JP3619838B2 - Manufacturing method of high strength artificial aggregate - Google Patents

Manufacturing method of high strength artificial aggregate Download PDF

Info

Publication number
JP3619838B2
JP3619838B2 JP6751298A JP6751298A JP3619838B2 JP 3619838 B2 JP3619838 B2 JP 3619838B2 JP 6751298 A JP6751298 A JP 6751298A JP 6751298 A JP6751298 A JP 6751298A JP 3619838 B2 JP3619838 B2 JP 3619838B2
Authority
JP
Japan
Prior art keywords
strength
rotary
shale
molding machine
extrusion molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6751298A
Other languages
Japanese (ja)
Other versions
JPH11263648A (en
Inventor
英一 藤木
公徳 田中
史紀 友澤
昭之 清水
Original Assignee
日本メサライト工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メサライト工業株式会社 filed Critical 日本メサライト工業株式会社
Priority to JP6751298A priority Critical patent/JP3619838B2/en
Publication of JPH11263648A publication Critical patent/JPH11263648A/en
Application granted granted Critical
Publication of JP3619838B2 publication Critical patent/JP3619838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、膨張性頁岩を用いた人工骨材の製造方法に関し、特に、高強度の人工骨材を製造することが可能な高強度人工骨材の製造方法に関する。
【0002】
【従来の技術】
近年、軽量コンクリートの骨材として、主として、膨張性頁岩を焼成して製造した人工骨材が用いられている。
【0003】
また、上記した人工骨材を用いた軽量コンクリートは土木用のコンクリート、建築用のコンクリートとして用いられている。
【0004】
図3に、従来の人工骨材の製造工程を示す。
【0005】
原石(膨張性頁岩)は先ず粗粉砕し、篩分けによって、粒径が20〜5mmの頁岩(以下粗精石と記す)、粒径が5〜3mmの頁岩(以下中精石と記す)、および粒 径が3mm以下の頁岩(以下細精石と記す)を得る。
【0006】
次に、得られた粗精石、中精石、細精石をそれぞれ焼成し、篩分けを行うことによって、粗骨材(粒径:20〜5mmφ、絶乾比重:1.29±0.05)、中骨材(粒径:5〜3mmφ、絶乾比重:1.45±0.05)、細骨材(粒径:−3mmφ、絶乾比重:1.65±0.05)が製造される。
【0007】
粗骨材は天然の砂利、細骨材は天然の砂に対応するコンクリート材料として使用されている。
【0008】
また、上記した製造方法で製造された人工骨材の内、主として粗骨材が、路盤材あるいは地耐力をカバーする軽量裏込材など各種土木用として使用されている。
【0009】
上記した粗骨材を使用した軽量コンクリートは、普通のコンクリートより20〜30%軽く、強度は普通コンクリートと同等の性能を有している。
【0010】
しかしながら、コンクリートの重要な必要特性である圧縮強度などの強度をさらに向上させるために、粗骨材自体の強度をさらに高くすることが可能な人工骨材およびその製造方法の開発が望まれている。
【0011】
【発明が解決しようとする課題】
本発明は、土木用などに用いるための高強度の人工骨材を製造することが可能な高強度人工骨材の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
請求項1に記載の本発明は、粒径が75μm 以下の膨張性頁岩100 重量部対して石炭灰10 200 重量部を配合した水分量が 35wt %以下である原料に結合剤を添加して混練し、押出し式成型機を用いて造粒し、焼成した後、篩分けを行うことを特徴とする高強度人工骨材の製造方法である。
【0013】
請求項2に記載の本発明は、前記した造粒を行うに際して、円周壁(かべ)部に複数個の貫通孔を有する回転中空円筒と、該回転中空円筒と軸芯が平行な回転円柱または前記した回転中空円筒と軸芯が平行な他の回転中空円筒とから構成される押出し式成型機を用い、前記した回転中空円筒の円周面と、前記した回転円柱の円周面または前記した他の回転中空円筒の円周面との間に、前記した原料の混練物を供給し造粒することを特徴とする請求項1に記載の高強度人工骨材の製造方法である
【0014】
請求項3に記載の本発明は、前記した焼成を行うに際してロータリーキルンまたは流動焙焼炉を用いることを特徴とする請求項1または2に記載の高強度人工骨材の製造方法である
【0015】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
【0016】
本発明者らは、コンクリートの重要な必要特性である圧縮強度などの強度をさらに向上させるために、粗骨材自体の強度をさらに高くすることが可能な人工軽量骨材およびその製造方法について鋭意検討した結果、下記知見(1) 〜(3) を得、本発明に至った。
【0017】
(1):微粒の頁岩と石炭灰を配合した原料を用いた粗骨材の製造;
微粒の頁岩と石炭灰を組み合わせることによって、極めて強度の高い粗骨材を製造することが可能である。
【0018】
(2):押出し式成型機を用いた造粒法による粗骨材の製造;
造粒工程において、原料の混練物を、押出し式成型機を用いて造粒することが好ましい。
【0019】
また、押出し式成型機としては、 i 円周壁部に複数個の貫通孔を有する回転中空円筒および ii 回転中空円筒と軸芯が平行な(a) 回転円柱もしくは(b) 回転円筒もしくは(c) 円周壁部に複数個の貫通孔を有する回転中空円筒の両者から構成される押出し式成型機を用いることが好ましい。
【0020】
(3):ロータリーキルンまたは流動焙焼炉を用いた焼成法による粗骨材の製造;
焼成工程においては、ロータリーキルンまたは流動焙焼炉を用いることが好ましい。
【0021】
以下、前記した本発明における知見(1)〜(3)について説明する。
知見 [1]
図1に、本発明の高強度人工骨材の製造方法の工程図の一例を示す。
【0022】
原石(膨張性頁岩)は先ず粗粉砕し、篩分けによって、粗精石(20〜5mm)、中精石(5〜3mm)、細精石(3mm以下)を得る。
【0023】
本発明によれば、例えば、原石(膨張性頁岩)の粉砕、篩分けによって発生した細精石(3mm以下)をさらに微粉砕し、篩分けし、粒径が75μm 以下の頁岩(以下微粉頁岩とも記す)を得る。
【0024】
次に、得られた微粉頁岩と石炭灰とを混合し、造粒し、焼成した後、篩分けを行うことによって、目的とする高強度の粒径:20〜5mmφである粗骨材を得ることができる。
【0025】
これは、上記した製造条件下において、粒径が75μm 以下の頁岩(微粉頁岩)と微粒子から構成される石炭灰とが相互に分散性良く混合すると共に、相互に組成が近いため、それぞれの粒子が焼成過程で強固に結合するためと考えられる。
【0026】
また、本発明によれば、土木用などに用いられる粒径の大きな粗骨材(20〜5mmφ)が、対原料収率に優れた方法で製造することが可能となったが、本効果も上記した作用によって、造粒物の強度、焼成品の強度が高いことによると考えられる。
【0027】
本発明においては、粒径が75μm 以下の頁岩(微粉頁岩)、石炭灰それぞれの好適配合割合は、微粉頁岩:100 重量部に対して、石炭灰:10〜200 重量部である。
【0028】
石炭灰が上記した配合割合(重量部)未満の場合、または上記した配合割合(重量部)を超える場合は、いずれも目的とする高強度の粗骨材を得ることが困難となる。
【0029】
以下、本発明において使用する石炭灰について述べる。
【0030】
〔本発明において使用する石炭灰〕
産業廃棄物としての石炭灰は、主成分がSiO2、Al2O3 および鉄の酸化物であり、頁岩の組成に近い。
【0031】
上記した石炭灰を、前記した微粉頁岩に添加して混合し、造粒後、焼成することによって、高強度の粗骨材を製造することが可能であると共に、産業廃棄物のリサイクルが可能となる。
【0032】
さらには、近年、産業廃棄物として発生する石炭灰の処分が重要な問題となっているが、この問題も解決できる。
【0033】
本発明において使用する石炭灰としては、100 ℃乾燥後の試料の組成が下記組成である石炭灰が好ましい。
【0034】
(本発明において使用する石炭灰の好適組成)
SiO2:50〜70wt%、Al2O3 :15〜30wt%、Fe2O3 :0.5 〜10wt%
〔全配合原料中の好適水分量〕
前記した本発明においては、全配合原料中の水分量が35wt%以下であることが好ましい。
【0035】
さらには、前記した本発明においては、全配合原料中の水分量が10〜35wt%であることがより好ましい。
【0036】
これは、全配合原料中の水分量が35wt%超えの場合、造粒物の一部が、焼成工程への搬送過程および焼成炉内の乾燥領域において団塊状となり、また逆に、10wt%未満の場合、原料同士の結合力が不足し、造粒工程で所定の粒径の造粒物が得られず、いずれの場合も粒径が20〜5mmφの粗骨材の対原料収率が低下するためである。
【0037】
〔配合原料中への結合剤の添加〕
本発明においては、配合原料中に結合剤を添加することが好ましい。
【0038】
結合剤としては、ベントナイト、リグニン、パルプ廃液、ポリビニルアルコールおよびカルボキシメチルセルロースなどから選ばれる1種以上が例示され、ベントナイトを用いることがより好ましい。
【0039】
結合剤の添加量は、例えばベントナイトを用いる場合、微粉頁岩と石炭灰の合計量100 重量部に対して1〜10重量部であることが好ましく、さらには微粉頁岩と石炭灰の合計量100 重量部に対して1〜5重量部であることがより好ましい。
知見 [2]:(押出し式成型機を用いた造粒法による人工骨材の製造方法);
前記した知見(1)においては、高強度の骨材を得るために、造粒を行うに際して、水分量が35wt%以下である前記した原料の混練物を、押出し式成型機(押出し式造粒機)を用いて造粒することが好ましい。
【0040】
さらには、前記した知見(1)においては、水分量が10〜35wt%である前記した原料の混練物を、押出し式成型機を用いて造粒することがより好ましい。
【0041】
本発明によれば、押出し式成型機を用いることによって、生産性に優れた方法で人工骨材を製造できるばかりでなく、極めて高強度の人工骨材を製造することが可能となった。
【0042】
押出し式成型機(押出し式造粒機)としては、混練物をダイスから押し出す方式であれば特に制限を受けるものではない。
【0043】
また、押出し式成型機(押出し式造粒機)としては、 i 円周壁部に複数個の貫通孔を有する回転中空円筒および ii 該回転中空円筒と軸芯が平行な(a) 回転円柱もしくは(b) 回転中空円筒もしくは(c) 円周壁部に複数個の貫通孔を有する回転中空円筒の両者から構成される押出し式成型機を用いることが好ましい。
【0044】
これは、押出し式の成型機を用いることによって、微粉頁岩と石炭灰との接触がより緊密となり、前記した焼成時における微粉頁岩のバインダ効果がより大きくなり、得られる骨材の強度が大となるためである。
【0045】
図2に、本発明に係わる押出し式成型機(押出し式造粒機)の要部を斜視図によって示す。
【0046】
図2(a) は、円周壁部に複数個の貫通孔を有する回転中空円筒と該回転中空円筒と軸芯が平行な回転円柱とから構成される押出し式成型機を示し、図2(b) は、円周壁部に複数個の貫通孔を有する相互に軸芯が平行な一対の回転中空円筒から構成される押出し式成型機を示す。
【0047】
