の油井管とねじ継手部材の組立構成を模式的に示す概要図である。
【図2】塩水噴霧試験による錆発生面積と鹸化価、全塩基価、アルカリ金属含有量、防錆被膜厚との関係を示すグラフで、同図(a)は錆発生面積と鹸化価、同図(b)は錆発生面積と全塩基価、同図(c)は錆発生面積とアルカリ金属含有量、同図(d)は錆発生面積と防錆被膜厚のグラフである。
【図3】摩擦試験による摩擦係数と鹸化価、全塩基価、アルカリ金属含有量、防錆被膜厚との関係を示すグラフで、同図(a)は摩擦係数と鹸化価、同図(b)は摩擦係数と全塩基価、同図(c)は摩擦係数とアルカリ金属含有量、同図(d)は摩擦係数と防錆被膜厚のグラフである。
【図4】本発明の油井管用ねじ継手の締付け部を模式的に示す概要図である。
【図5】本発明の油性管用ねじ継手に係る固体潤滑被膜と防錆被膜の形成状況例を示す断面拡大図で、同図(a)はピンのねじ無し金属接触部、同図(b)はボックスのねじ無し金属接触部である。
【図6】本発明の別の油井管用ねじ継手に係る固体潤滑被膜と防錆被膜の形成状況を示す断面拡大図で、同図(a)はピンのねじ無し金属接触部、同図(b)はボックスのねじ無し金属接触部である。
【符号の説明】
1A:油井管、1B:ねじ継手部材、
2:ピン、3:ボックス、
4:ねじ部、5:ねじ無し金属接触部、
6:ショルダー部、7:固体潤滑被膜、
8:バインダ、9:固体潤滑剤、
10:防錆被膜。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to improvement in seizure resistance, rust prevention, and stabilization of tightening torque of a threaded joint for oil country tubular goods in which a solid lubricating film is formed instead of a liquid lubricating film containing compound grease that has been conventionally used. It is.
[0002]
[Prior art]
Generally, threaded joints are used in tubing and casings used during oil well drilling. Usually, the depth of the oil well is 2000 m to 3000 m, but in a deep oil well such as a recent offshore oil field, it reaches 8000 m to 10,000 m.
[0003]
The threaded joints that connect these oil well pipes are subjected to combined pressure and heat such as axial tensile force and inner / outer surface pressure due to the weight of the oil well pipe and the joint itself under the operating environment. However, it is required to maintain airtightness without being damaged.
[0004]
In addition, when the tubing or casing is lowered, the joint once tightened may be loosened and retightened. The API (American Petroleum Institute) tightens (make-up) 10 times for the tubing joint and 3 times for the casing joint. Up) and loosening back (breakout) are required to maintain airtightness without causing seizure called goling.
[0005]
By the way, as a threaded joint, an unthreaded metal contact part is usually formed at the tip of a male thread formed at the end of an oil well pipe, and this is followed by an unthreaded metal contact part formed at the base of a female thread on the inner surface of the threaded joint member. Threaded joints in which the screw-less metal contact portions are brought into contact with each other to form a metal seal portion by tightening and tightening are used, and a threaded portion or a screw-free metal contact portion is subjected to surface treatment. In addition, compound grease is applied during tightening to improve seizure resistance and airtightness.
[0006]
However, since the compound grease contains heavy metal powders such as Pb and Zn, there is a concern of causing environmental pollution when a state occurs in which the applied grease is washed away. In addition, the application of compound grease deteriorates the working environment and lowers the working efficiency. Therefore, a threaded joint that does not use such compound grease is desired.
[0007]
As threaded joints that do not use compound grease, Japanese Patent Laid-Open Nos. 8-233164 and 9-72467 provide threaded joints in which a solid lubricant film of resin is formed.
[0008]
[Problems to be solved by the invention]
However, the threaded joint formed with the solid lubricating film disclosed in the above publication has a problem that the tightening torque is likely to fluctuate and the tightening becomes unstable as compared with the case of using compound grease. Furthermore, the threaded joint is inferior to the use of compound grease in the period from factory shipment to on-site use compared to the use of compound grease, and rust is generated and the resulting solid film swells or peels off. The fastening at the time of fastening becomes more unstable, and there is a problem that seizure occurs or the airtightness is lowered.
[0009]
FIG. 1 is a schematic diagram schematically showing an assembly configuration of an oil well pipe and a threaded joint member when the oil well pipe is shipped. Reference numeral 1A denotes an oil well pipe, 1B denotes a threaded joint member, 2 denotes a pin, 3 denotes a box, and 4 denotes a threaded portion.
[0010]
As shown in FIG. 1, normally, an oil well pipe 1A has a box having a threaded portion 4 formed on the inner surface of a threaded joint member 1B on one side of a pin 2 having a threaded portion 4 formed on the outer surface of both ends thereof. Shipped in a tightened state.
[0011]
However, exposed pins and boxes are prone to rust. From the time of shipment, when compound grease is applied for the purpose of rust prevention, the occurrence of rust is small.However, when compound grease is not used only with a solid lubricant film, the rust resistance of the film is reduced. Since it is low, rust is likely to occur.
[0012]
Rust is poor in lubricity and causes unevenness on the surface, which causes seizure during tightening.
[0013]
The object of the present invention is to solve the above-mentioned conventional problems, suppress the occurrence of rust without using compound grease, eliminate instability of tightening torque, and have excellent seizure resistance and airtightness. It is to provide a joint.
[0014]
Furthermore, another subject of this invention is providing the antirust oil composition used in order to improve the antirust property of the said threaded joint for oil country pipes.
[0015]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conceived the formation of a rust-preventing coating as well as the formation of a solid lubricating coating, and conducted basic studies on the rust-preventing coating and obtained the following knowledge.
[0016]
(A) A film containing a salt of a carboxylic acid and an alkali metal or a salt of an alkaline earth metal is semisolid or solid at room temperature and is effective for long-term rust prevention. Hereinafter, the above salt is also simply referred to as “carboxylic acid metal salt”.
(B) The higher the saponification value and the higher the total base number, the more effective the long-term rust prevention.
[0017]
(C) A coating containing the above-mentioned salt and further containing a lubricant such as graphite, molybdenum disulfide, or an organic Mo compound reduces the friction coefficient of the contact surface during joint tightening and lowers the joint tightening torque. It can be stabilized.
[0018]
On the basis of the above basic examination results, regarding the rust prevention and lubricity of the threaded joint formed with the solid lubricant film and the rust preventive film, the rust prevention is determined by the salt spray test specified in JIS-Z2371, Further, the lubricity was examined in more detail by a ring / block contact type friction test, and the following knowledge was obtained.
[0019]
Fig. 2 is a graph showing the relationship between the rust generation area and the saponification value, total base number, alkali metal content, and rust-proof coating thickness in the salt spray test. Fig. 2 (a) shows the rust generation area, saponification value, Fig. (B) is a graph of rust generation area and total base number, Fig. (C) is a graph of rust generation area and alkali metal content, and Fig. (D) is a graph of rust generation area and rust-proof coating thickness.
[0020]
FIG. 3 is a graph showing the relationship between the friction coefficient and the saponification value, the total base number, the alkali metal content, and the rust-proof film thickness obtained by the friction test. FIG. 3A shows the friction coefficient, the saponification value, and FIG. ) Is a coefficient of friction and total base number, FIG. 4C is a graph of the coefficient of friction and alkali metal content, and FIG. 2 and 3, the rust preventive coating is a solid coating containing an alkali metal salt of carboxylic acid. The standard coating formation conditions are as follows: the alkali metal salt content is 10 mass%, and the saponification value is 50 mgKOH / g, the total base number was 50 mgKOH / g, and the film thickness was 10 μm.
[0021]
(D) As shown in FIGS. 2 (a) to 2 (c) and FIGS. 3 (a) to 3 (c), the rust preventive coating has a saponification value of 20 to 150 mgKOH / g and a total base number of 15 to 100 mgKOH / g. When the content of the alkali metal is 2 to 20 mass%, the antirust property is excellent, and the friction coefficient is lowered to exhibit good friction performance.
[0022]
(E) When forming a rust-preventing film containing a metal salt of a carboxylic acid, the metal salt is diluted with an organic solvent, and when a rust-preventing oil having a viscosity at 40 ° C. of 2-30 cSt after dilution is used, The adhesion of rust preventive oil is improved.
[0023]
(F) When forming a rust preventive film on a solid lubricant film, as shown in FIG. 2 (d) and FIG. 3 (d), by setting the thickness of the rust preventive film to 1 μm to 50 μm, Both rust prevention and lubrication performance can be kept good.
[0024]
(G) When a solid lubricant film is formed on one of the box and the pin and a rust preventive film is formed on the other, the thickness of the rust preventive film is set to 5 μm to 50 μm to maintain the above-mentioned performance satisfactorily. be able to.
[0025]
(H) When a rust preventive film contains a lubricant of graphite, molybdenum disulfide or an organic Mo compound, the friction coefficient is further reduced and stabilized, and the tightening torque can be further stabilized. Its content is 5-30 mass%.
[0026]
Moreover, the present inventors have obtained the following knowledge regarding the lubricant and binder (binder) constituting the solid lubricant film.
[0027]
(L) Molybdenum disulfide, graphite, and organic Mo compounds exhibit excellent lubricity.
(Nu) Resin can be used as a binder for the lubricant.
[0028]
(L) Metal alkoxides such as titanium and silicon (M (OR)) Four , M: a metal such as silicon or titanium, and R: an alkyl group) have an alkyl group and thus exhibit organic characteristics and function as a binder. This substance is unstable in the atmosphere, and co-hydrolysis occurs by absorbing moisture, and the decomposition products are bonded to each other to form a thermally stable inorganic polymer compound having a network structure of MO. Change. (1) The molecular structural formula of the inorganic polymer compound represented by the formula is exemplified.
[0029]
[Chemical 1]
Figure 0003656481
[0030]
(E) Accordingly, the above metal alkoxide is mixed and applied as a binder to the lubricant, and humidified to form a solid lubricant film of an inorganic polymer compound containing the lubricant and having the MO as a skeleton. Can be made.
[0031]
The present invention has been completed based on the above findings, and the gist thereof is as follows.
[0032]
(1) It contains an alkali metal salt of a carboxylic acid and / or an alkaline earth metal salt of a carboxylic acid, has a saponification number of 20 to 150 mgKOH / g, a total base number of 15 to 100 mgKOH / g, and an alkali metal and an alkaline earth Metal content is 2 to 20 mass% in total For oil well pipe threaded joints Antirust oil composition.
[0033]
(2) The rust preventive oil composition contains 5 to 30 mass% of a lubricant composed of one or more of graphite, molybdenum disulfide, and an organic Mo compound. For oil well pipe threaded joints Antirust oil composition.
[0034]
(3) In a threaded joint composed of a box and a pin each having a threaded portion and an unthreaded metal contact portion, a solid lubricating film formed on one of the box and the pin and a rust preventive film formed on the other And the solid lubricant film is a film of an inorganic polymer compound having a resin or M (metal) -O as a skeleton, and the rust preventive film is the anticorrosive film according to the above (1) or (2). A threaded joint for oil country tubular goods characterized by being a coating of a rust oil composition.
[0035]
(4) The threaded joint for oil country tubular goods as described in (3) above, wherein the thickness of the anticorrosive coating is 5 μm to 50 μm.
[0036]
(5) In a threaded joint composed of a box and a pin each having a threaded portion and an unthreaded metal contact portion, a solid lubricating film formed on both the box and the pin, and at least one solid of the box and the pin The solid lubricant film is a film of an inorganic polymer compound having a resin or M (metal) -O as a skeleton, and the rust preventive film is the above (1) ) Or rust preventive oil composition film according to item (2).
[0037]
(6) The oil well pipe threaded joint according to (5) above, wherein the rust-proof coating has a thickness of 1 μm to 50 μm.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the rust preventive oil composition of the present invention and a threaded joint for oil country tubular goods (hereinafter also referred to as a threaded joint) will be described in detail.
Initially, each element which comprises the antirust oil composition of this invention is demonstrated.
[0039]
[Metal salt of carboxylic acid]
The rust preventive oil composition of the present invention contains at least one alkali metal salt of carboxylic acid and alkaline earth metal salt of carboxylic acid. These metal salts have basicity, are excellent in rust prevention, and are excellent in lubricity.
[0040]
Examples of the alkali metal include sodium, lithium, and potassium, and examples of the alkaline earth metal include calcium, magnesium, and barium. The carboxylic acid is preferably a monocarboxylic acid having a carboxyl group of 1 or a dicarboxylic acid having a carboxyl group of 2, and the hydrocarbon group preferably has 5 to 19 carbon atoms from the viewpoint of lubricity and rust prevention. Examples of monocarboxylic acids include caproic acid, caprylic acid, capric acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, isostearic acid, oleic acid, linoleic acid, linolenic acid, naphthenic acid, benzoic acid, etc. be able to. Examples of dicarboxylic acids include suberic acid, azelaic acid, and sebacic acid.
[0041]
[Contents of alkali metals and alkaline earth metals]
The total content of alkali metal and alkaline earth metal is 2 mass% or more and 20 mass% or less. If the content is less than 2 mass% or more than 20 mass%, the friction coefficient increases and the lubricity decreases as shown in FIG. Moreover, if it is less than 2 mass%, as shown in FIG.2 (c), rust prevention property is low and it will be easy to generate rust. Therefore, by forming a rust preventive film of the rust preventive oil composition having a content of 2 mass% or more and 20 mass% or less on the screw joint, the rust prevention property of the screw joint is improved and the seizure resistance is improved. it can. In addition, the said content can be calculated | required by analyzing for every element by atomic absorption analysis etc.
[0042]
[Saponification value]
When the saponification value is less than 20 mgKOH / g, the antirust property is low as shown in FIG. 2 (a), and rust is easily generated. Further, as shown in FIG. 3 (a), the friction coefficient is increased and the lubricity is lowered. . On the other hand, when the saponification value exceeds 150 mgKOH / g, the rust preventive film becomes hard and cracks are easily formed. For this reason, flakes are peeled off and the antirust property is lowered. Therefore, by forming a rust preventive film of a rust preventive oil composition having a saponification value of 20 mgKOH / g or more and 150 mgKOH / g or less on a screw joint, it is possible to improve rust prevention and improve seizure resistance.
[0043]
[Total base number]
If the total base number is less than 15 mgKOH / g, the antirust property is low and rust is likely to occur as shown in FIG. 2 (b), and the coefficient of friction becomes large and the lubricity decreases as shown in FIG. 3 (b). To do. On the other hand, if the total base number exceeds 100 mgKOH / g, the coefficient of friction increases and the lubricity decreases as shown in FIG. Therefore, by forming a rust preventive film of a rust preventive oil composition having a total base number of 15 mgKOH / g or more and 100 mgKOH / g or less on a screw joint, rust prevention can be improved and seizure resistance can be improved.
[0044]
[lubricant]
The rust preventive oil composition preferably contains 5 to 30 mass% of a lubricant obtained by mixing one or more of graphite, molybdenum disulfide and an organic Mo compound. These lubricants have the effect of enhancing the lubricity of the rust preventive oil composition and improving the seizure resistance. Examples of the organic Mo compound include Mo dialkyl thiophosphate and Mo dialkyl thiocarbamate having molecular structures represented by the following formulas (2) and (3).
[0045]
[Chemical formula 2]
Figure 0003656481
[0046]
[Chemical 3]
Figure 0003656481
[0047]
When the content of the lubricant is less than 5 mass%, the effect of improving the lubricity is small, and when it exceeds 30 mass%, the formation of the rust-preventing oil film is inhibited, and the film becomes porous and the rust-proof property is lowered. Further, graphite or molybdenum disulfide is preferably a powder having an average particle size of 0.4 μm or more and 3 μm or less. If it is less than 0.4 μm, the effect of improving the lubricity is small, and if it exceeds 3 μm, the rust prevention property is lowered.
[0048]
In addition to the above carboxylic acid metal salt and lubricant, the rust preventive oil composition of the present invention includes an alkali metal salt of sulfonic acid, an alkaline earth metal salt of sulfonic acid, paraffin wax, wax oxide ester, Higher fatty acid monoesters, natural wax and the like may be included.
[0049]
Alkali metal salts and alkaline earth metal salts of sulfonic acid have basicity and excellent rust prevention properties. For example, petroleum sulfonic acid or synthetic sulfone obtained by sulfonating aromatic components in petroleum distillate components. Examples include alkali metal salts, alkaline earth metal salts, and amine salts of acids. Examples of the synthetic sulfonic acid include dodecylbenzenesulfonic acid and dinonylnaphthalenesulfonic acid.
[0050]
The paraffin wax preferably has a molecular weight of 150 to 500.
Higher fatty acid monoesters include myristic acid, palmitic acid, stearic acid, elaidic acid, arachidic acid, behenic acid, erucic acid, lignoceric acid, cerotic acid, montanic acid, lanolinic acid and other carboxylic acids, octyl alcohol, capryl alcohol , Nonyl alcohol, decyl alcohol, lauryl alcohol, tridecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, decyl alcohol, seryl alcohol, melyl alcohol, and the like. .
[0051]
Examples of natural waxes include carnauba wax, lanolin, beeswax, wood wax, and montan.
[0052]
Moreover, you may add the mineral oil or synthetic mineral oil whose viscosity in 40 degreeC is 10-50 cSt to the antirust oil composition of this invention.
[0053]
Next, each element which comprises the threaded joint for oil country pipes of this invention is demonstrated.
FIG. 4 is a schematic view schematically showing a tightening portion of the threaded joint for oil country tubular goods of the present invention. In the figure, reference numeral 5 denotes a screwless metal contact portion, 6 denotes a shoulder portion, and the same elements as those in FIG.
[0054]
FIG. 5 is an enlarged cross-sectional view showing an example of the formation situation of the solid lubricant film and the rust preventive film according to the threaded joint for oil-based pipes of the present invention, wherein FIG. 5 (a) is the unthreaded metal contact portion of the box, FIG. Is the unthreaded metal contact of the pin. Reference numeral 7 is a solid lubricating film, 8 is a binder, 9 is a lubricant, 10 is a rust preventive film, and the same elements as in FIG.
[0055]
FIG. 6 is an enlarged cross-sectional view showing an example of the formation situation of a solid lubricant film and a rust preventive film according to another oil well pipe threaded joint of the present invention, in which FIG. b) is the unthreaded metal contact of the pin. The same elements as those in FIGS. 4 and 5 are denoted by the same reference numerals.
[0056]
As shown in FIG. 4, the threaded joint for oil country tubular goods of the present invention is formed on the outer surface of the oil well pipe end part and the box 3 including the threaded part 4 and the unthreaded metal contact part 5 formed on the inner surface of the threaded joint member. And a pin 2 composed of a screw-free metal contact portion 5.
[0057]
Furthermore, in the threaded joint of the present invention, as shown in FIGS. 5 (a) and 5 (b), a lubricant 9 is applied to the surface of both the threaded portion of the pin 2 and the unthreaded metal contact portion as a resin or an inorganic polymer compound. The solid lubricant film 7 dispersed and mixed in the binder 8 is formed, and the anticorrosive film 10 is formed on the surfaces of both the screw portion of the box 3 and the unthreaded metal contact portion. In the illustrated example, the solid lubricating film 7 is formed on the pin 2 and the antirust film 10 is formed on the box 3. However, the antirust film is formed on the pin and the lubricating film is formed on the box. Also good.
[0058]
Another threaded joint of the present invention is configured in the same manner as the threaded joint of the present invention as shown in FIG. 4, and further, as shown in FIGS. 6 (a) and 6 (b), the pin 2 and the box 3 A solid lubricant film 7 in which a lubricant 9 is dispersed and mixed in a binder 8 of a resin or an inorganic polymer compound is formed on both surfaces of both screw parts and unthreaded metal contact parts, and further on the solid lubricant film 7 of the pin 2. The rust preventive coating 10 is formed. In addition, although the example of illustration showed the case where a rust prevention film is formed in a pin, you may form a rust prevention film in a box. Hereinafter, the solid lubricating coating is also simply referred to as a lubricating coating.
[0059]
[lubricant]
As the lubricant, one kind of molybdenum disulfide, graphite, or organic Mo compound, or a mixture of two or more kinds is used. These lubricants are dispersed in an inorganic polymer compound having a resin or MO as a skeleton, and are firmly bonded to the surface of the threaded joint through them, and are thinly stretched by the tightening pressure during the tightening operation. Therefore, it has the effect of improving the lubricity of the lubricating coating and improving the seizure resistance. Accordingly, it is possible to repeatedly tighten the threaded joint without using compound grease. In addition, as an organic Mo compound, Mo dialkyl thiophosphate having the molecular structure represented by the formula (2), Mo dialkyl thiocarbamate represented by the formula (3), or the like can be used.
[0060]
[resin]
As the resin, a material having a function as a binder for a lubricant such as molybdenum disulfide or graphite and having heat resistance, appropriate hardness and wear resistance is used. Examples of such materials include thermosetting resins such as epoxy resins, polyimide resins, polyamideimide resins, polyethersulfone, and polyetheretherketone, phenol resins, polyethylene resins, and silicon resins. Preferably, it is a thermosetting resin.
[0061]
[Inorganic polymer compound having MO as a skeleton]
As an inorganic polymer compound having MO as a skeleton (hereinafter also simply referred to as an inorganic polymer compound), it has a function as a binder for lubricants such as molybdenum disulfide and graphite, and has heat resistance and appropriate hardness. A material having wear resistance is used. Such a material has a molecular structure exemplified in the formula (1), and the alkyl group in the formula (1) has an alkyl group such as methyl, ethyl, isopropyl, propyl, isobutyl, or the like. Inorganic polymer compounds having a skeleton of O, Zr—O, Mn—O, Ce—O, Ba—O, or the like can be given. Preferably, it is an inorganic polymer compound having Ti—O as a skeleton. More preferably, it is an inorganic polymer compound having a skeleton of Ti-O having an alkyl group of methyl, ethyl or isopropyl.
[0062]
The weight ratio (B / A) of the content (A) of the resin or inorganic polymer compound and the total content (B) of molybdenum disulfide and graphite is 0.3 or more and 9.0 or less. desirable. If the weight ratio is less than 0.3, the effect of improving the lubricity of the formed lubricating film is small, and the improvement of the seizure resistance is insufficient. If the weight ratio is greater than 9.0, the solid lubricating film adheres tightly. In particular, problems such as significant peeling of the lubricant from the lubricating coating occur. More preferably, the weight ratio is 0.5 or more and 7.0 or less, and further preferably 3.0 or more and 6.5 or less.
[0063]
The thickness of the lubricating coating is desirably 5 μm or more and 30 μm or less. If the thickness of the lubricant film is less than 5 μm, the effect of improving the lubricity is small. On the other hand, if it exceeds 30 μm, the processing cost for forming the lubricant film increases, and the effect of improving the lubricity is saturated. Has the disadvantage that it is easy to peel off. More preferably, the thickness of the lubricating coating is 5 μm or more and 15 μm or less, and more preferably 6 μm or more and 10 μm or less.
[0064]
[Anti-rust coating]
A rust preventive film is a film which consists of a rust preventive oil composition formed by applying the rust preventive oil which diluted the above-mentioned rust preventive oil composition of the present invention with a solvent. That is, the rust preventive film contains at least one of an alkali metal salt of carboxylic acid and an alkaline earth metal salt of carboxylic acid, and the total content of alkali metal and alkaline earth metal is 2 to 20 mass%, and saponification The value is 20 to 150 mgKOH / g, and the total base number is 15 to 100 mgKOH / g. Preferably, a lubricant composed of one or more of graphite, molybdenum disulfide and organic Mo compound is further added in an amount of 5 to 30 mass%. contains.
[0065]
[Anti-rust coating thickness]
If the thickness of the rust-proof coating is too small, the rust-preventing effect is small, and if it is too large, the lubricating action of the lubricating coating is hindered, the friction coefficient increases, and seizure occurs. Therefore, as shown in FIG. 6, when a lubricating film is formed on both the pin and the box and a rust preventive film is formed thereon, the thickness of the rust preventive film is 1 μm or more and 50 μm or less. Further, as shown in FIG. 5, when a lubricating film is formed on one of the pin and the box and a rust-proof film is formed on the other, the thickness of the rust-proof film is 5 μm or more and 50 μm or less. That is, when a rust preventive film is formed on the lubricant film, the rust preventive effect of the lubricant film acts, so that the lower limit value of the rust preventive film thickness can be reduced.
[0066]
Next, a method for forming a lubricating coating and an antirust coating according to the present invention will be described using an example in which a lubricating coating of an inorganic polymer compound is formed on both the pin and the box, and the antirust coating is formed on the lubricating coating. .
[0067]
In the formation of a lubricating coating, a metal alkoxide and a lubricant such as molybdenum disulfide and graphite are mixed with a dispersion medium, and these are applied to the surfaces of both the pin and the box, and further humidified to perform co-hydrolysis. Thus, a lubricating coating of the inorganic polymer compound is formed. In the case of forming a lubricating film of resin, for example, a dispersion medium may be added to and mixed with an organic polymer material such as a thermosetting resin and the lubricant, and these may be applied in the same manner as described above. Subsequently, the rust preventive oil which diluted the rust preventive oil composition of this invention with the organic solvent is apply | coated on a lubricating film, and a rust preventive film is formed.
[0068]
As the metal alkoxide, a metal alkoxide such as titanium or silicon in which an alkyl group has an alkyl group such as methyl, ethyl, isopropyl, propyl, isobutyl, or butyl can be used.
[0069]
As the metal alkoxide dispersant, low boiling point liquids such as xylene, methylene chloride, isopropyl, butyl alcohol, and methyl ethyl ketone can be used alone or in combination of two or more.
[0070]
As the dispersant for the resin material, low boiling point liquids such as toluene and isopropyl alcohol can be used alone or in combination.
[0071]
The humidification treatment can be performed by leaving it in the air for a predetermined time, but it is desirable to perform it in an atmosphere with a humidity of 70% or more. Furthermore, it is desirable to perform heat treatment after the humidification treatment. The co-hydrolysis is promoted by the heat treatment, the discharge of the hydrolyzate alkyl substance from the lubricating coating can be promoted, the adhesion of the lubricating coating is strengthened, and the seizure resistance is improved. The heating is preferably performed after the dispersion medium has evaporated. The heating temperature is preferably a temperature of 100 to 200 ° C. close to the boiling point of the alkyl substance, and is more effective when hot air is applied.
[0072]
Although it does not specifically limit as an organic solvent of a rust preventive oil composition, For example, various solvent, volatile oil, benzine, kerosene, hexane etc. can be used.
[0073]
The rust preventive oil obtained by diluting the rust preventive oil composition with an organic solvent may have a viscosity at 40 ° C. of 2 cSt or more and 30 cSt or less. When the viscosity is less than 2 cSt, the rust preventive film thickness becomes too thin and sufficient rust preventive properties cannot be obtained. On the other hand, if it exceeds 30 cSt, the rust preventive coating becomes too thick, the effect of improving the lubricity due to the formation of the lubricating coating is reduced, and seizure tends to occur. The amount of the organic solvent is preferably 30 mass% or more and 80 mass% or less of the rust preventive oil.
[0074]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples.
Various surface treatments, lubrication film formation and anti-rust coatings on threaded parts and metal contact parts of pins and boxes of threaded joints (outer diameter: 7 inches, wall thickness: 0.408 inches) with the composition shown in Table 1 Surface treatment such as formation was applied.
[0075]
Tables 2 and 3 show the composition and properties of the rust preventive oil composition used for forming the rust preventive coating, Table 4 shows the composition and properties of the rust preventive oil, and Table 5 shows details of the surface treatment conditions.
[0076]
[Table 1]
Figure 0003656481
[0077]
[Table 2]
Figure 0003656481
[0078]
[Table 3]
Figure 0003656481
[0079]
[Table 4]
Figure 0003656481
[0080]
[Table 5]
Figure 0003656481
[0081]
Next, a salt spray test prescribed in JIS-Z2371 was performed using the above-mentioned surface-treated threaded joint and the pin and the box were not tightened, and the state of occurrence of rust after 336 hours was investigated.
[0082]
Next, using the threaded joint that was subjected to the salt spray test, repeated tightening and tightening operations up to 20 times in the manner shown in Table 6 showed seizure occurrence and fluctuations in tightening torque during repeated tightening. investigated.
[0083]
[Table 6]
Figure 0003656481
[0084]
That is, as shown in Table 6, the 1st to 10th, the 12th to 15th, and the 17th to 20th are tightened and retightened at room temperature, while the 11th and 16th times are tightened at room temperature and then 350 ° C. Then, after 24 hours of heat treatment, the mixture was cooled and then tightened at room temperature. Table 7 shows the standard conditions of tightening speed and tightening torque.
[0085]
[Table 7]
Figure 0003656481
[0086]
Table 8 shows the test results. Hereinafter, the surfaces of both the screw portion of the pin and the metal contact portion are referred to as the pin surface, and the surfaces of both the screw portion of the box and the metal contact portion are referred to as the box surface. The surface roughness is indicated by the value of Rmax.
[0087]
[Table 8]
Figure 0003656481
[0088]
(Invention Example 1)
The following surface treatment was applied to the threaded joint made of carbon steel shown in Table 2. The surface of the pin was mechanically ground and the surface roughness was 3 μm, and the type X1 rust preventive oil shown in Table 4 was applied to the pin surface to form a 10 μm thick rust preventive film. The surface of the box is sprayed with # 80 sand to a surface roughness of 15 μm. An epoxy resin with an average molecular weight of 15000 and molybdenum disulfide powder with an average particle size of 1.5 μm are coated on the surface of the box with molybdenum disulfide 3 And a mixed solution of toluene and isopropyl alcohol was applied as a dispersion medium to form a lubricating coating. When the lubricating film thickness was measured in a dry state, it was 40 μm. Subsequently, the antirust oil of the type X1 shown in Table 4 was apply | coated on the lubricating film, and the 10-micrometer-thick antirust film was formed.
[0089]
As shown in Table 8, in the salt spray test test, no rust was observed on both the pin and the box. In the tightening / rewinding test, the seizure did not occur in the 20 tightening / rewinding operations shown in Table 6 and was extremely good. Further, through the 20 tightening / rewinding tests, the variation in the tightening torque was stable at about ± 13%, which was good.
[0090]
(Invention Example 2)
The following surface treatment was applied to the threaded joint made of carbon steel shown in Table 2. # 120 sand was sprayed on both the pin surface and the box surface, and the surface roughness of both was 5 μm. Next, a 10 μm-thick manganese phosphate coating was formed on both surfaces by chemical conversion treatment. Further, on the box side, a powder of a polyamidoimide resin having an average molecular weight of 15000 and molybdenum disulfide having an average particle diameter of 1.0 μm on a manganese phosphate coating is 2.5% by weight of molybdenum disulfide 2.5 with respect to the polyamidoimide resin 1. And mixed with toluene and methyl ethyl ketone as a dispersion medium to form a lubricating film. After drying and heating at 180 ° C. for 20 minutes, the lubricating film thickness was measured to be 25 μm. Next, a rust preventive oil of type X2 shown in Table 4 was applied on the pin side on the manganese phosphate coating and the box side on the lubricating coating to form a rust preventive coating having a thickness of 15 μm.
[0091]
As shown in Table 8, in the salt spray test, no rust was observed in both the pin and the box. In the tightening / rewinding test, the seizure did not occur in the 20 tightening / rewinding operations shown in Table 6 and was extremely good. Further, through the 20 tightening / rewinding tests, the variation in the tightening torque was stable at about ± 10%, which was good.
[0092]
(Invention Example 3)
The following surface treatment was applied to the threaded joint made of Cr-Mo steel shown in Table 2. The pin surface was mechanically ground to a surface roughness of 3 μm, and a 10 μm thick zinc phosphate coating was formed on the pin surface by chemical conversion treatment. The box surface is sprayed with # 80 shot, the surface roughness is 15 μm, and silicon alkoxide having an alkyl group of ethyl and molybdenum disulfide having an average particle diameter of 1.8 μm are applied to the silicon alkoxide 1 on the box surface. The mixture was mixed at a weight ratio of molybdenum disulfide 2.3, and a mixed solution of xylene, methylene chloride and butyl alcohol was applied as a dispersion medium to form a lubricating coating. Next, after being left in the atmosphere for 3 hours, hot air of 165 ° C. was blown for 30 minutes. When the composition of the lubricating coating formed on the box surface in a dry state was measured, the content was molybdenum disulfide 3 with respect to the inorganic polymer compound 1 having Si—O as a skeleton by weight, and the film thickness was 20 μm. Met. Next, a rust preventive oil of type X3 shown in Table 4 was applied on the zinc phosphate coating on the pin side and on the lubricating coating on the box side to form a 40 μm thick rust preventive coating.
[0093]
As shown in Table 8, in the salt spray test, no rust was observed in both the pin and the box. In the tightening / rewinding test, seizure did not occur until the end of the 19th tightening / rewinding in Table 6, and it was good. Although slight seizure occurred during the 20th tightening, it was possible to care. Further, through 20 tightening / returning operations, the tightening torque variation was stable at about ± 10% and was good.
[0094]
(Invention Example 4)
The following surface treatment was applied to the threaded joint made of carbon steel shown in Table 2. Both the pin surface and the box surface were sprayed with # 120 sand to make the surface roughness 5 μm, and then a 8 μm thick manganese phosphate coating was formed on the box surface by chemical conversion treatment. Next, a titanium alkoxide having an alkyl group of ethyl and molybdenum disulfide powder having an average particle size of 1.0 μm was mixed with titanium alkoxide 1 at a weight ratio of 2.3 wt.% On the pin surface and the manganese phosphate coating. Then, a mixed film of xylene, methylene chloride and butyl alcohol was applied as a dispersion medium to form a lubricating film. Subsequently, hot air at 150 ° C. which was humidified after being left in the atmosphere for 4 hours was blown for 20 minutes. When the composition of the dried lubricant film was measured, the content was 3.5 mol of molybdenum disulfide with respect to the inorganic polymer compound 1 having Ti—O as the skeleton, and the film thickness was 10 μm. Next, a rust preventive oil of type X4 shown in Table 4 was applied on both the pin side and box side lubricant films to form a rust preventive film having a thickness of 15 μm.
[0095]
As shown in Table 8, in the salt spray test, no rust was observed in both the pin and the box. In the tightening / rewinding test, the seizure did not occur in the 20 tightening / rewinding operations shown in Table 6 and was extremely good. Further, through the 20 tightening / rewinding tests, the variation in the tightening torque was stable at less than ± 10%, which was good.
[0096]
(Invention Example 5)
The following surface treatment was applied to the threaded joint made of Cr-Mo steel shown in Table 2. The surface of the pin is mechanically ground to a surface roughness of 3 μm. On top of that, titanium alkoxide having an alkyl group of isopropyl, molybdenum disulfide powder having an average particle size of 2.6 μm, and graphite having an average particle size of 1.3 μm. The powder was mixed with titanium alkoxide 1 in a weight ratio of molybdenum disulfide 1.8 and graphite 0.9, and a mixed solution of methyl ethyl ketone, methylene chloride and butyl alcohol was applied as a dispersion medium to form a lubricating coating. Subsequently, hot air at 150 ° C. which was humidified after being left in the atmosphere for 3 hours was blown for 10 minutes. When the composition of the lubricating coating was measured in a dry state, the content was, by weight ratio, molybdenum disulfide 3 and graphite 1.5 with respect to the inorganic polymer 1 having a skeleton of Ti—O, and the film thickness was 15 μm. It was. On the other hand, # 80 sand was sprayed on the surface of the box to make the surface roughness 10 μm, and a manganese phosphate coating having a thickness of 15 μm was formed on the surface by chemical conversion treatment. Next, the pin side was coated on the lubricating coating, and the box side was coated on the manganese phosphate coating with a rust preventive oil of type X5 shown in Table 4 to form a rust preventive coating having a thickness of 15 μm.
[0097]
As shown in Table 8, in the salt spray test, no rust was observed in both the pin and the box. In the tightening / rewinding test, the seizure did not occur in the 20 tightening / rewinding operations shown in Table 6 and was extremely good. Further, through the 20 tightening / rewinding tests, the variation in the tightening torque was stable at less than ± 10%, which was good.
[0098]
(Invention Example 6)
The following surface treatment was applied to the threaded joint made of carbon steel shown in Table 2. A # 80 sand was sprayed on both the pin surface and the box surface to make the surface roughness 10 μm, and then a manganese phosphate coating having a thickness of 8 μm was formed on both by chemical conversion treatment. Next, an epoxy resin having an average molecular weight of 10,000 and molybdenum disulfide powder having an average particle size of 1.8 μm are mixed with the epoxy resin 1 in a weight ratio of 1.5 mol of molybdenum disulfide on the manganese phosphate coating. A mixture of toluene and xylene was applied as a dispersion medium. Next, after drying, a heat treatment was performed at 180 ° C. for 20 minutes. When the composition of the lubricating film formed on the pin surface and the box surface after heat treatment was measured, the content on both the pin side and the box side was molybdenum disulfide 3 with respect to the epoxy resin 1 by weight, and the film thickness The thickness was 10 μm. Next, a rust preventive oil of type X6 shown in Table 4 was applied on the lubricant film formed on the pin surface and the box surface to form a rust preventive film having a thickness of 2 μm.
[0099]
As shown in Table 8, in the salt spray test, no rust was observed in both the pin and the box. In the tightening / rewinding test, seizure did not occur until the end of the 19th tightening / rewinding in Table 6, and it was good. Although slight seizure occurred during the 20th tightening, it could be maintained. Further, through the 20 tightening / rewinding tests, the variation in the tightening torque was stable at about ± 10%, which was good.
[0100]
(Invention Example 7)
Surface treatment was performed under the same conditions as in Invention Example 2 except that no rust preventive film was formed on the box side.
[0101]
As shown in Table 8, in the salt spray test, no rust was observed in both the pin and the box. In the tightening / rewinding test, the seizure did not occur in the 20 tightening / rewinding operations shown in Table 6 and was extremely good. Further, through the 20 tightening / rewinding tests, the variation in the tightening torque was stable at about ± 13%, which was good.
[0102]
(Invention Example 8)
Surface treatment was performed under the same conditions as in Invention Example 6 except that no rust preventive film was formed on the pin side.
[0103]
As shown in Table 8, in the salt spray test, no rust was observed in both the pin and the box. In the tightening / rewinding test, the seizure did not occur in the 20 tightening / rewinding operations shown in Table 6 and was extremely good. In addition, through 20 tightening / rewinding tests, the variation in tightening torque was stable at about ± 15%, which was good.
[0104]
(Comparative Example 1)
The carbon steel threaded joint shown in Table 2 was subjected to a surface treatment under the same conditions as in Invention Example 6 except that no rust preventive coating was formed. That is, a manganese phosphate coating having a thickness of 8 μm was formed on the pin surface and the box surface, and a lubricating coating having a thickness of 15 μm made of epoxy resin and molybdenum disulfide was formed on the manganese phosphate coating.
[0105]
As shown in Table 8, rust appeared on almost the entire surface of the lubricating film in both the pin and the box, and peeling was observed in a part of the lubricating film. In the tightening / rewinding test, slight seizure was observed in the 13th tightening, and the seizure was completely stopped in the 15th tightening. Further, in the tightening / rewinding test up to the 14th time, the variation in the tightening torque was as large as about ± 50% and was unstable.
[0106]
(Comparative Example 2)
The following surface treatment was applied to the threaded joint made of carbon steel shown in Table 2. The surface of the pin was subjected to a mechanical grinding finish, the surface roughness was set to 3 μm, and a type X7 rust preventive oil shown in Table 4 was applied to the pin surface to form a rust preventive film having a thickness of 15 μm. The surface of the box is sprayed with # 80 sand to a surface roughness of 15 μm. An epoxy resin with an average molecular weight of 15000 and molybdenum disulfide powder with an average particle size of 1.5 μm are coated on the surface of the box with molybdenum disulfide 3 And a mixed solution of toluene and isopropyl alcohol was applied as a dispersion medium to form a lubricating coating. When the lubricating film thickness was measured in a dry state, it was 40 μm. Next, a rust preventive oil of type X7 shown in Table 4 was applied on the lubricant film to form a rust preventive film having a thickness of 15 μm.
[0107]
As shown in Table 8, in the salt spray test, the occurrence of rust was observed in the area of about 30% and about 7% on the pin side and the box side, respectively, and the swelling of the film was also partially recognized. In the tightening / rewinding test, slight seizure was observed at the 11th tightening, and complete seizure at the 13th tightening, making it impossible to continue the test. In addition, in the tightening / rewinding test up to the 12th time, the variation in tightening torque was as large as about ± 35% and was unstable.
(Comparative Example 3)
The following surface treatment was applied to the threaded joint made of carbon steel shown in Table 1. The pin surface was mechanically ground and the surface roughness was 3 μm. A # 80 sand was sprayed on the surface of the box with a surface roughness of 10 μm to form a 15 μm thick manganese phosphate coating. Next, a compound grease corresponding to API-Bul5A2 is unit area (1 dm) on both the pin surface and the upper surface of the manganese phosphate coating. 2 ) About 20 g.
[0108]
As shown in Table 8, in the salt spray test, no rust was generated on both the pin side and the box side. In the tightening / rewinding test, slight seizure occurred after the eighth tightening, but the test was continued with care taken. However, the seizure occurred at the 11th retightening, and the test could not be continued. In addition, in the tenth tightening / rewinding test, the variation in the tightening torque was stable at less than ± 10%.
[0109]
As described above, the present invention example has excellent rust resistance equivalent to that of a threaded joint coated with compound grease, and has superior seizure resistance and an effect of suppressing fluctuations in tightening torque as compared with the comparative example. I understood.
[0110]
【The invention's effect】
The rust preventive oil composition of the present invention has a rust preventive property equivalent to that of compound grease, and can be used as a rust preventive coating for screw joints that do not use compound grease. In addition, the threaded joint for oil well pipes of the present invention has rust prevention equivalent to that of a conventional threaded joint coated with compound grease, and is significantly more resistant to seizure during repeated tightening and retraction than conventional threaded joints. improves. Therefore, the threaded joint for oil country tubular goods of this invention can ensure rust prevention and improve seizure resistance without using any compound grease applied before shipment or before make-up.
[Brief description of the drawings]
FIG. 1 is a schematic view schematically showing an assembly configuration of an oil well pipe and a threaded joint member when the oil well pipe is shipped.
FIG. 2 is a graph showing the relationship between the rust generation area and the saponification value, total base number, alkali metal content, and rust preventive film thickness in the salt spray test. FIG. Fig. (B) is a graph of rust generation area and total base number, Fig. (C) is a graph of rust generation area and alkali metal content, and Fig. (D) is a graph of rust generation area and rust-proof coating thickness.
FIG. 3 is a graph showing the relationship between a friction coefficient and a saponification value, total base number, alkali metal content, and rust-proof coating thickness by a friction test. FIG. 3 (a) shows the friction coefficient and saponification value, FIG. ) Is a coefficient of friction and total base number, FIG. 4C is a graph of the coefficient of friction and alkali metal content, and FIG.
FIG. 4 is a schematic view schematically showing a tightening portion of the threaded joint for oil country tubular goods of the present invention.
FIG. 5 is an enlarged cross-sectional view showing an example of the state of formation of a solid lubricant film and a rust preventive film according to the threaded joint for oil-based pipes of the present invention. FIG. Is the unthreaded metal contact of the box.
FIG. 6 is an enlarged cross-sectional view showing the formation state of a solid lubricating coating and a rust-preventing coating according to another oil well pipe threaded joint of the present invention. FIG. 6 (a) is an unthreaded metal contact portion of a pin, and FIG. ) Is the unthreaded metal contact of the box.
[Explanation of symbols]
1A: oil well pipe, 1B: threaded joint member,
2: pin, 3: box,
4: Screw part, 5: Unthreaded metal contact part,
6: shoulder portion, 7: solid lubricating coating,
8: Binder, 9: Solid lubricant,
10: Antirust coating.

Claims (6)

カルボン酸のアルカリ金属塩および/またはカルボン酸のアルカリ土類金属塩を含有し、鹸化価が20〜150mgKOH/g、全塩基価が15〜100mgKOH/gで、アルカリ金属とアルカリ土類金属の含有量が合計で2〜20mass%であることを特徴とする油井管ねじ継手用防錆油組成物。Containing alkali metal salt of carboxylic acid and / or alkaline earth metal salt of carboxylic acid, saponification value of 20 to 150 mgKOH / g, total base number of 15 to 100 mgKOH / g, containing alkali metal and alkaline earth metal The total amount is 2-20 mass%, The antirust oil composition for oil well pipe threaded joints characterized by the above-mentioned. 上記防錆油組成物は黒鉛と二硫化モリブデンと有機Mo化合物の一種以上からなる潤滑剤を5〜30mass%含有することを特徴とする請求項1に記載の油井管ねじ継手用防錆油組成物。The rust preventive oil composition for oil well pipe threaded joints according to claim 1, wherein the rust preventive oil composition contains 5 to 30 mass% of a lubricant composed of one or more of graphite, molybdenum disulfide and an organic Mo compound. Stuff. ねじ部とねじ無し金属接触部とをそれぞれ有するボックスとピンとで構成されるねじ継手において、ボックスとピンのいずれか一方に形成された固体潤滑被膜と、他方に形成された防錆被膜とを有し、前記固体潤滑被膜が樹脂またはM(金属)−Oを骨格とする無機高分子化合物の被膜であり、前記防錆被膜が請求項1または請求項2に記載の防錆油組成物の被膜であることを特徴とする油井管用ねじ継手。A threaded joint composed of a box and a pin each having a threaded portion and an unthreaded metal contact portion, and having a solid lubricating film formed on one of the box and the pin and a rust preventive film formed on the other. The solid lubricant film is a film of an inorganic polymer compound having a resin or M (metal) -O as a skeleton, and the rust preventive film is a film of the rust preventive oil composition according to claim 1 or 2. A threaded joint for oil country tubular goods. 上記防錆被膜の厚さが5μm〜50μmであることを特徴とする請求項3に記載の油井管用ねじ継手。The thickness of the said rust preventive film is 5 micrometers-50 micrometers, The threaded joint for oil country pipes of Claim 3 characterized by the above-mentioned. ねじ部とねじ無し金属接触部とをそれぞれ有するボックスとピンとで構成されるねじ継手において、ボックスとピンの双方に形成された固体潤滑被膜と、ボックスとピンの少なくともいずれか一方の固体潤滑被膜の上に形成された防錆被膜とを有し、前記固体潤滑被膜が樹脂またはM(金属)−Oを骨格とする無機高分子化合物の被膜であり、前記防錆被膜が請求項1または請求項2に記載の防錆油組成物の被膜であることを特徴とする油井管用ねじ継手。In a threaded joint composed of a box and a pin each having a threaded portion and an unthreaded metal contact portion, a solid lubricating film formed on both the box and the pin, and a solid lubricating film on at least one of the box and the pin And a rust preventive film formed thereon, wherein the solid lubricating film is a film of an inorganic polymer compound having a resin or M (metal) -O as a skeleton, and the rust preventive film is claim 1 or claim. 2. A threaded joint for oil country tubular goods, characterized in that it is a coating of the rust-preventive oil composition described in 2. 上記防錆被膜の厚さが1μm〜50μmであることを特徴とする請求項5に記載の油井管用ねじ継手。6. The threaded joint for oil country tubular goods according to claim 5, wherein the rust preventive coating has a thickness of 1 to 50 [mu] m.
JP27969599A 1999-08-27 1999-09-30 Threaded joint for oil well pipe formed with anti-rust oil composition and coating film Expired - Lifetime JP3656481B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP27969599A JP3656481B2 (en) 1999-09-30 1999-09-30 Threaded joint for oil well pipe formed with anti-rust oil composition and coating film
EP07020123A EP1882874B1 (en) 1999-08-27 2000-08-24 Threaded joint for oil well pipe
PCT/JP2000/005661 WO2001016516A1 (en) 1999-08-27 2000-08-24 Threaded joint for oil well pipe
CA002383894A CA2383894C (en) 1999-08-27 2000-08-24 Threaded joint for oil well pipe
EP00954946A EP1211451B1 (en) 1999-08-27 2000-08-24 Threaded joint for oil well pipe
AU67271/00A AU6727100A (en) 1999-08-27 2000-08-24 Threaded joint for oil well pipe
US10/082,212 US6679526B2 (en) 1999-08-27 2002-02-26 Threaded joint for an oil well pipe
NO20020955A NO336986B1 (en) 1999-08-27 2002-02-27 Threaded connection for oil well pipes
NO20141507A NO337618B1 (en) 1999-08-27 2014-12-12 Threaded connection for oil well pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27969599A JP3656481B2 (en) 1999-09-30 1999-09-30 Threaded joint for oil well pipe formed with anti-rust oil composition and coating film

Publications (2)

Publication Number Publication Date
JP2001099364A JP2001099364A (en) 2001-04-10
JP3656481B2 true JP3656481B2 (en) 2005-06-08

Family

ID=17614595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27969599A Expired - Lifetime JP3656481B2 (en) 1999-08-27 1999-09-30 Threaded joint for oil well pipe formed with anti-rust oil composition and coating film

Country Status (1)

Country Link
JP (1) JP3656481B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072486A1 (en) * 2007-12-04 2009-06-11 Sumitomo Metal Industries, Ltd. Pipe screw joint

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084163A1 (en) * 2001-04-11 2002-10-24 Sumitomo Metal Industries, Ltd. Threaded joint for steel pipe and method for surface treatment of the threaded joint
MX2007008518A (en) * 2005-01-13 2007-08-14 Sumitomo Metal Ind Threaded joint for steel pipes.
US7497481B2 (en) * 2005-05-13 2009-03-03 Hydril Llc Treating method and design method for tubular connections
JP4275656B2 (en) * 2005-09-02 2009-06-10 住友金属工業株式会社 Threaded joints for steel pipes
JP5028923B2 (en) * 2006-09-14 2012-09-19 住友金属工業株式会社 Threaded joints for steel pipes
US8322754B2 (en) 2006-12-01 2012-12-04 Tenaris Connections Limited Nanocomposite coatings for threaded connections
CA2805566C (en) * 2010-07-20 2018-05-01 Tenaris Connections Limited Joints having improved sealability, lubrication and corrosion resistance
AR100953A1 (en) 2014-02-19 2016-11-16 Tenaris Connections Bv THREADED PIPE FOR AN OIL WELL PIPING
CN114438500A (en) * 2021-12-24 2022-05-06 苏州市浒墅关化工添加剂有限公司 Environment-friendly emulsified antirust liquid and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072486A1 (en) * 2007-12-04 2009-06-11 Sumitomo Metal Industries, Ltd. Pipe screw joint
EA017703B1 (en) * 2007-12-04 2013-02-28 Сумитомо Метал Индастриз, Лтд. Pipe screw joint
US9321982B2 (en) 2007-12-04 2016-04-26 Nippon Steel & Sumitomo Metal Corporation Threaded joint for pipes
US10626345B2 (en) 2007-12-04 2020-04-21 Nippon Steel Corporation Threaded joint for pipes

Also Published As

Publication number Publication date
JP2001099364A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
US6679526B2 (en) Threaded joint for an oil well pipe
AU2002248003B2 (en) Threaded joint for steel pipe and method for surface treatment of the threaded joint
JP3931564B2 (en) Threaded joint for steel pipes with excellent seizure resistance and rust resistance
JP4092871B2 (en) Composition for forming a lubricating coating suitable for lubricating treatment of threaded joints
JP5429302B2 (en) Pipe threaded joint
JP3656481B2 (en) Threaded joint for oil well pipe formed with anti-rust oil composition and coating film
BR112015002181B1 (en) COMPOSITION FOR FORMING A LUBRICANT COATING FOR A TUBULAR THREADED JOINT, THREADED TUBULAR JOINT AND METHOD OF CONNECTING A PLURALITY OF PETROLEUM TUBULAR PRODUCTS
BRPI0721621B1 (en) fillet element for a seizure-resistant tubular fillet joint
JP6025994B2 (en) Lubricating film forming composition and steel pipe threaded joint
JP3765243B2 (en) Threaded joints for steel pipes
JP3775122B2 (en) Threaded joint for oil well pipe
JP4032801B2 (en) Threaded joints for steel pipes
JP2002327874A (en) Screw joint for steel pipe
JP2001065753A (en) Screw joint for oil well pipe
JP3767668B2 (en) Threaded joint for oil well pipe
JP2001065752A (en) Screw joint for oil well pipe and lublication film forming method therefor
JP4123810B2 (en) Threaded joint for steel pipes with excellent seizure resistance and its surface treatment method
AU2005201028B2 (en) Threaded joint for steel pipe and method for surface treatment of the threaded joint

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Ref document number: 3656481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term