JP3620516B2 - Cooking pot and method of manufacturing the pot - Google Patents

Cooking pot and method of manufacturing the pot Download PDF

Info

Publication number
JP3620516B2
JP3620516B2 JP2002156900A JP2002156900A JP3620516B2 JP 3620516 B2 JP3620516 B2 JP 3620516B2 JP 2002156900 A JP2002156900 A JP 2002156900A JP 2002156900 A JP2002156900 A JP 2002156900A JP 3620516 B2 JP3620516 B2 JP 3620516B2
Authority
JP
Japan
Prior art keywords
temperature
pan
cooking
curie
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002156900A
Other languages
Japanese (ja)
Other versions
JP2003339549A (en
Inventor
淳 麻植
英賢 川西
聡 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002156900A priority Critical patent/JP3620516B2/en
Publication of JP2003339549A publication Critical patent/JP2003339549A/en
Application granted granted Critical
Publication of JP3620516B2 publication Critical patent/JP3620516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cookers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非金属製の鍋において、自己温度制御機能を付与することにより、調理物の焦げ過ぎや発火等の不安全状態の発生を防止する調理用鍋及びその製造方法に関するものであり、特に誘導加熱に適した調理用鍋に関するものである。
【0002】
【従来の技術】
昨今の調理用の熱源としてはガスや電気ヒータ、マイクロ波加熱、誘導加熱など多様化しているが、特に近年、誘導加熱調理器はその安全性や使いやすさ、高熱効率という優れた特徴が理解され、一般家庭に広く普及されつつある。また200V対応の機種も開発されており、高火力という点でも一般に理解されてきている。
【0003】
誘導加熱調理器は、図3に示すように、トッププレート11の下部に配置された加熱コイル12に高周波電流を印加することにより発生する高周波磁束により、トッププレート上に置かれた被加熱物(鍋)に渦電流を発生させ、鍋自身が直接発熱するように制御装置14で制御したものである。
【0004】
また誘導加熱調理器のトッププレート下部には、鍋の温度を検知する温度センサ15も標準的に装備され、検知する温度に応じて加熱状態を制御する「温度過昇防止機能」を付与できるため安全に使用することが可能である。
【0005】
しかし近年の誘導加熱調理器は高火力がゆえに、調理物が焦げつきやすいとか、少量の油で調理をすると、油の発火温度付近まで加熱される可能性もあり、更なる安全性の確保が求められてきた。
【0006】
そこで近年では、特許第2917526号や特許第3079573号にもあるように、鍋に使用する金属として、実調理に使用する温度付近にキュリー点を有する金属(以下「感温金属」と称する)を用いることが提案されている。金属はキュリー点以上では磁性が無くなる為、誘導加熱では加熱しないという特徴がある。この特徴を活かして、鍋自身の温度がキュリー点付近以上に加熱されない鍋も検討されている。
【0007】
このように優れた特性を有する誘導加熱調理器であるが、加熱方法の特性上、土鍋やガラス製の鍋などセラミックスでできた調理器が使用できないという課題があった。このような課題に対応する為に、例えば図3に示したように土鍋16の底面に銀の薄膜17を形成することにより、誘導加熱が可能な鍋が提案されている。しかし鍋の基材がセラミックの場合、金属と比較して熱伝導が悪いため、薄膜で誘導加熱された熱がなかなか鍋全体に伝わらず、その為発熱部の温度が上昇しやすいという課題があった。この課題は鍋を空焼きされた場合に顕著に表れ、発熱層の断線や剥離という現象が生じやすかった。
【0008】
またこのような構成の場合は、発熱部の熱が誘導加熱調理器本体、特にトッププレート11や温度センサ15、加熱コイル12、制御装置14等に輻射・伝導され、各部分の温度が上昇しやすいという課題もあった。
【0009】
場合によっては通常の調理状態であっても、温度センサ15の温度上昇が大きくなり、過昇防止機能(OHP機能)が動作してしまう場合があった。その為、実際の製品としては発熱部のみをトッププレートと離すように裏面が凹凸になるような形状にしており、加工性や手入れ性に問題があった。
【0010】
またこのような構成で異常加熱され、更に水を投入されるような状態を想定した熱衝撃試験に於いて、その温度差を大きく設定する必要があり、その温度差にも耐えうるように、例えば土鍋の場合は熱膨張が非常に小さな原材料を使用しており、その分コスト的にも高くなっていた。
【0011】
【発明が解決しようとする課題】
本発明はこのような従来の課題を解決するものであり、土鍋やガラス製鍋などの非金属性の鍋等を加熱する場合において、異常加熱の際は加熱プレートの自己温度制御機能により、所定温度以上に温度が上がらないようにすることで、安全性を確保した調理用鍋を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記課題を解決する為に本発明は、非金属製の材料で構成された調理容器の下面に、非磁性金属層を2mm以上の厚さになるように溶射により形成し、更にその下面に所定のキュリー温度を有した磁性金属層をキュリー温度以下での渦電流の浸透深さ以上でキュリー温度以上での浸透深さ以下である0.3〜2.5mmの範囲の厚さになるように溶射により形成することにより、非金属製の鍋においても、自己温度制御機能を備え、空焼き時の温度過昇や発熱体の剥離・断線を防止したものである。
【0013】
【発明の実施の形態】
請求項1記載の発明は、非金属製の材料で構成された調理容器の下面に、非磁性金属層を2mm以上の厚さになるように溶射により形成し、更にその下面に所定のキュリー温度を有した磁性金属層をキュリー温度以下での渦電流の浸透深さ以上でキュリー温度以上での浸透深さ以下である0.3〜2.5mmの範囲の厚さになるように溶射により形成することにより、自己温度制御機能が付与できるので、調理物の焦げ過ぎや発火等の不安全状態の発生を防止することができる。
【0014】
自己温度制御機能を付与する手段としては、加熱調理器側に鍋の磁性変化を検知しそれに応じて火力をコントロールする方法がある。例えば磁石式のスイッチを鍋底に接するように配置し、鍋がキュリー温度以下の場合はその磁石が鍋底と引き合っているが、鍋がキュリー温度以上になると、磁石が鍋底と引き合わなくなり下方に落下する。その動きに連動して加熱調理器への火力や電力の供給を制御してやることにより、キュリー温度での自己温度制御を実現することができる。
【0015】
誘導加熱により鍋を直接加熱する場合はもっと単純で、鍋の温度がキュリー温度まで上がると、感温金属層が磁性を失うため、磁力線はその上にある非磁性金属層に流れる。その層は表皮抵抗が小さいので、発熱が起こらず、結果的にその温度以上には上がらないようにすることができる。この場合は鍋の温度を検知する手段も必要がないため、加熱調理器としても非常に簡単な構成とすることができる。
【0016】
さらに底面が一定温度以上に上がらないので、例えば誘導加熱調理器用の鍋の場合は、発熱部に相対している誘導加熱調理器本体、特にトッププレートや温度センサ、加熱コイル、制御装置の温度上昇が押えられ、従来必要であった冷却構成のレベルも押えることができる。また従来の課題であった温度過昇防止機能(OHP機能)の誤動作も押えることができる為、誤動作による実調理への弊害を少なくしたり、また裏面の形状をできるだけ平らにして、加工性や手入れ性を向上させることができる。
【0017】
またFe−Ni合金のように感温金属として用いられる金属は、従来発熱体として用いられている銀等と比較して、熱膨張率が非常に小さいので、基材であるセラミックス等との熱膨張差も小さくなり、底面の反りや変形を小さくすることができる。それに伴ない発熱層の剥離や断線も少なくすることができる。
【0018】
さらに鍋自身の温度上昇を所定の温度に設定できるので、加熱時の最高温度から水中に投入されるような熱衝撃についても、その温度差が小さくなる。その為調理容器本体の材料として、例えば土鍋の場合は、従来例よりも熱膨張率は大きいがコスト的には安価な土鍋として一般的な原料を使用することができる。
【0019】
請求項2記載の発明は、磁性金属層の下面に磁力透過性材料からなる保護層を設けたことにより、溶射で耐食性が低下した非磁性金属層や感温金属層を、腐食等から保護できるので、塩や醤油、酢などの腐食性が強い調味料が付着する環境である台所に使用されても、腐食等が発生することなく良好に使用することができる。一般的にこのような保護層は塗装によって形成されることが多く、例えばシリコーン系の耐熱性塗料などが用いられる。
【0020】
請求項3に記載の発明は、複数の異なるキュリー温度を有した磁性金属を、溶射層中で任意の比率になるように溶射量を調整してそれぞれ同時に溶射することにより、所定の自己制温度御機能を備えることができる。特に溶射層として形成される感温金属層の組成は、溶射時の各感温金属の溶射量を調整することにより任意に調整することができるので、感温金属層の自己制御温度も任意に細かく設定することができる鍋である。そして一方感温金属の原材料として、多くの種類を持つ必要がなく、量産性やコスト的に非常に有利である。
【0021】
請求項4に記載の発明は、非金属製の材料で構成された鍋の下面に、非磁性金属層を2mm以上の厚さになるように溶射により形成し、更にその下面に複数の異なるキュリー温度を有した磁性金属を、溶射層中で任意の比率になるように溶射量を調整し、かつキュリー温度以下での渦電流の浸透深さ以上でキュリー温度以上での浸透深さ以下である0.3〜2.5mmの範囲の厚さになるようにそれぞれ同時に溶射することにより、自己温度制御機能が付与できるので、調理物の焦げ過ぎや発火等の不安全状態の発生を防止することができ、さらに感温金属層の自己制御温度も任意に細かく設定することができる。
【0022】
【実施例】
以下、本発明の実施例について、特に誘導加熱も行える土鍋を例として、図面を参照して説明する。
【0023】
(実施例1)
図1は本発明の実施例1を示す調理用鍋及び誘導加熱調理器要部の断面図である。1はセラミックス製の調理容器で、今回はペタライト(Li2O・Al2O3・8SiO2)を35%配合させた素地材料からなる土鍋を用いた。この調理容器1の裏面全体に熱導性アルミニウムからなる非磁性金属層2をアーク溶射法により設け、さらにその下面に36%Ni−Fe合金からなる感温金属を用いて、窒素ガスを用いた不活性雰囲気中でのアーク溶射法により、アルミニウムと同じく裏面全体に感温金属層を形成した。ここでアルミニウムの溶射層の厚みは2.5mm、感温金属の溶射層の厚みは0.5mmとした。また底面の形状は平らな構成とした。
【0024】
このようにして作成した調理用鍋を、トッププレート4、温度センサ5、加熱コイル6及び制御装置7を主要構成部品とする誘導加熱調理器にて加熱した。
【0025】
まず空焼きの状態で加熱したが、底面の温度は約250℃以上には上がらず、発熱部の剥離・断線及び鍋の外観に特に異常はなく、以降も安全に使用することができた。
【0026】
また実際の調理として水炊きを行ったが、これに於いてもOHP機能の誤動作等実用上問題なく調理することができた。特に従来の誘導加熱調理器用の土鍋では、餅やうどん等の炭水化物系の食材が底面に焦げ付きやすかったが、そのような現象も起こらなかった。
【0027】
なお、土鍋素地の材料として低熱膨張であるペタライトを主成分とした素地を用いたが、これに限られることはなく、粘土やカオリンなどを主成分とした材料など一般的な陶磁器原料からなる素地を用いても良い。
【0028】
また非磁性金属としてアルミニウムを用いたが、銅やその他の非磁性金属を用いても良い。また非磁性金属層であるアルミニウムの厚みを2.5mmとしたが、自己温度制御機能を有する為には、アルミニウムにおいて渦電流により発熱しない厚みである0.1mm以上あればよい。但し、均熱性の面から考えると1mm以上あれば実用上問題なく、さらには2mm以上あれば非常に良好である。一方感温金属層の厚みとしては0.5mmとしたが、キュリー温度以下での渦電流の浸透深さ以上でかつキュリー温度以上での浸透深さ以下であれば良く、具体的には約0.3mm〜2.5mmが良い。
【0029】
また感温金属としては36%Ni−Fe合金を用いたが、これに限られることはなく、溶射層のキュリー温度として水の沸点である100℃以上、また油の発火点である370℃以下になるような組成であれば有効に作用する。実用的にはこれらの温度に対して余裕を持った120℃〜350℃の範囲が望ましい。また鍋のような煮込み調理が主な用途に対しては、120℃〜200℃に設定すると、調理物が焦げ過ぎることもなく、さらに付加価値の高い製品を提供することができる。
【0030】
また溶射は不活性雰囲気で行ったが、これに限られるものではなく、通常の雰囲気で溶射を行っても構わない。しかしその場合は溶射材が酸化されるので、溶射層のキュリー温度が素材のキュリー温度よりも高くなる傾向がある。その為上述の不活性雰囲気で溶射を行うか、使用する溶射材料の構成成分よりも酸化されやすい物質、例えば珪素やマンガンなどのいわゆる脱酸素剤を配合したほうが好ましい。また所望の温度より高いキュリー点を有する感温金属素材を用いても良い。
【0031】
(実施例2)
図2は本発明の実施例2を示す調理用鍋及び誘導加熱調理器要部の断面図である。基本的な構成は実施例1と同じであるが、磁性金属層の下面にシリコーン系の無機耐熱塗料からなる保護層8を設けた。
【0032】
このようにして作成した調理用鍋Aと、同様の構成で保護層がない調理用鍋Bを、味噌汁の入った洗い桶の中に長時間浸漬させる実験を行った。調理用鍋Bは一晩浸漬されただけで、鍋底裏面に赤錆が発生し、実用上の不具合が観察されたが、調理用鍋Aは3日立っても、目立った赤錆は発生せず、実用上全く問題がないレベルであった。
【0033】
(実施例3)
実施例1に於ける調理用鍋を作成するにあたり、感温金属層を形成する際に、実施例1と同じ36%Ni−Fe合金と30%Ni−Fe合金(キュリー温度:約100℃)を1:2の割合でそれぞれ同時に溶射した。
【0034】
このようにして作成した調理用鍋を用いて、実施例1と同様の試験を行なった。空焼き時の底面温度は約150℃で、溶射に用いた感温金属のキュリー温度とその配合比率に応じた所望の自己温度制御機能を発揮した。また水炊きの試験では餅やうどんが底面にこびり付くこともなく良好に調理できた。
【0035】
この例からも明らかなように、所定のキュリー温度を有する感温金属を任意の割合で溶射することにより、様々な温度の自己温度制御機能を有する調理用鍋を得ることができる。
【0036】
またいずれの実施例においても、鍋底裏面の最外層表面に防錆のための被膜層を形成することにより、より実用性のある鍋を提供することができる。
【0037】
またいずれの実施例においても、誘導加熱調理器を加熱装置として用いたが、これに限られることはなく、ガスや電気ヒータを熱源とした加熱調理器に鍋の磁性変化を検知できる手段を備えれば、同様の効果を得ることができる。
【0038】
また調理容器の素材として土鍋を例にして説明したが、ガラスなどを含めたセラミックス全般、また樹脂や耐水製ペーパーなど、非金属の素材であれば、同様の効果を得ることができる。
【0039】
【発明の効果】
以上のように請求項1〜に記載の発明によれば、自己温度制御機能を有することにより異常時においても所定温度異常に上がることなく安全性を確保した調理用鍋を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1及び第3の実施例を示す調理用鍋と誘導加熱調理器要部断面図
【図2】本発明の第2の実施例を示す調理用鍋と誘導加熱調理器要部断面図
【図3】誘導加熱調理器本体要部及び従来の誘導加熱調理器用土鍋の断面図
【符号の説明】
1 調理容器
2 非磁性金属層
3 磁性金属層
6 加熱コイル
7 保護層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooking pan that prevents the occurrence of an unsafe state such as overburning or ignition of a cooked food by providing a self-temperature control function in a non-metallic pan, and a method for manufacturing the same. In particular, the present invention relates to a cooking pan suitable for induction heating.
[0002]
[Prior art]
As heat sources for cooking these days, gas, electric heaters, microwave heating, induction heating, etc. have been diversified, but in recent years, induction heating cookers understand their excellent features such as safety, ease of use, and high thermal efficiency. It has been widely spread to general households. 200V compatible models have also been developed and are generally understood in terms of high thermal power.
[0003]
As shown in FIG. 3, the induction heating cooker is an object to be heated placed on the top plate (high-frequency magnetic flux generated by applying a high-frequency current to the heating coil 12 disposed below the top plate 11 ( An eddy current is generated in the pan), and the pan is controlled by the control device 14 so that the pan itself generates heat directly.
[0004]
In addition, a temperature sensor 15 for detecting the temperature of the pan is also standardly provided at the lower part of the top plate of the induction heating cooker, so that an “overtemperature prevention function” for controlling the heating state according to the detected temperature can be provided. It can be used safely.
[0005]
However, recent induction cookers have high thermal power, so the food is likely to burn, or when cooking with a small amount of oil, it may be heated to near the ignition temperature of the oil, and further safety is required. Has been.
[0006]
Therefore, in recent years, as disclosed in Japanese Patent No. 2917526 and Japanese Patent No. 3079573, a metal having a Curie point near the temperature used for actual cooking (hereinafter referred to as “temperature-sensitive metal”) is used as a metal for a pan. It has been proposed to use. Since metal loses its magnetism above the Curie point, it is characterized by not being heated by induction heating. Taking advantage of this feature, pans where the temperature of the pan itself is not heated above the Curie point are also being investigated.
[0007]
Although it is the induction heating cooking appliance which has the outstanding characteristic in this way, the subject that the cooking appliance made from ceramics, such as a clay pot and a glass pot, cannot be used on the characteristic of the heating method. In order to deal with such problems, for example, a pan capable of induction heating has been proposed by forming a silver thin film 17 on the bottom surface of a clay pan 16 as shown in FIG. However, when the base material of the pan is ceramic, heat conduction is poor compared to metal, so that the heat induced by the thin film is not easily transmitted to the entire pan, so that the temperature of the heat generating part tends to rise. It was. This problem was prominent when the pan was baked, and the phenomenon of disconnection and peeling of the heat generation layer was likely to occur.
[0008]
Further, in such a configuration, the heat of the heat generating part is radiated and conducted to the induction heating cooker main body, particularly the top plate 11, the temperature sensor 15, the heating coil 12, the control device 14, etc., and the temperature of each part rises. There was also a problem that it was easy.
[0009]
In some cases, even in the normal cooking state, the temperature rise of the temperature sensor 15 becomes large, and the over-rise prevention function (OHP function) may operate. Therefore, as an actual product, the shape of the back surface is uneven so that only the heat generating part is separated from the top plate, and there is a problem in workability and careability.
[0010]
In addition, in the thermal shock test that assumes a state in which abnormal heating is performed in such a configuration and water is added, it is necessary to set the temperature difference large, so that the temperature difference can be endured. For example, in the case of clay pots, raw materials that have a very small thermal expansion are used, which increases the cost.
[0011]
[Problems to be solved by the invention]
The present invention solves such a conventional problem. When heating a non-metallic pot such as an earthen pot or a glass pot, the heating plate has a self-temperature control function in the case of abnormal heating. The object is to provide a cooking pan that ensures safety by preventing the temperature from rising above the temperature.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, the present invention forms a nonmagnetic metal layer on a lower surface of a cooking vessel made of a nonmetallic material by spraying so as to have a thickness of 2 mm or more. A magnetic metal layer having a Curie temperature of not less than 0.3 mm and a thickness of 0.3 to 2.5 mm, which is not less than the penetration depth of the eddy current below the Curie temperature and not more than the penetration depth above the Curie temperature. By forming by thermal spraying, even a non-metallic pan has a self-temperature control function, which prevents the temperature from rising during baking and the exfoliation / disconnection of the heating element.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, a nonmagnetic metal layer is formed on the lower surface of a cooking vessel made of a nonmetallic material by thermal spraying so as to have a thickness of 2 mm or more , and further, a predetermined Curie temperature is formed on the lower surface. A magnetic metal layer having a thickness of 0.3 to 2.5 mm is formed by thermal spraying so as to have a thickness in the range of 0.3 to 2.5 mm, which is not less than the penetration depth of eddy current below the Curie temperature and below the penetration depth above the Curie temperature. By doing so, since the self-temperature control function can be provided, it is possible to prevent the occurrence of an unsafe state such as overburning or ignition of the food.
[0014]
As a means for providing the self-temperature control function, there is a method of detecting the magnetic change of the pan on the heating cooker side and controlling the heating power accordingly. For example, a magnet type switch is placed in contact with the bottom of the pan, and if the pan is below the Curie temperature, the magnet is attracted to the pan bottom. . By controlling the heating power and power supply to the cooking device in conjunction with the movement, self-temperature control at the Curie temperature can be realized.
[0015]
Heating the pan directly by induction heating is simpler. When the pan temperature rises to the Curie temperature, the temperature-sensitive metal layer loses magnetism, and the magnetic field lines flow to the nonmagnetic metal layer above it. Since the layer has a low skin resistance, it does not generate heat, and as a result, it cannot be raised above that temperature. In this case, since no means for detecting the temperature of the pan is necessary, a very simple configuration can be achieved as a cooking device.
[0016]
Furthermore, since the bottom surface does not rise above a certain temperature, for example, in the case of a pan for an induction heating cooker, the temperature rise of the induction heating cooker body, especially the top plate, temperature sensor, heating coil, and control device, facing the heat generating part Can be held down, and the level of the cooling structure that has been necessary in the past can also be held down. In addition, since the malfunction of the over-temperature prevention function (OHP function), which has been a problem in the past, can be suppressed, the adverse effects on actual cooking due to malfunction are reduced, and the shape of the back surface is made as flat as possible to improve workability. Care can be improved.
[0017]
In addition, a metal used as a temperature-sensitive metal such as an Fe—Ni alloy has a very small coefficient of thermal expansion as compared with silver or the like conventionally used as a heating element, so that heat with ceramics or the like as a base material can be reduced. The expansion difference is also reduced, and warping and deformation of the bottom surface can be reduced. Accordingly, exfoliation and disconnection of the heat generation layer can be reduced.
[0018]
Furthermore, since the temperature rise of the pan itself can be set to a predetermined temperature, the temperature difference becomes small even for a thermal shock that is poured into water from the maximum temperature during heating. Therefore, as a material of the cooking container body, for example, in the case of an earthenware pot, a general raw material can be used as an earthenware pot that has a larger coefficient of thermal expansion than the conventional example but is inexpensive in terms of cost.
[0019]
According to the second aspect of the present invention, a nonmagnetic metal layer or a temperature sensitive metal layer whose corrosion resistance is reduced by thermal spraying can be protected from corrosion by providing a protective layer made of a magnetically permeable material on the lower surface of the magnetic metal layer. Therefore, even if it is used in a kitchen where a highly corrosive seasoning such as salt, soy sauce or vinegar adheres, it can be used satisfactorily without causing corrosion or the like. In general, such a protective layer is often formed by painting, and for example, a silicone-based heat-resistant paint is used.
[0020]
The invention according to claim 3, the magnetic metal having a plurality of different Curie temperature, each adjusted spraying amount so that any ratio by spraying simultaneously sprayed layer in a predetermined self-system A temperature control function can be provided. In particular, the composition of the temperature-sensitive metal layer formed as the sprayed layer can be arbitrarily adjusted by adjusting the spraying amount of each temperature-sensitive metal during spraying, so that the self-control temperature of the temperature-sensitive metal layer is also arbitrarily set. It is a pan that can be set in detail. On the other hand, it is not necessary to have many kinds of raw materials for the thermosensitive metal, which is very advantageous in terms of mass productivity and cost.
[0021]
According to a fourth aspect of the present invention, a nonmagnetic metal layer is formed on a lower surface of a pan made of a nonmetallic material by thermal spraying so as to have a thickness of 2 mm or more, and a plurality of different curie are formed on the lower surface. The amount of spraying of the magnetic metal having a temperature is adjusted so that it becomes an arbitrary ratio in the sprayed layer, and the penetration depth is not less than the penetration depth of the eddy current below the Curie temperature and below the penetration depth above the Curie temperature. Since the self-temperature control function can be imparted by spraying simultaneously so as to have a thickness in the range of 0.3 to 2.5 mm, it is possible to prevent the occurrence of unsafe conditions such as overburning of the food and ignition. Furthermore, the self-control temperature of the temperature-sensitive metal layer can be set arbitrarily finely.
[0022]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking as an example a clay pot that can also perform induction heating.
[0023]
(Example 1)
1 is a cross-sectional view of a main part of a cooking pan and an induction heating cooker showing Embodiment 1 of the present invention. 1 is a ceramic cooking vessel, and this time, a clay pot made of a base material mixed with 35% of petalite (Li2O.Al2O3.8SiO2) was used. Provided a non-magnetic metal layer 2 on the entire rear surface of the cooking container 1 made of a thermal good-conductive aluminum by arc spraying method, a temperature-sensitive metal made further from the lower surface 36% Ni-Fe alloy, use of nitrogen gas A temperature-sensitive metal layer was formed on the entire back surface in the same manner as aluminum by arc spraying in an inert atmosphere. Here, the thickness of the aluminum sprayed layer was 2.5 mm, and the thickness of the temperature-sensitive metal sprayed layer was 0.5 mm. In addition, the shape of the bottom surface was flat.
[0024]
The cooking pan thus prepared was heated by an induction heating cooker having the top plate 4, the temperature sensor 5, the heating coil 6 and the control device 7 as main components.
[0025]
Although it was first heated in an baked state, the temperature at the bottom did not rise above about 250 ° C., and there was no particular abnormality in the exfoliation / disconnection of the heating part and the appearance of the pan, and it could be used safely thereafter.
[0026]
Moreover, although water cooking was performed as actual cooking, even in this, cooking was possible without practical problems such as malfunction of the OHP function. In particular, in conventional earthenware pans for induction heating cookers, carbohydrate-based ingredients such as rice cakes and udon were easy to scorch on the bottom surface, but such a phenomenon did not occur.
[0027]
In addition, as a material for clay pots, a material based on petalite, which has low thermal expansion, was used as a main component. However, the material is not limited to this, and a material composed of general ceramic materials such as materials based on clay or kaolin. May be used.
[0028]
Moreover, although aluminum was used as the nonmagnetic metal, copper or other nonmagnetic metals may be used. In addition, although the thickness of aluminum which is a nonmagnetic metal layer is 2.5 mm, in order to have a self-temperature control function, it may be 0.1 mm or more which is a thickness that does not generate heat due to eddy current in aluminum. However, from the standpoint of heat uniformity, if it is 1 mm or more, there is no practical problem, and if it is 2 mm or more, it is very good. On the other hand, the thickness of the temperature-sensitive metal layer is set to 0.5 mm, but it may be greater than the penetration depth of eddy current below the Curie temperature and below the penetration depth above the Curie temperature, specifically about 0. .3 mm to 2.5 mm is preferable.
[0029]
In addition, although a 36% Ni-Fe alloy was used as the temperature sensitive metal, it is not limited to this, and the Curie temperature of the sprayed layer is 100 ° C. or higher which is the boiling point of water, and 370 ° C. or lower which is the ignition point of oil. If it is the composition which becomes, it acts effectively. Practically, a range of 120 ° C. to 350 ° C. with a margin for these temperatures is desirable. Moreover, for the main application of stewed cooking like a pot, if it sets to 120 to 200 degreeC, a cooked product will not burn too much and a product with much higher added value can be provided.
[0030]
The thermal spraying is performed in an inert atmosphere, but the present invention is not limited to this, and thermal spraying may be performed in a normal atmosphere. However, in that case, since the sprayed material is oxidized, the Curie temperature of the sprayed layer tends to be higher than the Curie temperature of the material. For this reason, it is preferable to perform thermal spraying in the above-described inert atmosphere or to blend a material that is more easily oxidized than a constituent of the thermal spray material to be used, for example, a so-called oxygen scavenger such as silicon or manganese. Moreover, you may use the temperature-sensitive metal raw material which has a Curie point higher than desired temperature.
[0031]
(Example 2)
FIG. 2 is a cross-sectional view of the main part of the cooking pan and the induction heating cooker showing Embodiment 2 of the present invention. The basic configuration is the same as in Example 1, but a protective layer 8 made of a silicone-based inorganic heat-resistant paint is provided on the lower surface of the magnetic metal layer.
[0032]
An experiment was conducted in which the cooking pan A thus prepared and the cooking pan B having the same configuration and without a protective layer were immersed in a washing bowl containing miso soup for a long time. Cooking pan B was immersed overnight, and red rust was generated on the bottom of the pan, and practical problems were observed. However, even with cooking pan A 3 Hitachi, no noticeable red rust occurred. It was a level where there was no problem in practical use.
[0033]
(Example 3)
In producing the cooking pan in Example 1, when forming the temperature-sensitive metal layer, the same 36% Ni—Fe alloy and 30% Ni—Fe alloy as in Example 1 (Curie temperature: about 100 ° C.) Were simultaneously sprayed at a ratio of 1: 2.
[0034]
A test similar to Example 1 was conducted using the cooking pan thus prepared. The bottom surface temperature during baking was about 150 ° C., and exhibited a desired self-temperature control function according to the Curie temperature of the temperature-sensitive metal used for thermal spraying and its blending ratio. In addition, in the water cooking test, rice cakes and udon were cooked well without sticking to the bottom.
[0035]
As is apparent from this example, a cooking pan having a self-temperature control function at various temperatures can be obtained by spraying a temperature-sensitive metal having a predetermined Curie temperature at an arbitrary ratio.
[0036]
In any of the embodiments, a more practical pot can be provided by forming a coating layer for rust prevention on the outermost layer surface on the bottom surface of the pot bottom.
[0037]
In any of the embodiments, the induction heating cooker is used as a heating device. However, the present invention is not limited to this, and the heating cooker using a gas or an electric heater as a heat source includes a means for detecting the magnetic change in the pan. If it is, the same effect can be acquired.
[0038]
Moreover, although the earthenware pot was demonstrated as an example of the raw material of a cooking container, the same effect can be acquired if it is non-metallic materials, such as general ceramics including glass etc., resin, and water-resistant paper.
[0039]
【The invention's effect】
As described above, according to the inventions described in claims 1 to 4 , it is possible to provide a cooking pan that has safety by ensuring that it has a self-temperature control function and does not rise to a predetermined temperature abnormality even when it is abnormal. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a cooking pot and induction heating cooker showing first and third embodiments of the present invention. FIG. 2 is a cooking pot and induction heating cooking showing a second embodiment of the present invention. Cross-sectional view of the main part of the vessel [Figure 3] Cross-sectional view of the main part of the induction heating cooker body and the conventional earthenware pot for induction heating cooker
DESCRIPTION OF SYMBOLS 1 Cooking container 2 Nonmagnetic metal layer 3 Magnetic metal layer 6 Heating coil 7 Protective layer

Claims (4)

非金属製の材料で構成された調理容器の下面に、非磁性金属層を2mm以上の厚さになるように溶射により形成し、更にその下面に所定のキュリー温度を有した磁性金属層をキュリー温度以下での渦電流の浸透深さ以上でキュリー温度以上での浸透深さ以下である0.3〜2.5mmの範囲の厚さになるように溶射により形成した調理用鍋。The lower surface of the cooking container made of a non-metallic material, sprayed by forming a non-magnetic metal layer to a thickness of more than 2 mm, further the Curie magnetic metal layer having a predetermined Curie temperature on its lower surface A cooking pan formed by thermal spraying so as to have a thickness in the range of 0.3 to 2.5 mm, which is not less than the penetration depth of eddy current below the temperature and not more than the penetration depth above the Curie temperature . 前記磁性金属層の外側に磁力透過性材料からなる保護層を設けた請求項1に記載の調理用鍋。The cooking pan according to claim 1, wherein a protective layer made of a magnetically permeable material is provided outside the magnetic metal layer. 複数の異なるキュリー温度を有した磁性金属を、溶射層中で任意の比率になるように溶射量を調整してそれぞれ同時に溶射することにより、所定温度の自己温度御機能を備えた請求項1又は2に記載の調理用鍋。A plurality of magnetic metal having a different Curie temperatures, each by spraying simultaneously by adjusting the spraying amount so that the arbitrary ratio in the sprayed layer, according to claim 1 or with a self-temperature control function of a predetermined temperature 2. The cooking pot according to 2. 非金属製の材料で構成された鍋の下面に、非磁性金属層を2mm以上の厚さになるように溶射により形成し、更にその下面に複数の異なるキュリー温度を有した磁性金属を、溶射層中で任意の比率になるように溶射量を調整し、かつキュリー温度以下での渦電流の浸透深さ以上でキュリー温度以上での浸透深さ以下である0.3〜2.5mmの範囲の厚さになるようにそれぞれ同時に溶射する鍋の製造方法。 A non-magnetic metal layer is formed on the lower surface of a pan made of a non-metallic material by thermal spraying so as to have a thickness of 2 mm or more , and a magnetic metal having a plurality of different Curie temperatures is further sprayed on the lower surface. The spraying amount is adjusted to an arbitrary ratio in the layer , and the range is 0.3 to 2.5 mm which is not less than the penetration depth of the eddy current below the Curie temperature and below the penetration depth above the Curie temperature. The manufacturing method of the pan which sprays each simultaneously so that it may become the thickness of .
JP2002156900A 2002-05-30 2002-05-30 Cooking pot and method of manufacturing the pot Expired - Fee Related JP3620516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002156900A JP3620516B2 (en) 2002-05-30 2002-05-30 Cooking pot and method of manufacturing the pot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002156900A JP3620516B2 (en) 2002-05-30 2002-05-30 Cooking pot and method of manufacturing the pot

Publications (2)

Publication Number Publication Date
JP2003339549A JP2003339549A (en) 2003-12-02
JP3620516B2 true JP3620516B2 (en) 2005-02-16

Family

ID=29772969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002156900A Expired - Fee Related JP3620516B2 (en) 2002-05-30 2002-05-30 Cooking pot and method of manufacturing the pot

Country Status (1)

Country Link
JP (1) JP3620516B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8796598B2 (en) 2007-09-07 2014-08-05 Bose Corporation Induction cookware
US20090065498A1 (en) * 2007-09-07 2009-03-12 Bose Corporation Induction cookware
KR100913119B1 (en) 2009-01-29 2009-08-19 조용래 Cooking vessel and manufacturing method thereof
KR100913118B1 (en) 2009-01-29 2009-08-19 조용래 Cooking vessel and manufacturing method thereof
US8602248B2 (en) 2011-03-02 2013-12-10 Bose Corporation Cooking utensil
KR101187352B1 (en) 2011-07-22 2012-10-02 주식회사 성창베네피나 Method for precision coating of cookware and the cookware thereby
FR3028405B1 (en) * 2014-11-14 2016-11-25 Seb Sa COOKING CONTAINER HAVING A MAGNETIC MEASURING TEMPERATURE DEVICE
CN208425883U (en) * 2015-08-14 2019-01-25 肇庆市天宇进出口贸易有限公司 A kind of automatic constant-temperature cookware
CN106510476B (en) * 2015-09-15 2019-08-06 佛山市顺德区美的电热电器制造有限公司 Cookware
CN105326403A (en) * 2015-09-25 2016-02-17 佛山市顺德区美的电热电器制造有限公司 Cooker, temperature control method of electromagnetic heating system and household appliance
IT201900009378A1 (en) * 2019-06-18 2020-12-18 Ballarini Paolo & Figli Spa CONTAINER FOR COOKING FOOD WITH BOTTOM WALL WITH BALANCED PERFORATION

Also Published As

Publication number Publication date
JP2003339549A (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JP3620516B2 (en) Cooking pot and method of manufacturing the pot
EP1455622B1 (en) Cooking vessel comprising a base made of a multilayer material and a side wall, and article of multilayer material
JPH10192140A (en) Contact type heat conduction cooking system having electric heating plate
TW201436646A (en) Electromagnetic induction heater capable of increasing range of heating
KR20180067217A (en) Korean pancake cooking machine for induction ranges
JP3030942B2 (en) Plate for induction cooker
JP3451006B2 (en) Manufacturing method of cookware for electromagnetic induction heating cooker
JP2003250698A (en) Electromagnetic cooking container
JP2007130311A (en) Nonmetallic container for electromagnetic induction cooker
JP2001252184A (en) Earthen pot for induction heating cooker
KR20180067206A (en) Korean pancake cooking machine for induction ranges
JPH10125453A (en) Heating cooker for electromagnetic induction heating cooker
JP3698116B2 (en) Heating plate and pan for induction heating cooker
JPH05251169A (en) Heating body and container for electromagnetic cooking
JPS60177594A (en) Electromagnetic cooking device
JP3956900B2 (en) Clad material for induction heating and manufacturing method thereof
JPH04242093A (en) Pan for induction heating cooker
JP2006167157A (en) Pot for ih cooking heater
KR200300250Y1 (en) Ceramic cooker
JP2557238Y2 (en) Heating plate for induction cooker
JP2001145558A (en) Pan for rice cooker
JP2003051376A (en) Heating element for induction heating cooker
JPH03715Y2 (en)
JPS6377419A (en) Cooking vessel coated with fluorocarbon risin
JP2003180516A (en) Cooker for electromagnetic cooking device and its preparation process

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees