JP3640017B2 - Lead-free solder bump and its formation method - Google Patents

Lead-free solder bump and its formation method Download PDF

Info

Publication number
JP3640017B2
JP3640017B2 JP2000221980A JP2000221980A JP3640017B2 JP 3640017 B2 JP3640017 B2 JP 3640017B2 JP 2000221980 A JP2000221980 A JP 2000221980A JP 2000221980 A JP2000221980 A JP 2000221980A JP 3640017 B2 JP3640017 B2 JP 3640017B2
Authority
JP
Japan
Prior art keywords
lead
solder bump
mask
free solder
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000221980A
Other languages
Japanese (ja)
Other versions
JP2002043348A (en
Inventor
隆生 石井
眞二 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000221980A priority Critical patent/JP3640017B2/en
Publication of JP2002043348A publication Critical patent/JP2002043348A/en
Application granted granted Critical
Publication of JP3640017B2 publication Critical patent/JP3640017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys

Description

【0001】
【発明の属する技術分野】
本発明は、半導体デバイス等に使用される鉛フリーはんだバンプ及びその形成法に関する。
【0002】
【従来の技術】
近年、環境汚染物質の削減やその代替物質への転換が呼ばれている中、電子機器の基板配線に大きな寄与をしてきたはんだの主成分である鉛の毒性がクローズアップされてきた。この発端は地下水を飲料水としているアメリカにおいて許容値を越える鉛が検出され、この原因が廃家電等のプリント基板が酸性雨にさらされることによって溶出したものと判断されたことによる。
【0003】
本来鉛の使用が最も多いのが自動車用のバッテリであり70%と圧倒的で、はんだは他の鉛台金と合わせても3%前後の割合でしかない。しかし、バッテリは回収可能であるが、家電製品のプリント基板に使用されているはんだは回収が不可能に近く、廃家電はゴミという形で廃棄され、前述のように一度溶出してしまえば環境に与える影響は大きい。このような背景から鉛を含まないはんだ(鉛フリーはんだ)採用にむけての検討が各国で精力的に行われている。
【0004】
従来使われている鉛−スズ共晶はんだは融点、濡れ性、強度、価格等いずれにおいても優れた特性を有するが、これを凌駕する鉛フリーはんだを開発することは以下のような問題点があり非常に困難である。
【0005】
鉛フリーはんだはリフロー温度を反映する融点の観点からベースとなる材料にはスズが用いられ、第二元素としてビスマス、銀、銅、亜鉛、インジウム等が添加されるのが一般的である。しかしインジウムを除いていずれの組み合わせにおいても共晶温度は鉛−スズはんだのそれよりも高く、さらに濡れ性、強度、酸化等の点でも問題が多い。
【0006】
一方においてマルチメディア社会を支える、高速で広帯域な光通信用モジュールを構成する光デバイスや超高周波用電子デバイスの特性劣化を引き起こすことなく実装するためにはんだバンプとその形成技術は益々重要となってきている。特に携帶電話等の小型移動体通信手段の発展とともにデバイスの集積小型化が進みこのモジュール化に対応できる微小バンプとその形成法が必要とされている。
【0007】
【発明が解決しようとする課題】
微小バンプを形成するためにははんだ材料を蒸着する手法が一般的である。しかし二元以上の金属からなるはんだ合金を蒸着しても通常は単体金属の蒸気圧が大きく異なるため、もとのはんだ合金と同じ組成の金属薄膜を得ることは非常に困難である。このため従来、鉛−スズ系微小はんだバンプを作製する場合には、所望の組成(例えばSn74%−Pb26%)の薄膜を成膜するために2つの電子ビームを用いてスズと鉛の蒸気圧制御を独立に行なわねばならず、装置大型化と高度な作成技術が要求されるといった問題があった。
【0008】
本発明はこのような点に鑑みてなされたものであり、スズと鉛以外の金属との組み合わせによる鉛フリーはんだバンプを提供することを目的とする。
また、本発明の他の目的は、スズと鉛以外の金属との組み合わせにおいて、通常の蒸着法によりスズの層膜と鉛以外の金属の層膜とによる多層膜の形成により目的の組成とし、低温アニールとリフローを行なって鉛フリーはんだバンプを形成する鉛フリーはんだバンプ形成法を提供することである。
【0009】
【課題を解決するための手段】
上記の目的を達成するために本発明は、スズに対して鉛以外の相互拡散係数の大きい金属を選定しこの組み合わせの多層膜形成による蒸着法を採用することを特徴とする。
つまり、請求項1の発明は、基板上にパターニングしたマスクを形成し、その上から、Sn 1−x (M:Au,Inのうち少なくとも一つ以上を含みかつ0<x≦0.5)の組成になるように設定した膜厚のSnおよびMを交互に2回以上繰り替えして蒸着してSnおよびMの多層膜を形成し、その後マスクを除去して前記多層膜からなるはんだバンプ前駆体を形成し、つぎにアニールを行ってバンプ前駆体の組成の均一化を行い、さらに、前駆体と同一の組成のSnとMとの合金の共晶温度においてリフローさせることを特徴とする鉛フリーはんだバンプの形成法である。
請求項2の発明は、基板上にパターニングしたマスクを形成し、その上から、Sn 1−x (M:Au,Inのうち少なくとも一つ以上を含みかつ0<x≦0.5)の組成になるように設定した膜厚のSnおよびMを交互に6回繰り替えして蒸着してSnおよびMの多層膜を形成し、その後マスクを除去して前記多層膜からなるはんだバンプ前駆体を形成し、つぎにアニールを行ってバンプ前駆体の組成の均一化を行い、さらに、前駆体と同一の組成のSnとMとの合金の共晶温度においてリフローさせることを特徴とする鉛フリーはんだバンプの形成法である。
請求項3の発明は、請求項1または2に記載の鉛フリーはんだバンプの形成法において、前記はんだバンプ前駆体のアニールを該前駆体と同一の組成のSnとMとの合金の共晶温度より低い温度で行うことを特徴とする。
請求項4の発明は、請求項1または2に記載の鉛フリーはんだバンプの形成法において、パターニングするマスクとして有機レジスト材を用い、リフトオフ法によりマスクを除去することを特徴とする。
請求項5の発明は、請求項1または2に記載の鉛フリーはんだバンプの形成法において、パターニングするマスクとして金属マスクを用いることを特徴とする。
【0010】
【発明の実施の形態】
上記の課題を解決するために本発明の鉛フリーはんだバンプは、Sn1−x(M:Au,Inのうち少なくとも一つ以上を含みかつ0<x≦0.5)なる組成を有する合金であることに特徴を有している。
【0011】
また、本発明の鉛フリーはんだバンプの形成法は、基板上にパターニングしたマスクを形成し、その上から、Sn1−x(M:Au,Inのうち少なくとも一つ以上を含みかつ0<x≦0.5)の組成になるように設定したSnおよびMの膜厚を交互に蒸着して多層膜を形成し、その後マスクを除去して前記多層膜からなるはんだバンプ前駆体を形成し、つぎにアニールを行ってバンプ前駆体の組成の均一化を行い、さらに、前駆体の共晶温度においてリフローさせることに特徴を有している。
【0012】
さらに、本発明の鉛フリーはんだバンプの形成法は、はんだバンプ前駆体のアニールを該前駆体の共晶温度より低い温度で行うことに特徴を有している。
【0013】
また、本発明の鉛フリーはんだバンプの形成法は、パターニングするマスクとして有機レジスト材を用い、リフトオフ法によりマスクを除去することに特徴を有している。
【0014】
さらに、本発明の鉛フリーはんだバンプの形成法は、パターニングするマスクとして金属マスクを用いることに特徴を有している。
【0015】
【実施例】
以下に本発明の作用を本発明をなすに際して得た知見とともに説明する。
一般には合金膜の目的組成に合うように多層に膜を積層しても相互拡散係数が小さいために組成の均一化は生じない。しかし、もし相互拡散係数が大きな金属の組み合わせが見つかれば、蒸着法により多層膜を形成して目的の組成とし、適切な低温アニールを行なえば組成の均一化が起り所望の組成を有するはんだが形成できると考えた。
【0016】
そこでスズをベースとして第二金属としてビスマス、銀、銅、亜鉛、インジウム、金のうち一つを選び合金とした場合の相互拡散について検討した。この中で金、インジウムの場合については相互拡散が大きく200℃で合金化が起ることが報告されている[L.Buene,Thin Solid Films vol.47(1877)285,J.Bjontegaard et al.,Thin Solid Films voL.101(1983)253]。
【0017】
図2はAu−Sn系の相図(状態図)であり、縦軸は融点温度,横軸はSn−Auの割合を示している。図に示すように、Sn−Au系の共晶温度はSn95%−Au5%で217℃となっており、この組成になるように膜厚を選択し、比較的低温の約200℃でアニールすれば所望の均一な合金が得られ、さらに温度を共晶温度まで上げればリフローすることが予想される。
【0018】
このような検討結果のもとに本発明者らは、微小バンプはんだ形成に必要な合金膜の蒸着膜を得るために、幾多の実験を重ねる過程においてSn−Au系もしくはSn−In系においては所望の合金膜が形成できリフトオフ法によりはんだバンプ前駆体を形成し、約220℃以下でリフローして微小はんだバンプが形成することを見い出し本発明をなすに至った。
【0019】
次に、本発明の実施の形態を図面に基づいて説明する。なお、実施の形態は一つの例示であって、本発明の技術的思想を逸脱しない範囲で、種々の変更あるいは改良を行い得ることはいうまでもない。
【0020】
(実施例1)
図1は、本発明の一実施例における鉛フリーはんだバンプの形成法を説明する工程図である。
(a) 基板1上に適当な有機レジスト材を塗布してマスク2とし、
(b) マスク2を露光、現像等によりパターンマスク3に形成し、
(c) パターンマスク3上にSn95%−Au5%の組成になるように、SnとAuの薄膜を電子ビーム蒸着法により作成した。Sn:900nm→Au:28nmを6回繰り替えし約5.5μ膜厚の多層膜4にした。
(d)その後、有機溶剤を用いたリフトオフ法によってパターンマスク3を除去し、多層膜4からなる80μmφの微小なはんだバンプ前駆体5を形成した。
(e) つぎに、フラックス液(ソルボンドR5003)を塗布し、さらに約200℃、10minのアニールにより組成の均一化を行った。さらに、218℃に温度を上げてリフローを行い微小な鉛フリーはんだバンプ6を形成した。
【0021】
(実施例2)
(b) 基板1上に80μmφの穴をパターニングした金属のパターンマスク3を用いた。
(c) パターンマスク3上にSn95%−Au5%の組成になるように、SnとAuの薄膜を電子ビーム蒸着法により作成した。Sn:900nm→Au:28nmを6回繰り替えし約5.5μ膜厚の多層膜4にした。
(d)その後、有機溶剤を用いたリフトオフ法によってパターンマスク3を除去し、多層膜4からなる80μmφの微小なはんだバンプ前駆体5を形成した。
(e) つぎに、フラックス液(ソルボンドR5003)を塗布し、さらに約200℃、10minのアニールにより組成の均一化を行った。さらに、218℃に温度を上げてリフローを行い微小な鉛フリーはんだバンプ6を形成した。
【0022】
(実施例3)
(a) 基板1上に適当な有機レジスト材を塗布してマスク2とし、
(b) マスク2を露光、現像等によりパターンマスク3に形成し、
(c) パターンマスク3上にSn95%−In5%の組成になるように、SnとInの薄膜を電子ビーム蒸着法により作成した。Sn:900nm→In:29nmを6回繰り替えし約5.5μ膜厚の多層膜4にした。
(d)その後、有機溶剤を用いたリフトオフ法によってパターンマスク3を除去し、多層膜4からなる80μmφの微小なはんだバンプ前駆体5を形成した。
(e) つぎに、フラックス液(ソルボンドR5003)を塗布し、さらに約190℃、10minのアニールにより組成の均一化を行った。さらに、210℃に温度を上げてリフローを行い微小な鉛フリーはんだバンプ6を形成した。
【0023】
(実施例4)
(a) 基板1上に適当な有機レジスト材を塗布してマスク2とし、
(b) マスク2を露光、現像等によりパターンマスク3に形成し、
(c) パターンマスク3上にSn95%−Au3%−In2%の組成になるように、Sn,Au,Inの薄膜を電子ビーム蒸着法により作成した。Sn:900nm→Au:16nm→In:13nmを6回繰り替えし約5.5μ膜厚の多層膜4にした。
(d)その後、有機溶剤を用いたリフトオフ法によってパターンマスク3を除去し、多層膜4からなる80μmφの微小なはんだバンプ前駆体5を形成した。
(e) つぎに、フラックス液(ソルボンドR5003)を塗布し、さらに約200℃、10minのアニールにより組成の均一化を行った。さらに、210℃に温度を上げてリフローを行い微小な鉛フリーはんだバンプ6を形成した。
なお、本実施例1〜4ではSn95%−Au5%,Sn95%−In5%,Sn95%−Au3%−In2%の組成の合金についてのみその実施例を示したが、Sn,Au,Inの膜厚をSn1−x(M:Au,Inのうち少なくとも一つ以上を含みかつ0<x≦0.5)なる組成を有する合金となるよう設定して積層膜を形成し、実施例1〜4の何れかの方法で鉛フリーはんだバンプ6を形成しても良い。
【0024】
【発明の効果】
以上説明したように本発明では、Sn−Au系もしくはSn−In系においては蒸着により多層膜形成により所望の合金膜が形成でき、リフトオフ法により微小はんだバンプ前駆体を形成し、約220℃以下でリフローし微小鉛フリーはんだバンプが形成することができる。220℃以下という比較的低温でリフローできることは、特に化合物系半導体デバイスのパッケージ化において特に大きな貢献をなすものである。また、適切な低温アニールを行なえば組成の均一化が起り所望の組成を有するはんだが形成できる。
【図面の簡単な説明】
【図1】(a)〜(e)は、本発明の一実施例における鉛フリーはんだバンプの形成法を説明する工程図である。
【図2】本発明の基本思想を説明するためのAu−Sn系の相図である。
【符号の説明】
1 基板
2 マスク
3 パターンマスク
4 多層膜
5 バンプ前駆体
6 鉛フリーはんだバンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead-free solder bump used for a semiconductor device or the like and a method for forming the same.
[0002]
[Prior art]
In recent years, the toxicity of lead, which is the main component of solder, which has greatly contributed to the substrate wiring of electronic devices, has been highlighted while reducing environmental pollutants and switching to alternatives. The origin of this was due to the fact that lead exceeding the allowable value was detected in the United States where drinking water was used as groundwater, and that the cause was judged to have been eluted by exposing printed circuit boards such as waste home appliances to acid rain.
[0003]
Originally, the most common use of lead is the battery for automobiles, which is overwhelming at 70%, and the solder is only about 3% when combined with other lead base metal. However, the battery can be recovered, but the solder used on the printed circuit board of home appliances is almost impossible to recover, and the discarded home appliances are discarded in the form of garbage and once eluted as described above, the environment The impact on is great. Against this background, various countries are energetically studying how to use lead-free solder (lead-free solder).
[0004]
Conventionally used lead-tin eutectic solder has excellent properties in terms of melting point, wettability, strength, price, etc., but developing lead-free solder that surpasses this has the following problems: It is very difficult.
[0005]
In the lead-free solder, tin is used as a base material from the viewpoint of the melting point reflecting the reflow temperature, and bismuth, silver, copper, zinc, indium and the like are generally added as the second element. However, in any combination except for indium, the eutectic temperature is higher than that of lead-tin solder, and there are many problems in terms of wettability, strength, oxidation, and the like.
[0006]
On the other hand, solder bumps and their formation technology are becoming more and more important for mounting without causing deterioration of the characteristics of optical devices and ultra-high frequency electronic devices that constitute high-speed and broadband optical communication modules that support the multimedia society. ing. In particular, along with the development of small mobile communication means such as mobile phones, the integration and miniaturization of devices have progressed, and micro bumps that can cope with this modularization and the formation method thereof are required.
[0007]
[Problems to be solved by the invention]
In order to form micro bumps, a method of vapor-depositing a solder material is common. However, it is very difficult to obtain a metal thin film having the same composition as that of the original solder alloy because the vapor pressure of a single metal is usually greatly different even when a solder alloy composed of two or more metals is deposited. For this reason, conventionally, when producing a lead-tin micro solder bump, the vapor pressure of tin and lead using two electron beams to form a thin film having a desired composition (for example, Sn74% -Pb26%). There was a problem that the control had to be performed independently, and that the apparatus size was increased and advanced production technology was required.
[0008]
This invention is made | formed in view of such a point, and it aims at providing the lead-free solder bump by the combination of metals other than tin and lead.
Another object of the present invention is to achieve a target composition by forming a multilayer film with a layer film of tin and a layer film of metal other than lead by a normal vapor deposition method in a combination of metals other than tin and lead. To provide a lead-free solder bump forming method in which lead-free solder bumps are formed by performing low-temperature annealing and reflow.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is characterized in that a metal having a large mutual diffusion coefficient other than lead is selected with respect to tin and a vapor deposition method by forming a multilayer film of this combination is adopted.
That is, according to the first aspect of the present invention, a patterned mask is formed on a substrate, from which Sn 1-x M x (M: includes at least one of Au, In, and 0 <x ≦ 0. 5) Sn and M having a film thickness set so as to have the composition are alternately and repeatedly deposited to form a Sn and M multilayer film, and then the mask is removed and the solder composed of the multilayer film A bump precursor is formed, then annealed to make the composition of the bump precursor uniform, and further reflowed at the eutectic temperature of an alloy of Sn and M having the same composition as the precursor. This is a method for forming lead-free solder bumps.
According to a second aspect of the present invention, a patterned mask is formed on a substrate, from which Sn 1-x M x (M: includes at least one of Au and In, and 0 <x ≦ 0.5). Sn and M having a film thickness set so as to have the following composition are alternately deposited six times to form a multilayer film of Sn and M, and then the mask is removed to form a solder bump precursor comprising the multilayer film And then annealing to homogenize the composition of the bump precursor and reflow at the eutectic temperature of an alloy of Sn and M having the same composition as the precursor. This is a method of forming solder bumps.
According to a third aspect of the present invention, in the method for forming a lead-free solder bump according to the first or second aspect, the eutectic temperature of the alloy of Sn and M having the same composition as the precursor is annealed to the solder bump precursor. It is characterized by being performed at a lower temperature.
According to a fourth aspect of the present invention, in the method for forming a lead-free solder bump according to the first or second aspect, an organic resist material is used as a mask for patterning, and the mask is removed by a lift-off method.
According to a fifth aspect of the present invention, in the method for forming a lead-free solder bump according to the first or second aspect, a metal mask is used as a mask for patterning.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above problems, the lead-free solder bump of the present invention has a composition of Sn 1-x M x (M: includes at least one of Au and In and 0 <x ≦ 0.5). It is characterized by being an alloy.
[0011]
Further, the lead-free solder bump forming method of the present invention forms a patterned mask on a substrate, and includes Sn 1-x M x (M: at least one of Au, In and 0). <X ≦ 0.5) The film thickness of Sn and M set so as to have the composition is alternately deposited to form a multilayer film, and then the mask is removed to form a solder bump precursor composed of the multilayer film. Next, annealing is performed to make the composition of the bump precursor uniform, and the reflow is performed at the eutectic temperature of the precursor.
[0012]
Furthermore, the lead-free solder bump forming method of the present invention is characterized in that the solder bump precursor is annealed at a temperature lower than the eutectic temperature of the precursor.
[0013]
The lead-free solder bump forming method of the present invention is characterized by using an organic resist material as a mask for patterning and removing the mask by a lift-off method.
[0014]
Further, the lead-free solder bump forming method of the present invention is characterized in that a metal mask is used as a mask for patterning.
[0015]
【Example】
The operation of the present invention will be described below together with the knowledge obtained in making the present invention.
In general, even if films are laminated in multiple layers so as to match the target composition of the alloy film, the mutual diffusion coefficient is small, so that the composition is not uniformized. However, if a combination of metals with a large interdiffusion coefficient is found, a multilayer film is formed by vapor deposition to achieve the desired composition, and if appropriate low temperature annealing is performed, the composition becomes uniform and a solder having a desired composition is formed. I thought it was possible.
[0016]
Therefore, interdiffusion in the case of selecting one of bismuth, silver, copper, zinc, indium and gold as the second metal based on tin and examining it as an alloy was studied. Among them, in the case of gold and indium, it is reported that mutual diffusion is large and alloying occurs at 200 ° C. [L. Buene, Thin Solid Films vol. 47 (1877) 285, J. Bjontegaard et al. , Thin Solid Films voL. 101 (1983) 253].
[0017]
FIG. 2 is a phase diagram (state diagram) of the Au—Sn system, where the vertical axis indicates the melting point temperature and the horizontal axis indicates the ratio of Sn—Au. As shown in the figure, the eutectic temperature of Sn—Au system is 217 ° C. with Sn 95% -Au 5%, and the film thickness is selected so that this composition is obtained, and annealing is performed at a relatively low temperature of about 200 ° C. Thus, a desired uniform alloy can be obtained, and reflow is expected if the temperature is further raised to the eutectic temperature.
[0018]
Based on such examination results, the present inventors have obtained a deposition film of an alloy film necessary for forming a fine bump solder, and in the process of repeated experiments, in the Sn-Au system or the Sn-In system, The present inventors have found that a desired alloy film can be formed, a solder bump precursor is formed by a lift-off method, and reflow is performed at about 220 ° C. or less to form a fine solder bump, thereby achieving the present invention.
[0019]
Next, embodiments of the present invention will be described with reference to the drawings. The embodiment is merely an example, and it goes without saying that various changes or improvements can be made without departing from the technical idea of the present invention.
[0020]
Example 1
FIG. 1 is a process diagram illustrating a method for forming lead-free solder bumps in one embodiment of the present invention.
(a) An appropriate organic resist material is applied on the substrate 1 to form a mask 2;
(b) Form the mask 2 on the pattern mask 3 by exposure, development, etc.
(c) A thin film of Sn and Au was formed on the pattern mask 3 by an electron beam vapor deposition method so as to have a composition of Sn95% -Au5%. Sn: 900 nm → Au: 28 nm was repeated 6 times to obtain a multilayer film 4 having a thickness of about 5.5 μm.
(d) Thereafter, the pattern mask 3 was removed by a lift-off method using an organic solvent, and a fine solder bump precursor 5 having a thickness of 80 μm φ composed of the multilayer film 4 was formed.
(e) Next, a flux solution (Solbond R5003) was applied, and the composition was made uniform by annealing at about 200 ° C. for 10 minutes. Further, the temperature was raised to 218 ° C. and reflow was performed to form a fine lead-free solder bump 6.
[0021]
(Example 2)
(b) A metal pattern mask 3 in which holes of 80 μm diameter were patterned on the substrate 1 was used.
(c) A thin film of Sn and Au was formed on the pattern mask 3 by an electron beam vapor deposition method so as to have a composition of Sn95% -Au5%. Sn: 900 nm → Au: 28 nm was repeated 6 times to obtain a multilayer film 4 having a thickness of about 5.5 μm.
(d) Thereafter, the pattern mask 3 was removed by a lift-off method using an organic solvent, and a fine solder bump precursor 5 having a thickness of 80 μm φ composed of the multilayer film 4 was formed.
(e) Next, a flux solution (Solbond R5003) was applied, and the composition was made uniform by annealing at about 200 ° C. for 10 minutes. Further, the temperature was raised to 218 ° C. and reflow was performed to form a fine lead-free solder bump 6.
[0022]
Example 3
(a) An appropriate organic resist material is applied on the substrate 1 to form a mask 2;
(b) Form the mask 2 on the pattern mask 3 by exposure, development, etc.
(c) A thin film of Sn and In was formed on the pattern mask 3 by an electron beam evaporation method so as to have a composition of Sn95% -In5%. Sn: 900 nm → In: 29 nm was repeated 6 times to obtain a multilayer film 4 having a thickness of about 5.5 μm.
(d) Thereafter, the pattern mask 3 was removed by a lift-off method using an organic solvent, and a fine solder bump precursor 5 having a thickness of 80 μm φ composed of the multilayer film 4 was formed.
(e) Next, a flux solution (Solbond R5003) was applied, and the composition was made uniform by annealing at about 190 ° C. for 10 minutes. Further, the temperature was raised to 210 ° C. and reflowing was performed to form a fine lead-free solder bump 6.
[0023]
(Example 4)
(a) An appropriate organic resist material is applied on the substrate 1 to form a mask 2;
(b) Form the mask 2 on the pattern mask 3 by exposure, development, etc.
(c) A thin film of Sn, Au, In was formed on the pattern mask 3 by an electron beam evaporation method so as to have a composition of Sn95% -Au3% -In2%. Sn: 900 nm → Au: 16 nm → In: 13 nm was repeated six times to obtain a multilayer film 4 having a thickness of about 5.5 μm.
(d) Thereafter, the pattern mask 3 was removed by a lift-off method using an organic solvent, and a fine solder bump precursor 5 having a thickness of 80 μm φ composed of the multilayer film 4 was formed.
(e) Next, a flux solution (Solbond R5003) was applied, and the composition was made uniform by annealing at about 200 ° C. for 10 minutes. Further, the temperature was raised to 210 ° C. and reflowing was performed to form a fine lead-free solder bump 6.
In the first to fourth embodiments, only the alloy having the composition of Sn95% -Au5%, Sn95% -In5%, Sn95% -Au3% -In2% was shown, but the film of Sn, Au, In was used. A laminated film is formed by setting the thickness to be an alloy having a composition of Sn 1-x M x (M: including at least one of Au, In and 0 <x ≦ 0.5). The lead-free solder bump 6 may be formed by any one of methods 1 to 4.
[0024]
【The invention's effect】
As described above, in the present invention, in the Sn-Au system or Sn-In system, a desired alloy film can be formed by forming a multilayer film by vapor deposition, and a fine solder bump precursor is formed by a lift-off method, and is about 220 ° C. or less. Can be reflowed to form a fine lead-free solder bump. The ability to reflow at a relatively low temperature of 220 ° C. or less makes a particularly significant contribution especially in the packaging of compound semiconductor devices. Further, if appropriate low-temperature annealing is performed, the composition becomes uniform and a solder having a desired composition can be formed.
[Brief description of the drawings]
FIGS. 1A to 1E are process diagrams illustrating a method for forming a lead-free solder bump in one embodiment of the present invention.
FIG. 2 is an Au—Sn phase diagram for explaining the basic idea of the present invention.
[Explanation of symbols]
1 Substrate 2 Mask 3 Pattern mask 4 Multilayer film 5 Bump precursor 6 Lead-free solder bump

Claims (5)

基板上にパターニングしたマスクを形成し、
その上から、Sn1−x(M:Au,Inのうち少なくとも一つ以上を含みかつ0<x≦0.5)の組成になるように設定した膜厚のSnおよびMを交互に2回以上繰り替えして蒸着してSnおよびMの多層膜を形成し、
その後マスクを除去して前記多層膜からなるはんだバンプ前駆体を形成し、
つぎにアニールを行ってバンプ前駆体の組成の均一化を行い、
さらに、前駆体と同一の組成のSnとMとの合金の共晶温度においてリフローさせることを特徴とする鉛フリーはんだバンプの形成法。
Form a patterned mask on the substrate,
Further, Sn 1-x M x (M: including at least one of Au and In and 0 <x ≦ 0.5) , Sn and M having a film thickness set alternately are alternately set. Repeat two or more times to form a multilayer film of Sn and M by vapor deposition ,
Thereafter, the mask is removed to form a solder bump precursor composed of the multilayer film,
Next, anneal to homogenize the composition of the bump precursor,
Furthermore, the lead-free solder bump forming method is characterized by reflowing at an eutectic temperature of an alloy of Sn and M having the same composition as the precursor.
基板上にパターニングしたマスクを形成し、
その上から、Sn1−x(M:Au,Inのうち少なくとも一つ以上を含みかつ0<x≦0.5)の組成になるように設定した膜厚のSnおよびMを交互に6回繰り替えして蒸着してSnおよびMの多層膜を形成し、
その後マスクを除去して前記多層膜からなるはんだバンプ前駆体を形成し、
つぎにアニールを行ってバンプ前駆体の組成の均一化を行い、
さらに、前駆体と同一の組成のSnとMとの合金の共晶温度においてリフローさせることを特徴とする鉛フリーはんだバンプの形成法。
Form a patterned mask on the substrate,
Further, Sn 1-x M x (M: including at least one of Au and In and 0 <x ≦ 0.5) , Sn and M having a film thickness set alternately are alternately set. Repeat the deposition 6 times to form a multilayer film of Sn and M ,
Thereafter, the mask is removed to form a solder bump precursor composed of the multilayer film,
Next, anneal to homogenize the composition of the bump precursor,
Furthermore, the lead-free solder bump forming method is characterized by reflowing at an eutectic temperature of an alloy of Sn and M having the same composition as the precursor.
前記はんだバンプ前駆体のアニールを該前駆体と同一の組成のSnとMとの合金の共晶温度より低い温度で行うことを特徴とする請求項1または2に記載の鉛フリーはんだバンプの形成法。The lead-free solder bump formation according to claim 1 or 2 , wherein annealing of the solder bump precursor is performed at a temperature lower than a eutectic temperature of an alloy of Sn and M having the same composition as the precursor. Law. パターニングするマスクとして有機レジスト材を用い、
リフトオフ法によりマスクを除去することを特徴とする請求項1または2に記載の鉛フリーはんだバンプの形成法。
Using an organic resist material as a mask for patterning,
3. The method for forming a lead-free solder bump according to claim 1 , wherein the mask is removed by a lift-off method.
パターニングするマスクとして金属マスクを用いることを特徴とする請求項1または2に記載の鉛フリーはんだバンプの形成法。 3. The method for forming lead-free solder bumps according to claim 1 , wherein a metal mask is used as a mask for patterning.
JP2000221980A 2000-07-24 2000-07-24 Lead-free solder bump and its formation method Expired - Fee Related JP3640017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000221980A JP3640017B2 (en) 2000-07-24 2000-07-24 Lead-free solder bump and its formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000221980A JP3640017B2 (en) 2000-07-24 2000-07-24 Lead-free solder bump and its formation method

Publications (2)

Publication Number Publication Date
JP2002043348A JP2002043348A (en) 2002-02-08
JP3640017B2 true JP3640017B2 (en) 2005-04-20

Family

ID=18716290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000221980A Expired - Fee Related JP3640017B2 (en) 2000-07-24 2000-07-24 Lead-free solder bump and its formation method

Country Status (1)

Country Link
JP (1) JP3640017B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4189156B2 (en) * 2002-02-22 2008-12-03 株式会社トクヤマ Chip pasting sheet
US6596621B1 (en) * 2002-05-17 2003-07-22 International Business Machines Corporation Method of forming a lead-free tin-silver-copper based solder alloy on an electronic substrate
JP3673948B2 (en) * 2002-08-19 2005-07-20 日本電信電話株式会社 Solder bump formation method
JP4136845B2 (en) 2002-08-30 2008-08-20 富士電機ホールディングス株式会社 Manufacturing method of semiconductor module
JP4766831B2 (en) * 2002-11-26 2011-09-07 株式会社村田製作所 Manufacturing method of electronic parts
US20070152025A1 (en) * 2004-03-02 2007-07-05 Fuji Electric Holdings Co., Ltd. Electronic part mounting method
JP4508189B2 (en) 2004-03-02 2010-07-21 富士電機ホールディングス株式会社 Manufacturing method of semiconductor module
JP5159725B2 (en) * 2009-08-27 2013-03-13 三洋電機株式会社 Solar cell string and solar cell module using the same
EP3206225A4 (en) 2014-10-10 2018-07-04 Ishihara Chemical Co., Ltd. Method for manufacturing alloy bump

Also Published As

Publication number Publication date
JP2002043348A (en) 2002-02-08

Similar Documents

Publication Publication Date Title
US6232212B1 (en) Flip chip bump bonding
US5767010A (en) Solder bump fabrication methods and structure including a titanium barrier layer
JP4146826B2 (en) Wiring substrate and semiconductor device
KR100207888B1 (en) Flip-chip interconnections using lead-free solders
US5904859A (en) Flip chip metallization
US20100132998A1 (en) Substrate having metal post and method of manufacturing the same
JP3215008B2 (en) Electronic circuit manufacturing method
US20140131864A1 (en) Connector Design for Packaging Integrated Circuits
US8164003B2 (en) Circuit board surface structure and fabrication method thereof
JP3640017B2 (en) Lead-free solder bump and its formation method
US20060219567A1 (en) Fabrication method of conductive bump structures of circuit board
WO1996016442A1 (en) Core metal soldering knob for flip-chip technology
US20060049516A1 (en) Nickel/gold pad structure of semiconductor package and fabrication method thereof
US20040121267A1 (en) Method of fabricating lead-free solder bumps
US7553750B2 (en) Method for fabricating electrical conductive structure of circuit board
JP3618997B2 (en) How to create a metal standoff on an electronic circuit
TW200846497A (en) Selective etch of TiW for capture pad formation
JP2008028112A (en) Manufacturing method for semiconductor device
KR101184108B1 (en) Wiring board, process for producing the same, and process for manufacturing electronic device
TW201025529A (en) Substrate structure and manufacturing method thereof
US5877560A (en) Flip chip microwave module and fabrication method
JP2005057264A (en) Packaged electric structure and its manufacturing method
JP4254700B2 (en) Conductive adhesive for mounting
US7767586B2 (en) Methods for forming connective elements on integrated circuits for packaging applications
KR100534108B1 (en) Method of fabricating Pb-free solder bumps

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041228

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20050106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees