JP3636231B2 - Method for purifying aqueous hydrogen peroxide - Google Patents

Method for purifying aqueous hydrogen peroxide Download PDF

Info

Publication number
JP3636231B2
JP3636231B2 JP23842995A JP23842995A JP3636231B2 JP 3636231 B2 JP3636231 B2 JP 3636231B2 JP 23842995 A JP23842995 A JP 23842995A JP 23842995 A JP23842995 A JP 23842995A JP 3636231 B2 JP3636231 B2 JP 3636231B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
purification
resin
column
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23842995A
Other languages
Japanese (ja)
Other versions
JPH0977504A (en
Inventor
ひさし 堺谷
一成 田中
寛史 吉田
征夫 石内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP23842995A priority Critical patent/JP3636231B2/en
Publication of JPH0977504A publication Critical patent/JPH0977504A/en
Application granted granted Critical
Publication of JP3636231B2 publication Critical patent/JP3636231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は過酸化水素水または過酸化水素を含有する水溶液中の不純物を除去する精製方法に関する。本発明により高純度に精製された過酸化水素水または過酸化水素を含有する水溶液は、特にシリコンウエハ等の半導体基板の洗浄に好適に用いられる。
【0002】
【従来の技術】
シリコンウエハの洗浄には塩基性もしくは酸性の過酸化水素水溶液が広く使用され、集積回路の高密度化に伴い洗浄液の高純度化が強く要求されている。そのため、この用途で用いられる過酸化水素水も極めて高純度のものが要求され、現在では過酸化水素水中の有機不純物は10ppm以下、金属不純物は1ppb以下が要求されている。
通常、過酸化水素水溶液中の不純物の除去法としては、一般的にイオン交換樹脂、キレート樹脂、吸着樹脂等による処理が知られており、これらの樹脂等を用いて不純物の除去処理を工業的に実施する場合には、操作性に優れた除去効率の高い流通法(カラム法)が一般的に使用されている。
【0003】
【発明が解決しようとする問題点】
過酸化水素または過酸化水素を含む水溶液を種々の充填物を用いたカラム法で精製する場合には、過酸化水素の特有の性質として自己分解により泡が発生し、この泡が樹脂の周りに付着するため精製効率即ち不純物の除去効率を低下させるという問題点が生じる。
【0004】
【問題を解決するための手段】
本発明者らは上記の問題を解決すべく鋭意検討した結果、過酸化水素の分解によって生じた泡の溶解度を高めながら精製することが有効で、特に精製塔の上部に圧力を加えることが極めて有効であることを見いだし本発明を完成するに至った。即ち精製塔の上部に圧力を加えることによって、過酸化水素の分解によって生じる泡の溶解度を上げることができ、泡の量を減少させることができる。また、泡の大きさを小さく抑えることができ、精製塔からの泡の排除も効率的に行うことができるため、精製に用いた樹脂と過酸化水素水溶液との接触面積が圧力を加えない場合よりも増加し不純物の除去を効率的に行うことが可能となる。ここで精製塔上部とは下降流の場合は入口側、上昇流の場合は出口側を示す。
精製塔の上部に加える圧力は分解による泡の溶解度を高め、且つ泡の大きさを抑えることができれば特に制限はないが、好ましくは0.5Kg/cm2 以上が好ましい。
【0005】
本発明の精製法において、操作温度に制限は特にないが、好ましくは−30〜40℃、より好ましくは−25〜25℃、更に好ましくは−5〜15℃で行うのが良い。低温で操作することにより、泡の溶解度も更に高まりより安定した運転が可能となり、より効率的に不純物の除去が可能となる。また、充填物の劣化を抑制し、充填物の活性をより長い時間維持することもできる。
精製に用いる充填物は過酸化水素水中の不純物を除去できるものであれば特に制限はないが、一般的にはイオン交換樹脂、キレート樹脂、吸着樹脂が好的に使用される。また、これらの樹脂を組み合わせて使用することも可能であり、組み合わせる数(精製塔の数)および組み合わせる順序に関しても特に制限はない。
【0006】
イオン交換樹脂としてはカチオン交換樹脂とアニオン交換樹脂があり、カチオン交換樹脂としてはイオン交換基としてSO3 H基を有するものが好ましい。このカチオン交換樹脂は一般的にはスチレンージビニルベンゼン架橋共重合体を硫酸でスルホン化することによって得られるものであり、カチオン交換樹脂として強酸性であることが好ましい。一方、アニオン交換樹脂としては第4級アンモニウム基を有する強塩基性樹脂、第3級アンモニウム基を有する弱塩基性樹脂またはビニルピリジン系樹脂であるが、好ましくは第4級アンモニウム基を有する強塩基性樹脂であり、特に好ましいのは、第4級アンモニウム基の炭酸塩または重炭酸塩を有する樹脂である。また、強塩基性であることがより好ましい。
キレート樹脂としてはイミノジ酢酸型、ポリアミン型、ホスホン酸型、N−メチルグルカミン型など、金属イオンに対してキレート力を持つ樹脂であればいずれも使用できる。特に好ましいのはホスホン酸型キレート樹脂とN−メチルグルカミン型のキレート樹脂で、さらに好ましい樹脂はイミノホスホン酸型キレート樹脂もしくはイミノジホスホン酸型キレート樹脂である。
【0007】
吸着樹脂としてはマクロポアーを有する不溶性の三次元架橋構造ポリマーであって、イオン交換基のような官能基は持たず、大きな比表面積を有し、vander waals力によりいろいろの有機物を吸着する無極性の多孔質吸着樹脂またはハロゲン化変性多孔質吸着樹脂が好ましい。無極性の多孔質吸着樹脂としてはスチレン−ジビニル系共重合体や、アクリル酸エステル、メタクリル酸エステルまたはビニルピリジンなどの重合体が使用される。またハロゲン化変性多孔質吸着樹脂として好ましいものとしては、特にブロム化スチレン−ジビニルベンゼン共重合体を挙げることができる。
精製原料となる過酸化水素または過酸化水素を含む水溶液中の過酸化水素の濃度に関しては特に限定されるものではないが、好ましくは90重量%以下、より好ましくは70重量%以下である。
以下に本発明の実施例を示す。
【0008】
【実施例】
実施例1
不純物として総リン酸根10ppmを含む31重量%の過酸化水素水原液をアニオン交換樹脂アンバーライトIRA−400(重炭酸塩型、オルガノ(株)製)20mlを充填した内径15mm、長さ30cmのテフロン製カラムに5℃の温度で下降流で通液した。このときカラム下部に絞りを付け、カラム上部に1Kg/cm2 の圧力を加えるように通液を行った。通液中、安定した通液を行うことができ、精製後の過酸化水素水中の総リン酸根は0.1ppm以下であった。
【0009】
比較例1
不純物として総リン酸根10ppmを含む31重量%の過酸化水素水原液をアニオン交換樹脂アンバーライトIRA−400(重炭酸塩型、オルガノ(株)製)20mlを充填した内径15mm、長さ30cmのテフロン製カラムに5℃の温度で下降流で通液した。このときカラム下部に特に絞りは付けず、カラム上部に圧力は加えず(0.3Kg/cm2 以下)に通液を行った。通液中、発生した泡が樹脂やカラム内壁に付着して精製塔内に残留し、安定した通液処理ができなかった。精製後の過酸化水素水中の総リン酸根は2ppmであった。
【0010】
実施例2
不純物として鉄5ppbを含む60重量%の過酸化水素水原液をキレート樹脂ダイヤイオンCRA−100(イミノメチレンホスホン酸型、三菱化学(株)製)20mlを充填した内径15mm、長さ30cmのテフロン製カラムに5℃の温度で下降流で通液した。このときカラム下部に絞りを付け、カラム上部に1Kg/cm2 の圧力を加えるように通液を行った。通液中、安定した通液を行うことができ、精製後の過酸化水素水中の鉄は0.1ppb以下であった。
【0011】
比較例2
不純物として鉄5ppbを含む60重量%の過酸化水素水原液をキレート樹脂ダイヤイオンCRA−100(イミノメチレンホスホン酸型、三菱化学(株)製)20mlを充填した内径15mm、長さ30cmのテフロン製カラムに5℃の温度で下降流で通液した。このときカラム下部に特に絞りは付けず、カラム上部に圧力は加えず(0.3Kg/cm2 以下)に通液を行った。通液中、発生した泡が樹脂やカラム内壁に付着して精製塔内に残留し、安定した通液処理ができなかった。精製後の過酸化水素水中の鉄は1.5ppbであった。
【0012】
実施例3
不純物として全有機炭素40ppmを含む31重量%の過酸化水素水原液を吸着樹脂セパビーズSP207(臭素化変性スチレン−ジビニルベンゼン架橋共重合体、比重1.2、三菱化学(株)製)20mlを充填した内径15mm、長さ30cmのテフロン製カラムに10℃の温度で下降流で通液した。このときカラム下部に絞りを付け、カラム上部に1.5Kg/cm2 の圧力を加えるように通液を行った。通液中、短絡路の発生は全く認められず安定した通液を行うことができ、精製後の過酸化水素水中の全有機炭素量は5ppmであった。
【0013】
比較例3
不純物として全有機炭素40ppmを含む31重量%の過酸化水素水原液を吸着樹脂セパビーズSP207(臭素化変性スチレンージビニルベンゼン架橋共重合体、比重1.2、三菱化学(株)製)20mlを充填した内径15mm、長さ30cmのテフロン製カラムに10℃の温度で下降流で通液した。このときカラム下部に特に絞りは付けず、カラム上部に圧力は加えず(0.3Kg/cm2 以下)に通液を行った。通液中、発生した泡が精製塔内に残留して短絡路が発生し安定した通液処理ができなかった。精製後の過酸化水素水中の全有機炭素量は20ppmであった。
【0014】
【発明の効果】
本発明によれば、精製中に発生する過酸化水素の分解による泡の溶解度を高め、且つ泡の大きさを小さく抑えることができ、精製塔からの泡の排除も効率的に行えるため、安定した通液が可能となり、効率よくより高純度に精製された過酸化水素水を得ることができる。
[0001]
[Industrial application fields]
The present invention relates to a purification method for removing impurities in a hydrogen peroxide solution or an aqueous solution containing hydrogen peroxide. The hydrogen peroxide solution purified to a high purity according to the present invention or the aqueous solution containing hydrogen peroxide is particularly suitably used for cleaning a semiconductor substrate such as a silicon wafer.
[0002]
[Prior art]
A basic or acidic aqueous hydrogen peroxide solution is widely used for cleaning silicon wafers, and a high purity of the cleaning liquid is strongly demanded as the density of integrated circuits increases. Therefore, the hydrogen peroxide solution used in this application is also required to have a very high purity. At present, the organic impurities in the hydrogen peroxide solution are required to be 10 ppm or less, and the metal impurities are required to be 1 ppb or less.
Usually, as a method for removing impurities in an aqueous hydrogen peroxide solution, treatment with ion exchange resin, chelate resin, adsorption resin, etc. is generally known, and impurities removal treatment using these resins etc. is industrial. In general, a flow method (column method) having excellent operability and high removal efficiency is generally used.
[0003]
[Problems to be solved by the invention]
When purifying hydrogen peroxide or an aqueous solution containing hydrogen peroxide by a column method using various packing materials, bubbles are generated by autolysis as a characteristic property of hydrogen peroxide, and these bubbles are generated around the resin. Since it adheres, there arises a problem that the purification efficiency, that is, the impurity removal efficiency is lowered.
[0004]
[Means for solving problems]
As a result of intensive studies to solve the above problems, the inventors of the present invention are effective in refining while increasing the solubility of bubbles generated by the decomposition of hydrogen peroxide. In particular, it is extremely important to apply pressure to the upper part of the purification tower. The inventors have found that the present invention is effective and have completed the present invention. That is, by applying pressure to the upper part of the purification tower, the solubility of bubbles generated by the decomposition of hydrogen peroxide can be increased, and the amount of bubbles can be reduced. In addition, since the size of the foam can be kept small and the foam can be efficiently removed from the purification tower, the contact area between the resin used for purification and the aqueous hydrogen peroxide solution does not apply pressure. Thus, the impurities can be efficiently removed. Here, the upper part of the purification tower indicates an inlet side in the case of a downward flow and an outlet side in the case of an upward flow.
The pressure applied to the upper part of the purification tower is not particularly limited as long as the solubility of bubbles by decomposition can be increased and the size of the bubbles can be suppressed, but preferably 0.5 Kg / cm 2 or more.
[0005]
In the purification method of the present invention, the operation temperature is not particularly limited, but is preferably −30 to 40 ° C., more preferably −25 to 25 ° C., and further preferably −5 to 15 ° C. By operating at a low temperature, the solubility of bubbles is further increased, and a more stable operation is possible, and impurities can be more efficiently removed. Further, the deterioration of the filler can be suppressed, and the activity of the filler can be maintained for a longer time.
The packing used for purification is not particularly limited as long as impurities in hydrogen peroxide water can be removed, but generally ion exchange resins, chelate resins, and adsorption resins are preferably used. In addition, these resins can be used in combination, and there is no particular limitation on the number of combinations (the number of purification columns) and the order of combination.
[0006]
Examples of the ion exchange resin include a cation exchange resin and an anion exchange resin, and the cation exchange resin preferably has an SO 3 H group as an ion exchange group. This cation exchange resin is generally obtained by sulfonating a styrene-divinylbenzene crosslinked copolymer with sulfuric acid, and is preferably strongly acidic as a cation exchange resin. On the other hand, the anion exchange resin is a strong basic resin having a quaternary ammonium group, a weak basic resin having a tertiary ammonium group, or a vinylpyridine resin, preferably a strong base having a quaternary ammonium group. Resin having a quaternary ammonium group carbonate or bicarbonate is particularly preferable. Moreover, it is more preferable that it is strongly basic.
As the chelating resin, any resin such as iminodiacetic acid type, polyamine type, phosphonic acid type, and N-methylglucamine type can be used as long as it has a chelating power for metal ions. Particularly preferred are phosphonic acid type chelating resins and N-methylglucamine type chelating resins, and more preferred are iminophosphonic acid type chelating resins or iminodiphosphonic acid type chelating resins.
[0007]
The adsorbing resin is an insoluble three-dimensional crosslinked structure polymer having macropores, has no functional group such as an ion exchange group, has a large specific surface area, and is a nonpolar that adsorbs various organic substances by the vaner waals force A porous adsorption resin or a halogenated modified porous adsorption resin is preferred. As the nonpolar porous adsorption resin, a styrene-divinyl copolymer, a polymer such as an acrylic ester, a methacrylic ester or vinyl pyridine is used. Moreover, as a preferable thing as halogenated modified porous adsorption resin, a brominated styrene-divinylbenzene copolymer can be mentioned especially.
The concentration of hydrogen peroxide in the raw material to be purified or an aqueous solution containing hydrogen peroxide is not particularly limited, but is preferably 90% by weight or less, more preferably 70% by weight or less.
Examples of the present invention are shown below.
[0008]
【Example】
Example 1
Teflon with an inner diameter of 15 mm and a length of 30 cm filled with 20 ml of an anion exchange resin Amberlite IRA-400 (bicarbonate type, manufactured by Organo Corp.) with 31 wt% hydrogen peroxide stock solution containing 10 ppm of total phosphate radicals as impurities The column was passed down the column at a temperature of 5 ° C. At this time, the bottom of the column was squeezed, and the solution was passed so as to apply a pressure of 1 kg / cm 2 to the top of the column. Stable liquid flow could be performed during liquid flow, and the total phosphate group in the hydrogen peroxide water after purification was 0.1 ppm or less.
[0009]
Comparative Example 1
Teflon with an inner diameter of 15 mm and a length of 30 cm filled with 20 ml of an anion exchange resin Amberlite IRA-400 (bicarbonate type, manufactured by Organo Corp.) with 31 wt% hydrogen peroxide stock solution containing 10 ppm of total phosphate radicals as impurities The column was passed down the column at a temperature of 5 ° C. At this time, liquid passage was performed without applying any restriction to the lower part of the column and applying no pressure to the upper part of the column (0.3 Kg / cm 2 or less). During the liquid flow, the generated bubbles adhered to the resin and the inner wall of the column and remained in the purification tower, and stable liquid flow treatment could not be performed. The total phosphate radical in the hydrogen peroxide water after purification was 2 ppm.
[0010]
Example 2
60% by weight hydrogen peroxide stock solution containing 5 ppb of iron as impurities filled with 20 ml of chelate resin Diaion CRA-100 (iminomethylenephosphonic acid type, manufactured by Mitsubishi Chemical Corporation), made of Teflon with an inner diameter of 15 mm and a length of 30 cm The column was passed in a downward flow at a temperature of 5 ° C. At this time, the bottom of the column was squeezed, and the solution was passed so as to apply a pressure of 1 kg / cm 2 to the top of the column. Stable liquid flow was possible during liquid flow, and iron in the hydrogen peroxide water after purification was 0.1 ppb or less.
[0011]
Comparative Example 2
60% by weight hydrogen peroxide stock solution containing 5 ppb of iron as impurities filled with 20 ml of chelate resin Diaion CRA-100 (iminomethylenephosphonic acid type, manufactured by Mitsubishi Chemical Corporation), made of Teflon with an inner diameter of 15 mm and a length of 30 cm The column was passed in a downward flow at a temperature of 5 ° C. At this time, liquid passage was performed without applying any restriction to the lower part of the column and applying no pressure to the upper part of the column (0.3 Kg / cm 2 or less). During the liquid flow, the generated bubbles adhered to the resin and the inner wall of the column and remained in the purification tower, and stable liquid flow treatment could not be performed. The iron in the hydrogen peroxide solution after purification was 1.5 ppb.
[0012]
Example 3
Filled with 20 ml of adsorption resin Sepa beads SP207 (brominated modified styrene-divinylbenzene cross-linked copolymer, specific gravity 1.2, manufactured by Mitsubishi Chemical Corporation) with 31 wt% hydrogen peroxide stock solution containing 40 ppm total organic carbon as impurities Then, a Teflon column having an inner diameter of 15 mm and a length of 30 cm was passed in a downward flow at a temperature of 10 ° C. At this time, the bottom of the column was squeezed, and the solution was passed so as to apply a pressure of 1.5 kg / cm 2 to the top of the column. During the liquid flow, no short circuit was observed and stable liquid flow was possible. The total amount of organic carbon in the hydrogen peroxide water after purification was 5 ppm.
[0013]
Comparative Example 3
Filled with 20 ml of adsorption resin Sepa beads SP207 (brominated modified styrene-divinylbenzene cross-linked copolymer, specific gravity 1.2, manufactured by Mitsubishi Chemical Corporation) with 31 wt% hydrogen peroxide stock solution containing 40 ppm total organic carbon as impurities Then, a Teflon column having an inner diameter of 15 mm and a length of 30 cm was passed in a downward flow at a temperature of 10 ° C. At this time, liquid passage was performed without applying any restriction to the lower part of the column and applying no pressure to the upper part of the column (0.3 Kg / cm 2 or less). During the flow of liquid, the generated bubbles remained in the purification tower, causing a short circuit, and a stable liquid flow treatment could not be performed. The total amount of organic carbon in the hydrogen peroxide water after purification was 20 ppm.
[0014]
【The invention's effect】
According to the present invention, the solubility of bubbles due to the decomposition of hydrogen peroxide generated during purification can be increased, the size of the bubbles can be kept small, and the bubbles can be efficiently eliminated from the purification tower. Thus, it is possible to obtain a hydrogen peroxide solution that is efficiently purified to a higher purity.

Claims (4)

過酸化水素水または過酸化水素を含有する水溶液を充填物を充填した精製塔を使って精製する方法において、精製塔の上部に1Kg/cm 以上の圧力を加えながら精製することを特徴とする過酸化水素水または過酸化水素を含有する水溶液の精製方法。A method for purifying a hydrogen peroxide solution or an aqueous solution containing hydrogen peroxide using a purification tower packed with a packing, wherein the purification is performed while applying a pressure of 1 kg / cm 2 or more to the upper part of the purification tower. A method for purifying aqueous hydrogen peroxide or an aqueous solution containing hydrogen peroxide. 充填物がイオン交換樹脂である請求項1記載の精製方法。 The purification method according to claim 1, wherein the packing is an ion exchange resin. 充填物がキレート樹脂である請求項1記載の精製方法。 The purification method according to claim 1, wherein the filler is a chelate resin. 充填物が吸着樹脂である請求項1記載の精製方法。 The purification method according to claim 1, wherein the packing is an adsorption resin.
JP23842995A 1995-09-18 1995-09-18 Method for purifying aqueous hydrogen peroxide Expired - Lifetime JP3636231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23842995A JP3636231B2 (en) 1995-09-18 1995-09-18 Method for purifying aqueous hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23842995A JP3636231B2 (en) 1995-09-18 1995-09-18 Method for purifying aqueous hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPH0977504A JPH0977504A (en) 1997-03-25
JP3636231B2 true JP3636231B2 (en) 2005-04-06

Family

ID=17030082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23842995A Expired - Lifetime JP3636231B2 (en) 1995-09-18 1995-09-18 Method for purifying aqueous hydrogen peroxide

Country Status (1)

Country Link
JP (1) JP3636231B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4030262B2 (en) 2000-06-21 2008-01-09 三徳化学工業株式会社 Method for producing purified hydrogen peroxide water

Also Published As

Publication number Publication date
JPH0977504A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
US5232680A (en) Method for purifying hydrogen peroxide for microelectronics uses
KR950014206B1 (en) Method for purifying impure aqueous hydrogen peroxide solution
JP3797390B2 (en) Method for producing purified hydrogen peroxide
JPH01153509A (en) Production of high-purity hydrogen peroxide
US6054109A (en) Method of purifying aqueous solution of hydrogen peroxide
US6187189B1 (en) Process for the preparation of an ultrapure solution of hydrogen peroxide by ion exchange with recycling
JP7242833B2 (en) Method for purifying hydrogen peroxide
JP3874036B2 (en) Method for producing purified aqueous hydrogen peroxide solution
US6939527B2 (en) Method for the purification of hydrogen peroxide solutions
KR20160054493A (en) Anion exchanger, mixture of anion exchanger and cation exchanger, mixed bed comprising anion exchanger and cation exchanger, production processes therefor, and method for purifying aqueous hydrogen peroxide solution
JP3636231B2 (en) Method for purifying aqueous hydrogen peroxide
KR20010013064A (en) Method for preparing an ultrapure hydrogen peroxide solution by ion exchange in the presence of ion acetate
JP4087052B2 (en) Regeneration method of ion exchange resin
JP3171058B2 (en) Hydrogen peroxide water purification method
KR20020028796A (en) Use of Monodisperse Ion Exchangers for Arsenic/Antimony Removal
US4336140A (en) Water purification process
US5614165A (en) Process for purification of hydrogen peroxide
JP4691276B2 (en) Method and apparatus for recovering high purity boron-containing water
CN113304724A (en) Preparation method of functional inorganic silica-based adsorption material
JP4013646B2 (en) Anion exchange resin, method for producing the same, and method for producing purified hydrogen peroxide water using the same
JP4507271B2 (en) Method for recovering hydrofluoric acid
JPH09278416A (en) Production of high purity hydrogen peroxide solution
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
EP0626342B1 (en) Process for purification of hydrogen peroxide
JP2800043B2 (en) Purification of impure aqueous hydrogen peroxide solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

EXPY Cancellation because of completion of term