JP3623720B2 - Thin inductor - Google Patents

Thin inductor Download PDF

Info

Publication number
JP3623720B2
JP3623720B2 JP2000218939A JP2000218939A JP3623720B2 JP 3623720 B2 JP3623720 B2 JP 3623720B2 JP 2000218939 A JP2000218939 A JP 2000218939A JP 2000218939 A JP2000218939 A JP 2000218939A JP 3623720 B2 JP3623720 B2 JP 3623720B2
Authority
JP
Japan
Prior art keywords
core
groove
inductor
wire
crank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000218939A
Other languages
Japanese (ja)
Other versions
JP2002043139A (en
Inventor
一博 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2000218939A priority Critical patent/JP3623720B2/en
Publication of JP2002043139A publication Critical patent/JP2002043139A/en
Application granted granted Critical
Publication of JP3623720B2 publication Critical patent/JP3623720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、DC/DCコンバータのパワーインダクタなどに用いられる薄型のインダクタに関するものである。
【0002】
【従来の技術】
電子機器が小型化されるに伴い、これらの電源回路に使用されるパワーインダクタも小型軽量で且つ薄型のものが要求されている。また、電源電圧が低電圧化する傾向にあり、低電圧で大電流が流せるパワーインダクタが必要になってきている。このようなインダクタとしては、従来、たとえば図11に示すようなものが用いられている。これは、絶縁被覆した平角線からなるコイル1をE形コア2の中脚2aにエッジワイズ巻きしたもので、3はE形コア2の上面に突き合わされる平板状のコアである。
【0003】
【発明が解決しようとする課題】
パワーインダクタとしては最大許容電流Ioの大きいことが要求される。インダクタの巻数をNとすると、インダクタに最大許容電流Ioが流れたときIo×Nの最大起磁力がコアに発生するので、起磁力の大きいコアが必要となる。コアの磁気抵抗をRm、コアの材料特性である最大飽和磁束密度をBs、コアの有効断面積をSとすると、コアに許容される最大起磁力Fmは
Fm=Rm・Bs・S
となる。したがって、最大飽和磁束密度Bsが同じインダクタにおいて起磁力Fを大きくするには、コアの有効断面積Sを大きくするか、エアギャップを設けて磁気抵抗Rmを大きくすればよいことになる。
【0004】
有効断面積Sを大きくするには、図11におけるコア2の中脚2aの断面積は勿論、外脚2bや連結部2c、さらにコア3の厚みも大きくする必要がある。このため、インダクタの薄型化が難しくなる問題があった。一方、磁気抵抗Rmを大きくして起磁力Fを上げようとすると、所定のインダクタンスを得るための巻数が増える。その結果、コイル1の占有体積が大きくなるので、やはり薄型化が困難となる。幅広の平角線は製造に手数が掛かるうえ、エッジワイズ巻きが難しいという問題もあった。
【0005】
【課題を解決するための手段】
本発明の薄型インダクタは、対向して閉磁路を形成する一対のコアと、蛇行した形状の偏平な金属導体板からなる1本の線材を備え、少なくとも一方のコアの対向面に形成した蛇行した溝内に、この線材を嵌め込むとともに、線材の両端部をそれぞれ溝の外に導出して電極とした薄型インダクタにおいて、溝を形成したコアの形状が、第1のクランク形の溝を設けた第1の構成単位と、第1のクランク形の溝とは線対称の関係にある第2のクランク形の溝を設けた第2の構成単位とを、溝が1本に繋がるように交互に任意の数だけ連結して一体化したことを特徴とする。
【0006】
【実施例】
図1及び図2に本発明のインダクタの一実施例を示す。10、40はNi−Zn系フェライトのような絶縁性の磁性体からなる一対のコアである。一対のコア10、40は、シート30を介してエポキシ樹脂系の接着剤等で積層した状態に固定してある。一対のコア10、40は閉磁路を形成し、シート30によって形成されたギャップによって磁気抵抗が調整される。上側のコア40は平板形であり、下側のコア10の上面には蛇行した1本の溝12が形成してある。この溝12の両端はコア10の対向する二側面に通じている。
【0007】
銅などの金属導体板からなる線材20は、溝12の形状に合わせて打ち抜き加工してある。線材20は、図3に示すようにコア10の溝12の中に嵌め込んだ後、両端部21、22をコア10の対向する側面に導出してある。図2から明らかなように、両端部21、22はコア10の表面に沿って屈曲されてコア10の底面まで延び、両端部21、22自体がそれぞれ電極を形成している。
【0008】
このときのコア10への線材20の取付けは次のようにして行うことができる。まず、弾性のある柔軟な線材20の場合は、あらかじめ屈曲成形した両端部21、22をコア10の側面に嵌め込みながら溝12の中に取付ける。一方、変形しやすい柔らかい線材20の場合は、コア10の溝12の中に線材20を嵌め込んでから両端部21、22の屈曲を行うようにする。
【0009】
硬くて曲げにくい金属導体板からなる線材20の場合は、図4に示すように、両端部21、22を平板形の上側のコア40側に屈曲してもよい。すなわち、両端部21、22をあらかじめ上側に屈曲成形した線材20をコア10の溝12の中に嵌め込んだ後、平板形のコア40を横方向から挿入することで容易に組み立てることができる。
【0010】
これらのインダクタは、コア10、40の蛇行した溝12の中に、蛇行した金属導体板の線材20が嵌め込まれ、両端に電極が設けられたチップ型の構成となる。このインダクタの線材20に電流を流した場合の電流と磁束の関係を図5に示す。線材20上の破線の矢印が電流の向きを、実線の矢印が磁束の向きを、それぞれ示している。電流の向きが変わっても、鎖交する磁束は打ち消し合うことなくプラス結合となるため、インダクタンスが弱まることなく形成される。
【0011】
コア10の蛇行した溝12内に金属導体板からなる線材20を嵌め込んだこのインダクタ構造では、従来のEE型あるいはEI型のコアに比べ、コア10、40の板厚を増やさずに有効断面積を大きくすることができる。このため、本発明のインダクタ構造によれば、より大きなインダクタンスと起磁力を得ることができる。
【0012】
上述したインダクタの溝12を形成したコア10の形状は、図6に示す第1のクランク形の溝12Aを設けた第1の構成単位10Aと、第1のクランク形の溝12Aとは線対称の関係にある第2のクランク形の溝12Bを設けた第2の構成単位10Bとを組み合わせて合成したものと考えることができる。ここで、クランク形とは、直線の両端部をそれぞれ逆方向に直角に折り曲げた形をいうものとする。
【0013】
図3のコア10の形状は、図7に示すように二つの第1の構成単位10Aの間に第2の構成単位10Bを挟んだものとなっている。すなわち、第1の構成単位10Aと第2の構成単位10Bを交互に一列に連結し、列の両端に第1の構成単位10Aを配置した構成である。それぞれのクランク形の溝12A、12Bは1本に繋がって蛇行した溝となる。
【0014】
図8は溝12を形成したコア10の他の構成例を示すものである。このコアは、第1の構成単位10Aと第2の構成単位10Bの交互に連結する数を、それぞれ二つずつとした形状である。この場合も、それぞれのクランク形の溝12A、12Bは繋がって1本の蛇行した溝となっている。
【0015】
以上のように、交互に配置する第1の構成単位10Aと第2の構成単位10Bの数を増やすことにより、コアの厚みを増すことなく、より大きなインダクタンスが得られるコア形状とすることができる。
【0016】
図9は本発明のインダクタの他の実施例を示すもので、Mn−Zn系フェライトのような導電性の磁性体をコア10、40に使用した場合の例である。このインダクタは、図1及び図2に示したものとほぼ同様なインダクタに、絶縁性のベース50を付加したものである。図10に示すように、ベース50の上面には凹部52を形成してある。この凹部52にコア10の下部を嵌め込んで固定し、線材20の両端部21、22を屈曲してベース50の底面まで引出してある。なお、この場合の線材20には絶縁被覆したものを用い、両端部21、22の絶縁被覆を剥がして電極とする。
【0017】
【発明の効果】
本発明によれば、電流容量の大きなインダクタをきわめて低背型に構成できる特長がある。また、複雑な巻線を施すことのない簡単な構造なので、組み立てが容易であり、製造コストを低減できる効果もある。
【図面の簡単な説明】
【図1】本発明のインダクタの第1実施例を示す分解斜視図
【図2】同インダクタの正面図
【図3】同インダクタの一部の平面図
【図4】本発明のインダクタの第2実施例を示す正面図
【図5】同インダクタにおける電流と磁束の関係を示す説明図
【図6】溝付きコアの第1、第2の構成単位を示す平面図
【図7】第1、第2の構成単位の組合せ例を示す平面図
【図8】第1、第2の構成単位の他の組合せ例を示す平面図
【図9】本発明のインダクタの第3実施例を示す正面図
【図10】同インダクタの一部の分解斜視図
【図11】従来のインダクタの分解斜視図
【符号の説明】
10 コア
10A 第1の構成単位
10B 第2の構成単位
12 溝
20 線材
40 コア
50 ベース
[0001]
[Industrial application fields]
The present invention relates to a thin inductor used for a power inductor of a DC / DC converter.
[0002]
[Prior art]
As electronic devices are miniaturized, power inductors used in these power supply circuits are also required to be small, light, and thin. In addition, the power supply voltage tends to be lowered, and a power inductor capable of flowing a large current at a low voltage is required. As such an inductor, for example, an inductor as shown in FIG. 11 is conventionally used. This is a coil 1 made of a rectangular wire coated with insulation and wound edgewise on a middle leg 2a of an E-shaped core 2, and 3 is a flat core that is abutted against the upper surface of the E-shaped core 2.
[0003]
[Problems to be solved by the invention]
The power inductor is required to have a large maximum allowable current Io. If the number of turns of the inductor is N, a maximum magnetomotive force of Io × N is generated in the core when the maximum allowable current Io flows through the inductor, so a core having a large magnetomotive force is required. Assuming that the magnetic resistance of the core is Rm, the maximum saturation magnetic flux density which is the material characteristic of the core is Bs, and the effective sectional area of the core is S, the maximum magnetomotive force Fm allowed for the core is Fm = Rm · Bs · S.
It becomes. Therefore, in order to increase the magnetomotive force F in the inductor having the same maximum saturation magnetic flux density Bs, it is only necessary to increase the effective sectional area S of the core or to increase the magnetic resistance Rm by providing an air gap.
[0004]
In order to increase the effective sectional area S, it is necessary to increase the thickness of the outer leg 2b, the connecting portion 2c, and the core 3 as well as the sectional area of the middle leg 2a of the core 2 in FIG. For this reason, there is a problem that it is difficult to reduce the thickness of the inductor. On the other hand, if the magnetoresistance Rm is increased to increase the magnetomotive force F, the number of turns for obtaining a predetermined inductance increases. As a result, since the occupied volume of the coil 1 is increased, it is difficult to reduce the thickness. Wide rectangular wires are troublesome to manufacture and also have problems that edgewise winding is difficult.
[0005]
[Means for Solving the Problems]
A thin inductor according to the present invention includes a pair of cores that form a closed magnetic path facing each other and a single wire made of a meandering flat metal conductor plate, and meanders formed on an opposing surface of at least one of the cores. In the thin inductor in which the wire is fitted into the groove and both ends of the wire are led out of the groove and used as electrodes, the core formed with the groove is provided with a first crank-shaped groove. The first structural unit and the second structural unit provided with a second crank-shaped groove that is in a line-symmetric relationship with the first crank-shaped groove are alternately arranged so that the groove is connected to one. It is characterized by connecting and integrating any number .
[0006]
【Example】
1 and 2 show an embodiment of the inductor of the present invention. Reference numerals 10 and 40 denote a pair of cores made of an insulating magnetic material such as Ni-Zn ferrite. The pair of cores 10 and 40 are fixed in a state of being laminated with an epoxy resin adhesive or the like through the sheet 30. The pair of cores 10 and 40 form a closed magnetic circuit, and the magnetic resistance is adjusted by the gap formed by the sheet 30. The upper core 40 has a flat plate shape, and a meandering groove 12 is formed on the upper surface of the lower core 10. Both ends of the groove 12 communicate with two opposing side surfaces of the core 10.
[0007]
A wire 20 made of a metal conductor plate such as copper is punched in accordance with the shape of the groove 12. After the wire rod 20 is fitted into the groove 12 of the core 10 as shown in FIG. 3, both end portions 21 and 22 are led out to the opposite side surfaces of the core 10. As is apparent from FIG. 2, both end portions 21 and 22 are bent along the surface of the core 10 and extend to the bottom surface of the core 10, and both end portions 21 and 22 themselves form electrodes.
[0008]
Attachment of the wire 20 to the core 10 at this time can be performed as follows. First, in the case of an elastic flexible wire rod 20, both end portions 21 and 22 that are bent in advance are fitted into the groove 12 while being fitted into the side surface of the core 10. On the other hand, in the case of the soft wire 20 that is easily deformed, both ends 21 and 22 are bent after the wire 20 is fitted into the groove 12 of the core 10.
[0009]
In the case of the wire 20 made of a hard and hard-to-bend metal conductor plate, both end portions 21 and 22 may be bent toward the flat core 40 as shown in FIG. That is, it is possible to easily assemble by inserting the flat core 40 from the lateral direction after fitting the wire 20 having both end portions 21 and 22 bent upward in advance into the groove 12 of the core 10.
[0010]
These inductors have a chip-type configuration in which meandering metal conductor plate wires 20 are fitted in meandering grooves 12 of cores 10 and 40 and electrodes are provided at both ends. FIG. 5 shows the relationship between current and magnetic flux when current is passed through the wire 20 of the inductor. A broken line arrow on the wire 20 indicates the direction of current, and a solid line arrow indicates the direction of magnetic flux. Even if the direction of the current is changed, the interlinkage magnetic flux is positively coupled without canceling each other, so that the inductance is formed without weakening.
[0011]
In this inductor structure in which a wire 20 made of a metal conductor plate is fitted in the meandering groove 12 of the core 10, the cores 10 and 40 are effectively cut without increasing the thickness compared to the conventional EE type or EI type core. The area can be increased. For this reason, according to the inductor structure of the present invention, a larger inductance and magnetomotive force can be obtained.
[0012]
The shape of the core 10 in which the inductor groove 12 is formed as described above is such that the first structural unit 10A provided with the first crank-shaped groove 12A shown in FIG. 6 and the first crank-shaped groove 12A are line symmetric. It can be considered that the second structural unit 10B provided with the second crank-shaped groove 12B having the above relationship is combined. Here, the crank shape means a shape in which both ends of a straight line are bent at right angles in opposite directions.
[0013]
The shape of the core 10 in FIG. 3 is such that the second structural unit 10B is sandwiched between two first structural units 10A as shown in FIG. In other words, the first structural unit 10A and the second structural unit 10B are alternately connected in a line, and the first structural unit 10A is arranged at both ends of the line. Each of the crank-shaped grooves 12A and 12B is a serpentine groove connected to one.
[0014]
FIG. 8 shows another configuration example of the core 10 in which the groove 12 is formed. This core has a shape in which the number of alternately connected first structural unit 10A and second structural unit 10B is two. Also in this case, the crank-shaped grooves 12A and 12B are connected to form one meandering groove.
[0015]
As described above, by increasing the number of the first structural unit 10A and the second structural unit 10B that are alternately arranged, it is possible to obtain a core shape in which a larger inductance can be obtained without increasing the thickness of the core. .
[0016]
FIG. 9 shows another embodiment of the inductor according to the present invention, which is an example in which a conductive magnetic material such as Mn—Zn ferrite is used for the cores 10 and 40. This inductor is obtained by adding an insulating base 50 to an inductor that is substantially the same as that shown in FIGS. As shown in FIG. 10, a recess 52 is formed on the upper surface of the base 50. The lower portion of the core 10 is fitted and fixed in the recess 52, and both end portions 21 and 22 of the wire 20 are bent and pulled out to the bottom surface of the base 50. In this case, the wire 20 used is an insulating coating, and the insulating coatings on both end portions 21 and 22 are peeled off to form electrodes.
[0017]
【The invention's effect】
The present invention has an advantage that an inductor having a large current capacity can be configured in a very low profile. In addition, since the structure is simple without any complicated winding, assembly is easy and the manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a first embodiment of the inductor of the present invention. FIG. 2 is a front view of the inductor. FIG. 3 is a plan view of a part of the inductor. FIG. 5 is an explanatory view showing the relationship between current and magnetic flux in the inductor. FIG. 6 is a plan view showing first and second structural units of the grooved core. FIG. 8 is a plan view showing another combination example of the first and second structural units. FIG. 9 is a front view showing a third embodiment of the inductor of the present invention. 10 is an exploded perspective view of a part of the inductor. FIG. 11 is an exploded perspective view of a conventional inductor.
10 core 10A first structural unit 10B second structural unit 12 groove 20 wire 40 core 50 base

Claims (2)

対向して閉磁路を形成する一対のコアと、蛇行した形状の偏平な金属導体板からなる1本の線材を備え、少なくとも一方のコアの対向面に形成した蛇行した溝内に、該線材を嵌め込むとともに、線材の両端部をそれぞれ該溝の外に導出して電極とした薄型インダクタにおいて、
該溝を形成したコアの形状が、第1のクランク形の溝を設けた第1の構成単位と、第1のクランク形の溝とは線対称の関係にある第2のクランク形の溝を設けた第2の構成単位とを、溝が1本に繋がるように交互に任意の数だけ連結して一体化したことを特徴とする薄型インダクタ。
A pair of cores that face each other to form a closed magnetic path and a single wire made of a meandering flat metal conductor plate, and the wire is placed in a meandering groove formed on the facing surface of at least one of the cores. In a thin inductor that is inserted into the electrode and led to both ends of the wire rod outside the groove ,
The shape of the core in which the groove is formed is such that the first structural unit provided with the first crank-shaped groove and the second crank-shaped groove having a line-symmetric relationship with the first crank-shaped groove. A thin inductor characterized in that an arbitrary number of second structural units are alternately connected and integrated so that grooves are connected to one .
上面に凹部を形成した絶縁性のベースを備え、該凹部に前記コアの一部を嵌め込んで固定し、線材の両端部を屈曲して該ベースの底面まで引出して電極とした請求項1記載の薄型インダクタ。A base insulating forming a recess on an upper surface, a portion of the core is fixed is fitted to the recess, according to claim 1, wherein by bending both end portions of the wire and the electrode is pulled out to the bottom surface of the base Thin inductor.
JP2000218939A 2000-07-19 2000-07-19 Thin inductor Expired - Fee Related JP3623720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000218939A JP3623720B2 (en) 2000-07-19 2000-07-19 Thin inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000218939A JP3623720B2 (en) 2000-07-19 2000-07-19 Thin inductor

Publications (2)

Publication Number Publication Date
JP2002043139A JP2002043139A (en) 2002-02-08
JP3623720B2 true JP3623720B2 (en) 2005-02-23

Family

ID=18713812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000218939A Expired - Fee Related JP3623720B2 (en) 2000-07-19 2000-07-19 Thin inductor

Country Status (1)

Country Link
JP (1) JP3623720B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546000A (en) * 2017-09-08 2018-01-05 遂宁普思电子有限公司 Inductor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134625B1 (en) 2010-07-16 2012-04-09 주식회사 한림포스텍 Core assembly for wireless power transmission, power supplying apparatus for wireless power transmission having the same, and method for manufacturing core assembly for wireless power transmission
JP6214024B2 (en) * 2012-11-16 2017-10-18 北川工業株式会社 Bus bar assembly
JP7354715B2 (en) * 2019-09-19 2023-10-03 Tdk株式会社 inductor element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221710U (en) * 1988-07-27 1990-02-14
JPH04239107A (en) * 1991-01-11 1992-08-27 Tokin Corp Electromagnetic interference preventive element
JPH0737290Y2 (en) * 1992-02-25 1995-08-23 日立フェライト株式会社 Coil device with terminal block
JP2886005B2 (en) * 1992-10-12 1999-04-26 松下電器産業株式会社 LC filter
JPH06333750A (en) * 1993-05-24 1994-12-02 Tokin Corp Multiple magnetic core and thin type transformer using same
JP2951324B1 (en) * 1998-08-21 1999-09-20 ティーディーケイ株式会社 Coil device
JP2000323336A (en) * 1999-03-11 2000-11-24 Taiyo Yuden Co Ltd Inductor and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546000A (en) * 2017-09-08 2018-01-05 遂宁普思电子有限公司 Inductor

Also Published As

Publication number Publication date
JP2002043139A (en) 2002-02-08

Similar Documents

Publication Publication Date Title
TWI484513B (en) Laminated electromagnetic component assembly
US9859043B2 (en) Magnetic components and methods of manufacturing the same
TWI467607B (en) Electromagnetic component
KR101883043B1 (en) Coil electronic component
JP2005142459A (en) Surface mounted inductor
KR20120003008A (en) Surface mount magnetic component assembly
JPH0564845B2 (en)
KR20160014302A (en) Chip electronic component and board having the same mounted thereon
JP6589793B2 (en) Multilayer electronic components
US20210272745A1 (en) Coil device
JP2000164431A (en) Inductor
JP3818465B2 (en) Inductance element
JP2951324B1 (en) Coil device
US11908608B2 (en) Coil component
US20210174997A1 (en) Laminated electronic component
JPH1032129A (en) Thin coil part and manufacture thereof
JP3623720B2 (en) Thin inductor
JP2962707B1 (en) Surface mount type small coil parts
TWI447759B (en) Surface mount magnetic component assembly
JP2022014637A (en) Laminate coil component
KR102558332B1 (en) Inductor and producing method of the same
JP2000068130A (en) Coil device
JP2004063487A (en) Low-height wire-wound coil
KR20190014727A (en) Dual Core Planar Transformer
JP7469958B2 (en) Coil device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees