JP3614048B2 - Energization information measuring device - Google Patents

Energization information measuring device Download PDF

Info

Publication number
JP3614048B2
JP3614048B2 JP24718899A JP24718899A JP3614048B2 JP 3614048 B2 JP3614048 B2 JP 3614048B2 JP 24718899 A JP24718899 A JP 24718899A JP 24718899 A JP24718899 A JP 24718899A JP 3614048 B2 JP3614048 B2 JP 3614048B2
Authority
JP
Japan
Prior art keywords
current
voltage
circuit
value
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24718899A
Other languages
Japanese (ja)
Other versions
JP2001074785A (en
Inventor
光広 槇本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24718899A priority Critical patent/JP3614048B2/en
Publication of JP2001074785A publication Critical patent/JP2001074785A/en
Application granted granted Critical
Publication of JP3614048B2 publication Critical patent/JP3614048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、交流負荷の電圧、電流、電力等の通電情報を計測する通電情報計測装置に関し、とくに装置内に収容され被計測電路に接続された変圧器が、被計測電路の大電流通電時に発生する磁界の影響を受けた場合に、電圧計測値に誤差影響をさせないものに関する。
【0002】
【従来の技術】
図5は、例えば特開平11−008930号公報に示された従来の通電情報計測表示装置を備えた回路遮断器の回路ブロック構成を示す図である。
図において、1は回路遮断器本体、2は回路遮断器本体1内部を貫通する通電主導体、3は図示されない開閉機構により操作され通電主導体2の電流をオン・オフする開閉接点である。4は各通電主導体2に流れる電流を検出する変流器、5は変流器4の出力を整流する整流回路、6は整流回路5からの出力を電圧変換してA/D変換処理等をして通電主導体2に流れる電流の瞬時最大値を検出するピーク値変換回路、7はピーク値変換回路6の出力が所定値を超えたら信号出力する瞬時時限回路、8は瞬時時限回路7の動作出力以下のレベルでピーク値変換回路6の出力の大きさにより反時限動作をして信号出力する短時限回路である。9は整流回路5からの出力を電圧変換、A/D変換処理等をして通電主導体2に流れる電流の実効値に相当する出力を得る実効値変換回路、10は長時限回路であり、実効値変換回路9の出力の大きさにより定格電流では回路遮断器の遮断動作をさせず、定格電流以上において反時限動作をして信号出力する。
【0003】
11はトリガ回路であり、瞬時時限回路7と短時限回路8及び長時限回路10いずれからの信号出力を受けて、電磁コイル12が図示されない開閉機構を介して開閉接点3をオフにして負荷への通電を遮断する。13は過電流検出の変流器4とは別に各導体2に流れる電流を検出する計測用変流器、14は導体2間の電圧(相間電圧)を検出する変圧器である。計測用変流器13及び変圧器14は回路遮断器本体1の内部に一体に収容されている。
【0004】
20は通電情報計測ユニット、21は計測用変流器13からの出力をA/D変換処理等をして通電主導体2に流れる電流に対応するデジタル出力を得る電流A/D変換回路、22は変圧器14からの出力をA/D変換処理等をして相間電圧に対応するデジタル出力を得る電圧A/D変換回路である。これらのA/D変換回路および、これから説明する処理は図示していないマイクロプロセッサーにより実行処理されている。
【0005】
23は各通電主導体2の相別の現在の電流値出力(I)、24は最大電流値記憶回路であり、ピークホールドにより導体2の中から最新の最大電流値(Imax)を記憶保持する。25は各相間電圧出力(V)、26は電流A/D変換回路21と電圧A/D変換回路22の出力を乗算する乗算回路であり、負荷の電力(W)に対応する出力を得る。27は乗算回路26からの出力を積算して電力量(Wh)にする積算回路である。電力(W)及び電力量(Wh)は負荷への配線形態に合わせて総合電力値が得られるようになっている。これらの現在電流値(I)、最大電流値(Imax)、相間電圧(V)、電力(W)、電力量(Wh)の計測結果の出力は表示内容選択手段28を介して選択された項目が表示部29へ入力され、数値表示される。
【0006】
上記のような通電情報計測装置は、回路遮断器本体1に内蔵された変圧器14から電圧に関する情報を得ることができ、電圧情報を用いて負荷の給電通電情報が電流に関するものだけでなく相間電圧(V)、電力(W)、電力量(Wh)、等の情報をも得ることができる。これらのマイクロプロセッサーを含む作動電力は図示していない電源回路から供給されている。
【0007】
【発明が解決しようとする課題】
上記のような従来の通電情報計測表示装置は回路遮断器内の計測用変流器13及び変圧器14が計測した値をそのままサンプリングして、A/D変換して演算、表示に使用している。従って、回路遮断器に定格電流を超えた大電流が流れた場合、通電主導体2の周囲に発生する磁界の影響を受けて、変圧器14の二次出力電圧は一次電圧に比例しない値となる。このため例えば、回路遮断器の定格電流の200%の電流が通電主導体2を通ずると、変圧器14の一次電圧は変化していないのに二次出力が通常の150%以上の電圧を生じたりする。このため、大電流による回路遮断器が過電流遮断に至る間の相間電圧(V)、電力(W)、電力量(Wh)は大きな誤差を含んだ値で計測され、表示部29へ入力され大きな誤差の数値表示される。特に電力量(Wh)は一時的な瞬時値でなく、累積値として残るのでその影響は大きい。
【0008】
一般的には通電主導体2と変圧器14とを離して配置する、または変圧器14のシールドを十分に実施すれば、磁界の影響を防ぐことが可能であるが、回路遮断器筐体内のように限られた空間では変圧器14と通電主導体2とを近接して配置しなければならず、変圧器14に十分なシールド装着は変圧器14の体積増加のため装置の小形化を阻害するといった課題があった。
【0009】
この発明は、上記の課題を解決するためになされたものであり、筐体内の変圧器14の配置位置、及び変圧器14のシールドを簡素にしても通電主導体2の定格電流を超えた大電流が流れた場合の変圧器14が磁界の影響を受けても、相間電圧(V)、電力(W)、電力量(Wh)、力率等の計測値に大きな誤差がないようにする。
【0010】
【課題を解決するための手段】
この発明にかかる通電情報計測表示装置は、筐体内に通電主導体に近接して設けられ通電主導体間の電圧を検出する変圧器と、通電主導体の電流を検出する変流器と、変流器及び変圧器により検出された電流及び電圧をサンプリング・演算処理して電流値、電圧値、電力値、電力量の計測信号出力に変換する演算処理手段と、電圧値の計測信号出力を一時記憶格納する電圧値記憶手段と、電流値の計測信号出力が閾値以上の場合に演算処理に使用する電圧値計測信号を電圧値記憶手段内の電圧値計測信号に置換える電流値判定手段とを備えたものである。
【0011】
また、上記のものに交流電路の電流及び電圧それぞれのゼロクロスを検知するゼロクロス検出手段と、交流電路波形の1/2周期間のサンプリングクロック数Nを設定し、電流と電圧のゼロクロス差間のサンプリングクロック数mを検知する位相差検知手段と、サンプリングクロック数N及びサンプリングクロック数mから力率を算定する力率算定手段とを備えたものである。
【0012】
そして、交流電路波形の1/2周期間のサンプリングクロック数Nは被計測交流電路のゼロクロス検出間隔のサンプリングクロックをカウント検出して得るようにしたものである。
【0013】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態1を示す通電情報計測装置の回路構成ブロック図、図2は、この発明の実施の形態1の動作を説明するフローチャートである。図において、1〜15、20〜29は上記従来例の説明のものと同様である。
ここで電流A/D変換回路21及び電圧A/D変換回路22は実効値に演算した電流値、電圧値を出力する。30は電流値判定部であり、通電主導体2に流れる電流に対応する電流A/D変換回路21からの電流の大きさを判定する。31は判定信号であり、通電主導体2に流れる電流が所定値以上の場合に電流値判定部30から例えば「H」が出力される。通電主導体2の電流が所定値未満では「L」となる。32は電圧値記憶回路である。
33は切換スイッチであり、判定信号31が「L」のときは電圧A/D変換回路22からの相間電圧に対応する電圧計測信号出力を直接に下流処理である乗算回路26、積算回路27、表示内容選択手段28、表示部29の処理へ通ずる。判定信号31が「H」になると電圧値記憶回路32に記憶された相間電圧の電圧計測信号出力が下流の処理へ通ずるように切換えられる。
【0014】
次に、図2のフローチャートを参考に本発明の動作説明をする。
電圧A/D変換回路22の電圧出力値を電圧値記憶回路32に記憶する。そして電流A/D変換回路21の電流出力値を読み込み、電流値判定部30はこの電流出力値と予め定められている閾値と比較する。電流出力値<閾値の場合は、切換スイッチ33は電圧A/D変換回路22からの電圧出力をそのまま下流処理へ送り、演算処理・表示に使用する。また、電流出力値≧閾値の場合は、切換スイッチ33はそのとき以前に電圧値記憶回路32に記憶されている電圧A/D変換回路22の電圧出力値を下流処理へ送るように切換える。以降、電流出力値≧閾値の状態が続く間は電圧値記憶回路32に記憶された電圧出力値を使用して相間電圧(V)の表示と、電力(W)、電力量(Wh)の演算及び表示が実行される。電流出力値<閾値の状態に復帰すれば、その時点で切換スイッチ33は電圧A/D変換回路22の電圧出力値を直接に下流処理へ送るように切換スイッチ33が切換え戻される。
【0015】
上記の閾値としては、通電主導体2に通電される電流による変圧器14への磁気干渉が変圧器14の二次出力に影響を及ぼす寸前の値とするのが好ましく、変圧器14の配置、磁気シールドの程度に左右されるが、定格電流の150〜200%を採用する。
【0016】
一般の配電回路においては、負荷電流(通電主導体2の電流)の増減は激しいが、電圧は比較的安定している。この発明は、この点を利用して、変圧器14の二次出力が通電主導体2の電流に影響する直前の電圧値を電圧値記憶回路32に格納しておき、変圧器14の二次出力に誤差が発生する範囲では電圧値記憶回路32に保持した電圧値で演算、表示を実行させる。電圧値は時間経過に対して電圧値記憶回路32に記憶された電圧値で拘束されるが、電流値は時々刻々の計測がなされているので、演算、表示される相間電圧(V)、電力(W)、電力量(Wh)値は、この間の電圧変化分の微誤差はあるが、実用上に影響のない精度で演算、表示を実行することができる。
【0017】
実施の形態2.
実施の形態2のものは、実施の形態1の相間電圧(V)、有効電力(W)、電力量(Wh)に加え、無効電力(Var)、力率(Pf)の計測表示を可能にする。
図3は、この発明の実施の形態2を示す通電情報計測装置の回路構成ブロック図、図4は実施の形態2の動作を説明する図である。図において、2、13、14、21〜33は上記実施の形態1の説明と同様のものである。
34は電流ゼロクロス検出回路、35は電圧ゼロクロス検出回路である。36は位相差検出回路、37は力率算定回路である。位相差検出回路36は電圧ゼロクロス検出回路35と電流ゼロクロス検出回路34から電圧と電流の位相差をA/D変換のためのサンプリングクロックを利用して行う。被計測交流電路の1/2周期をサンプリングするクロック数Nをカウンタで計数し、また電圧と電流のゼロクロス検出時間差間のクロック数mを計数して、その値から被計測交流電路の力率PfはPf=Cos(π・m/N)で、そして、無効力率PvはPv=Sin(π・m/N)で求められる。この結果を乗算回路26へ反映させて、有効電力(W)、無効電力(Var)の演算・表示が可能である。
この方法においてサンプリングクロック周波数が50キロヘルツ以上であれば力率計測精度は角度で0.5度の分解能が確保できる。
【0018】
被計測交流電路の周波数とサンプリングクロック周波数が決まれば交流電路の1/2周期間のサンプリングクロック数は算出設定できるが、被計測交流電路の変更等により被計測交流電路の周波数が変化(50Hzと60Hz)すれば再設定が必要である。
しかし、被計測交流電路の1/2周期のクロック数Nをカウンタで計数して得る構成のものは、被計測交流電路の周波数の変化(50Hz、60Hz)、サンプリングクロック周波数の変動に関係なく、そのままの状態で被計測交流電路の力率Pfを得ることができる。
【0019】
また、被計測交流電路の相線方式(単相、3相)による電流と、電圧の位相差はπ・2/3に相当するサンプリングクロック数を補正することで力率Pf算定できることは自明である。
【0020】
なお、上記各実施の形態において、負荷電流(通電主導体2の電流)の閾値判定を電流A/D変換回路21でA/D変換処理をされたもので実施しているが、これを計測用変流器13の出力をオペアンプ等のアナログタイプの判定手段を用いても同等の効果を奏することは明白である。
【図面の簡単な説明】
【図1】この発明の実施の形態1を示す通電情報計測装置の回路ブロック図である。
【図2】この発明の実施の形態1の動作を説明するフローチャートである。
【図3】この発明の実施の形態2を示す通電情報計測装置の回路ブロック図である。
【図4】この発明の実施の形態2の動作を説明する図である。
【図5】従来の通電情報計測表示装置を備えた回路遮断器の回路ブロック図である。
【符号の説明】
1 回路遮断器本体、 2 通電主導体、 3 開閉接点
13 計測用変流器、 14 変圧器、 20 通電情報計測ユニット
21 電流A/D変換回路、 22 電圧A/D変換回路
電流値出力、 25 電圧出力、 26 乗算回路、 27 積算回路
表示内容選択手段、 29 表示部、 30 電流値判定部
切換信号、 32 電圧値記憶回路、 33 切換スイッチ
35 ゼロクロス検出回路、 36 位相差検出回路
37 力率算定回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an energization information measuring device that measures energization information such as voltage, current, and power of an AC load, and in particular, when a transformer that is housed in the device and connected to a circuit to be measured is energized with a large current in the circuit to be measured. The present invention relates to a voltage measurement value that does not affect an error when affected by a generated magnetic field.
[0002]
[Prior art]
FIG. 5 is a diagram showing a circuit block configuration of a circuit breaker provided with a conventional energization information measurement display device disclosed in, for example, Japanese Patent Application Laid-Open No. 11-008930.
In the figure, 1 is a circuit breaker body, 2 is a main conducting conductor that penetrates the inside of the circuit breaker body 1, and 3 is a switching contact that is operated by a switching mechanism (not shown) to turn on and off the current of the conducting main conductor 2. 4 is a current transformer for detecting the current flowing through each energized main conductor 2, 5 is a rectifier circuit for rectifying the output of the current transformer 4, and 6 is an A / D conversion process by converting the output from the rectifier circuit 5 into a voltage. The peak value conversion circuit 7 detects the instantaneous maximum value of the current flowing through the energized main conductor 2, 7 is an instantaneous time limit circuit that outputs a signal when the output of the peak value conversion circuit 6 exceeds a predetermined value, and 8 is the instantaneous time limit circuit 7. This is a short-timed circuit that outputs a signal by performing an anti-timed operation according to the magnitude of the output of the peak value conversion circuit 6 at a level equal to or lower than the operation output. 9 is an effective value conversion circuit that obtains an output corresponding to the effective value of the current flowing through the energized main conductor 2 by performing voltage conversion, A / D conversion processing, etc. on the output from the rectifier circuit 5, and 10 is a long-time circuit. Depending on the magnitude of the output of the effective value conversion circuit 9, the circuit breaker is not interrupted at the rated current, and the signal is output with the counter-timed operation above the rated current.
[0003]
Reference numeral 11 denotes a trigger circuit, which receives a signal output from any one of the instantaneous time circuit 7, the short time circuit 8, and the long time circuit 10, and the electromagnetic coil 12 turns off the switching contact 3 via a switching mechanism (not shown) to the load. Shut off the power of the. 13 is a measuring current transformer that detects a current flowing in each conductor 2 separately from the current transformer 4 for detecting overcurrent, and 14 is a transformer that detects a voltage between the conductors 2 (phase voltage). The measuring current transformer 13 and the transformer 14 are accommodated integrally in the circuit breaker body 1.
[0004]
20 is an energization information measuring unit, 21 is an A / D conversion circuit that obtains a digital output corresponding to the current flowing through the energizing main conductor 2 by subjecting the output from the measurement current transformer 13 to A / D conversion processing, and the like. Is a voltage A / D conversion circuit that performs an A / D conversion process on the output from the transformer 14 to obtain a digital output corresponding to the interphase voltage. These A / D conversion circuits and processes to be described below are executed by a microprocessor (not shown).
[0005]
Reference numeral 23 denotes a current current value output (I) for each current-carrying main conductor 2 for each phase. Reference numeral 24 denotes a maximum current value storage circuit which stores and holds the latest maximum current value (Imax) from the conductor 2 by peak hold. . 25 is a voltage output (V) between each phase, and 26 is a multiplication circuit that multiplies the outputs of the current A / D conversion circuit 21 and the voltage A / D conversion circuit 22, and obtains an output corresponding to the power (W) of the load. Reference numeral 27 denotes an integration circuit that integrates the outputs from the multiplication circuit 26 to obtain an electric energy (Wh). For the power (W) and the power amount (Wh), a total power value can be obtained in accordance with the wiring form to the load. The output of measurement results of these current current value (I), maximum current value (Imax), interphase voltage (V), power (W), and electric energy (Wh) are items selected via the display content selection means 28. Is input to the display unit 29 and numerically displayed.
[0006]
The energization information measuring apparatus as described above can obtain information on the voltage from the transformer 14 built in the circuit breaker body 1, and using the voltage information, the power supply energization information of the load is not only related to the current but also between the phases. Information such as voltage (V), power (W), and electric energy (Wh) can also be obtained. Operating power including these microprocessors is supplied from a power supply circuit (not shown).
[0007]
[Problems to be solved by the invention]
The conventional energization information measurement and display device as described above samples the values measured by the measurement current transformer 13 and the transformer 14 in the circuit breaker as they are, and performs A / D conversion for calculation and display. Yes. Therefore, when a large current exceeding the rated current flows through the circuit breaker, the secondary output voltage of the transformer 14 is not proportional to the primary voltage under the influence of the magnetic field generated around the energized main conductor 2. Become. For this reason, for example, when a current of 200% of the rated current of the circuit breaker passes through the energizing main conductor 2, the primary voltage of the transformer 14 does not change, but the secondary output produces a voltage of 150% or more than the normal voltage. Or For this reason, the interphase voltage (V), power (W), and electric energy (Wh) while the circuit breaker due to a large current reaches the overcurrent interruption are measured as values including large errors and input to the display unit 29. Large error values are displayed. In particular, the amount of electric power (Wh) is not a temporary instantaneous value but remains as a cumulative value, so the influence is great.
[0008]
In general, if the current-carrying main conductor 2 and the transformer 14 are arranged apart from each other or if the transformer 14 is sufficiently shielded, it is possible to prevent the influence of a magnetic field. In such a limited space, the transformer 14 and the current-carrying main conductor 2 must be arranged close to each other, and a sufficient shield mounting on the transformer 14 hinders downsizing of the apparatus due to an increase in the volume of the transformer 14. There was a problem to do.
[0009]
The present invention has been made in order to solve the above-described problems. Even if the arrangement position of the transformer 14 in the casing and the shield of the transformer 14 are simplified, the current exceeding the rated current of the main conducting conductor 2 is large. Even if the transformer 14 when the current flows is affected by the magnetic field, the measurement values such as the interphase voltage (V), power (W), power amount (Wh), power factor, etc., should not have a large error.
[0010]
[Means for Solving the Problems]
An energization information measurement / display apparatus according to the present invention includes a transformer provided in the casing in proximity to the energizing main conductor for detecting a voltage between the energizing main conductors, a current transformer for detecting a current of the energizing main conductor, and a transformer. Sampling and calculation processing of current and voltage detected by the current transformer and transformer to convert them into measurement signal output of current value, voltage value, power value, and energy, and temporary measurement signal output of voltage value Voltage value storage means for storing and current value determination means for replacing the voltage value measurement signal used for calculation processing with the voltage value measurement signal in the voltage value storage means when the current value measurement signal output is equal to or greater than the threshold value. It is provided.
[0011]
In addition, a zero cross detecting means for detecting the zero cross of each of the current and voltage of the AC circuit and the number N of sampling clocks for a half cycle of the AC circuit waveform are set in the above, and the sampling between the zero cross difference of the current and the voltage is set. Phase difference detecting means for detecting the clock number m and power factor calculating means for calculating the power factor from the sampling clock number N and the sampling clock number m are provided.
[0012]
The number N of sampling clocks during a half cycle of the AC circuit waveform is obtained by counting and detecting the sampling clocks at the zero-cross detection interval of the AC circuit to be measured.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a block diagram of a circuit configuration of an energization information measuring apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a flowchart for explaining the operation of Embodiment 1 of the present invention. In the figure, reference numerals 1 to 15 and 20 to 29 are the same as those described in the conventional example.
Here, the current A / D conversion circuit 21 and the voltage A / D conversion circuit 22 output current values and voltage values calculated as effective values. Reference numeral 30 denotes a current value determination unit that determines the magnitude of the current from the current A / D conversion circuit 21 corresponding to the current flowing through the energized main conductor 2. Reference numeral 31 denotes a determination signal. When the current flowing through the energized main conductor 2 is equal to or greater than a predetermined value, for example, “H” is output from the current value determination unit 30. It becomes “L” when the current of the energized main conductor 2 is less than a predetermined value. Reference numeral 32 denotes a voltage value storage circuit.
Reference numeral 33 denotes a change-over switch. When the determination signal 31 is “L”, the voltage measurement signal output corresponding to the interphase voltage from the voltage A / D conversion circuit 22 is directly subjected to downstream processing such as a multiplication circuit 26, an integration circuit 27, The display content selection unit 28 and the display unit 29 are processed. When the determination signal 31 becomes “H”, the voltage measurement signal output of the interphase voltage stored in the voltage value storage circuit 32 is switched to the downstream processing.
[0014]
Next, the operation of the present invention will be described with reference to the flowchart of FIG.
The voltage output value of the voltage A / D conversion circuit 22 is stored in the voltage value storage circuit 32. Then, the current output value of the current A / D conversion circuit 21 is read, and the current value determination unit 30 compares this current output value with a predetermined threshold value. When the current output value <the threshold value, the changeover switch 33 sends the voltage output from the voltage A / D conversion circuit 22 to the downstream process as it is and uses it for the calculation process / display. If the current output value ≧ the threshold value, the changeover switch 33 switches the voltage output value of the voltage A / D conversion circuit 22 previously stored in the voltage value storage circuit 32 to be sent to the downstream processing at that time. Thereafter, while the state of current output value ≧ threshold value continues, the voltage output value stored in the voltage value storage circuit 32 is used to display the interphase voltage (V) and the calculation of power (W) and power amount (Wh). And display. If the current output value <threshold value is restored, then the changeover switch 33 is switched back so that the changeover switch 33 sends the voltage output value of the voltage A / D conversion circuit 22 directly to downstream processing.
[0015]
The threshold value is preferably set to a value just before the magnetic interference to the transformer 14 due to the current passed through the current-carrying main conductor 2 affects the secondary output of the transformer 14. Depending on the degree of magnetic shielding, 150 to 200% of the rated current is adopted.
[0016]
In a general power distribution circuit, the load current (current of the energized main conductor 2) increases and decreases drastically, but the voltage is relatively stable. The present invention uses this point to store in the voltage value storage circuit 32 the voltage value immediately before the secondary output of the transformer 14 affects the current of the current-carrying main conductor 2. In a range where an error occurs in the output, calculation and display are executed with the voltage value held in the voltage value storage circuit 32. Although the voltage value is constrained by the voltage value stored in the voltage value storage circuit 32 over time, the current value is measured every moment, so that the interphase voltage (V), power to be calculated and displayed The (W) and electric energy (Wh) values can be calculated and displayed with an accuracy that does not affect the practical use although there is a slight error corresponding to the voltage change during this period.
[0017]
Embodiment 2. FIG.
The second embodiment enables measurement and display of reactive power (Var) and power factor (Pf) in addition to the interphase voltage (V), active power (W), and electric energy (Wh) of the first embodiment. To do.
FIG. 3 is a block diagram of the circuit configuration of the energization information measuring apparatus showing the second embodiment of the present invention, and FIG. 4 is a diagram for explaining the operation of the second embodiment. In the figure, 2, 13, 14, 21 to 33 are the same as those described in the first embodiment.
Reference numeral 34 denotes a current zero-cross detection circuit, and reference numeral 35 denotes a voltage zero-cross detection circuit. 36 is a phase difference detection circuit, and 37 is a power factor calculation circuit. The phase difference detection circuit 36 performs a voltage / current phase difference from the voltage zero cross detection circuit 35 and the current zero cross detection circuit 34 using a sampling clock for A / D conversion. The counter counts the number of clocks N for sampling the 1/2 cycle of the AC circuit to be measured, and also counts the number of clocks m between the zero-cross detection time difference between the voltage and current, and the power factor Pf of the AC circuit to be measured is calculated from the value. Is obtained by Pf = Cos (π · m / N), and the reactive power factor Pv is obtained by Pv = Sin (π · m / N). By reflecting this result on the multiplication circuit 26, it is possible to calculate and display the active power (W) and the reactive power (Var).
In this method, if the sampling clock frequency is 50 kilohertz or more, the power factor measurement accuracy can ensure a resolution of 0.5 degrees in angle.
[0018]
If the frequency of the AC circuit to be measured and the sampling clock frequency are determined, the number of sampling clocks during a half cycle of the AC circuit can be calculated and set. However, the frequency of the AC circuit to be measured changes (such as 50 Hz) due to changes in the AC circuit to be measured. 60Hz), resetting is necessary.
However, the configuration obtained by counting the number of clocks N of 1/2 cycle of the AC circuit to be measured with a counter is independent of the change in the frequency of the AC circuit to be measured (50 Hz, 60 Hz) and the fluctuation of the sampling clock frequency. The power factor Pf of the AC circuit to be measured can be obtained as it is.
[0019]
In addition, it is obvious that the power factor Pf can be calculated by correcting the number of sampling clocks corresponding to π · 2/3 for the phase difference between the current and voltage of the AC line to be measured (single phase, three phase) and voltage. is there.
[0020]
In each of the above embodiments, the threshold determination of the load current (current of the energized main conductor 2) is performed with the A / D conversion processing performed by the current A / D conversion circuit 21, but this is measured. It is obvious that the same effect can be obtained even if the output of the current transformer 13 is an analog type determination means such as an operational amplifier.
[Brief description of the drawings]
FIG. 1 is a circuit block diagram of an energization information measuring apparatus showing a first embodiment of the invention.
FIG. 2 is a flowchart illustrating the operation of the first embodiment of the present invention.
FIG. 3 is a circuit block diagram of an energization information measuring apparatus showing Embodiment 2 of the present invention.
FIG. 4 is a diagram for explaining the operation of the second embodiment of the present invention.
FIG. 5 is a circuit block diagram of a circuit breaker including a conventional energization information measurement display device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Circuit breaker main body, 2 Current supply main conductor, 3 Switch contact 13 Current transformer for measurement, 14 Transformer, 20 Current supply information measurement unit 21 Current A / D conversion circuit, 22 Voltage A / D conversion circuit current value output, 25 Voltage output, 26 multiplication circuit, 27 integration circuit display content selection means, 29 display section, 30 current value determination section switching signal, 32 voltage value storage circuit, 33 selector switch 35 zero cross detection circuit, 36 phase difference detection circuit 37 power factor calculation circuit

Claims (3)

筐体内に設けられ交流電路の通電主導体に近接して上記通電主導体間の電圧を検出する変圧器と上記通電主導体の電流を検出する電流検出手段と、この電流検出手段及び上記変圧器により検出された電流及び電圧をサンプリング・演算処理して少なくとも電流値、電圧値、電力値、電力量の計測信号出力に変換する演算処理手段と、上記各計測信号出力の中から計測項目を選択できる通電情報計測表示装置において、
電圧値の計測信号出力を一時記憶格納する電圧値記憶手段と、電流値の計測信号出力を所定の閾値と比較して、電流値計測信号出力が上記閾値以上の場合に演算処理に使用する電圧値計測信号を上記電圧値記憶手段に記憶格納された電圧値計測信号に置換える電流値判定手段とを備えたことを特徴とする通電情報計測表示装置。
A transformer provided in the housing for detecting a voltage between the energized main conductors in proximity to the energized main conductor of the AC circuit, current detecting means for detecting a current of the energized main conductor, the current detecting means and the transformer Sampling and computing the current and voltage detected by, and converting to at least current value, voltage value, power value, and power measurement signal output, and select measurement items from the above measurement signal outputs In the energization information measurement display device that can be,
Voltage value storage means for temporarily storing a voltage value measurement signal output, and a voltage used for calculation processing when the current value measurement signal output is equal to or greater than the threshold value by comparing the current value measurement signal output with a predetermined threshold value. An energization information measurement display device comprising: current value determination means for replacing the value measurement signal with the voltage value measurement signal stored and stored in the voltage value storage means.
電流検出手段及び変圧器により検出された交流電路の電流及び電圧それぞれのゼロクロスを検知するゼロクロス検出手段と、交流電路波形の1/2周期間のサンプリングクロック数Nを設定し、計測される電流と電圧のゼロクロス差間のサンプリングクロック数mを検知する位相差検知手段と、上記サンプリングクロック数N及びサンプリングクロック数mから力率を算定する力率算定手段とを備えたことを特徴とする請求項1記載の通電情報計測表示装置。Zero cross detection means for detecting the zero cross of each of the current and voltage of the AC circuit detected by the current detection means and the transformer, and the number of sampling clocks N during a half cycle of the AC circuit waveform, and the measured current 2. A phase difference detecting means for detecting a sampling clock number m between zero-crossing differences in voltage, and a power factor calculating means for calculating a power factor from the sampling clock number N and the sampling clock number m. 1. An energization information measurement display device according to 1. 交流電路波形の1/2周期間のサンプリングクロック数Nは被計測電路の電流または電圧のゼロクロス検出間隔のサンプリングクロックをカウント検出して得ることを特徴とする請求項2記載の通電情報計測表示装置。3. The energization information measurement display apparatus according to claim 2, wherein the number N of sampling clocks during a half cycle of the AC circuit waveform is obtained by counting and detecting a sampling clock at a zero-cross detection interval of the current or voltage of the circuit to be measured. .
JP24718899A 1999-09-01 1999-09-01 Energization information measuring device Expired - Lifetime JP3614048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24718899A JP3614048B2 (en) 1999-09-01 1999-09-01 Energization information measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24718899A JP3614048B2 (en) 1999-09-01 1999-09-01 Energization information measuring device

Publications (2)

Publication Number Publication Date
JP2001074785A JP2001074785A (en) 2001-03-23
JP3614048B2 true JP3614048B2 (en) 2005-01-26

Family

ID=17159758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24718899A Expired - Lifetime JP3614048B2 (en) 1999-09-01 1999-09-01 Energization information measuring device

Country Status (1)

Country Link
JP (1) JP3614048B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3589641B2 (en) * 2001-07-03 2004-11-17 日東工業株式会社 AC measuring device
JP2003161745A (en) * 2001-11-26 2003-06-06 Toshiba Corp Method and apparatus for calculation of electrical energy charge
JP4379235B2 (en) * 2004-07-14 2009-12-09 パナソニック電工株式会社 Light control device
JP4305308B2 (en) * 2004-07-14 2009-07-29 パナソニック電工株式会社 Light control device
JP4349225B2 (en) * 2004-07-14 2009-10-21 パナソニック電工株式会社 Light control device
JP5144399B2 (en) * 2008-06-30 2013-02-13 大崎電気工業株式会社 Coil current sensor circuit
CN110326180B (en) * 2017-02-28 2021-10-29 三菱电机株式会社 Electronic circuit breaker
JP6865875B2 (en) * 2020-04-09 2021-04-28 三菱電機株式会社 Electronic circuit breaker

Also Published As

Publication number Publication date
JP2001074785A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US6657424B1 (en) DC load detection in an electric utility meter
KR100213838B1 (en) Method for determining electrical energy consumption
AU676998B2 (en) Solid state electric power usage meter and method for determining power usage
EP0369577B1 (en) Apparatus for providing distance protection and distance measurement for a high voltage transmission line
US7764473B2 (en) Method of detecting a ground fault and electrical switching apparatus employing the same
EP0881732B1 (en) Apparatus for RMS current approximation
CN111208418A (en) Phase selection switching-on and switching-off state monitoring system and method for converter station alternating current filter
JP3614048B2 (en) Energization information measuring device
KR100824515B1 (en) Apparatus and method for computing digital electricpower system
US6559648B2 (en) Method for operating an electronic overcurrent trip of a power circuit breaker
KR102147657B1 (en) Apparatus for measuring both AC and DC power including a shunt resistor sensor
CN110120655A (en) A kind of frequency-tracking system and method for frequency converter back end current channel
US11855442B2 (en) Systems and methods of grounded neutral fault detection by single frequency excitation and leakage spectral analysis
JP3795462B2 (en) Electronic energy meter
JPH07325636A (en) Automatic power factor adjusting device and digital quantity converting method for quantity of alternating-current electricity
US5777835A (en) Third phase reconstruction from a two current transformer sensor with three-phase true RMS and phase loss determination capabilities
JP2000341847A (en) Tripping device using phase reconfiguration and breaker therewith
EP0367563A2 (en) Detector of quantity of electricity
JP2022515632A (en) Methods and equipment for monitoring the operation of switching equipment for controlled switching applications.
WO1998011447A1 (en) Current measurement methods and apparatus employing second harmonic scaling
JP3001712B2 (en) Composite instrument
JP3495194B2 (en) Control device for received power
JP3411510B2 (en) How to adjust the rating of the electronic watt-hour meter
JPH07294589A (en) Method for collecting electricity quantity information on power system failure
JP3436775B2 (en) Discharger electrode wear rate measuring device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R151 Written notification of patent or utility model registration

Ref document number: 3614048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term