図2において、1、5は円周壁(かべ)部Wに複数個の貫通孔3i 、3Ai 、3Bi を有する回転中空円筒、2は回転中空円筒1と軸芯が平行な回転円柱、3i 、3Ai 、3Bi は回転中空円筒1、5の円周壁部Wを貫通する貫通孔、4は円柱状の造粒物、6は押出し式成型機(押出し式造粒機)、AX1 、AX1A、AX1Bは回転中空円筒1、5の軸芯、AX2 は回転円柱2の軸芯、f1 は原料の供給方向、f2 は造粒物の排出方向、f3 は回転中空円筒1、5、回転円柱2、各々の回転方向、Wは回転中空円筒1、5の円周壁部を示す。
【0048】
図2(a) に示される押出し式成型機6においては、供給原料は、回転中空円筒1と回転円柱2の間に供給され、貫通孔3i から回転中空円筒1の中空部内に押し出される過程で、圧縮成型された後、円柱状の造粒物4が回転中空円筒1の中空部から排出される。
【0049】
また、図2(b) に示される押出し式成型機6においては、供給原料は、回転中空円筒1と回転中空円筒5の間に供給され、相互に相対する位置をずらした貫通孔3Ai 、貫通孔3Bi から回転中空円筒1、5それぞれの中空部内に押し出される過程で、圧縮成型された後、円柱状の造粒物4が回転中空円筒1、5それぞれの中空部から排出される。
【0050】
上記した本発明によれば、前記したように、造粒時に、微粉頁岩と石炭灰との接触がより緊密となり、焼成時における微粉頁岩の前記したバインダ効果がより大きくなり、強度が大な粒径が20〜5mmφの粗骨材を、生産性に優れると共に、さらに対原料収率に優れた方法で製造することが可能となった。
知見 [3]:(ロータリーキルンまたは流動焙焼炉を用いた焼成法による人工骨材の製造方法);
本発明においては、焼成工程においてロータリーキルンまたは流動焙焼炉を用いることが好ましい。
【0051】
これは、造粒物をロータリーキルンまたは流動焙焼炉を用いて焼成することによって、造粒物の個々の粒子の温度が均一となり、全体の粒子が均一に発泡、膨張し、強度に優れた人工骨材が製造できるためである。
【0052】
さらに、本発明によれば、前記した図2に例示した押出し式成型機とロータリーキルンを併用することによって、前記した作用によって、強度が大で粒径が20〜5mmφの粗骨材である人工骨材を生産性および対原料収率に優れた方法で製造することが可能となった。
【0053】
【実施例】
以下、本発明を実施例に基づいてさらに具体的に説明する。
【0054】
(実施例1)
図1に示す製造工程にしたがって、粒径が75μm 以下の膨張性頁岩(微粉頁岩)、石炭灰、結合剤を用いて人工軽量骨材を製造した。
【0055】
すなわち、微粉頁岩、石炭灰、結合剤を表1に示すように所定量配合し、得られた配合原料に水を添加し、混練機で混練した。
【0056】
上記した微粉頁岩の粒径は、レーザーを用いた回折法で測定した値である。
【0057】
石炭灰としては下記組成の石炭灰を用いた。
【0058】
(石炭灰)
100 ℃乾燥後の試料の組成:SiO2;61wt%、Al2O3 ;19wt%、Fe2O3 ;4wt%
次に、得られた混練物を、前記した図2(a) に示す押出し式成型機を用いて造粒し、ロータリーキルンによって焼成した後、目開き20mmφ、5mmφの篩で篩分けを行い、人工軽量骨材を製造した。
【0059】
なお、造粒時の水の添加率は、微粉頁岩100 重量部に対して28重量部(全配合原料中の水分量:20〜25wt%)とし、焼成温度は1130℃とした。
【0060】
次に、得られた粗骨材(20〜5mmφ)の圧潰強度、絶乾比重および24時間吸水率を測定すると共に、下記試験方法による粗骨材(20〜5mmφ)の破砕試験を行った。
【0061】
〔粗骨材(20〜5mmφ)の破砕試験方法〕
英国規格(British Standard);BS−812
鋼製試験容器(内径:154mm 、内高:140mm の円筒形容器)に所定量の試料を試料の層の厚さが約10cmとなるように充填し、試料の上にプランジャーを載置する。
【0062】
試験容器を圧縮試験機に据え、毎分4tfの割合で一様に載荷する。
【0063】
上記破砕試験後の試験容器内の試料を2.5mm の篩で篩い、篩下の重量を求め、試験に供した全試料の量とから破砕値(破砕率)(%)を求める。
【0064】
破砕値が7.5 〜12.5%となったとき、そのときの荷重P(tf)と破砕値CV(%)とから下記式(1) によって10%破砕荷重(tf)(以下BS破砕強度と記す)を計算する。
【0065】
10%破砕荷重(tf)(BS破砕強度)={14P(tf)/〔CV(%)+4〕}………(1)
さらに、本実施例においては、下記式(2) に基づき粗骨材の対原料収率を求めた。
【0066】
粗骨材の対原料収率=〔得られた粗骨材(20〜5mmφ)の乾量/(使用した微粉頁岩の灼熱減量を差し引いた乾量+使用した石炭灰の乾量)〕×100 %…………(2)
得られた実験結果を、原料配合割合と併せて表1に示す(本発明例1、比較例1)。
【0067】
表1に示されるように、微粉頁岩と石炭灰を用いることによって、目的とする強度が優れた粒径:20〜5mmφである粗骨材を対原料収率に優れた方法で得ることができた(本発明例1)
【0068】
なお、造粒機としてパン型ペレタイザを用い同様にして人工軽量骨材を製造した結果(比較例2)を、表1に併せて示す。
【0069】
本実験結果から、本発明にしたがって押出し式成型機を用いることによって、高強度の人工軽量骨材が製造可能であることが分かる。
【0070】
【表1】

Figure 0003619838
【0071】
(実施例2)
造粒機として前記した図2(b) に示す押出し式成型機を用いた以外は実施例1と同様にして人工軽量骨材を製造した。
【0072】
各原料の配合割合および得られた実験結果を表2に示す。
【0073】
表2に示されるように、微粉頁岩と石炭灰を用い、押出し式成型機によって造粒した造粒物を焼成、篩分けを行うことによって、目的とする強度が優れた人工軽量骨材を対原料収率に優れた方法で製造することができた(本発明例)。
【0074】
【表2】
Figure 0003619838
【0075】
【発明の効果】
本発明によれば、微粉頁岩、石炭灰それぞれの特性を有効に活用し、強度に優れた人工骨材を製造することが可能となった。
【0076】
さらに、本発明によれば、産業廃棄物としての石炭灰を、人工骨材の原料として使用する結果、大幅な省資源を達成することが可能となった。
【図面の簡単な説明】
【図1】本発明の高強度人工骨材の製造方法の一例を示す工程図である。
【図2】本発明に係わる押出し式成型機の要部を示す斜視図である。
【図3】従来の人工骨材の製造方法を示す工程図である。
【符号の説明】
1、5 円周壁部Wに複数個の貫通孔を有する回転中空円筒
2 回転中空円筒と軸芯が平行な回転円柱
i 、3Ai 、3Bi 回転中空円筒の円周壁部Wを貫通する貫通孔
4 円柱状の造粒物
6 押出し式成型機(押出し式造粒機)
1 原料の供給方向
2 造粒物の排出方向
3 回転中空円筒、回転円柱の回転方向
AX1 、AX1A、AX1B 回転中空円筒の軸芯
AX2 回転円柱の軸芯
W 回転中空円筒の円周壁部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an artificial aggregate using expansive shale, and more particularly to a method for producing a high-strength artificial bone capable of producing a high-strength artificial bone.
[0002]
[Prior art]
In recent years, artificial aggregates produced by firing expansive shale are mainly used as lightweight concrete aggregates.
[0003]
Moreover, the lightweight concrete using the above-mentioned artificial aggregate is used as civil engineering concrete and architectural concrete.
[0004]
FIG. 3 shows a manufacturing process of a conventional artificial aggregate.
[0005]
The rough stone (expandable shale) is first coarsely crushed and sieved to a shale having a particle size of 20 to 5 mm (hereinafter referred to as coarse fine stone), a shale having a particle size of 5 to 3 mm (hereinafter referred to as medium fine stone), In addition, shale with a grain size of 3 mm or less (hereinafter referred to as fine stone) is obtained.
[0006]
Next, the resulting coarse, medium and fine stones are fired and sieved to obtain coarse aggregate (particle size: 20-5mmφ, absolute dry specific gravity: 1.29 ± 0.05), medium Aggregates (particle diameter: 5 to 3 mmφ, absolute dry specific gravity: 1.45 ± 0.05) and fine aggregates (particle size: −3 mmφ, absolute dry specific gravity: 1.65 ± 0.05) are produced.
[0007]
Coarse aggregate is used as natural gravel, and fine aggregate is used as concrete material corresponding to natural sand.
[0008]
Of the artificial aggregates manufactured by the above-described manufacturing method, coarse aggregates are mainly used for various civil engineering such as roadbed materials or lightweight backing materials covering ground strength.
[0009]
Lightweight concrete using the above coarse aggregate is 20-30% lighter than ordinary concrete and has the same strength as ordinary concrete.
[0010]
However, in order to further improve the strength such as compressive strength, which is an important necessary property of concrete, development of an artificial aggregate capable of further increasing the strength of the coarse aggregate itself and a method for producing the same is desired. .
[0011]
[Problems to be solved by the invention]
An object of this invention is to provide the manufacturing method of the high strength artificial bone material which can manufacture the high strength artificial bone material used for civil engineering.
[0012]
[Means for Solving the Problems]
The present invention according to claim 1, the amount of particle size were blended with coal ash 10-200 parts by weight for 100 parts by weight of expandable shale 75μm water was added to binder material is less than 35 wt% And kneading, granulating using an extrusion molding machine , firing, and then sieving.
[0013]
This onset light according to claim 2, when performing granulation described above, the rotary hollow circular cylinder having a plurality of through-holes in the circumferential wall (wall) part, parallel the rotary hollow circular cylinder and the axis is Do rotating disk Hashirama others using extrusion molding machine consists of a rotating hollow circular cylinder and the axis is parallel to the other rotating hollow cylinder described above, the circumferential surface of the rotary hollow circle cylinders described above, and the between the circumferential surface or circumferential surface of the other of the rotary hollow cylinder and said rotating circular column, high strength prosthetic according to claim 1, characterized in that the granulated feed the kneaded product of the raw material It is a manufacturing method of an aggregate .
[0014]
Akira This onset of claim 3, a manual rotary kiln or the method of producing a high strength artificial aggregate according to claim 1 or 2, characterized by using a fluidized roasting furnace in performing the calcination described above.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0016]
In order to further improve the strength such as compressive strength, which is an important necessary characteristic of concrete, the present inventors have earnestly studied an artificial lightweight aggregate capable of further increasing the strength of the coarse aggregate itself and a method for producing the same. As a result of the examination, the following findings (1) to (3) were obtained, and the present invention was achieved.
[0017]
(1): Production of coarse aggregates using raw materials containing fine shale and coal ash;
By combining fine shale and coal ash, it is possible to produce coarse aggregate with extremely high strength.
[0018]
(2): Production of coarse aggregate by granulation using an extrusion molding machine;
In the granulation step, the kneaded material is preferably granulated using an extrusion molding machine.
[0019]
The extrusion molding machine includes ( i ) a rotating hollow cylinder having a plurality of through-holes in the circumferential wall portion, and ( ii ) a rotating hollow cylinder and (b) a rotating cylinder whose axis is parallel to the rotating hollow cylinder. Alternatively, it is preferable to use (c) an extrusion molding machine composed of both rotating hollow cylinders having a plurality of through holes in the circumferential wall portion.
[0020]
(3): Production of coarse aggregate by a firing method using a rotary kiln or fluidized roasting furnace;
In the firing step, it is preferable to use a rotary kiln or a fluid roasting furnace.
[0021]
Hereinafter, the findings (1) to (3) in the present invention will be described.
Finding [1] :
FIG. 1 shows an example of a process diagram of a method for producing a high-strength artificial bone according to the present invention.
[0022]
The rough stone (expandable shale) is first coarsely crushed and sieved to obtain coarse stone (20-5 mm), medium stone (5-3 mm), fine stone (3 mm or less).
[0023]
According to the present invention, for example, fine shale (3 mm or less) generated by crushing or sieving a rough stone (expandable shale) is further finely pulverized and sieved to a shale having a particle size of 75 μm or less (hereinafter referred to as fine shale). Also).
[0024]
Next, the obtained fine powdered shale and coal ash are mixed, granulated, fired, and then subjected to sieving to obtain a target coarse aggregate having a high strength particle size: 20 to 5 mmφ. be able to.
[0025]
This is the manufacturing conditions described above, the particle size and the coal ash comprises the following shale (fine powder shale) and fine particles 75μm mixed dispersible well with each other for mutual composition close, respectively This is probably because the particles are strongly bonded during the firing process.
[0026]
In addition, according to the present invention, a coarse aggregate (20-5 mmφ) having a large particle size used for civil engineering and the like can be produced by a method excellent in raw material yield. It is considered that due to the above-described action, the strength of the granulated product and the strength of the fired product are high.
[0027]
In the present invention, particle size 75μm or less of the shale (fine powder shale), suitable mixing ratio of each coal ash, fine shale with respect to 100 parts by weight of coal ash: Ru 10-200 parts by der.
[0028]
When the coal ash is less than the above-described blending ratio (parts by weight) or exceeds the above-described blending ratio (parts by weight), it is difficult to obtain the intended high-strength coarse aggregate.
[0029]
Hereinafter, the coal ash used in the present invention will be described.
[0030]
[Coal ash used in the present invention ]
Coal ash as industrial waste is mainly composed of oxides of SiO 2 , Al 2 O 3 and iron, and is close to the composition of shale.
[0031]
By adding the above coal ash to the fine shale, mixing, granulating and firing, it is possible to produce a high-strength coarse aggregate and to recycle industrial waste. Become.
[0032]
Furthermore, in recent years, disposal of coal ash generated as industrial waste has become an important problem, but this problem can also be solved.
[0033]
As the coal ash used in the present invention, coal ash whose composition after drying at 100 ° C. is the following composition is preferable.
[0034]
(Preferred group formed of coal ash for use in the present invention)
SiO 2: 50~70wt%, Al 2 O 3: 15~30wt%, Fe 2 O 3: 0.5 ~10wt%
[Suitable moisture content in all ingredients ]
In the present invention described above, it is not preferable water content of the total formulation in the feed is less than 35 wt%.
[0035]
Furthermore, in the above-described present invention, it is more preferable that the water content in all the blended raw materials is 10 to 35 wt%.
[0036]
This is because when the water content in all the ingredients exceeds 35 wt%, a part of the granulated product becomes agglomerated in the conveying process to the firing process and in the drying region in the firing furnace, and conversely, less than 10 wt% In this case, the bonding force between the raw materials is insufficient, and a granulated product having a predetermined particle size cannot be obtained in the granulation step, and in any case, the yield of the coarse aggregate having a particle size of 20 to 5 mmφ is reduced. It is to do.
[0037]
[Attachment addition of binding agent to blending raw material]
In the present invention, it is preferable to add a binder to the blended raw material.
[0038]
Examples of the binder include one or more selected from bentonite, lignin, pulp waste liquid, polyvinyl alcohol, carboxymethyl cellulose, and the like, and it is more preferable to use bentonite.
[0039]
For example, when bentonite is used, the binder is preferably added in an amount of 1 to 10 parts by weight with respect to 100 parts by weight of the total amount of fine shale and coal ash, and more preferably 100 parts by weight of the total amount of fine shale and coal ash. It is more preferable that it is 1-5 weight part with respect to a part.
Finding [2] : ( Manufacturing method of artificial aggregate by granulation method using extrusion molding machine);
In the above-mentioned findings (1), in order to obtain the aggregate of high strength, when performing granulation, a kneaded product of raw material the water content is not more than 35 wt%, extrusion molding machine (press out granulator it preferred to be granulated with a grain machine).
[0040]
Furthermore, in the above-described knowledge (1) , it is more preferable to granulate the kneaded material of the above-mentioned raw material having a moisture content of 10 to 35 wt% using an extrusion molding machine.
[0041]
According to the present invention, by using an extrusion molding machine, it is possible not only to produce an artificial bone by a method having excellent productivity, but also to produce an extremely high strength artificial bone.
[0042]
The extrusion molding machine (press out granulator) is not particularly restricted as long as a method of extruding the kneaded material through a die.
[0043]
As the extrusion molding machine (press out granulator), (i) rotating hollow cylinder and (ii) the rotary hollow cylinder and axial are parallel (a having a plurality of through-holes in the circumferential wall portion ) rotary column or (b) rotating the hollow cylindrical or (c) has preferably be used extrusion molding machine consists of both the rotary hollow cylinder having a plurality of through-holes in the circumferential wall portion.
[0044]
This is because, by using an extrusion-type molding machine, the contact between the fine shale and the coal ash becomes closer, the binder effect of the fine shale at the time of firing becomes greater, and the strength of the resulting aggregate is greater. It is to become.
[0045]
2, the main part of the extrusion molding machine according to the present invention (press out granulator) shown by a perspective view.
[0046]
FIG. 2 (a) shows an extrusion molding machine composed of a rotating hollow cylinder having a plurality of through holes in a circumferential wall portion, and a rotating column having a rotating hollow cylinder and a parallel axis. ) Shows an extrusion molding machine composed of a pair of rotating hollow cylinders having a plurality of through-holes in the circumferential wall portion and whose axial cores are parallel to each other.
[0047]
In FIG. 2, 1 and 5 are rotating hollow cylinders having a plurality of through holes 3 i , 3A i and 3B i in a circumferential wall (wall) portion W, and 2 is a rotating cylinder whose axis is parallel to the rotating hollow cylinder 1. , 3 i, 3A i, 3B i through hole penetrating the circumferential wall portion W of the rotating hollow cylinder 1,5, 4 cylindrical granules, 6 extrusion molding machine (press out granulator) , AX 1 , AX 1A and AX 1B are the axis of the rotating hollow cylinders 1 and 5, AX 2 is the axis of the rotating cylinder 2, f 1 is the feed direction of the raw material, f 2 is the discharge direction of the granulated material, f 3 Indicates the rotating hollow cylinders 1 and 5 and the rotating column 2, the respective rotating directions, and W indicates the circumferential wall portion of the rotating hollow cylinders 1 and 5.
[0048]
In the extrusion molding machine 6 shown in FIG. 2 (a), the feedstock is supplied between the rotating hollow cylinder 1 and the rotating column 2 and is extruded from the through hole 3 i into the hollow portion of the rotating hollow cylinder 1. Then, after the compression molding, the columnar granulated product 4 is discharged from the hollow portion of the rotating hollow cylinder 1.
[0049]
In addition, in the extrusion molding machine 6 shown in FIG. 2 (b), the feedstock is supplied between the rotating hollow cylinder 1 and the rotating hollow cylinder 5, and the through holes 3A i which are shifted from each other are positioned. In the process of being extruded from the through-hole 3B i into the hollow portions of the rotary hollow cylinders 1 and 5, after being compression molded, the columnar granulated product 4 is discharged from the hollow portions of the rotary hollow cylinders 1 and 5, respectively.
[0050]
According to the onset bright described above, as described above, granulation, the contact between the fine shale and coal ash becomes tighter, the above-mentioned binder effect of the fine shale becomes larger at the time of firing, intensity I large A coarse aggregate having a particle diameter of 20 to 5 mmφ can be produced by a method having excellent productivity and a high yield of raw materials.
Knowledge [3] : ( Manufacturing method of artificial aggregate by a firing method using a rotary kiln or fluidized roasting furnace);
In the present invention, it is preferable to use a rotary kiln or a fluid roasting furnace in the firing step.
[0051]
This is because the granulated product is fired using a rotary kiln or a fluid roasting furnace, the temperature of the individual particles of the granulated product becomes uniform, and the whole particles are uniformly foamed and expanded, and the artificial material has excellent strength. This is because aggregate can be manufactured.
[0052]
Furthermore, according to the present invention, by using the extrusion molding machine exemplified in FIG. 2 and the rotary kiln together, the above-described action results in an artificial bone which is a coarse aggregate having a large strength and a particle size of 20 to 5 mmφ. It became possible to manufacture the material by a method excellent in productivity and yield to raw materials.
[0053]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
[0054]
(Example 1)
According to the manufacturing process shown in FIG. 1, a particle size of 75μm or less of the expandable shale (fine powder shale), coal ash, binder were produced artificial lightweight aggregate using.
[0055]
That is, fine powder shale, coal ash, and a binder were blended in a predetermined amount as shown in Table 1, and water was added to the obtained blended raw material and kneaded with a kneader.
[0056]
The particle size of the fine shale mentioned above is a value measured by a diffraction method using a laser.
[0057]
As the coal ash, coal ash having the following composition was used.
[0058]
(Coal ash)
Composition of sample after drying at 100 ° C .: SiO 2 ; 61 wt%, Al 2 O 3 ; 19 wt%, Fe 2 O 3 ; 4 wt%
Next, the obtained kneaded product is granulated using the extrusion molding machine shown in FIG. 2 (a), fired with a rotary kiln, and then sieved with a sieve having openings of 20mmφ and 5mmφ. A lightweight aggregate was produced.
[0059]
In addition, the addition rate of water at the time of granulation was 28 parts by weight (water content in all blended raw materials: 20 to 25 wt%) with respect to 100 parts by weight of finely shale, and the firing temperature was 1130 ° C.
[0060]
Next, the crushing strength, the absolute dry specific gravity and the 24-hour water absorption rate of the obtained coarse aggregate (20 to 5 mmφ) were measured, and the crushing test of the coarse aggregate (20 to 5 mmφ) was performed by the following test method.
[0061]
[Coarse aggregate (20~5mmφ) crushing test methods of]
British Standard; BS-812
Fill a steel test container (inner diameter: 154 mm, inner height: 140 mm cylindrical container) with a predetermined amount of sample so that the layer thickness of the sample is about 10 cm, and place a plunger on the sample .
[0062]
Place the test vessel on the compression tester and load it uniformly at a rate of 4 tf per minute.
[0063]
The sample in the test container after the above crushing test is sieved with a 2.5 mm sieve, the weight under the sieve is obtained, and the crushing value (crushing rate) (%) is obtained from the amount of all samples subjected to the test.
[0064]
When the crushing value becomes 7.5 to 12.5%, the 10% crushing load (tf) (hereinafter referred to as BS crushing strength) is calculated from the load P (tf) and crushing value CV (%) at that time according to the following formula (1). Calculate
[0065]
10% crushing load (tf) (B S crushing strength) = {14P (tf) / [CV (%) + 4]} ......... (1)
Furthermore, in this example, the raw material yield of the coarse aggregate was determined based on the following formula (2).
[0066]
Raw material yield of coarse aggregate = [Dry amount of obtained coarse aggregate (20-5mmφ) / (Dry amount after subtracting loss of fine shale used + Dry amount of coal ash used)] x 100 % ………… (2)
The obtained experimental results are shown in Table 1 together with the raw material blending ratio (Invention Example 1, Comparative Example 1).
[0067]
As shown in Table 1, by using fine shale and coal ash, it is possible to obtain a coarse aggregate having a target particle size excellent in strength: 20-5 mmφ by a method excellent in raw material yield. (Invention Example 1)
[0068]
In addition, the result (comparative example 2) which manufactured the artificial lightweight aggregate similarly using the bread-type pelletizer as a granulator is shown collectively in Table 1.
[0069]
From this experimental result, it is understood that a high-strength artificial lightweight aggregate can be manufactured by using an extrusion molding machine according to the present invention.
[0070]
[Table 1]
Figure 0003619838
[0071]
(Example 2)
An artificial lightweight aggregate was produced in the same manner as in Example 1 except that the extrusion molding machine shown in FIG. 2 (b) was used as the granulator.
[0072]
Table 2 shows the blending ratio of each raw material and the experimental results obtained.
[0073]
As shown in Table 2, by using fine powdered shale and coal ash, the granulated product granulated by an extrusion molding machine is fired and sieved, so that artificial lightweight aggregate with excellent target strength can be obtained. It was able to be produced by a method excellent in raw material yield (Invention Example 2 ).
[0074]
[Table 2]
Figure 0003619838
[0075]
【The invention's effect】
According to the present invention, it is possible to produce an artificial aggregate having excellent strength by effectively utilizing the characteristics of fine shale and coal ash.
[0076]
Furthermore, according to the present invention, as a result of using coal ash as industrial waste as a raw material for artificial aggregate, significant resource saving can be achieved.
[Brief description of the drawings]
FIG. 1 is a process diagram showing an example of a method for producing a high-strength artificial bone according to the present invention.
FIG. 2 is a perspective view showing a main part of an extrusion molding machine according to the present invention.
FIG. 3 is a process diagram showing a conventional method for producing an artificial aggregate.
[Explanation of symbols]
1, 5 A rotating hollow cylinder having a plurality of through holes in the circumferential wall portion W 2 A penetrating through the circumferential wall portion W of the rotating hollow cylinder 3 i , 3A i , 3B i rotating hollow cylinder whose axis is parallel to the rotating hollow cylinder holes 4 cylindrical granules 6 extrusion molding machine (press out granulator)
f 1 Raw material supply direction f 2 Granule discharge direction f 3 Rotating hollow cylinder, rotating column rotation direction
AX 1 , AX 1A , AX 1B rotating hollow cylinder shaft core
AX 2 the circumferential wall portion of the axis W rotating hollow cylinder of the rotary column

Claims (3)

粒径が75μm 以下の膨張性頁岩100 重量部対して石炭灰10 200 重量部を配合した水分量が 35wt %以下である原料に結合剤を添加して混練し、押出し式成型機を用いて造粒し、焼成した後、篩分けを行うことを特徴とする高強度人工骨材の製造方法。Particle size and kneaded with the addition of binder material amount of water blended with coal ash 10-200 parts by weight for 100 parts by weight of expandable shale 75μm is not more than 35 wt%, using a extrusion molding machine A method for producing a high-strength artificial bone material characterized by performing granulation, firing, and sieving. 前記した造粒を行うに際して、円周壁部に複数個の貫通孔を有する回転中空円筒と、該回転中空円筒と軸芯が平行な回転円柱または前記した回転中空円筒と軸芯が平行な他の回転中空円筒とから構成される押出し式成型機を用い、前記した回転中空円筒の円周面と、前記した回転円柱の円周面または前記した他の回転中空円筒の円周面との間に、前記した原料の混練物を供給し造粒することを特徴とする請求項1に記載の高強度人工骨材の製造方法。In performing granulation described above, the rotary hollow circular cylinder having a plurality of through-holes in the circumferential wall portion, rotating the hollow circular cylinder the rotary hollow circular cylinder and the axis is parallel to the rotation circle Hashirama others mentioned above and the shaft wick using extrusion molding machine consists of the other rotary hollow cylinder parallel, the above-mentioned the circumferential surface of the rotary hollow circular cylinder, the circumferential surface or said the other of the rotary hollow cylinder of the rotary circle columns the high strength process for producing an artificial bone material according to claim 1, in between the circumferential surface, characterized in that granulated feed the kneaded product of the raw material. 前記した焼成を行うに際してロータリーキルンまたは流動焙焼炉を用いることを特徴とする請求項1または2に記載の高強度人工骨材の製造方法。A rotary kiln or a fluid roasting furnace is used when performing the above-mentioned firing, The method for producing a high-strength artificial bone according to claim 1 or 2 .
JP6751298A 1998-03-17 1998-03-17 Manufacturing method of high strength artificial aggregate Expired - Fee Related JP3619838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6751298A JP3619838B2 (en) 1998-03-17 1998-03-17 Manufacturing method of high strength artificial aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6751298A JP3619838B2 (en) 1998-03-17 1998-03-17 Manufacturing method of high strength artificial aggregate

Publications (2)

Publication Number Publication Date
JPH11263648A JPH11263648A (en) 1999-09-28
JP3619838B2 true JP3619838B2 (en) 2005-02-16

Family

ID=13347120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6751298A Expired - Fee Related JP3619838B2 (en) 1998-03-17 1998-03-17 Manufacturing method of high strength artificial aggregate

Country Status (1)

Country Link
JP (1) JP3619838B2 (en)

Also Published As

Publication number Publication date
JPH11263648A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
US8206504B2 (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
EP0222457B1 (en) Method for producing a building element from fly ash comprising material and building element formed
JP2008536781A (en) Firing aggregate containing IBA and low-calcium silicon aluminum material and method for producing the aggregate
JP2008536781A5 (en)
JPS63248753A (en) Method of manufacturing granular construction material from waste
RU2133716C1 (en) Method for producing high-strength spherical ceramic pellets
US20170226410A1 (en) Proppant Material Incorporating Fly Ash and Method of Manufacture
RU2514070C2 (en) Production of granulate from foam glass, granulate of foam glass and its application
JP2831009B2 (en) Population aggregate using municipal waste incineration ash and method for producing the same
JP3619838B2 (en) Manufacturing method of high strength artificial aggregate
JP5282877B2 (en) Artificial aggregate manufacturing method and concrete manufacturing method
DE10354711B4 (en) Process for the preparation of porous granules and their use
KR20000072111A (en) Composition for lightweight aggregate and method for manufacturing the same
JP3635288B2 (en) Manufacturing method of artificial lightweight aggregate
JP2001146444A (en) Method for producing artificial lightweight aggregate
US1926094A (en) Process of manufacturing highly refractory products
JP3628661B2 (en) Method for producing porous granular material using inorganic waste as raw material
JP2008094640A (en) Method of manufacturing ceramic product
JP2002167288A (en) Method of manufacturing artificial lightweight aggregate
JP2000053454A (en) Artificial aggregate and production of artificial aggregate
JPH11263651A (en) Production of artificial lightweight aggregate
JPH0717418B2 (en) Manufacturing method of artificial lightweight aggregate
RU2814680C1 (en) Method of producing proppant for hydraulic fracturing
JPH11263649A (en) Low water absorptive artificial lightweight aggregate and its production
JPH08253377A (en) Highly strong inorganic foamed granule and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees