JP3613084B2 - A member that exhibits hydrophilicity in response to photoexcitation of an optical semiconductor - Google Patents

A member that exhibits hydrophilicity in response to photoexcitation of an optical semiconductor Download PDF

Info

Publication number
JP3613084B2
JP3613084B2 JP23956799A JP23956799A JP3613084B2 JP 3613084 B2 JP3613084 B2 JP 3613084B2 JP 23956799 A JP23956799 A JP 23956799A JP 23956799 A JP23956799 A JP 23956799A JP 3613084 B2 JP3613084 B2 JP 3613084B2
Authority
JP
Japan
Prior art keywords
sample
water
contact angle
optical semiconductor
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23956799A
Other languages
Japanese (ja)
Other versions
JP2000136370A (en
Inventor
栄一 小島
信 早川
俊也 渡部
圭一郎 則本
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18438979&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3613084(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP23956799A priority Critical patent/JP3613084B2/en
Publication of JP2000136370A publication Critical patent/JP2000136370A/en
Application granted granted Critical
Publication of JP3613084B2 publication Critical patent/JP3613084B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Finishing Walls (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Prevention Of Fouling (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Building Environments (AREA)
  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Road Signs Or Road Markings (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Greenhouses (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Panels For Use In Building Construction (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Detergent Compositions (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
  • Bridges Or Land Bridges (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Mirrors, Picture Frames, Photograph Stands, And Related Fastening Devices (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Refrigerator Housings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基材の表面を高度の親水性になし、かつ、維持する技術に関する。より詳しくは、本発明は、鏡、レンズ、板ガラスその他の透明基材の表面を高度に親水化することにより、基材の曇りや水滴形成を防止する防曇技術に関する。本発明は、また、建物や窓ガラスや機械装置や物品の表面を高度に親水化することにより、表面が汚れるのを防止し、又は表面を自己浄化(セルフクリーニング)し若しくは容易に清掃する技術に関する。
【0002】
【従来の技術】
基材表面が親水化されると、付着水滴が基材表面に一様に拡がるようになるので、ガラス、レンズ、鏡等の透明性部材の曇りを有効に防止でき、湿分による失透防止、雨天時の視界性確保等に役立つ。さらに、都市煤塵、自動車等の排気ガスに含有されるカーボンブラック等の燃焼生成物、油脂、シーラント溶出成分等の疎水性汚染物質が付着しにくく、付着しても降雨や水洗により簡単に落せるようになるので便利である。
【0003】
このような事情から特に防曇塗料、外装防汚塗料の分野において、従来から親水性樹脂が提案されている(例えば、実開平5−68006号や、「高分子」、44巻、1995年5月号、p.307)。また、親水化するための表面処理方法も提案されている(例えば、実開平3−129357号)。
【0004】
しかしながら、従来提案されている親水性樹脂は水との接触角に換算して30〜50゜程度までしか親水化されず、充分な曇り防止効果が発揮できない。また無機粘土質からなる汚染物質の付着及び降雨、水洗による清浄性が充分でない。また従来提案されている親水化するための表面処理方法(エッチング処理、プラズマ処理等)では、一時的に高度に親水化できてもその状態を長期間維持することができない。
【0005】
本発明者は、PCT/JP96/00733号において、基材表面に光半導体含有層を形成すると、光半導体の光励起に応じて表面が高度に親水化されることを発明し、この技術をガラス、レンズ、鏡、外装材、水回り部材等の種々の複合材に適用すれば、これら複合材に優れた防曇、防汚等の機能を付与できることを提案した。この方法によれば、充分な曇り防止効果が発揮され、疎水性汚染物質及び無機粘土質からなる汚染物質の付着及び降雨、水洗による清浄性が飛躍的に向上する。また光半導体の光励起に応じて親水化された状態が維持、回復される。
【0006】
【発明が解決しようとする課題】
しかしながら、実質的に耐摩擦性に優れた光半導体のみからなる層を、施釉タイル基材やガラス基材等の平滑な表面を有する基材に直接光半導体ゾル塗布法で塗布し、焼成する場合には、光半導体の光励起に応じて10゜以下程度まで親水化されない。また、例えば光半導性酸化チタンのみからなる層をガラス基材上に形成するのに、アルコキシド法、スパッタリング法等にて無定型酸化チタン層を形成後、焼成して無定型酸化チタンを結晶化させる方法等ならば、光半導体の光励起に応じて10゜以下程度まで親水化されるが、この場合もさらに親水化が進めばより高い防曇、防汚等の性能が発揮されると考えられる。そこで、本発明では、光半導体のみからなる層と比較して、光半導体の光励起に応じて、より高度に親水化される部材、より具体的には、より曇り防止性に優れた防曇性部材、より汚染物質が付着しにくく、かつ降雨、水洗による清浄性に優れた防汚性部材、より表面の乾燥しやすい部材を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明では、上記課題を解決すべく、光半導体の光励起に応じて部材表面が親水化される親水性部材、防曇性部材、防汚性部材、易乾燥性部材において、基材表面に、光半導体とそれ以外にリチウム、ナトリウム、カリウム、カルシウム、ストロンチウム、アルミニウム、アルミナ、ジルコニア、イットリアの1群から選ばれた少なくとも1種を含む層が形成されているようにして、太陽光あるいは室内照明光による光半導体の光励起に応じて、水との接触角に換算して20°以下の親水性を呈するようにした。本発明の好ましい態様においては、上記部材表面は、光半導体の光励起に応じ、水との接触角に換算して10゜以下、より好ましくは5゜以下まで親水化されるようにする。このようにすることで、特に防曇性、汚染物質の付着防止性及び降雨、水洗による清浄性の飛躍的に優れた部材となる。
【0008】
【発明の実施の形態】
次に、本発明の構成要素について説明する。ここでいう光半導体とは、価電子帯中の電子の励起によって生成する正孔或いは伝導電子を介する反応により、おそらくは表面に極性を付与して吸着水層を形成することにより、基材表面を親水化できるものをさし、より具体的には、アナターゼ型酸化チタン、ルチル型酸化チタン、酸化錫、酸化亜鉛、三酸化二ビスマス、三酸化タングステン、酸化第二鉄、チタン酸ストロンチウム等が使用できる。
【0009】
ここでいう親水化とは、水濡れ性が向上する状態の変化をいう。都市煤塵、自動車等の排気ガスに含有されるカーボンブラック等の燃焼生成物、油脂、シーラント溶出成分等の疎水性汚染物質が付着しにくく、付着しても降雨や水洗により簡単に落せるようにするには、基材表面は水との接触角に換算して50゜以下、より好ましくは30゜以下程度まで親水化するのがよい。さらに無機粘土質汚染物質が付着しにくく、付着しても降雨や水洗により簡単に落せるようにするには、基材表面は水との接触角に換算して20゜以下、好ましくは10゜以下、より好ましくは5゜以下程度まで親水化するのがよい。また透明基材や鏡基材表面に付着した水滴を一様に拡がらせて、ガラス、レンズ、プリズム、鏡の曇りを有効に防止し、湿分による失透防止、雨天時の視界性確保を図るためには基材表面は10゜以下程度まで親水化するのがよい。
【0010】
本発明に使用できる基材としては、防曇用途においては、ガラス、透明プラスチック、レンズ、プリズム、鏡等の透明性の基材である。より具体的には、浴室用又は洗面所用鏡、車両用バックミラー、歯科用歯鏡、道路鏡のような鏡;眼鏡レンズ、光学レンズ、写真機レンズ、内視鏡レンズ、照明用レンズ、半導体製造用レンズのようなレンズ;プリズム;建物や監視塔の窓ガラス;自動車、鉄道車両、航空機、船舶、潜水艇、雪上車、ロープウエイのギンドラ、遊園地のゴンドラ、宇宙船のような乗り物の窓ガラス;自動車、鉄道車両、航空機、船舶、潜水艇、雪上車、スノーモービル、オートバイ、ロープウエイのギンドラ、遊園地のゴンドラ、宇宙船のような乗り物の風防ガラス;防護用又はスポーツ用ゴーグル又はマスク(潜水用マスクを含む)のシールド;ヘルメットのシールド;冷凍食品陳列ケースのガラス;計測機器のカバーガラス、及びそれら物品に貼着可能なフィルム等を含む。
【0011】
本発明に使用できる基材としては、降雨による自己浄化が期待できる屋外用途においては、例えば、金属、セラミックス、ガラス、プラスチック、木、石、セメント、コンクリート、繊維、布帛、紙、それらの組合せ、それらの積層体、それらの塗装体等である。より具体的には、外壁や屋根のような建物外装;窓枠;自動車、鉄道車両、航空機、船舶、自転車、オートバイのような乗物の外装及び塗装;窓ガラス;看板、交通標識、防音壁、ビニールハウス、碍子、乗物用カバー、テント材、反射板、雨戸、網戸、太陽電池用カバー、太陽熱温水器等の集熱器用カバー、街灯、舖道、屋外照明、人工滝・人工噴水用石材・タイル、橋、温室、外壁材、壁間や硝子間のシーラー、ガードレール、ベランダ、自動販売機、エアコン室外機、屋外ベンチ、各種表示装置、シャッター、料金所、料金ボックス、屋根樋、車両用ランプ保護カバー、防塵カバー及び塗装、機械装置や物品の塗装、広告塔の外装及び塗装、構造部材、及びそれら物品に貼着可能なフィルム等を含む。
【0012】
本発明に使用できる基材としては、水洗による清浄化が期待できる用途においては、例えば、金属、セラミックス、ガラス、プラスチック、木、石、セメント、コンクリート、繊維、布帛、紙、それらの組合せ、それらの積層体、それらの塗装体等である。より具体的には、上記屋外用途部材が含まれることは勿論、その他に、建物の内装材、窓ガラス、住宅設備、便器、浴槽、洗面台、照明器具、台所用品、食器、食器乾燥器、流し、調理レンジ、キッチンフード、換気扇、窓レール、窓枠、トンネル内壁、トンネル内照明、及びそれら物品に貼着可能なフィルム等を含む。
【0013】
本発明に使用できる基材としては、乾燥促進が期待できる用途においては、例えば、窓サッシ、熱交換器用放熱フィン、舖道、浴室用洗面所用鏡、洗面化粧台、ビニールハウス天井及びそれら物品に貼着可能なフィルム等を含む。
【0014】
本発明に使用できる基材は上記以外にも着雪防止、気泡付着防止、生体親和性向上等に利用できる。着雪防止性は特に表面粗さ1μm以下の表面層を設けると顕著に優れた特性が得られ、例えば、雪国用屋根材、アンテナ、送電線及びそれら物品に貼着可能なフィルム等を含む基材に適用可能である。
【0015】
光半導体の光励起は、光半導体結晶の伝導電子帯と価電子帯との間のエネルギーギャップよりも大きなエネルギー(すなわち短い波長)を有する光を光半導体に照射して行う。より具体的には、光半導体がアナターゼ型酸化チタンの場合には波長387nm以下、ルチル酸化チタンの場合には波長413nm以下、酸化錫の場合には波長344nm以下、酸化亜鉛の場合には波長387nm以下の光を含有する光線を照射する。上記光半導体の場合は、紫外線光源により光励起されるので、光源としては、蛍光灯、白熱電灯、メタルハライドランプ、水銀ランプのような室内照明、太陽光や、それらの光源を低損失のファイバーで誘導した光源等を利用できる。複合材表面の親水化に必要な、光半導体を光励起するために必要な光の照度は、0.001mW/cm以上、より好ましくは0.01mW/cm以上である。
【0016】
本発明において、基材表面に、光半導体以外に添加する物質にアルミナ又はイットリアを選ぶと、0.01mW/cm未満程度の微弱な励起光照射下、あるいは暗所での親水維持性がよりよく発揮されるようになる。
【0017】
また、本発明における、さらに好ましい態様においては、光半導体含有層にはさらに、シリカ、及び/又はシリコン原子に結合された有機基の少なくとも一部が水酸基に置換されたシリコーン樹脂が添加されているようにする。こうすることにより光半導体の光励起に応じて生じる複合材表面の親水化はより高度に進むようになると共に、一旦親水化された複合材を暗所に放置した場合でも、長期にわたり親水性が維持されるようになる。
【0018】
光半導体含有層の膜厚は0.2μm以下にするのが好ましい。そうすれば、光の干渉による光半導体含有層の発色を防止することができる。また光半導体含有層の膜厚が薄ければ薄いほど基材の透明度を確保することができる。更に、膜厚を薄くすれば光半導体含有層の耐摩耗性が向上する。光半導体含有層上に、更に、親水化可能な耐摩耗性又は耐食性の保護層や他の機能膜を設けてもよい。
【0019】
光半導体含有層の屈折率は、基材の屈折率より小さいか、あまり大きくないほうがよい。例えば基材がガラス基材(屈折率1.5)である場合は、光半導体含有層の屈折率は2以下であるのが好ましい。そうすれば、複合材表面での可視光の反射を防止でき、透明材における視界確保、意匠性外装又は塗装におけるギラギラ感の防止に役立つ。光半導体含有層の屈折率を2以下にするには、例えば光半導体がアナターゼ型酸化チタン(屈折率2.5)のように屈折率が2をこえる物質の場合には、光半導体以外に屈折率2未満の物質を添加する。屈折率2未満の物質としては、例えば、アルミナ(屈折率1.6)、シリカ(屈折率1.5)、酸化錫(屈折率1.9)、シリコン原子に結合された有機基の少なくとも一部が水酸基に置換されたシリコーン樹脂(屈折率1.4〜1.6)が好適に利用できる。
【0020】
基材表面に、光半導体と、それ以外に前記基材表面の親水化を促進する作用を持つリチウム、ナトリウム、カリウム、カルシウム、ストロンチウム、アルミニウム、アルミナ、ジルコニア、イットリアの1群から選ばれた少なくとも1種を含む層を形成する方法は以下のような方法がある。(1)基材表面に、光半導体粒子層を形成後、上記金属含有物を塗布し、乾燥固定する。(2)基材表面に、光半導体粒子層を形成後、上記金属含有物を塗布し、さらに光半導体の光励起により金属を還元固定する。(3)基材表面に、光半導体粒子と上記金属含有物を塗布後焼成する。(4)基材表面に、光半導体粒子と上記金属含有物と、光半導体の光励起により親水化しうる硬化性結着剤とを塗布後、硬化性結着剤を硬化させ、さらに光半導体の光励起により結着剤を親水化させる。
【0021】
光半導体粒子層の形成方法は、例えば、ゾル塗布焼成法、アルコキシド法、スパッタリング法等がある。ゾル塗布焼成法とは、光半導体ゾルを、スプレーコーティング、スピンコーティング、ディップコーティング、ロールコーティング、フローコーティングその他のコーティング法により、基材表面に塗布し、焼成する方法である。アルコキシド法とは、例えば光半導体が結晶性酸化チタンの場合には、チタンのアルコキシド(例えば、テトラエトキシチタン、テトライソプロポキシチタン、テトラn−プロポキシチタン、テトラブトキシチタン、テトラメトキシチタン)に、塩酸又はエチルアミンのような加水分解抑制剤を添加し、エタノールやプロパノール等の希釈剤で希釈した後、部分的に加水分解を進行させながら又は完全に加水分解を進行させた後、混合物をスプレーコーティング、スピンコーティング、ディップコーティング、ロールコーティング、フローコーティングその他のコーティング法により、基材表面に塗布し、乾燥させて無定型酸化チタン層を形成し、その後、焼成により無定型酸化チタンを、アナターゼ型酸化チタン或いはルチル型酸化チタンに変換させる方法である。尚、チタンのアルコキシドに代えて、チタンのキレート又はチタンのアセテートのような他の有機チタン化合物を用いてもよい。スパッタリング法とは、例えば光半導体が結晶性酸化チタンの場合には、金属チタン又は酸化チタンをターゲットとし、酸素雰囲気で、基材表面に無定型酸化チタン層を形成し、その後、焼成により無定型酸化チタンを、アナターゼ型酸化チタン或いはルチル型酸化チタンに変換させる方法である。
【0022】
また金属含有物とは、例えば、前記基材表面の親水化を促進する作用を持つリチウム、ナトリウム、カリウム、カルシウム、ストロンチウム、アルミニウム、アルミナ、ジルコニア、イットリアの1群から選ばれた少なくとも1種を溶質とする溶液等をさす。
【0023】
光半導体の光励起により親水化しうる硬化性結着剤とは、シリコーン樹脂、脱水縮重合すればシリコーン樹脂になるオルガノシラノール、加水分解・脱水縮重合すればシリコーン樹脂になるオルガノアルコキシシラン等が挙げられる。結着剤の親水化方法は光半導体の光励起により行うことができる。
【0024】
基材表面に、光半導体と、それ以外に前記基材表面の親水化を促進する作用を持つリチウム、ナトリウム、カリウム、カルシウム、ストロンチウム、アルミニウム、アルミナ、ジルコニア、イットリアの1群から選ばれた少なくとも1種を含む層を形成する方法は以下のような方法がある。(5)基材表面に、光半導体粒子と上記酸化物を塗布後焼成する。(6)基材表面に、光半導体の前駆体と上記酸化物を塗布後、焼成等の方法で光半導体の前駆体を光半導体に変換させる。(7)基材表面に、光半導体粒子と上記酸化物と、光半導体の光励起により親水化しうる硬化性結着剤とを塗布後、硬化性結着剤を硬化させ、さらに光半導体の光励起により結着剤を親水化させる。
【0025】
光半導体の前駆体とは、例えば光半導体が結晶性酸化チタンの場合には、チタンのアルコキシド(例えば、テトラエトキシチタン、テトライソプロポキシチタン、テトラn−プロポキシチタン、テトラブトキシチタン、テトラメトキシチタン)、チタンのキレート又はチタンのアセテートのような他の有機チタン化合物を用いてもよい。光半導体の前駆体を光半導体に変換するとは、光半導体が結晶性酸化チタンの場合には、加水分解、脱水縮重合、焼成等の過程により、アナターゼ型酸化チタン或いはルチル型酸化チタンに変換させる方法である。
【0026】
【実施例】
比較例1
15cm角の施釉タイル(東陶機器製、AB02E01)表面に、アンモニア解膠型の酸化チタンゾル(石原産業製、STS−11)をスプレー・コーティング法にて塗布し、800℃で焼成し試料を得た。このときの酸化チタン層の膜厚は0.3μmとなるようにした。焼成直後の試料表面の水との接触角を接触角測定器(協和界面科学製、形式CA−X150)により測定した。接触角は、マイクロシリンジから試料表面に水滴を滴下した後30秒後に測定した。焼成直後の試料表面の水との接触角は8゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、21゜まで上昇した。この上昇は吸着水の試料表面からの離脱や、大気中の汚れ物質の付着によると考えられる。この試料に紫外線照度0.3mW/cmのBLB蛍光灯(三共電気製、ブラックライトブルー、FL20BLB)を2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は15゜までしか親水化しなかった。
【0027】
実施例1(カルシウム添加、後添加)
比較例1と同様の方法で、膜厚0.3μmの酸化チタン層被覆施釉タイル試料を得た。この試料表面にカルシウム金属濃度50μmol/gの硝酸カルシウム水溶液を0.3g塗布後、0.4mW/cmのBLB蛍光灯を10分照射して試料を得た。この試料作製直後の試料表面の水との接触角は38゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、22゜になった。さらにこの試料に紫外線照度0.3mW/cmのBLB蛍光灯(三共電気製、ブラックライトブルー、FL20BLB)を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は5゜まで親水化された。
【0028】
実施例2(カルシウム添加、混合添加)
アンモニア解膠型の酸化チタンゾル(石原産業製、STS−11)18gと、カルシウム金属濃度77μmol/gの硝酸カルシウム水溶液27gとを混合し、15cm角の施釉タイル表面に、スプレー・コーティング法にて塗布し、800℃で焼成し試料を得た。このときの酸化チタン層の膜厚は0.3μmとなるようにした。この試料作製直後の試料表面の水との接触角は22゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、25゜になった。さらにこの試料に紫外線照度0.15mW/cmのBLB蛍光灯(三共電気製、ブラックライトブルー、FL20BLB)を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は8゜まで親水化された。
【0029】
実施例3(カリウム添加、後添加)
比較例1と同様の方法で、膜厚0.3μmの酸化チタン層被覆施釉タイル試料を得た。この試料表面にカリウム金属濃度50μmol/gの塩化カリウム水溶液を0.3g塗布後、0.4mW/cmのBLB蛍光灯を10分照射して試料を得た。この試料作製直後の試料表面の水との接触角は37゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、27゜になった。さらにこの試料に紫外線照度0.15mW/cmのBLB蛍光灯を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は8゜まで親水化された。
【0030】
実施例4(ナトリウム添加、後添加)
比較例1と同様の方法で、膜厚0.3μmの酸化チタン層被覆施釉タイル試料を得た。この試料表面にナトリウム金属濃度50μmol/gの硝酸ナトリウム水溶液を0.3g塗布後、0.4mW/cmのBLB蛍光灯を10分照射して試料を得た。この試料作製直後の試料表面の水との接触角は37゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、26゜になった。さらにこの試料に紫外線照度0.3mW/cmのBLB蛍光灯を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は7゜まで親水化された。
【0031】
実施例5(ナトリウム添加、混合添加)
アンモニア解膠型の酸化チタンゾル(石原産業製、STS−11)18gと、ナトリウム金属濃度77μmol/gの硝酸ナトリウム水溶液27gとを混合し、15cm角の施釉タイル表面に、スプレー・コーティング法にて塗布し、800℃で焼成し試料を得た。このときの酸化チタン層の膜厚は0.3μmとなるようにした。この試料作製直後の試料表面の水との接触角は17゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、22゜になった。さらにこの試料に紫外線照度0.15mW/cmのBLB蛍光灯(三共電気製、ブラックライトブルー、FL20BLB)を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は6゜まで親水化された。
【0032】
実施例6(マグネシウム添加、後添加)
比較例1と同様の方法で、膜厚0.3μmの酸化チタン層被覆施釉タイル試料を得た。この試料表面にマグネシウム金属濃度50μmol/gの塩化マグネシウム二水塩水溶液を0.3g塗布後、0.4mW/cmのBLB蛍光灯を10分照射して試料を得た。この試料作製直後の試料表面の水との接触角は37゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、22゜になった。さらにこの試料に紫外線照度0.3mW/cmのBLB蛍光灯を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は8゜まで親水化された。
【0033】
実施例7(マグネシウム添加、混合添加)
アンモニア解膠型の酸化チタンゾル(石原産業製、STS−11)18gと、ナトリウム金属濃度77μmol/gの塩化マグネシウム二水塩水溶液27gとを混合し、15cm角の施釉タイル表面に、スプレー・コーティング法にて塗布し、800℃で焼成し試料を得た。このときの酸化チタン層の膜厚は0.3μmとなるようにした。この試料作製直後の試料表面の水との接触角は20゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、25゜になった。さらにこの試料に紫外線照度0.15mW/cmのBLB蛍光灯(三共電気製、ブラックライトブルー、FL20BLB)を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は7゜まで親水化された。
【0034】
実施例8(リチウム添加、後添加)
比較例1と同様の方法で、膜厚0.3μmの酸化チタン層被覆施釉タイル試料を得た。この試料表面にリチウム金属濃度50μmol/gの塩化リチウム水溶液を0.3g塗布後、0.4mW/cmのBLB蛍光灯を10分照射して試料を得た。この試料作製直後の試料表面の水との接触角は36゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、28゜になった。さらにこの試料に紫外線照度0.3mW/cmのBLB蛍光灯を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は8゜まで親水化された。
【0035】
実施例9(亜鉛添加、後添加)
比較例1と同様の方法で、膜厚0.3μmの酸化チタン層被覆施釉タイル試料を得た。この試料表面に亜鉛金属濃度50μmol/gの塩化亜鉛水溶液を0.3g塗布後、0.4mW/cmのBLB蛍光灯を10分照射して試料を得た。この試料作製直後の試料表面の水との接触角は43゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、23゜になった。さらにこの試料に紫外線照度0.15mW/cmのBLB蛍光灯を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は8゜まで親水化された。
【0036】
実施例10(ストロンチウム添加、後添加)
比較例1と同様の方法で、膜厚0.3μmの酸化チタン層被覆施釉タイル試料を得た。この試料表面にストロンチウム金属濃度50μmol/gの塩化ストロンチウム六水塩水溶液を0.3g塗布後、0.4mW/cmのBLB蛍光灯を10分照射して試料を得た。この試料作製直後の試料表面の水との接触角は33゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、23゜になった。さらにこの試料に紫外線照度0.3mW/cmのBLB蛍光灯を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は7゜まで親水化された。
【0037】
実施例11(ストロンチウム添加、混合添加)
アンモニア解膠型の酸化チタンゾル(石原産業製、STS−11)18gと、ストロンチウム金属濃度77μmol/gの塩化ストロンチウム六水塩水溶液27gとを混合し、15cm角の施釉タイル表面に、スプレー・コーティング法にて塗布し、700℃で焼成し試料を得た。このときの酸化チタン層の膜厚は0.3μmとなるようにした。この試料作製直後の試料表面の水との接触角は8゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、14゜になった。さらにこの試料に紫外線照度0.15mW/cmのBLB蛍光灯(三共電気製、ブラックライトブルー、FL20BLB)を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は5゜まで親水化された。
【0038】
実施例12(白金添加、後添加)
比較例1と同様の方法で、膜厚0.3μmの酸化チタン層被覆施釉タイル試料を得た。この試料表面に白金金属濃度50μmol/gの塩化白金酸六水塩水溶液を0.3g塗布後、0.4mW/cmのBLB蛍光灯を10分照射して試料を得た。この試料作製直後の試料表面の水との接触角は42゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、18゜になった。さらにこの試料に紫外線照度0.3mW/cmのBLB蛍光灯を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は6゜まで親水化された。その後、さらにこの試料に紫外線照度0.01mW/cmの白色灯を9日間照射し、室内照明下での親水維持性を調べた。その結果、試料表面は9゜程度に維持された。
【0039】
実施例13(白金添加、混合添加)
アンモニア解膠型の酸化チタンゾル(石原産業製、STS−11)18gと、白金金属濃度77μmol/gの塩化白金酸六水塩水溶液27gとを混合し、15cm角の施釉タイル表面に、スプレー・コーティング法にて塗布し、700℃で焼成し試料を得た。このときの酸化チタン層の膜厚は0.3μmとなるようにした。この試料作製直後の試料表面の水との接触角は21゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、22゜になった。さらにこの試料に紫外線照度0.15mW/cmのBLB蛍光灯(三共電気製、ブラックライトブルー、FL20BLB)を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は7゜まで親水化された。
【0040】
実施例14(パラジウム添加、後添加)
比較例1と同様の方法で、膜厚0.3μmの酸化チタン層被覆施釉タイル試料を得た。この試料表面にパラジウム金属濃度50μmol/gの塩化パラジウム水溶液を0.3g塗布後、0.4mW/cmのBLB蛍光灯を10分照射して試料を得た。この試料作製直後の試料表面の水との接触角は47゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、18゜になった。さらにこの試料に紫外線照度0.3mW/cmのBLB蛍光灯を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は6゜まで親水化された。
【0041】
実施例15(パラジウム添加、混合添加)
アンモニア解膠型の酸化チタンゾル(石原産業製、STS−11)18gと、パラジウム金属濃度77μmol/gの塩化パラジウム水溶液27gとを混合し、15cm角の施釉タイル表面に、スプレー・コーティング法にて塗布し、700℃で焼成し試料を得た。このときの酸化チタン層の膜厚は0.3μmとなるようにした。この試料作製直後の試料表面の水との接触角は15゜であった。この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、20゜になった。さらにこの試料に紫外線照度0.15mW/cmのBLB蛍光灯(三共電気製、ブラックライトブルー、FL20BLB)を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は7゜まで親水化された。
【0042】
実施例16(ルテニウム添加、混合添加)
アンモニア解膠型の酸化チタンゾル(石原産業製、STS−11)18gと、ルテニウム金属濃度77μmol/gの塩化ルテニウム水和塩水溶液27gとを混合し、15cm角の施釉タイル表面に、スプレー・コーティング法にて塗布し、700℃で焼成し試料を得た。このときの酸化チタン層の膜厚は0.3μmとなるようにした。この試料作製直後の試料表面の水との接触角は15゜であった。 この試料を暗所に1週間放置し、その後再び試料表面の水との接触角を測定したところ、18゜になった。さらにこの試料に紫外線照度0.15mW/cmのBLB蛍光灯(三共電気製、ブラックライトブルー、FL20BLB)を0.2日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は7゜まで親水化された。
【0043】
実施例17(アルミニウム添加、混合添加)
アンモニア解膠型の酸化チタンゾル(石原産業製、STS−11)と、アルミニウム金属濃度50μmol/gの塩化アルミニウム水溶液とを、酸化チタンとアルミニウム金属量のモル比が87:13となるように混合し、15cm角の施釉タイル表面に、スプレー・コーティング法にて塗布し、700℃で焼成し試料を得た。このときの酸化チタン層の膜厚は0.7μmとなるようにした。この試料作製直後の試料表面の水との接触角は11゜であった。この試料を暗所に1日放置し、その後再び試料表面の水との接触角を測定したところ、13゜になった。さらにこの試料に紫外線照度0.15mW/cmのBLB蛍光灯(三共電気製、ブラックライトブルー、FL20BLB)を1日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は3゜まで親水化された。
【0044】
実施例18(イットリア添加)
硝酸解膠型酸化チタンゾル(石原産業製、CS−N)と酢酸解膠型酸化イットリウムゾル(多木化学製、溶質濃度15重量%、平均結晶子径4nm、pH7.6)を、酸化チタンと酸化イットリウムとのモル比が88:12になるように混合した後、15cm角の施釉タイル表面に、スプレーコーティング法にて塗布し、800℃で1時間焼成し試料を得た。このときの膜厚は0.3μmになるようにした。焼成直後の試料表面の水との接触角は21゜であった。得られた試料を、2週間暗所に放置した。その後再び試料表面の水との接触角を測定したところ、25゜になった。その後、紫外線照度0.3mW/cmのBLB蛍光灯を13日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は2゜まで親水化された。その後紫外線照度0.004mW/cmの白色灯を4日間照射し、室内照明下での親水維持性を調べた。その結果、試料表面は9゜程度に維持された。
【0045】
実施例19(アルミナ添加)
硝酸解膠型酸化チタンゾル(石原産業製、CS−C)と、酸化アルミニウムゾル(日産化学製、アルミナゾル−100)を、酸化チタンと酸化アルミニウムとのモル比が88:12になるように混合した後、15cm角の施釉タイル表面に、スプレーコーティング法にて塗布し、800℃で1時間焼成し試料を得た。このときの膜厚は0.3μmになるようにした。焼成直後の試料表面の水との接触角は2゜であった。得られた試料を、2週間暗所に放置した。その後再び試料表面の水との接触角を測定したところ、20゜になった。その後紫外線照度0.3mW/cmのBLB蛍光灯を13日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は再び2゜まで親水化された。その後紫外線照度0.004mW/cmの白色灯を2日間照射し、室内照明下での親水維持性を調べた。その結果、試料表面は9゜程度に維持された。
【0046】
実施例20(ジルコニア添加)
アンモニア解膠型酸化チタンゾル(石原産業製、STS−11)と、酸化ジルコニウムゾル印産化学製、NZS−30B)を、酸化チタンと酸化ジルコニウムとのモル比が88:12になるように混合した後、15cm角の施釉タイル表面に、スプレーコーティング法にて塗布し、800℃で1時間焼成し試料を得た。このときの膜厚は0.3μmになるようにした。焼成直後の試料表面の水との接触角は23゜であった。得られた試料を、1週間暗所に放置した。その後再び試料表面の水との接触角を測定したところ、35゜になった。その後紫外線照度0.3mW/cmのBLB蛍光灯を13日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は4゜まで親水化された。
【0047】
実施例21(セリア添加)
アンモニア解膠型酸化チタンゾル(石原産業製、STS−11)と、酸化セリウムゾル(多木化学製W−15)を、酸化チタンと酸化セリウムとのモル比が88:12になるように混合した後、15cm角の施釉タイル表面に、スプレーコーティング法にて塗布し、800℃で1時間焼成し試料を得た。このときの膜厚は0.3μmになるようにした。焼成直後の試料表面の水との接触角は22゜であった。得られた試料を、1週間暗所に放置した。その後再び試料表面の水との接触角を測定したところ、38゜になった。その後紫外線照度0.3mW/cmのBLB蛍光灯を13日間照射した後、水との接触角を測定したところ、光励起に応じて試料表面は6゜まで親水化された。
【0048】
実施例22(水との接触角と防曇性との関係)
エタノールの溶媒86重量部に、テトラエトキシシラン6重量部と純水6重量部とテトラエトキシシランの加水分解抑制剤として36%塩酸2重量部を加えて混合し、シリカコーティング溶液を調製した。混合により溶液は発熱するので、混合液を約1時間放置冷却した。この溶液をフローコーティング法により10cm角のソーダライムガラス板の表面に塗布し、80℃の温度で乾燥させた。この間にテトラエトキシシランは加水分解を受けてまずシラノールになり、続いてシラノールの脱水縮重合により無定型シリカの薄膜がガラス板の表面に形成された。次に、テトラエトキシチタン(Merck社製)1重量部とエタノール9重量部との混合物に加水分解抑制剤として36%塩酸0.1重量部添加してチタニアコーティング溶液を調製し、この溶液を前記ガラス板の表面に乾燥空気中でフローコーティング法により塗布した。塗布量はチタニアに換算して45μg/cmとした。次に、このガラスを10分間150℃の温度に保持することにより、テトラエトキシチタンの加水分解を完了させるとともに、生成した水酸化チタンを脱水縮重合に付し、無定型チタニアを生成させた。こうして無定型シリカの上に無定型チタニアがコーティングされたガラス板を得た。このガラス板を500℃の温度で焼成し、無定型チタニアをアナターゼ型チタニアに変換した。得られた試料を数日間暗所に放置した。次に、BLB蛍光灯を内蔵したデシケータ(温度24℃、湿度45〜50%)内にこのガラス板を配置し、0.5mW/cmの照度で1日間紫外線を照射し、#1試料を得た。#1試料の水との接触角を測定したところ0゜であった。次に、#1試料をデシケータから取出して、60℃に保持した温浴上に迅速に移し、15秒後に透過率を測定した。測定された透過率を元の透過率で割り、水蒸気の凝縮により生成した曇りに起因する透過率の変化を求めた。テトラエトキシチタン(Merck社製)1重量部とエタノール9重量部との混合物に加水分解抑制剤として36%塩酸0.1重量部添加してチタニアコーティング溶液を調製し、この溶液を10cm角のガラス板の表面に乾燥空気中でフローコーティング法により塗布した。塗布量はチタニアに換算して45μg/cmとした。次に、このガラスを10分間150℃の温度に保持することにより、テトラエトキシチタンの加水分解を完了させるとともに、生成した水酸化チタンを脱水縮重合に付し、無定型チタニアを生成させた。こうして無定型チタニアがコーティングされたガラス板を得た。このガラス板を500℃の温度で焼成し、無定型チタニアをアナターゼ型チタニアに変換した。得られた試料を数日間暗所に放置した。次に、BLB蛍光灯を内蔵したデシケータ(温度24℃、湿度45〜50%)内にこのガラス板を配置し、0.5mW/cmの照度で水との接触角が3゜になるまで紫外線を照射し、#2試料を得た。次に、#2試料を暗所に放置した。異なる時間間隔で、#2試料を暗所から取出し、水との接触角をその都度測定した。更に、#2試料を一旦デシケータ(温度24℃、湿度45〜50%)内に移し、温度を平衡させた後、#1試料と同様に、60℃に保持した温浴上に迅速に移し、15秒後に透過率を測定し、水蒸気の凝縮により生成した曇りに起因する透過率の変化を求めた。比較のため、市販の並板ガラス、アクリル樹脂、ポリ塩化ビニル板、ポリカーボネート板について、水との接触角を測定した。更に、これらの板材を同じ条件のデシケータ内に移し、温度を平衡させた後、同様に、60℃に保持した温浴上に迅速に移し、15秒後に透過率を測定し、水蒸気の凝縮により生成した曇りに起因する透過率の変化を求めた。得られた結果を表1に示す。表1の結果から、水との接触角が10゜以下であれば、極めて高い防曇性が実現されることが確認された。上記実施例1〜21はいずれも光励起に応じて水との接触角が10゜以下になることから、基材に透明基材を選べば、いずれも優れた防曇性が発揮されると考えられる。
【0049】
【表1】

Figure 0003613084
【0050】
実施例23 (水との接触角と防汚性との関係)
種々の試料を以下に示す汚泥試験に付した。調べた試料は、以下に示す#1〜#6試料である。#1試料:アナターゼ型酸化チタンゾル(石原産業製、STS−11)とコロイダルシリカゾル(スノーテックス20)との混合物(固形分におけるシリカの割合が10重量%)を固形分換算で4.5mgだけ、15cm四角の施釉タイル(東陶機器製、AB02E01)に塗布し、880℃の温度で10分焼成して、#0試料を得た。この#0試料に、BLB蛍光灯を用いて0.5mW/cm2の紫外線照度で3時間紫外線を照射して、#1試料を得た。#2試料:#0試料に、さらに銅濃度50μmol/gの酢酸銅一水塩水溶液を0.3g塗布後、BLB蛍光灯を用いて0.4mW/cmの紫外線照度で10分照射することにより銅を固定した。その後、BLB蛍光灯を用いて0.5mW/cmの紫外線照度で3時間紫外線を照射して、#2試料を得た。#3試料:施釉タイル(東陶機器製、AB02E01)。#4試料:アクリル樹脂(PMMA)板。#5試料:人造大理石板(東陶機器製、ML03)。#6試料:ポリテトラフルオロエチレン(PTFE)板。汚泥試験は以下の要領で行った。まず、汚泥スラリーを以下のようにして調製した。すなわち、イエローオーカー64.3重量%、焼成関東ローム21.4重量%、疎水性カーボンブラック4.8重量%、シリカ粉4.8重量%、親水性カーボンブラック4.7重量%を含む粉体混合物を1.05g/リッターの濃度で水に懸濁させたスラリーを調製した。45度に傾斜させた#1〜#6試料に、上記スラリー150mlを流下させて15分間乾燥させ、次いで蒸留水150mlを流下させて15分間乾燥させ、このサイクルを25回反復した。試験前後の色差変化と光沢度変化を調べた。色差変化は、試験後の試料表面の色差から試験前の試料表面の色差を引くことにより求めた。色差は日本工業規格(JIS)H0201に従い、ΔE*表示を用いた。光沢度の測定は日本工業規格(JIS)Z8741の規定に従って行い、光沢度変化は試験後の試料表面の光沢度を試験前の試料表面の光沢度で割ることにより求めた。結果を表2に示す。
【0051】
【表2】
Figure 0003613084
【0052】
更に#1試料、#3試料、#4試料、#6試料及び下記に示す#7試料について、屋外汚れ加速試験を行った。#7試料:10cm角のアルミニウム基板に、シリカゾル(日本合成ゴム製、グラスカA液)とトリメトキシシラン(日本合成ゴム製、グラスカB液)を、重量比が3:1となるように混合した液状物を塗布し、150℃で硬化させ、膜厚3μmのシリコーン被覆板(#7試料)を得た。屋外汚れ加速試験は、以下の要領で行った。すなわち、茅ケ崎市所在の建物の屋上に図1(a)及び図1(b)に示す屋外汚れ加速試験装置を設置した。図1(a)及び図1(b)を参照するに、この装置は、フレーム20に支持された傾斜した試料支持面22を備え、試料24を取り付けるようになっている。フレームの頂部には前方に傾斜した屋根26が固定してある。この屋根は波形プラスチック板からなり、集まった雨が試料支持面22に取り付けた試料24の表面に筋を成して流下するようになっている。この装置の試料支持面22に上記#1試料、#3試料、#4試料、#6試料及び#7試料を取り付け、1か月間屋外に暴露した。この試験における汚れの付着は雨天の流路である縦筋部に多量の汚れが付着する傾向がある。そこで、試料表面の汚れ具合を、試験後の縦筋汚れ部の色差から試験前の色差を引くことにより評価した。結果を表3に示す。
【0053】
【表3】
Figure 0003613084
【0054】
理解を容易にするため、表2と表3に示した水との接触角及び色差変化を図2のグラフにプロットした。図2のグラフにおいて、カーブAは汚れ加速試験における大気中のカーボンブラックなどの燃焼生成物や都市塵埃のような汚れによる色差変化と水との接触角との関係を示し、カーブBは汚泥試験における汚泥による色差変化と水との接触角との関係を示す。図2のグラフを参照するに、カーブAから良く分かるように、基材の水との接触角が増加するにつれて燃焼生成物や都市塵埃による汚れが目立つようになる。これは、燃焼生成物や都市塵埃のような汚染物質は基本的に疎水性であり、従って、疎水性の表面に付着しやすいからである。これに対して、カーブBは、汚泥による汚れは水との接触角が20゜から50゜の範囲でピーク値を呈することを示している。これは、泥や土のような無機物質は、本来、水との接触角が20゜から50゜程度の親水性を有し、類似の親水性を有する表面に付着しやすいからである。従って、表面を水との接触角が20゜以下の親水性にするか、或いは、水との接触角が60゜以上に疎水化すれば、表面への無機物質の付着を防止することができることが分かる。水との接触角が20゜以下になると汚泥による汚れが減少するのは、表面が水との接触角で20゜以下の高度の親水性になると、無機物質に対する親和性よりも水に対する親和性の方が高くなり、表面に優先的に付着する水によって無機物質の付着が阻害されると共に、付着しようとする無機物質が水によって容易に洗い流されるからである。以上から、建物などの表面に疎水性の汚れ物質と親水性の汚れ物質のいずれもが付着しないようにするため、或いは、表面に堆積した汚れが降雨により洗い流されて表面がセルフクリーニングされるようにするには、表面の水との接触角が20゜以下、好ましくは10゜以下、更に好ましくは5゜以下にすればよいことが分かる。上記実施例1〜21はいずれも光励起に応じて水との接触角が10゜以下になることから、いずれも優れた降雨又は水洗による清浄性が発揮されると考えられる。
【0055】
【発明の効果】
基材表面に、光半導体以外に前記基材表面の親水化を促進する作用を持つリチウム、ナトリウム、カリウム、カルシウム、ストロンチウム、アルミニウム、アルミナ、ジルコニア、イットリアの1群から選ばれた少なくとも1種を含む層を形成することにより、ゾル塗布焼成法で基材表面に光半導体含有層を形成した場合においても、太陽光、室内照明等の日常よく使用されている光源による光半導体の光励起に応じて10゜以下まで親水化されるようになる。また、ゾル塗布焼成法以外の、アルコキシド法、スパッタリング法、シリカ、シリコーンなどの結着剤の硬化を利用した方法等で基材表面に光半導体含有層を形成した場合においても、光半導体の光励起に応じた親水性能の向上が期待できる。更に、アルミナまたはイットリアの場合は0.01mW/cm 2 未満程度の微弱な励起光照射下、あるいは暗所での親水維持性がよりよく発揮されるようになる。
【図面の簡単な説明】
【図1】屋外汚れ加速試験装置を示す図で、(a)は正面図、(b)は側面図(寸法数値の単位はミリメートル)。
【図2】異なる親水性をもった表面が都市煤塵と汚泥によって汚れる度合いを示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for making and maintaining the surface of a substrate highly hydrophilic. More specifically, the present invention relates to an anti-fogging technique for preventing fogging of a substrate and formation of water droplets by highly hydrophilizing the surface of a transparent substrate such as a mirror, lens, plate glass and the like. The present invention also prevents the surface from becoming dirty by highly hydrophilizing the surface of a building, window glass, mechanical device or article, or self-cleans the surface or easily cleans the surface. About.
[0002]
[Prior art]
When the surface of the base material is made hydrophilic, the attached water droplets spread uniformly on the surface of the base material, so that it is possible to effectively prevent fogging of transparent members such as glass, lenses and mirrors, and to prevent devitrification due to moisture It helps to ensure visibility in rainy weather. In addition, combustion pollutants such as carbon black contained in exhaust gas from automobile dust, automobiles, etc., and hydrophobic pollutants such as oils and sealants are difficult to adhere, and even if they adhere, they can be easily removed by rain or water washing. This is convenient.
[0003]
Under these circumstances, hydrophilic resins have been proposed in the field of anti-fogging paints and exterior anti-fouling paints (for example, Japanese Utility Model Laid-Open No. 5-68006, “Polymer”, Vol. 44, May 1995). Monthly issue, p.307). In addition, a surface treatment method for hydrophilization has also been proposed (for example, Japanese Utility Model Laid-Open No. 3-129357).
[0004]
However, conventionally proposed hydrophilic resins are only hydrophilized up to about 30 to 50 ° in terms of contact angle with water, and a sufficient antifogging effect cannot be exhibited. Moreover, the adherence of contaminants made of inorganic clay and the cleanliness due to rain and washing are not sufficient. Further, in the conventionally proposed surface treatment methods for hydrophilicity (etching treatment, plasma treatment, etc.), the state cannot be maintained for a long time even if it can be temporarily highly hydrophilic.
[0005]
The present inventor invented that, in PCT / JP96 / 00733, when a photo-semiconductor-containing layer is formed on the substrate surface, the surface is highly hydrophilized in response to photoexcitation of the photo-semiconductor. It has been proposed that when applied to various composite materials such as lenses, mirrors, exterior materials, and water-circulating members, these composite materials can be provided with excellent antifogging and antifouling functions. According to this method, a sufficient anti-fogging effect is exhibited, and adhesion of contaminants composed of hydrophobic contaminants and inorganic clays, and cleanliness by rain and washing are greatly improved. Further, the hydrophilic state is maintained and recovered in response to photoexcitation of the optical semiconductor.
[0006]
[Problems to be solved by the invention]
However, when a layer consisting only of a photosemiconductor that is substantially excellent in abrasion resistance is applied directly to a substrate having a smooth surface such as a glazed tile substrate or a glass substrate by a photosemiconductor sol coating method and fired. Is not hydrophilized to about 10 ° or less in response to photoexcitation of the optical semiconductor. In addition, for example, to form a layer composed only of a light semiconductive titanium oxide on a glass substrate, an amorphous titanium oxide layer is formed by an alkoxide method, a sputtering method, etc., and then fired to crystallize the amorphous titanium oxide. If it is a method to make it hydrophilic, it will be hydrophilized to about 10 ° or less in response to photoexcitation of the optical semiconductor, but in this case as well, it is considered that higher antifogging and antifouling performances will be exhibited if the hydrophilization further proceeds. It is done. Therefore, in the present invention, compared with a layer composed only of an optical semiconductor, a member that is made more highly hydrophilic in response to photoexcitation of the optical semiconductor, more specifically, an antifogging property that is more excellent in antifogging property. It is an object of the present invention to provide a member, an antifouling member that hardly adheres to pollutants, and has excellent cleanliness by rain and water washing, and a member that can be easily dried.
[0007]
[Means for Solving the Problems]
In the present invention, in order to solve the above problems, in the hydrophilic member, the antifogging member, the antifouling member, and the easy-drying member in which the member surface is hydrophilized in response to photoexcitation of the optical semiconductor, With optical semiconductorsItother thanAt least one selected from the group consisting of lithium, sodium, potassium, calcium, strontium, aluminum, alumina, zirconia, and yttriaSo that a layer containing is formedIn response to photoexcitation of the optical semiconductor by sunlight or indoor illumination light, the contact angle with water is converted to a hydrophilicity of 20 ° or less.In a preferred embodiment of the present invention, the surface of the member is hydrophilized to 10 ° or less, more preferably 5 ° or less in terms of a contact angle with water in accordance with photoexcitation of the optical semiconductor. By doing in this way, it becomes a member excellent in the anti-fogging property, the adhesion prevention property of a pollutant, and the cleanliness by rain and washing in particular.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, components of the present invention will be described. The photo-semiconductor here means that the surface of the substrate is formed by forming an adsorbed water layer, possibly by imparting polarity to the surface by a reaction via holes or conduction electrons generated by excitation of electrons in the valence band. A material that can be made hydrophilic, more specifically, anatase titanium oxide, rutile titanium oxide, tin oxide, zinc oxide, dibismuth trioxide, tungsten trioxide, ferric oxide, strontium titanate, etc. it can.
[0009]
Hydrophilization here refers to a change in the state in which water wettability is improved. Hydrophobic pollutants such as carbon black and other combustion products, fats and oils and sealant elution components contained in exhaust gas from automobile dust, automobiles, etc. are difficult to adhere and can be easily removed by rain or water washing For this purpose, the surface of the substrate should be hydrophilized to 50 ° or less, more preferably about 30 ° or less in terms of the contact angle with water. Furthermore, in order to prevent inorganic clay contaminants from adhering easily and to be able to be easily removed by rain or washing even if they adhere, the surface of the substrate is converted to a contact angle with water of 20 ° or less, preferably 10 °. In the following, it is preferable to hydrophilize to about 5 ° or less. In addition, water droplets adhering to the surface of transparent and mirror substrates are spread evenly to effectively prevent fogging of glass, lenses, prisms, and mirrors, prevent devitrification due to moisture, and ensure visibility in rainy weather In order to achieve this, the surface of the base material should be hydrophilicized to about 10 ° or less.
[0010]
The base material that can be used in the present invention is a transparent base material such as glass, transparent plastic, lens, prism, and mirror in the anti-fogging application. More specifically, bathroom or toilet mirrors, vehicle rearview mirrors, dental tooth mirrors, mirrors such as road mirrors; spectacle lenses, optical lenses, camera lenses, endoscope lenses, illumination lenses, semiconductors Lenses such as manufacturing lenses; prisms; windows for buildings and surveillance towers; automobiles, rail vehicles, aircraft, ships, submersibles, snow vehicles, ropeway guindra, amusement park gondola, spacecraft-like vehicle windows Glasses; Windshields for vehicles such as automobiles, rail cars, aircraft, ships, submersibles, snow vehicles, snowmobiles, motorcycles, ropeway guindra, amusement park gondola, spacecraft; protective or sports goggles or masks ( Shield (including diving mask); Helmet shield; Frozen food display case glass; Measuring instrument cover glass; Including the film, and the like.
[0011]
As the base material that can be used in the present invention, in outdoor applications where self-purification by rain can be expected, for example, metal, ceramics, glass, plastic, wood, stone, cement, concrete, fiber, fabric, paper, combinations thereof, These laminates, their painted bodies, and the like. More specifically, building exteriors such as exterior walls and roofs; window frames; exteriors and paintings of vehicles such as automobiles, rail cars, aircraft, ships, bicycles, motorcycles; window glass; signs, traffic signs, noise barriers, Plastic houses, insulators, vehicle covers, tent materials, reflectors, shutters, screen doors, solar battery covers, solar water heater and other heat collector covers, street lights, tunnels, outdoor lighting, artificial waterfalls, artificial fountain stones, Tiles, bridges, greenhouses, exterior wall materials, sealers between walls and glass, guardrails, verandas, vending machines, air conditioner outdoor units, outdoor benches, various display devices, shutters, toll booths, price boxes, roof gutters, vehicle lamps Protective cover, dustproof cover and painting, painting of machinery and articles, exterior and painting of advertising towers, structural members, and films that can be attached to these articles.
[0012]
Examples of the base material that can be used in the present invention include metal, ceramics, glass, plastic, wood, stone, cement, concrete, fiber, fabric, paper, combinations thereof, and the like in applications where cleaning with water can be expected. Laminates of these, their painted bodies, and the like. More specifically, in addition to the above-described outdoor use members, in addition to the above, building interior materials, window glass, housing equipment, toilets, bathtubs, wash basins, lighting equipment, kitchenware, tableware, tableware dryers, It includes sinks, cooking ranges, kitchen hoods, ventilation fans, window rails, window frames, tunnel inner walls, tunnel lighting, and films that can be attached to these articles.
[0013]
As a base material that can be used in the present invention, in applications that can be expected to accelerate drying, for example, window sashes, heat-dissipating fins for heat exchangers, corridors, bathroom mirrors, vanity tables, greenhouse ceilings, and articles thereof Includes films that can be attached.
[0014]
In addition to the above, the substrate that can be used in the present invention can be used for preventing snow accretion, preventing bubble adhesion, improving biocompatibility, and the like. In particular, when a surface layer having a surface roughness of 1 μm or less is provided, the ability to prevent snow accretion can be remarkably improved. For example, a base material including a roofing material for snow country, an antenna, a power transmission line, and a film that can be attached to these articles. Applicable to materials.
[0015]
Photoexcitation of the optical semiconductor is performed by irradiating the optical semiconductor with light having an energy (that is, a short wavelength) larger than the energy gap between the conduction electron band and the valence band of the optical semiconductor crystal. More specifically, when the optical semiconductor is anatase-type titanium oxide, the wavelength is 387 nm or less, when it is rutile titanium oxide, the wavelength is 413 nm or less, when it is tin oxide, the wavelength is 344 nm or less, and when it is zinc oxide, the wavelength is 387 nm. Irradiate light containing the following light. In the case of the above-mentioned optical semiconductor, it is excited by an ultraviolet light source. As a light source, indoor lighting such as fluorescent lamps, incandescent lamps, metal halide lamps, mercury lamps, sunlight, and these light sources are guided by low-loss fibers. Can be used. The illuminance of light necessary for photoexcitation of the optical semiconductor necessary for hydrophilization of the composite surface is 0.001 mW / cm.2Or more, more preferably 0.01 mW / cm2That's it.
[0016]
In the present invention, when alumina or yttria is selected as the material to be added to the substrate surface other than the optical semiconductor, 0.01 mW / cm2Under the weak excitation light irradiation of less than about less, the hydrophilicity maintenance property in a dark place comes to be exhibited better.
[0017]
In a further preferred aspect of the present invention, the optical semiconductor-containing layer further contains silica and / or a silicone resin in which at least a part of the organic group bonded to the silicon atom is substituted with a hydroxyl group. Like that. In this way, the hydrophilicity of the composite surface that occurs in response to photoexcitation of the optical semiconductor is advanced to a higher degree, and the hydrophilicity is maintained for a long time even if the hydrophilicized composite material is left in the dark. Will come to be.
[0018]
The film thickness of the optical semiconductor-containing layer is preferably 0.2 μm or less. If it does so, the color development of the optical semiconductor content layer by light interference can be prevented. Moreover, the transparency of a base material is securable, so that the film thickness of an optical semiconductor content layer is thin. Furthermore, if the film thickness is reduced, the wear resistance of the optical semiconductor-containing layer is improved. A wear-resistant or corrosion-resistant protective layer that can be hydrophilized and other functional films may be further provided on the optical semiconductor-containing layer.
[0019]
The refractive index of the optical semiconductor-containing layer should be smaller than or less than the refractive index of the substrate. For example, when the substrate is a glass substrate (refractive index 1.5), the refractive index of the optical semiconductor-containing layer is preferably 2 or less. If it does so, reflection of visible light on the surface of a composite material can be prevented, and it is useful for ensuring the visual field in a transparent material, and preventing the glare feeling in a design exterior or painting. In order to reduce the refractive index of the optical semiconductor-containing layer to 2 or less, for example, when the optical semiconductor is a substance having a refractive index higher than 2, such as anatase titanium oxide (refractive index 2.5), it is refracted in addition to the optical semiconductor. Add material with a rate of less than 2. Examples of the material having a refractive index of less than 2 include at least one of alumina (refractive index 1.6), silica (refractive index 1.5), tin oxide (refractive index 1.9), and an organic group bonded to a silicon atom. A silicone resin (refractive index: 1.4 to 1.6) in which a part is substituted with a hydroxyl group can be suitably used.
[0020]
On the surface of the base material, the optical semiconductor and otherAt least one selected from the group consisting of lithium, sodium, potassium, calcium, strontium, aluminum, alumina, zirconia, and yttria that has the effect of promoting hydrophilicity on the surface of the substrate.There are the following methods for forming the layer containing. (1) After forming an optical semiconductor particle layer on the surface of the substrate, the metal-containing material is applied and dried and fixed. (2) After forming an optical semiconductor particle layer on the substrate surface, the metal-containing material is applied, and the metal is reduced and fixed by photoexcitation of the optical semiconductor. (3) The optical semiconductor particles and the metal-containing material are applied to the surface of the base material and fired. (4) After applying the optical semiconductor particles, the metal-containing material, and a curable binder that can be hydrophilized by photoexcitation of the optical semiconductor on the surface of the substrate, the curable binder is cured, and further, photoexcitation of the optical semiconductor is performed. To make the binder hydrophilic.
[0021]
Examples of the method for forming the optical semiconductor particle layer include a sol coating baking method, an alkoxide method, and a sputtering method. The sol coating firing method is a method in which an optical semiconductor sol is applied to a substrate surface by spray coating, spin coating, dip coating, roll coating, flow coating, or other coating methods, and is fired. For example, when the optical semiconductor is crystalline titanium oxide, the alkoxide method includes titanium alkoxide (for example, tetraethoxytitanium, tetraisopropoxytitanium, tetran-propoxytitanium, tetrabutoxytitanium, tetramethoxytitanium) and hydrochloric acid. Alternatively, after adding a hydrolysis inhibitor such as ethylamine and diluting with a diluent such as ethanol or propanol, the mixture is spray-coated, while partially hydrolyzing or completely hydrolyzing, Spin coating, dip coating, roll coating, flow coating, and other coating methods are applied to the substrate surface and dried to form an amorphous titanium oxide layer. After that, the amorphous titanium oxide is baked to form an anatase titanium oxide. Or rutile titanium oxide A method for converted. Instead of the titanium alkoxide, other organic titanium compounds such as titanium chelate or titanium acetate may be used. For example, in the case where the optical semiconductor is crystalline titanium oxide, the sputtering method is a method in which an amorphous titanium oxide layer is formed on the surface of a base material in an oxygen atmosphere using a metal titanium or titanium oxide as a target, and then amorphous by firing. In this method, titanium oxide is converted into anatase type titanium oxide or rutile type titanium oxide.
[0022]
The metal-containing material is, for example,At least one selected from the group consisting of lithium, sodium, potassium, calcium, strontium, aluminum, alumina, zirconia, and yttria that has the effect of promoting hydrophilicity on the surface of the substrate.This refers to solutions that contain
[0023]
Examples of the curable binder that can be hydrophilized by photoexcitation of an optical semiconductor include a silicone resin, an organosilanol that becomes a silicone resin by dehydration condensation polymerization, and an organoalkoxysilane that becomes a silicone resin by hydrolysis and dehydration condensation polymerization. . The method for hydrophilizing the binder can be performed by photoexcitation of an optical semiconductor.
[0024]
On the surface of the base material, the optical semiconductor and otherAt least one selected from the group consisting of lithium, sodium, potassium, calcium, strontium, aluminum, alumina, zirconia, and yttria that has the effect of promoting hydrophilicity on the surface of the substrate.There are the following methods for forming the layer containing. (5) The optical semiconductor particles and the oxide are applied to the surface of the base material and fired. (6) After applying the optical semiconductor precursor and the oxide on the surface of the substrate, the optical semiconductor precursor is converted into an optical semiconductor by a method such as firing. (7) After applying the photo-semiconductor particles, the oxide, and a curable binder that can be hydrophilized by photo-excitation of the photo-semiconductor on the surface of the substrate, the curable binder is cured, and further, by photo-excitation of the photo-semiconductor Make the binder hydrophilic.
[0025]
The precursor of the optical semiconductor is, for example, an alkoxide of titanium (for example, tetraethoxy titanium, tetraisopropoxy titanium, tetra n-propoxy titanium, tetrabutoxy titanium, tetramethoxy titanium) when the optical semiconductor is crystalline titanium oxide. Other organotitanium compounds such as titanium chelates or titanium acetates may also be used. The conversion of a photo-semiconductor precursor into a photo-semiconductor means that when the photo-semiconductor is crystalline titanium oxide, it is converted into anatase-type titanium oxide or rutile-type titanium oxide by a process such as hydrolysis, dehydration condensation polymerization, or firing. Is the method.
[0026]
【Example】
Comparative Example 1
Ammonia peptized titanium oxide sol (Ishihara Sangyo Co., Ltd., STS-11) is applied to the surface of a 15cm square glazed tile (manufactured by Totoki Kikai, AB02E01) and fired at 800 ° C to obtain a sample. It was. At this time, the thickness of the titanium oxide layer was set to 0.3 μm. The contact angle of the sample surface with water immediately after firing was measured with a contact angle measuring device (manufactured by Kyowa Interface Science, model CA-X150). The contact angle was measured 30 seconds after a water droplet was dropped from the microsyringe onto the sample surface. The contact angle of the sample surface with water immediately after firing was 8 °. The sample was left in the dark for one week, and then the contact angle with water on the sample surface was measured again. This rise is thought to be due to the separation of adsorbed water from the sample surface and the adhesion of dirt substances in the atmosphere. This sample has UV illumination of 0.3 mW / cm2The BLB fluorescent lamp (Sankyo Electric, Black Light Blue, FL20BLB) was irradiated for 2 days, and then the contact angle with water was measured. As a result, the sample surface was only hydrophilized up to 15 ° in response to photoexcitation.
[0027]
Example 1 (calcium addition, post-addition)
A titanium oxide layer-coated glazed tile sample having a film thickness of 0.3 μm was obtained in the same manner as in Comparative Example 1. After 0.3 g of a calcium nitrate aqueous solution having a calcium metal concentration of 50 μmol / g is applied to the sample surface, 0.4 mW / cm2A sample was obtained by irradiating with a BLB fluorescent lamp for 10 minutes. The contact angle of the sample surface with water immediately after the preparation of the sample was 38 °. The sample was left in the dark for one week, and then the contact angle with water on the sample surface was measured again. Furthermore, this sample was irradiated with UV light of 0.3 mW / cm.2When the contact angle with water was measured after irradiation with a BLB fluorescent lamp (Sankyo Electric, Black Light Blue, FL20BLB) for 0.2 days, the sample surface was hydrophilized to 5 ° in response to photoexcitation.
[0028]
Example 2 (calcium added, mixed added)
18 g of ammonia peptization type titanium oxide sol (manufactured by Ishihara Sangyo Co., Ltd., STS-11) and 27 g of calcium nitrate aqueous solution with a calcium metal concentration of 77 μmol / g are mixed and applied to the surface of a 15 cm square glazed tile by spray coating. And calcined at 800 ° C. to obtain a sample. At this time, the thickness of the titanium oxide layer was set to 0.3 μm. The contact angle of the sample surface with water immediately after the preparation of the sample was 22 °. This sample was left in the dark for one week, and then the contact angle with water on the sample surface was measured again to find 25 °. Furthermore, this sample was irradiated with ultraviolet light of 0.15 mW / cm.2When the contact angle with water was measured after irradiation with a BLB fluorescent lamp (Sankyo Electric, Black Light Blue, FL20BLB) for 0.2 days, the sample surface was hydrophilized to 8 ° in response to photoexcitation.
[0029]
Example 3 (potassium addition, post-addition)
A titanium oxide layer-coated glazed tile sample having a film thickness of 0.3 μm was obtained in the same manner as in Comparative Example 1. After applying 0.3 g of potassium chloride aqueous solution having a potassium metal concentration of 50 μmol / g to the surface of this sample, 0.4 mW / cm2A sample was obtained by irradiating with a BLB fluorescent lamp for 10 minutes. The contact angle of the sample surface with water immediately after the preparation of the sample was 37 °. This sample was allowed to stand in the dark for one week, and then the contact angle with water on the sample surface was again measured and found to be 27 °. Furthermore, this sample was irradiated with ultraviolet light of 0.15 mW / cm.2When the contact angle with water was measured after irradiating the BLB fluorescent lamp for 0.2 days, the surface of the sample was hydrophilized to 8 ° in response to photoexcitation.
[0030]
Example 4 (sodium addition, post-addition)
A titanium oxide layer-coated glazed tile sample having a film thickness of 0.3 μm was obtained in the same manner as in Comparative Example 1. After 0.3 g of a sodium nitrate aqueous solution having a sodium metal concentration of 50 μmol / g was applied to the sample surface, 0.4 mW / cm2A sample was obtained by irradiating with a BLB fluorescent lamp for 10 minutes. The contact angle of the sample surface with water immediately after the preparation of the sample was 37 °. This sample was allowed to stand in the dark for one week, and then the contact angle with water on the sample surface was again measured and found to be 26 °. Furthermore, this sample was irradiated with UV light of 0.3 mW / cm.2When the contact angle with water was measured after irradiating the BLB fluorescent lamp for 0.2 days, the sample surface was hydrophilized to 7 ° in response to photoexcitation.
[0031]
Example 5 (sodium addition, mixed addition)
Ammonia peptization type titanium oxide sol (Ishihara Sangyo Co., Ltd., STS-11) 18g and sodium nitrate concentration 77gmol / g sodium nitrate aqueous solution 27g were mixed and applied to the surface of 15cm square glazed tile by spray coating method. And calcined at 800 ° C. to obtain a sample. At this time, the thickness of the titanium oxide layer was set to 0.3 μm. The contact angle of the sample surface with water immediately after the preparation of the sample was 17 °. The sample was left in the dark for one week, and then the contact angle with water on the sample surface was measured again. Furthermore, this sample was irradiated with ultraviolet light of 0.15 mW / cm.2When the contact angle with water was measured after irradiation with a BLB fluorescent lamp (Sankyo Electric, Black Light Blue, FL20BLB) for 0.2 days, the sample surface was hydrophilized to 6 ° in response to photoexcitation.
[0032]
Example 6 (magnesium added, post-added)
A titanium oxide layer-coated glazed tile sample having a film thickness of 0.3 μm was obtained in the same manner as in Comparative Example 1. After 0.3 g of magnesium chloride dihydrate aqueous solution having a magnesium metal concentration of 50 μmol / g was applied to the surface of this sample, 0.4 mW / cm2A sample was obtained by irradiating with a BLB fluorescent lamp for 10 minutes. The contact angle of the sample surface with water immediately after the preparation of the sample was 37 °. The sample was left in the dark for one week, and then the contact angle with water on the sample surface was measured again. Furthermore, this sample was irradiated with UV light of 0.3 mW / cm.2When the contact angle with water was measured after irradiating the BLB fluorescent lamp for 0.2 days, the surface of the sample was hydrophilized to 8 ° in response to photoexcitation.
[0033]
Example 7 (magnesium addition, mixed addition)
Ammonia peptization type titanium oxide sol (Ishihara Sangyo Co., Ltd., STS-11) 18g and sodium chloride concentration 77μmol / g magnesium chloride dihydrate aqueous solution 27g are mixed, spray coating method on the surface of 15cm square glazed tile And then baked at 800 ° C. to obtain a sample. At this time, the thickness of the titanium oxide layer was set to 0.3 μm. The contact angle of the sample surface with water immediately after the preparation of the sample was 20 °. This sample was left in the dark for one week, and then the contact angle with water on the sample surface was measured again to find 25 °. Furthermore, this sample was irradiated with ultraviolet light of 0.15 mW / cm.2When the contact angle with water was measured after irradiation with a BLB fluorescent lamp (Sankyo Electric, Black Light Blue, FL20BLB) for 0.2 days, the sample surface was hydrophilized to 7 ° in response to photoexcitation.
[0034]
Example 8 (lithium addition, post-addition)
A titanium oxide layer-coated glazed tile sample having a film thickness of 0.3 μm was obtained in the same manner as in Comparative Example 1. After 0.3 g of lithium chloride aqueous solution having a lithium metal concentration of 50 μmol / g was applied to the surface of this sample, 0.4 mW / cm2A sample was obtained by irradiating with a BLB fluorescent lamp for 10 minutes. The contact angle of the sample surface with water immediately after the preparation of the sample was 36 °. This sample was left in the dark for one week, and then the contact angle with water on the sample surface was measured again. Furthermore, this sample was irradiated with UV light of 0.3 mW / cm.2When the contact angle with water was measured after irradiating the BLB fluorescent lamp for 0.2 days, the surface of the sample was hydrophilized to 8 ° in response to photoexcitation.
[0035]
Example 9 (zinc addition, post-addition)
A titanium oxide layer-coated glazed tile sample having a film thickness of 0.3 μm was obtained in the same manner as in Comparative Example 1. After coating 0.3 g of zinc chloride aqueous solution with a zinc metal concentration of 50 μmol / g on the surface of this sample, 0.4 mW / cm2A sample was obtained by irradiating with a BLB fluorescent lamp for 10 minutes. The contact angle of the sample surface with water immediately after the preparation of the sample was 43 °. This sample was left in the dark for one week, and then the contact angle with water on the sample surface was measured again to find 23 °. Furthermore, this sample was irradiated with ultraviolet light of 0.15 mW / cm.2When the contact angle with water was measured after irradiating the BLB fluorescent lamp for 0.2 days, the surface of the sample was hydrophilized to 8 ° in response to photoexcitation.
[0036]
Example 10 (strontium addition, post-addition)
A titanium oxide layer-coated glazed tile sample having a film thickness of 0.3 μm was obtained in the same manner as in Comparative Example 1. After applying 0.3 g of a strontium chloride hexahydrate aqueous solution having a strontium metal concentration of 50 μmol / g to the surface of the sample, 0.4 mW / cm2A sample was obtained by irradiating with a BLB fluorescent lamp for 10 minutes. The contact angle of the sample surface with water immediately after the preparation of the sample was 33 °. This sample was left in the dark for one week, and then the contact angle with water on the sample surface was measured again to find 23 °. Furthermore, this sample was irradiated with UV light of 0.3 mW / cm.2When the contact angle with water was measured after irradiating the BLB fluorescent lamp for 0.2 days, the sample surface was hydrophilized to 7 ° in response to photoexcitation.
[0037]
Example 11 (strontium addition, mixed addition)
Ammonia peptization-type titanium oxide sol (Ishihara Sangyo Co., Ltd., STS-11) 18g and strontium metal concentration 77μmol / g strontium chloride hexahydrate aqueous solution 27g are mixed and spray coating method on the surface of 15cm square glazed tile And then baked at 700 ° C. to obtain a sample. At this time, the thickness of the titanium oxide layer was set to 0.3 μm. The contact angle of the sample surface with water immediately after the preparation of the sample was 8 °. The sample was left in the dark for one week, and then the contact angle with the water on the sample surface was measured again. Furthermore, this sample was irradiated with ultraviolet light of 0.15 mW / cm.2When the contact angle with water was measured after irradiation with a BLB fluorescent lamp (Sankyo Electric, Black Light Blue, FL20BLB) for 0.2 days, the sample surface was hydrophilized to 5 ° in response to photoexcitation.
[0038]
Example 12 (platinum addition, post-addition)
A titanium oxide layer-coated glazed tile sample having a film thickness of 0.3 μm was obtained in the same manner as in Comparative Example 1. After applying 0.3 g of a chloroplatinic acid hexahydrate aqueous solution having a platinum metal concentration of 50 μmol / g to the surface of the sample, 0.4 mW / cm2A sample was obtained by irradiating with a BLB fluorescent lamp for 10 minutes. The contact angle of the sample surface with water immediately after the preparation of the sample was 42 °. The sample was left in the dark for one week, and then the contact angle with the water on the sample surface was measured again. Furthermore, this sample was irradiated with UV light of 0.3 mW / cm.2When the contact angle with water was measured after irradiating the BLB fluorescent lamp for 0.2 days, the sample surface was hydrophilized to 6 ° in response to photoexcitation. Thereafter, this sample was further irradiated with ultraviolet light of 0.01 mW / cm.2Were irradiated with a white light for 9 days, and the hydrophilicity maintenance under indoor lighting was examined. As a result, the sample surface was maintained at about 9 °.
[0039]
Example 13 (platinum addition, mixed addition)
18 g of ammonia peptization type titanium oxide sol (manufactured by Ishihara Sangyo Co., Ltd., STS-11) and 27 g of chloroplatinic acid hexahydrate aqueous solution with a platinum metal concentration of 77 μmol / g are mixed and spray coated on the surface of a 15 cm square glazed tile. The sample was applied by the method and baked at 700 ° C. At this time, the thickness of the titanium oxide layer was set to 0.3 μm. The contact angle of the sample surface with water immediately after the preparation of the sample was 21 °. The sample was left in the dark for one week, and then the contact angle with water on the sample surface was measured again. Furthermore, this sample was irradiated with ultraviolet light of 0.15 mW / cm.2When the contact angle with water was measured after irradiation with a BLB fluorescent lamp (Sankyo Electric, Black Light Blue, FL20BLB) for 0.2 days, the sample surface was hydrophilized to 7 ° in response to photoexcitation.
[0040]
Example 14 (palladium addition, post-addition)
A titanium oxide layer-coated glazed tile sample having a film thickness of 0.3 μm was obtained in the same manner as in Comparative Example 1. After applying 0.3 g of palladium chloride aqueous solution having a palladium metal concentration of 50 μmol / g to the surface of the sample, 0.4 mW / cm2A sample was obtained by irradiating with a BLB fluorescent lamp for 10 minutes. The contact angle of the sample surface with water immediately after preparation of this sample was 47 °. The sample was left in the dark for one week, and then the contact angle with the water on the sample surface was measured again. Furthermore, this sample was irradiated with UV light of 0.3 mW / cm.2When the contact angle with water was measured after irradiating the BLB fluorescent lamp for 0.2 days, the sample surface was hydrophilized to 6 ° in response to photoexcitation.
[0041]
Example 15 (palladium addition, mixed addition)
18g of ammonia peptization type titanium oxide sol (STS-11, manufactured by Ishihara Sangyo) and 27g of palladium chloride aqueous solution with a palladium metal concentration of 77μmol / g were mixed and applied to the surface of 15cm square glazed tiles by spray coating method. And calcined at 700 ° C. to obtain a sample. At this time, the thickness of the titanium oxide layer was set to 0.3 μm. The contact angle of the sample surface with water immediately after the preparation of the sample was 15 °. This sample was left in a dark place for 1 week, and then the contact angle with water on the sample surface was measured again. Furthermore, this sample was irradiated with ultraviolet light of 0.15 mW / cm.2When the contact angle with water was measured after irradiation with a BLB fluorescent lamp (Sankyo Electric, Black Light Blue, FL20BLB) for 0.2 days, the sample surface was hydrophilized to 7 ° in response to photoexcitation.
[0042]
Example 16 (ruthenium addition, mixed addition)
Ammonia peptization type titanium oxide sol (Ishihara Sangyo Co., Ltd., STS-11) 18g and ruthenium metal concentration of 77μmol / g ruthenium chloride hydrate aqueous solution 27g are mixed, spray coating method on 15cm square glazed tile surface And then baked at 700 ° C. to obtain a sample. At this time, the thickness of the titanium oxide layer was set to 0.3 μm. The contact angle of the sample surface with water immediately after the preparation of the sample was 15 °. The sample was left in the dark for one week, and then the contact angle with the water on the sample surface was measured again. Furthermore, this sample was irradiated with ultraviolet light of 0.15 mW / cm.2When the contact angle with water was measured after irradiation with a BLB fluorescent lamp (Sankyo Electric, Black Light Blue, FL20BLB) for 0.2 days, the sample surface was hydrophilized to 7 ° in response to photoexcitation.
[0043]
Example 17 (aluminum addition, mixed addition)
Ammonia peptization type titanium oxide sol (Ishihara Sangyo Co., Ltd., STS-11) and an aluminum chloride aqueous solution with an aluminum metal concentration of 50 μmol / g were mixed so that the molar ratio of titanium oxide to the amount of aluminum metal was 87:13. The sample was applied to the surface of a 15 cm square glazed tile by a spray coating method and baked at 700 ° C. At this time, the thickness of the titanium oxide layer was set to 0.7 μm. The contact angle of the sample surface with water immediately after the preparation of the sample was 11 °. This sample was left in the dark for one day, and then the contact angle with water on the surface of the sample was again measured and found to be 13 °. Furthermore, this sample was irradiated with ultraviolet light of 0.15 mW / cm.2The BLB fluorescent lamp (Sankyo Electric, Black Light Blue, FL20BLB) was irradiated for 1 day, and the contact angle with water was measured. As a result, the sample surface was hydrophilized to 3 ° in response to photoexcitation.
[0044]
Example 18 (yttria addition)
Nitric acid peptization type titanium oxide sol (manufactured by Ishihara Sangyo Co., Ltd., CS-N) and acetic acid peptization type yttrium oxide sol (manufactured by Taki Chemical Co., Ltd., solute concentration 15% by weight, average crystallite diameter 4 nm, pH 7.6) After mixing so that the molar ratio with yttrium oxide was 88:12, it was applied to the surface of a 15 cm square glazed tile by a spray coating method and fired at 800 ° C. for 1 hour to obtain a sample. The film thickness at this time was set to 0.3 μm. The contact angle of the sample surface with water immediately after firing was 21 °. The obtained sample was left in the dark for 2 weeks. Thereafter, when the contact angle of the sample surface with water was measured again, it was 25 °. Then, UV illuminance 0.3mW / cm2When the contact angle with water was measured after irradiating the BLB fluorescent lamp for 13 days, the sample surface was hydrophilized to 2 ° in response to photoexcitation. Then UV illuminance 0.004mW / cm2The white light was irradiated for 4 days, and the hydrophilicity maintenance under indoor lighting was examined. As a result, the sample surface was maintained at about 9 °.
[0045]
Example 19 (alumina added)
Nitric acid peptized titanium oxide sol (Ishihara Sangyo, CS-C) and aluminum oxide sol (Nissan Chemical, alumina sol-100) were mixed so that the molar ratio of titanium oxide to aluminum oxide was 88:12. Thereafter, the sample was applied to the surface of a 15 cm square glazed tile by a spray coating method and fired at 800 ° C. for 1 hour to obtain a sample. The film thickness at this time was set to 0.3 μm. The contact angle of the sample surface with water immediately after firing was 2 °. The obtained sample was left in the dark for 2 weeks. Thereafter, when the contact angle of the sample surface with water was measured again, it was 20 °. Then UV illumination intensity 0.3mW / cm2When the contact angle with water was measured after irradiating the BLB fluorescent lamp for 13 days, the surface of the sample was again made hydrophilic by 2 ° in response to photoexcitation. Then UV illuminance 0.004mW / cm2Were irradiated with white light for 2 days, and the hydrophilicity maintenance under indoor lighting was examined. As a result, the sample surface was maintained at about 9 °.
[0046]
Example 20 (Zirconia added)
Ammonia peptization type titanium oxide sol (manufactured by Ishihara Sangyo Co., Ltd., STS-11) and zirconium oxide sol Indian Chemical Co., Ltd., NZS-30B) were mixed so that the molar ratio of titanium oxide and zirconium oxide was 88:12. Thereafter, the sample was applied to the surface of a 15 cm square glazed tile by a spray coating method and fired at 800 ° C. for 1 hour to obtain a sample. The film thickness at this time was set to 0.3 μm. The contact angle of the sample surface with water immediately after firing was 23 °. The obtained sample was left in the dark for one week. Thereafter, when the contact angle of the sample surface with water was measured again, it was 35 °. Then UV illumination intensity 0.3mW / cm2After the BLB fluorescent lamp was irradiated for 13 days, the contact angle with water was measured. As a result, the sample surface was hydrophilized to 4 ° in response to photoexcitation.
[0047]
Example 21 (ceria addition)
After mixing the ammonia peptization type titanium oxide sol (Ishihara Sangyo, STS-11) and the cerium oxide sol (Taki Chemical W-15) so that the molar ratio of titanium oxide to cerium oxide is 88:12. A 15 cm square glazed tile surface was applied by spray coating, and baked at 800 ° C. for 1 hour to obtain a sample. The film thickness at this time was set to 0.3 μm. The contact angle of the sample surface with water immediately after firing was 22 °. The obtained sample was left in the dark for one week. Thereafter, when the contact angle of the sample surface with water was measured again, it was 38 °. Then UV illumination intensity 0.3mW / cm2After the BLB fluorescent lamp was irradiated for 13 days, the contact angle with water was measured, and the sample surface was hydrophilized to 6 ° in response to photoexcitation.
[0048]
Example 22 (Relationship between contact angle with water and anti-fogging property)
A silica coating solution was prepared by adding 6 parts by weight of tetraethoxysilane, 6 parts by weight of pure water, and 2 parts by weight of 36% hydrochloric acid as a hydrolysis inhibitor for tetraethoxysilane to 86 parts by weight of ethanol. Since the solution generated heat by mixing, the mixture was allowed to cool for about 1 hour. This solution was applied to the surface of a 10 cm square soda lime glass plate by a flow coating method and dried at a temperature of 80 ° C. During this time, tetraethoxysilane was first hydrolyzed to become silanol, and then a thin film of amorphous silica was formed on the surface of the glass plate by dehydration condensation polymerization of silanol. Next, a titania coating solution was prepared by adding 0.1 part by weight of 36% hydrochloric acid as a hydrolysis inhibitor to a mixture of 1 part by weight of tetraethoxytitanium (Merck) and 9 parts by weight of ethanol. The surface of the glass plate was applied in a dry air by a flow coating method. The coating amount is 45 μg / cm in terms of titania2It was. Next, this glass was kept at a temperature of 150 ° C. for 10 minutes to complete the hydrolysis of tetraethoxytitanium, and the produced titanium hydroxide was subjected to dehydration condensation polymerization to produce amorphous titania. Thus, a glass plate in which amorphous titania was coated on amorphous silica was obtained. This glass plate was baked at a temperature of 500 ° C. to convert amorphous titania into anatase titania. The obtained sample was left in the dark for several days. Next, this glass plate is placed in a desiccator (temperature 24 ° C., humidity 45 to 50%) containing a BLB fluorescent lamp, and 0.5 mW / cm2The sample was irradiated with ultraviolet rays at an illuminance of 1 day to obtain # 1 sample. The contact angle of the # 1 sample with water was measured and found to be 0 °. Next, the # 1 sample was taken out of the desiccator and quickly transferred onto a warm bath maintained at 60 ° C., and the transmittance was measured after 15 seconds. The measured transmittance was divided by the original transmittance to determine the change in transmittance due to haze generated by condensation of water vapor. A titania coating solution was prepared by adding 0.1 parts by weight of 36% hydrochloric acid as a hydrolysis inhibitor to a mixture of 1 part by weight of tetraethoxytitanium (Merck) and 9 parts by weight of ethanol. The surface of the plate was applied by a flow coating method in dry air. The coating amount is 45 μg / cm in terms of titania2It was. Next, this glass was kept at a temperature of 150 ° C. for 10 minutes to complete the hydrolysis of tetraethoxytitanium, and the produced titanium hydroxide was subjected to dehydration condensation polymerization to produce amorphous titania. Thus, a glass plate coated with amorphous titania was obtained. This glass plate was baked at a temperature of 500 ° C. to convert amorphous titania into anatase titania. The obtained sample was left in the dark for several days. Next, this glass plate is placed in a desiccator (temperature 24 ° C., humidity 45 to 50%) containing a BLB fluorescent lamp, and 0.5 mW / cm2The sample was irradiated with ultraviolet rays until the contact angle with water reached 3 ° at an illuminance of 2 to obtain a sample # 2. The # 2 sample was then left in the dark. At different time intervals, the # 2 sample was removed from the dark and the contact angle with water was measured each time. Furthermore, after the sample # 2 was once transferred into a desiccator (temperature 24 ° C., humidity 45 to 50%) and the temperature was equilibrated, it was quickly transferred onto a warm bath maintained at 60 ° C. as in the case of the sample # 1. The transmittance was measured after 2 seconds, and the change in transmittance due to cloudiness produced by condensation of water vapor was determined. For comparison, the contact angle with water was measured for commercially available flat glass, acrylic resin, polyvinyl chloride plate, and polycarbonate plate. Furthermore, after these plate materials were transferred into a desiccator under the same conditions and the temperature was equilibrated, similarly, the plate material was quickly transferred onto a warm bath maintained at 60 ° C., and the transmittance was measured after 15 seconds. The change in transmittance due to the cloudiness was determined. The obtained results are shown in Table 1. From the results in Table 1, it was confirmed that if the contact angle with water is 10 ° or less, extremely high antifogging properties are realized. In any of the above Examples 1 to 21, the contact angle with water becomes 10 ° or less in response to photoexcitation, and therefore, if a transparent base material is selected as the base material, it is considered that all exhibit excellent antifogging properties. It is done.
[0049]
[Table 1]
Figure 0003613084
[0050]
Example 23 (Relationship between contact angle with water and antifouling property)
Various samples were subjected to the sludge test shown below. The examined samples are the following # 1 to # 6 samples. # 1 sample: a mixture of anatase-type titanium oxide sol (manufactured by Ishihara Sangyo Co., Ltd., STS-11) and colloidal silica sol (Snowtex 20) (silica content of 10% by weight) in terms of solid content is only 4.5 mg, It was applied to a 15 cm square glazed tile (manufactured by Totoki Equipment, AB02E01) and baked at a temperature of 880 ° C. for 10 minutes to obtain a # 0 sample. This # 0 sample was irradiated with ultraviolet rays at 0.5 mW / cm 2 for 3 hours using a BLB fluorescent lamp to obtain a # 1 sample. # 2 sample: Further, 0.3 g of a copper acetate monohydrate aqueous solution having a copper concentration of 50 μmol / g was applied to the # 0 sample, and then 0.4 mW / cm using a BLB fluorescent lamp.2The copper was fixed by irradiating with ultraviolet illuminance of 10 minutes. Then, 0.5mW / cm using BLB fluorescent lamp2No. 2 sample was obtained by irradiating with ultraviolet rays at an ultraviolet illuminance of 3 hours. # 3 Sample: Glazed tile (manufactured by Totoki Equipment, AB02E01). # 4 Sample: Acrylic resin (PMMA) plate. # 5 Sample: Artificial marble board (ML03, manufactured by Tochiki Co., Ltd.). # 6 Sample: Polytetrafluoroethylene (PTFE) plate. The sludge test was conducted as follows. First, a sludge slurry was prepared as follows. That is, a powder containing 64.3% by weight of yellow ocher, 21.4% by weight of calcined Kanto loam, 4.8% by weight of hydrophobic carbon black, 4.8% by weight of silica powder, and 4.7% by weight of hydrophilic carbon black. A slurry was prepared by suspending the mixture in water at a concentration of 1.05 g / liter. Samples # 1 to # 6 inclined at 45 degrees were allowed to flow down 150 ml of the slurry and dried for 15 minutes, then 150 ml of distilled water was allowed to flow down and dried for 15 minutes, and this cycle was repeated 25 times. Changes in color difference and gloss before and after the test were examined. The change in color difference was determined by subtracting the color difference on the sample surface before the test from the color difference on the sample surface after the test. The color difference was in accordance with Japanese Industrial Standard (JIS) H0201, using ΔE * display. The glossiness was measured in accordance with the provisions of Japanese Industrial Standard (JIS) Z8741, and the glossiness change was determined by dividing the glossiness of the sample surface after the test by the glossiness of the sample surface before the test. The results are shown in Table 2.
[0051]
[Table 2]
Figure 0003613084
[0052]
Furthermore, an outdoor dirt acceleration test was conducted on the # 1, # 3, # 4, # 6, and # 7 samples shown below. # 7 Sample: Silica sol (manufactured by Nippon Synthetic Rubber, Glassca A solution) and trimethoxysilane (manufactured by Nippon Synthetic Rubber, Glassca B solution) were mixed in a 10 cm square aluminum substrate so that the weight ratio was 3: 1. The liquid material was applied and cured at 150 ° C. to obtain a silicone-coated plate (# 7 sample) having a film thickness of 3 μm. The outdoor dirt acceleration test was conducted as follows. That is, the outdoor dirt acceleration test apparatus shown in FIGS. 1A and 1B was installed on the roof of the building in Chigasaki City. Referring to FIGS. 1 (a) and 1 (b), the apparatus includes an inclined sample support surface 22 supported by a frame 20, and a sample 24 is attached thereto. A roof 26 inclined forward is fixed to the top of the frame. This roof is made of a corrugated plastic plate, and the collected rain flows down on the surface of the sample 24 attached to the sample support surface 22. The sample # 1, sample # 3, sample # 4, sample # 6, and sample # 7 were attached to the sample support surface 22 of this apparatus and exposed outdoors for one month. The adhesion of dirt in this test tends to attach a large amount of dirt to the vertical streaks that are the channels of rainy weather. Therefore, the degree of contamination on the sample surface was evaluated by subtracting the color difference before the test from the color difference of the vertical streaks after the test. The results are shown in Table 3.
[0053]
[Table 3]
Figure 0003613084
[0054]
In order to facilitate understanding, the contact angles with water and the color difference changes shown in Tables 2 and 3 were plotted in the graph of FIG. In the graph of FIG. 2, curve A shows the relationship between the color difference change caused by combustion products such as carbon black in the atmosphere and dirt such as urban dust in the dirt acceleration test and the contact angle with water, and curve B shows the sludge test. Shows the relationship between the change in color difference due to sludge and the contact angle with water. Referring to the graph of FIG. 2, as can be clearly seen from the curve A, as the contact angle of the substrate with water increases, the contamination due to the combustion products and urban dust becomes conspicuous. This is because pollutants such as combustion products and urban dust are basically hydrophobic and therefore tend to adhere to hydrophobic surfaces. On the other hand, curve B shows that dirt due to sludge exhibits a peak value when the contact angle with water is in the range of 20 ° to 50 °. This is because an inorganic substance such as mud and soil has a hydrophilicity with a contact angle with water of about 20 ° to 50 °, and tends to adhere to a surface having a similar hydrophilicity. Therefore, if the surface is made hydrophilic with a contact angle with water of 20 ° or less, or if the contact angle with water is hydrophobized to 60 ° or more, adhesion of inorganic substances to the surface can be prevented. I understand. When the contact angle with water is 20 ° or less, the dirt due to sludge decreases. When the surface becomes highly hydrophilic with a contact angle with water of 20 ° or less, the affinity for water is higher than the affinity for inorganic substances. This is because the adhesion of the inorganic substance is inhibited by the water preferentially adhering to the surface, and the inorganic substance to be adhered is easily washed away by the water. From the above, in order to prevent both hydrophobic dirt and hydrophilic dirt substances from adhering to the surface of buildings, etc., or dirt accumulated on the surface is washed away by rain and the surface is self-cleaned. It can be seen that the contact angle with water on the surface should be 20 ° or less, preferably 10 ° or less, and more preferably 5 ° or less. In any of the above Examples 1 to 21, the contact angle with water becomes 10 ° or less in response to photoexcitation, and thus it is considered that all of them exhibit excellent cleanliness by rain or washing.
[0055]
【The invention's effect】
In addition to optical semiconductors on the substrate surfaceAt least one selected from the group consisting of lithium, sodium, potassium, calcium, strontium, aluminum, alumina, zirconia, and yttria that has the effect of promoting hydrophilicity on the surface of the substrate.Even when the optical semiconductor-containing layer is formed on the surface of the substrate by the sol coating and baking method, the photo-semiconductor is photoexcited by a light source that is commonly used such as sunlight or indoor lighting. Until 10 ° or less. In addition, even when an optical semiconductor-containing layer is formed on the substrate surface by an alkoxide method, a sputtering method, or a method using curing of a binder such as silica or silicone other than the sol coating baking method, photoexcitation of the optical semiconductor is performed. Improvement in hydrophilic performance can be expected according to the conditions.Furthermore, in the case of alumina or yttria, 0.01 mW / cm 2 Under the weak excitation light irradiation of less than about less, the hydrophilicity maintenance property in a dark place comes to be exhibited better.
[Brief description of the drawings]
1A and 1B are diagrams showing an outdoor dirt acceleration test apparatus, in which FIG. 1A is a front view, and FIG. 1B is a side view (units of dimensional numerical values are millimeters).
FIG. 2 is a diagram showing the degree of contamination of a surface having different hydrophilicity by urban dust and sludge.

Claims (10)

基材表面に、光半導体と、それ以外にリチウム、ナトリウム、カリウム、カルシウム、ストロンチウム、アルミニウム、アルミナ、ジルコニア、イットリアの1群から選ばれた少なくとも1種を含む層が形成されており、前記層の表面が、太陽光による前記光半導体の光励起に応じて水との接触角に換算して20°以下の親水性を呈し、もって前記太陽光があたり、表面に付着した汚れが降雨により簡単に落とせるようになることを特徴とする、太陽光があたり、付着した汚れが降雨により洗い流される環境下において用いられる部材。 A layer containing an optical semiconductor and at least one selected from the group consisting of lithium, sodium, potassium, calcium, strontium, aluminum, alumina, zirconia, and yttria is formed on the surface of the substrate. The surface of the surface exhibits a hydrophilicity of 20 ° or less in terms of contact angle with water according to the photoexcitation of the optical semiconductor by sunlight, so that the sunlight hits the surface, and dirt attached to the surface is easily removed by rainfall. A member that is used in an environment where sunlight falls and the attached dirt is washed away by rain, which is characterized by being able to be dropped. 基材表面に、光半導体と、それ以外にリチウム、ナトリウム、カリウム、カルシウム、ストロンチウム、アルミニウム、アルミナ、ジルコニア、イットリアの1群から選ばれた少なくとも1種を含む層が形成されており、前記層の表面が蛍光灯および/または白熱電灯である室内照明による前記光半導体の光励起に応じて水との接触角に換算して20°以下の親水性を呈し、もって前記室内照明があたり、表面に付着した汚れが水洗により簡単に落とせるようになることを特徴とする、室内照明があたり、付着した汚れが水洗により簡単に落とせる環境下において用いられる部材。 The substrate surface, and the optical semiconductor, lithium otherwise, sodium, potassium, calcium, strontium, aluminum, alumina, zirconia, including the layers is formed of at least one selected from a group of yttria, the The surface of the layer exhibits a hydrophilicity of 20 ° or less in terms of contact angle with water in accordance with photoexcitation of the optical semiconductor by room lighting that is a fluorescent lamp and / or an incandescent lamp, and thus the room lighting hits, A member used in an environment where indoor lighting is applied and the attached dirt can be easily removed by washing, wherein the dirt attached to the surface can be easily removed by washing with water. 前記太陽光又は室内照明下における半導体の光励起に応じた部材表面の親水化は水との接触角に換算して10°以下であることを特徴とする請求項1又はのいずれかに記載の部材。According to claim 1 or 2, wherein the hydrophilic member surface corresponding to the semiconductor light excitation is less converted to 10 ° to the contact angle with water under the sunlight or room lighting Element. 前記太陽光又は室内照明下における半導体の光励起に応じた部材表面の親水化は水との接触角に換算して5°以下であることを特徴とする請求項1又はのいずれかに記載の部材。According to claim 1 or 2, wherein the hydrophilic member surface corresponding to the semiconductor light excitation is 5 ° or less in terms of the contact angle with water under the sunlight or room lighting Element. 基材表面に、光半導体以外に添加する物質にアルミナ又はイットリアを選ぶと、0.01mW/cmWhen alumina or yttria is selected as the material to be added to the substrate surface in addition to the optical semiconductor, 0.01 mW / cm 22 未満程度の微弱な励起光照射下、あるいは暗所での親水維持性がよりよく発揮されることを特徴とする請求項1又は2のいずれかに記載の部材。The member according to any one of claims 1 and 2, which exhibits better hydrophilicity maintenance under weak excitation light irradiation or less in the dark. 光半導体粒子と、それ以外にリチウム、ナトリウム、カリウム、カルシウム、ストロンチウム、アルミニウム、アルミナ、ジルコニア、イットリアの1群から選ばれた少なくとも1種を含有し、基材上に適用することにより、該基材の表面に光半導体を含有する層を形成可能であり、前記基材は前記層を形成することにより、その表面が前記光半導体の太陽光による光励起に応じて、水との接触角に換算して20°以下の親水性を呈し、もって前記太陽光があたり、表面に付着した汚れが降雨により簡単に落とせるようになることを特徴とする、太陽光があたり、付着した汚れが降雨にさらされる環境下において用いられる部材を形成するための防汚性コーティング組成物。 It contains at least one member selected from the group consisting of optical semiconductor particles and lithium, sodium, potassium, calcium, strontium, aluminum, alumina, zirconia, and yttria. It is possible to form a layer containing an optical semiconductor on the surface of the material, and the base material is converted into a contact angle with water according to photoexcitation of the optical semiconductor by sunlight by forming the layer. The surface is exposed to sunlight, and the dirt attached to the surface can be easily removed by rain, and the attached dirt is exposed to the rain. An antifouling coating composition for forming a member used in an environment . 光半導体粒子と、それ以外にリチウム、ナトリウム、カリウム、カルシウム、ストロンチウム、アルミニウム、アルミナ、ジルコニア、イットリアの1群から選ばれた少なくとも1種を含有し、基材上に適用することにより、該基材の表面に光半導体を含有する層を形成可能であり、前記基材は前記層を形成することにより、その表面が前記光半導体の、蛍光灯及び/または白熱電灯である室内照明による光励起に応じて、水との接触角に換算して20°以下の親水性を呈し、もって前記室内照明があたり、表面に付着した汚れが水洗により簡単に落とせるようになることを特徴とする、室内照明があたり、付着した汚れが水洗により簡単に落とせる環境下において用いられる部材を形成するための防汚性コーティング組成物。 It contains at least one member selected from the group consisting of optical semiconductor particles and lithium, sodium, potassium, calcium, strontium, aluminum, alumina, zirconia, and yttria. A layer containing an optical semiconductor can be formed on the surface of the material, and the base material is formed by forming the layer, so that the surface of the optical semiconductor can be excited by light from a room with a fluorescent lamp and / or an incandescent lamp. Accordingly, the interior illumination is characterized by exhibiting a hydrophilicity of 20 ° or less in terms of a contact angle with water, so that the interior illumination is hit and dirt adhered to the surface can be easily removed by washing with water. An antifouling coating composition for forming a member to be used in an environment where the attached dirt can be easily removed by washing with water . 前記表面層の親水性は、水との接触角に換算して10°以下であることを特徴とする請求項6又は7のいずれかに記載の光触媒性自己浄化性部材形成用コーティング組成物。8. The coating composition for forming a photocatalytic self-cleaning member according to claim 6, wherein the hydrophilicity of the surface layer is 10 ° or less in terms of a contact angle with water. 前記表面層の親水性は、水との接触角に換算して5°以下であることを特徴とする請求項6又は7のいずれかに記載のコーティング組成物The coating composition according to claim 6 or 7, wherein the hydrophilicity of the surface layer is 5 ° or less in terms of a contact angle with water. 基材表面に、光半導体以外に添加する物質にアルミナ又はイットリアを選ぶと、0.01mW/cmWhen alumina or yttria is selected as the material to be added to the substrate surface in addition to the optical semiconductor, 0.01 mW / cm 22 未満程度の微弱な励起光照射下、あるいは暗所での親水維持性がよりよく発揮されることを特徴とする請求項6又は7のいずれかに記載のコーティング組成物。The coating composition according to any one of claims 6 and 7, which exhibits better hydrophilicity maintenance under weak excitation light irradiation or less in the dark.
JP23956799A 1995-12-22 1999-08-26 A member that exhibits hydrophilicity in response to photoexcitation of an optical semiconductor Expired - Lifetime JP3613084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23956799A JP3613084B2 (en) 1995-12-22 1999-08-26 A member that exhibits hydrophilicity in response to photoexcitation of an optical semiconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35464995 1995-12-22
JP7-354649 1995-12-22
JP23956799A JP3613084B2 (en) 1995-12-22 1999-08-26 A member that exhibits hydrophilicity in response to photoexcitation of an optical semiconductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8195184A Division JP3003581B2 (en) 1995-12-22 1996-06-20 A member that exhibits hydrophilicity in response to optical excitation of an optical semiconductor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000227055A Division JP2001089752A (en) 1995-12-22 2000-07-27 Member capable of obtaining hydrophilic nature in accordance with photoexcitation of optical semiconductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000136370A JP2000136370A (en) 2000-05-16
JP3613084B2 true JP3613084B2 (en) 2005-01-26

Family

ID=18438979

Family Applications (71)

Application Number Title Priority Date Filing Date
JP8083499A Pending JPH09231821A (en) 1995-12-22 1996-04-05 Luminaire and method for maintaining illuminance
JP13408196A Expired - Lifetime JP3385850B2 (en) 1995-12-22 1996-04-19 Composite material with hydrophilicity
JP10079496A Expired - Lifetime JP3740736B2 (en) 1995-12-22 1996-04-23 HEAT EXCHANGER AND HEAT EXCHANGER OPERATION METHOD
JP15017196A Expired - Lifetime JP3760509B2 (en) 1995-12-22 1996-05-22 Greenhouse ceiling and its condensation prevention method
JP8150410A Pending JPH09225263A (en) 1995-12-22 1996-05-23 Air pollutant removing filter, air pollutant removing fan and ventilator using the fan
JP8156383A Pending JPH09231849A (en) 1995-12-22 1996-05-29 Insulator and dirt preventing method therefore
JP8136777A Pending JPH09227178A (en) 1995-12-22 1996-05-30 Laminated glass and its production
JP13653596A Expired - Lifetime JP3339304B2 (en) 1995-12-22 1996-05-30 Painted object and painting method
JP13782996A Ceased JP3189682B2 (en) 1995-12-22 1996-05-31 Antifouling material
JP8168643A Pending JPH09232096A (en) 1995-12-22 1996-06-06 Electrification preventing method, and electrification preventive composite material
JP8145265A Pending JPH09225276A (en) 1995-12-22 1996-06-07 Separating membrane and formation of surface layer to separating membrane
JP8168662A Pending JPH09225389A (en) 1995-12-22 1996-06-10 Method for making member hydrophilic and preventing deterioration by ultraviolet ray, hydrophilic ultraviolet resistant member and its manufacture
JP8158518A Pending JPH09225021A (en) 1995-12-22 1996-06-19 Medical material
JP8195184A Expired - Lifetime JP3003581B2 (en) 1995-12-22 1996-06-20 A member that exhibits hydrophilicity in response to optical excitation of an optical semiconductor
JP8272814A Pending JPH09226041A (en) 1995-12-22 1996-09-06 Member for preventing attachment of condensation water drop and method for preventing attachment of condensation water drop of the member
JP8272815A Pending JPH09224957A (en) 1995-12-22 1996-09-06 Laser beam focusing lens, dentistry and oral surgery treatment device using the same, and preventing device of laser beam irregular reflection due to stuck waterdrop
JP27280996A Expired - Fee Related JP3588202B2 (en) 1995-12-22 1996-09-07 Anti-fog road mirror and its anti-fog method
JP8272808A Pending JPH09229724A (en) 1995-12-22 1996-09-07 Non-fogging cover for instrument panel of motorcycle, motorcycle equipped with the cover, and fogging-preventing method for the cover
JP27519096A Expired - Lifetime JP3277983B2 (en) 1995-12-22 1996-09-10 Outdoor display panel and its cleaning method
JP8275189A Pending JPH09231807A (en) 1995-12-22 1996-09-10 Vehicle headlight cover, vehicle with it, and its defogging method
JP8238927A Pending JPH09227159A (en) 1995-12-22 1996-09-10 Front and rear window glass of vehicle
JP8281225A Pending JPH09230107A (en) 1995-12-22 1996-09-17 Anti-fogging glass lens and its anti-fogging method
JP8281222A Pending JPH09230106A (en) 1995-12-22 1996-09-17 Anti-fogging camera filter and its anti-fogging method
JP8281220A Expired - Lifetime JP3003593B2 (en) 1995-12-22 1996-09-17 Photocatalytic hydrophilic member
JP28122196A Expired - Lifetime JP3743075B2 (en) 1995-12-22 1996-09-17 Antifogging dental mirror and antifogging method
JP8281223A Expired - Lifetime JP3063968B2 (en) 1995-12-22 1996-09-17 Anti-fog vehicle mirror, automobile equipped with the same, anti-fog film for vehicle mirror and anti-fog method for vehicle mirror
JP8281224A Pending JPH09228134A (en) 1995-12-22 1996-09-17 Antifogging helmet shield and antifogging method
JP8282806A Pending JPH09228057A (en) 1995-12-22 1996-09-18 Wheel and its cleaning method
JP08282811A Expired - Fee Related JP3075195B2 (en) 1995-12-22 1996-09-18 Anti-fog wash mirror, vanity table provided with the same, anti-fog film for wash mirror and anti-fog method for wash mirror
JP8282808A Pending JPH09228765A (en) 1995-12-22 1996-09-18 Blind and manufacture thereof
JP8246180A Pending JPH09230493A (en) 1995-12-22 1996-09-18 Camera
JP8282805A Pending JPH09231499A (en) 1995-12-22 1996-09-18 Light source cover for traffic signal, traffic signal with it, and cleaning method for light source cover for traffic signal
JP28281296A Expired - Lifetime JP3612896B2 (en) 1995-12-22 1996-09-18 Exterior wall building materials and methods for cleaning them
JP8282809A Pending JPH09230108A (en) 1995-12-22 1996-09-18 Anti-fogging plastic lens and its anti-fogging method
JP8282810A Pending JPH09228545A (en) 1995-12-22 1996-09-18 Glass block and its cleaning method
JP8282807A Pending JPH09224874A (en) 1995-12-22 1996-09-18 Water-closet bowl made of resin
JP8284533A Pending JPH09227161A (en) 1995-12-22 1996-09-19 Pane, film for applying thereto and antifogging and cleaning thereof
JP8284532A Pending JPH09227805A (en) 1995-12-22 1996-09-19 Photocatalytic hydrophilic coating composition
JP28453496A Expired - Lifetime JP3173391B2 (en) 1995-12-22 1996-09-19 Hydrophilic film, and method for producing and using the same
JP28579796A Expired - Lifetime JP3697795B2 (en) 1995-12-22 1996-09-20 Display and cleaning method thereof
JP28895696A Expired - Fee Related JP3588206B2 (en) 1995-12-22 1996-09-25 Self-cleaning road decorative panel, and method of cleaning road decorative panel
JP28895596A Expired - Lifetime JP3774955B2 (en) 1995-12-22 1996-09-25 Self-cleaning handrail and handrail cleaning method
JP28895496A Expired - Fee Related JP3588205B2 (en) 1995-12-22 1996-09-25 Self-cleaning guard fence and method of cleaning guard fence
JP8291006A Pending JPH09229767A (en) 1995-12-22 1996-09-26 Pyroelectric infrared detector
JP8291005A Pending JPH09230031A (en) 1995-12-22 1996-09-26 Inter-vehicle distance detecting device and automobile having it
JP8291007A Pending JPH09225054A (en) 1995-12-22 1996-09-26 Gas mask and storing device for gas mask
JP8297248A Pending JPH09227169A (en) 1995-12-22 1996-10-18 Transfer sheet, and transferring of photocatalytic and hydrophilic thin film
JP8298236A Pending JPH09227162A (en) 1995-12-22 1996-10-22 Vehicle pane for securing rainy weather view, and automobile mounted therewith
JP8298235A Pending JPH09230119A (en) 1995-12-22 1996-10-22 Road mirror for assuring visual field in rainy weather
JP8298237A Pending JPH09229546A (en) 1995-12-22 1996-10-22 Door for refrigerated showcase having see-through ensuring property
JP8298234A Pending JPH09226531A (en) 1995-12-22 1996-10-22 Rainy weather visibility securable vehicular mirror, automobile and two wheeler having it
JP8306997A Pending JPH09226060A (en) 1995-12-22 1996-11-01 Lid for heating container having fog resistance
JP8307000A Pending JPH09224800A (en) 1995-12-22 1996-11-01 Glassware and water-washing method
JP8323516A Pending JPH09241038A (en) 1995-12-22 1996-11-19 Photocatalytic hydrophilic member and its production
JP8340470A Pending JPH09225387A (en) 1995-12-22 1996-12-05 Hydrophilic member and method to make surface of member hydrophilic
JP34047296A Expired - Fee Related JP3348613B2 (en) 1995-12-22 1996-12-05 Photocatalytic hydrophilic coating composition
JP34047196A Expired - Lifetime JP3303696B2 (en) 1995-12-22 1996-12-05 Photocatalytic hydrophilic coating composition
JP08344585A Expired - Lifetime JP3141802B2 (en) 1995-12-22 1996-12-09 Hydrophilic member and method for maintaining hydrophilicity
JP23956899A Expired - Lifetime JP3613085B2 (en) 1995-12-22 1999-08-26 Photocatalytic hydrophilic member
JP23956799A Expired - Lifetime JP3613084B2 (en) 1995-12-22 1999-08-26 A member that exhibits hydrophilicity in response to photoexcitation of an optical semiconductor
JP34300999A Expired - Fee Related JP3844182B2 (en) 1995-12-22 1999-12-02 Hydrophilic film and method for producing and using the same
JP2000180301A Expired - Lifetime JP3414365B2 (en) 1995-12-22 2000-06-15 Building materials for exterior walls
JP2000181284A Pending JP2001048679A (en) 1995-12-22 2000-06-16 Photocatalytic hydrophilic tile and its production
JP2000181287A Expired - Fee Related JP3465664B2 (en) 1995-12-22 2000-06-16 Building materials for exterior walls
JP2000181286A Expired - Lifetime JP3414367B2 (en) 1995-12-22 2000-06-16 Building materials for exterior walls
JP2000227055A Withdrawn JP2001089752A (en) 1995-12-22 2000-07-27 Member capable of obtaining hydrophilic nature in accordance with photoexcitation of optical semiconductor and manufacturing method thereof
JP2000227056A Pending JP2001129916A (en) 1995-12-22 2000-07-27 Photocatalytic hydrophilic member
JP2000247609A Pending JP2001122679A (en) 1995-12-22 2000-08-17 Antifouling tile
JP2001140242A Pending JP2002030258A (en) 1995-12-22 2001-05-10 Coated material and method for coating
JP2002020533A Expired - Fee Related JP3882625B2 (en) 1995-12-22 2002-01-29 Sound insulation wall and cleaning method for sound insulation wall
JP2002244772A Pending JP2003113345A (en) 1995-12-22 2002-08-26 Antistatic coating composition

Family Applications Before (59)

Application Number Title Priority Date Filing Date
JP8083499A Pending JPH09231821A (en) 1995-12-22 1996-04-05 Luminaire and method for maintaining illuminance
JP13408196A Expired - Lifetime JP3385850B2 (en) 1995-12-22 1996-04-19 Composite material with hydrophilicity
JP10079496A Expired - Lifetime JP3740736B2 (en) 1995-12-22 1996-04-23 HEAT EXCHANGER AND HEAT EXCHANGER OPERATION METHOD
JP15017196A Expired - Lifetime JP3760509B2 (en) 1995-12-22 1996-05-22 Greenhouse ceiling and its condensation prevention method
JP8150410A Pending JPH09225263A (en) 1995-12-22 1996-05-23 Air pollutant removing filter, air pollutant removing fan and ventilator using the fan
JP8156383A Pending JPH09231849A (en) 1995-12-22 1996-05-29 Insulator and dirt preventing method therefore
JP8136777A Pending JPH09227178A (en) 1995-12-22 1996-05-30 Laminated glass and its production
JP13653596A Expired - Lifetime JP3339304B2 (en) 1995-12-22 1996-05-30 Painted object and painting method
JP13782996A Ceased JP3189682B2 (en) 1995-12-22 1996-05-31 Antifouling material
JP8168643A Pending JPH09232096A (en) 1995-12-22 1996-06-06 Electrification preventing method, and electrification preventive composite material
JP8145265A Pending JPH09225276A (en) 1995-12-22 1996-06-07 Separating membrane and formation of surface layer to separating membrane
JP8168662A Pending JPH09225389A (en) 1995-12-22 1996-06-10 Method for making member hydrophilic and preventing deterioration by ultraviolet ray, hydrophilic ultraviolet resistant member and its manufacture
JP8158518A Pending JPH09225021A (en) 1995-12-22 1996-06-19 Medical material
JP8195184A Expired - Lifetime JP3003581B2 (en) 1995-12-22 1996-06-20 A member that exhibits hydrophilicity in response to optical excitation of an optical semiconductor
JP8272814A Pending JPH09226041A (en) 1995-12-22 1996-09-06 Member for preventing attachment of condensation water drop and method for preventing attachment of condensation water drop of the member
JP8272815A Pending JPH09224957A (en) 1995-12-22 1996-09-06 Laser beam focusing lens, dentistry and oral surgery treatment device using the same, and preventing device of laser beam irregular reflection due to stuck waterdrop
JP27280996A Expired - Fee Related JP3588202B2 (en) 1995-12-22 1996-09-07 Anti-fog road mirror and its anti-fog method
JP8272808A Pending JPH09229724A (en) 1995-12-22 1996-09-07 Non-fogging cover for instrument panel of motorcycle, motorcycle equipped with the cover, and fogging-preventing method for the cover
JP27519096A Expired - Lifetime JP3277983B2 (en) 1995-12-22 1996-09-10 Outdoor display panel and its cleaning method
JP8275189A Pending JPH09231807A (en) 1995-12-22 1996-09-10 Vehicle headlight cover, vehicle with it, and its defogging method
JP8238927A Pending JPH09227159A (en) 1995-12-22 1996-09-10 Front and rear window glass of vehicle
JP8281225A Pending JPH09230107A (en) 1995-12-22 1996-09-17 Anti-fogging glass lens and its anti-fogging method
JP8281222A Pending JPH09230106A (en) 1995-12-22 1996-09-17 Anti-fogging camera filter and its anti-fogging method
JP8281220A Expired - Lifetime JP3003593B2 (en) 1995-12-22 1996-09-17 Photocatalytic hydrophilic member
JP28122196A Expired - Lifetime JP3743075B2 (en) 1995-12-22 1996-09-17 Antifogging dental mirror and antifogging method
JP8281223A Expired - Lifetime JP3063968B2 (en) 1995-12-22 1996-09-17 Anti-fog vehicle mirror, automobile equipped with the same, anti-fog film for vehicle mirror and anti-fog method for vehicle mirror
JP8281224A Pending JPH09228134A (en) 1995-12-22 1996-09-17 Antifogging helmet shield and antifogging method
JP8282806A Pending JPH09228057A (en) 1995-12-22 1996-09-18 Wheel and its cleaning method
JP08282811A Expired - Fee Related JP3075195B2 (en) 1995-12-22 1996-09-18 Anti-fog wash mirror, vanity table provided with the same, anti-fog film for wash mirror and anti-fog method for wash mirror
JP8282808A Pending JPH09228765A (en) 1995-12-22 1996-09-18 Blind and manufacture thereof
JP8246180A Pending JPH09230493A (en) 1995-12-22 1996-09-18 Camera
JP8282805A Pending JPH09231499A (en) 1995-12-22 1996-09-18 Light source cover for traffic signal, traffic signal with it, and cleaning method for light source cover for traffic signal
JP28281296A Expired - Lifetime JP3612896B2 (en) 1995-12-22 1996-09-18 Exterior wall building materials and methods for cleaning them
JP8282809A Pending JPH09230108A (en) 1995-12-22 1996-09-18 Anti-fogging plastic lens and its anti-fogging method
JP8282810A Pending JPH09228545A (en) 1995-12-22 1996-09-18 Glass block and its cleaning method
JP8282807A Pending JPH09224874A (en) 1995-12-22 1996-09-18 Water-closet bowl made of resin
JP8284533A Pending JPH09227161A (en) 1995-12-22 1996-09-19 Pane, film for applying thereto and antifogging and cleaning thereof
JP8284532A Pending JPH09227805A (en) 1995-12-22 1996-09-19 Photocatalytic hydrophilic coating composition
JP28453496A Expired - Lifetime JP3173391B2 (en) 1995-12-22 1996-09-19 Hydrophilic film, and method for producing and using the same
JP28579796A Expired - Lifetime JP3697795B2 (en) 1995-12-22 1996-09-20 Display and cleaning method thereof
JP28895696A Expired - Fee Related JP3588206B2 (en) 1995-12-22 1996-09-25 Self-cleaning road decorative panel, and method of cleaning road decorative panel
JP28895596A Expired - Lifetime JP3774955B2 (en) 1995-12-22 1996-09-25 Self-cleaning handrail and handrail cleaning method
JP28895496A Expired - Fee Related JP3588205B2 (en) 1995-12-22 1996-09-25 Self-cleaning guard fence and method of cleaning guard fence
JP8291006A Pending JPH09229767A (en) 1995-12-22 1996-09-26 Pyroelectric infrared detector
JP8291005A Pending JPH09230031A (en) 1995-12-22 1996-09-26 Inter-vehicle distance detecting device and automobile having it
JP8291007A Pending JPH09225054A (en) 1995-12-22 1996-09-26 Gas mask and storing device for gas mask
JP8297248A Pending JPH09227169A (en) 1995-12-22 1996-10-18 Transfer sheet, and transferring of photocatalytic and hydrophilic thin film
JP8298236A Pending JPH09227162A (en) 1995-12-22 1996-10-22 Vehicle pane for securing rainy weather view, and automobile mounted therewith
JP8298235A Pending JPH09230119A (en) 1995-12-22 1996-10-22 Road mirror for assuring visual field in rainy weather
JP8298237A Pending JPH09229546A (en) 1995-12-22 1996-10-22 Door for refrigerated showcase having see-through ensuring property
JP8298234A Pending JPH09226531A (en) 1995-12-22 1996-10-22 Rainy weather visibility securable vehicular mirror, automobile and two wheeler having it
JP8306997A Pending JPH09226060A (en) 1995-12-22 1996-11-01 Lid for heating container having fog resistance
JP8307000A Pending JPH09224800A (en) 1995-12-22 1996-11-01 Glassware and water-washing method
JP8323516A Pending JPH09241038A (en) 1995-12-22 1996-11-19 Photocatalytic hydrophilic member and its production
JP8340470A Pending JPH09225387A (en) 1995-12-22 1996-12-05 Hydrophilic member and method to make surface of member hydrophilic
JP34047296A Expired - Fee Related JP3348613B2 (en) 1995-12-22 1996-12-05 Photocatalytic hydrophilic coating composition
JP34047196A Expired - Lifetime JP3303696B2 (en) 1995-12-22 1996-12-05 Photocatalytic hydrophilic coating composition
JP08344585A Expired - Lifetime JP3141802B2 (en) 1995-12-22 1996-12-09 Hydrophilic member and method for maintaining hydrophilicity
JP23956899A Expired - Lifetime JP3613085B2 (en) 1995-12-22 1999-08-26 Photocatalytic hydrophilic member

Family Applications After (11)

Application Number Title Priority Date Filing Date
JP34300999A Expired - Fee Related JP3844182B2 (en) 1995-12-22 1999-12-02 Hydrophilic film and method for producing and using the same
JP2000180301A Expired - Lifetime JP3414365B2 (en) 1995-12-22 2000-06-15 Building materials for exterior walls
JP2000181284A Pending JP2001048679A (en) 1995-12-22 2000-06-16 Photocatalytic hydrophilic tile and its production
JP2000181287A Expired - Fee Related JP3465664B2 (en) 1995-12-22 2000-06-16 Building materials for exterior walls
JP2000181286A Expired - Lifetime JP3414367B2 (en) 1995-12-22 2000-06-16 Building materials for exterior walls
JP2000227055A Withdrawn JP2001089752A (en) 1995-12-22 2000-07-27 Member capable of obtaining hydrophilic nature in accordance with photoexcitation of optical semiconductor and manufacturing method thereof
JP2000227056A Pending JP2001129916A (en) 1995-12-22 2000-07-27 Photocatalytic hydrophilic member
JP2000247609A Pending JP2001122679A (en) 1995-12-22 2000-08-17 Antifouling tile
JP2001140242A Pending JP2002030258A (en) 1995-12-22 2001-05-10 Coated material and method for coating
JP2002020533A Expired - Fee Related JP3882625B2 (en) 1995-12-22 2002-01-29 Sound insulation wall and cleaning method for sound insulation wall
JP2002244772A Pending JP2003113345A (en) 1995-12-22 2002-08-26 Antistatic coating composition

Country Status (1)

Country Link
JP (71) JPH09231821A (en)

Families Citing this family (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830785B1 (en) * 1995-03-20 2004-12-14 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
JPH09227779A (en) * 1995-12-22 1997-09-02 Toto Ltd Rubber member for construction and impartment of hydrophilicity to surface thereof
JPH09230105A (en) * 1995-12-22 1997-09-05 Toto Ltd Antifogging method and facility applied with the method
JPH09231821A (en) * 1995-12-22 1997-09-05 Toto Ltd Luminaire and method for maintaining illuminance
JPH09186949A (en) * 1995-12-27 1997-07-15 Toshiba Lighting & Technol Corp Video equipment
JP3400259B2 (en) * 1996-08-26 2003-04-28 セントラル硝子株式会社 Hydrophilic coating and method for producing the same
JP3949788B2 (en) * 1996-09-17 2007-07-25 大野 隆司 Goods storage container
WO1998012048A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Thin photocatalytic film and articles provided with the same
JP4305001B2 (en) * 1996-09-20 2009-07-29 株式会社日立製作所 Articles with a photocatalytic film
JPH10148705A (en) * 1996-11-21 1998-06-02 Hitachi Chem Co Ltd Antifog treatment
JP3467994B2 (en) * 1996-11-27 2003-11-17 松下電工株式会社 Silicone transfer film and transfer structure thereof
JPH10237352A (en) * 1997-02-24 1998-09-08 Tao:Kk Polyfunctional coating agent
JP4672822B2 (en) * 1997-02-24 2011-04-20 株式会社ティオテクノ Hydrophilic coating agent and surface hydrophilic substrate
JP3518251B2 (en) * 1997-05-20 2004-04-12 株式会社日立製作所 Oxide photocatalytic thin film and article provided with the same
JPH1190236A (en) * 1997-09-22 1999-04-06 Ebara Corp Photocatalyst and reaction device using photocatalyst
JPH11100695A (en) * 1997-09-26 1999-04-13 Nippon Alum Co Ltd Production of titanium material having photocatalytic activity
JPH11100526A (en) * 1997-09-29 1999-04-13 Toto Ltd Photocatalytic hydrophilic member and photocatalytic hydrophilic coating composition
JP3996682B2 (en) * 1997-10-20 2007-10-24 日本デコール株式会社 Decorative sheet having organic substance decomposing function and method for producing the same
JPH11152447A (en) * 1997-11-21 1999-06-08 Toto Ltd Surface-treating agent for forming photocatalyzing coating film, and formation of photocatalyzing coating film using the surface-treating agent
KR100740055B1 (en) * 1997-12-25 2007-10-18 산젠 가꼬 가부시키가이샤 Anti-fogging laminates
JPH11197516A (en) * 1998-01-09 1999-07-27 Takenaka Komuten Co Ltd Photocatalyst material and its production
WO1999041322A1 (en) * 1998-02-10 1999-08-19 Toto Ltd. Coating material for forming photocatalytic hydrophilic film, method of forming photocatalytic hydrophilic film, and photocatalytic hydrophilic member
JPH11263950A (en) * 1998-03-16 1999-09-28 Nippon Carbide Ind Co Inc Transparent adhesive sheet for preventing dew condensation and dew condensation-preventing deflective sign
CA2293790A1 (en) * 1998-04-10 1999-10-21 Matsushita Electric Works, Ltd. Inorganic coating composition and hydrophilic inorganic coating film
JPH11347482A (en) * 1998-06-12 1999-12-21 Dainippon Toryo Co Ltd Production of joint part coated porcelain tile panel
CH693138A5 (en) * 1998-06-19 2003-03-14 Unaxis Trading Ag Laminated glass and method for making a coated plastic film therefor.
KR100290066B1 (en) * 1998-07-13 2001-05-15 김명신 How to fix titanium dioxide, used as an air freshener, on activated carbon
TW473400B (en) 1998-11-20 2002-01-21 Asahi Chemical Ind Modified photocatalyst sol
JP2000226234A (en) * 1998-12-03 2000-08-15 Toto Ltd Hydrophilic member
JP3340688B2 (en) * 1999-01-28 2002-11-05 シャープ株式会社 Air conditioner
EP1023910A1 (en) * 1999-01-29 2000-08-02 Institut Straumann AG Preparation of osteophilic surfaces for metallic prosthetic devices anchorable to bone
WO2000046154A1 (en) * 1999-02-04 2000-08-10 Japan Science And Technology Corporation Process for producing anatase titania or composite oxide containing anatase titania
JP2000234892A (en) * 1999-02-12 2000-08-29 Zexel Corp Method for reducing heat exchanger and heat exchanger manufactured by that method
AU2940200A (en) * 1999-03-09 2000-09-28 Toto Ltd. Hydrophilic member, method for preparation thereof, and coating agent and apparatus for preparation thereof
JP4029516B2 (en) * 1999-03-18 2008-01-09 株式会社Inax Photocatalytic tile
KR100308818B1 (en) * 1999-04-01 2001-09-26 이계안 Hydrophilic coating glass coated with porous thin layer of TiO2
JP4345941B2 (en) * 1999-04-16 2009-10-14 ベック株式会社 Coating method
US6485838B1 (en) 1999-05-21 2002-11-26 Jsr Corporation Coating composition, and a coated film and glass each having a coating layer comprised thereof
JP2000334309A (en) * 1999-05-25 2000-12-05 Shinichi Harigai Photocatalyst
FR2794225B3 (en) * 1999-05-25 2001-06-15 Saint Gobain Vitrage REFRIGERATED ENCLOSURE DOOR WITH VACUUM WINDOWS
JP2000334308A (en) * 1999-05-25 2000-12-05 Shinichi Harigai Cafrrier for photocatalyst and photocatalyst using the same
JP4513141B2 (en) * 1999-06-21 2010-07-28 パナソニック株式会社 air purifier
JP4507302B2 (en) * 1999-08-10 2010-07-21 凸版印刷株式会社 High refractive index composition
EP1081108B1 (en) 1999-09-02 2004-02-25 Central Glass Company, Limited Article with photocatalytic film
JP2001080974A (en) * 1999-09-08 2001-03-27 Fuji Photo Film Co Ltd Composite base plate material and method for producing the same
JP4675535B2 (en) * 1999-10-01 2011-04-27 日本曹達株式会社 Photocatalyst transfer sheet
JP2001164117A (en) * 1999-12-07 2001-06-19 Toppan Printing Co Ltd High-refractive-index composition and antireflection laminate
TW468053B (en) * 1999-12-14 2001-12-11 Nissan Chemical Ind Ltd Antireflection film, process for forming the antireflection film, and antireflection glass
WO2001059441A1 (en) * 2000-02-07 2001-08-16 Organo Corporation Electric conductometer, electrode for measuring electric conductivity, and method for producing the same
US8632583B2 (en) 2011-05-09 2014-01-21 Palmaz Scientific, Inc. Implantable medical device having enhanced endothelial migration features and methods of making the same
US6866937B2 (en) 2000-08-22 2005-03-15 Central Glass Company, Limited Glass plate with oxide film and process for producing same
KR100631104B1 (en) * 2000-11-03 2006-10-02 한국유리공업주식회사 Hydrophilic glass coated with metal oxide and method for producing it
JP2002159910A (en) * 2000-11-27 2002-06-04 Cleanup Corp Method for forming photocatalytic coating film on surface of base material
JP4755756B2 (en) * 2000-12-20 2011-08-24 日本テトラパック株式会社 Photocatalytic material
US6645569B2 (en) 2001-01-30 2003-11-11 The Procter & Gamble Company Method of applying nanoparticles
KR20030085017A (en) * 2001-03-21 2003-11-01 가부시키가이샤 브리지스톤 Method for forming antifouling coating and antifouling material having antifouling coating
JP2002285036A (en) * 2001-03-23 2002-10-03 Seiichi Rengakuji Photocatalyst supported aluminum material and its manufacturing method
KR100393733B1 (en) * 2001-03-28 2003-08-06 홍국선 Ceramic Compositions for superhydrophilic coating and its manufacturing method
US6827966B2 (en) * 2001-05-30 2004-12-07 Novartis Ag Diffusion-controllable coatings on medical device
EP1434607A1 (en) * 2001-10-11 2004-07-07 Straumann Holding AG Osteophilic implants
JP2003135228A (en) * 2001-11-02 2003-05-13 Sanyo Electric Co Ltd Low temperature show case
US20050050925A1 (en) * 2002-02-14 2005-03-10 Je Byoung Soo Door for washing machne and method for manufacturing the same
US6938546B2 (en) 2002-04-26 2005-09-06 Mitsubishi Heavy Industries, Ltd. Printing press, layered formation and making method thereof, and printing plate and making method thereof
EP1518601A4 (en) 2002-06-03 2007-12-19 Asahi Chemical Ind Photocatalyst composition
JP4169557B2 (en) * 2002-09-19 2008-10-22 旭化成ケミカルズ株式会社 Photocatalyst
JP4069369B2 (en) 2002-09-25 2008-04-02 信越化学工業株式会社 Antireflection film and method of manufacturing antireflection film
AU2003272710B2 (en) 2002-09-26 2008-05-15 Vactronix Scientific, Llc Implantable materials having engineered surfaces and method of making same
US8268340B2 (en) 2002-09-26 2012-09-18 Advanced Bio Prosthetic Surfaces, Ltd. Implantable materials having engineered surfaces and method of making same
US8679517B2 (en) 2002-09-26 2014-03-25 Palmaz Scientific, Inc. Implantable materials having engineered surfaces made by vacuum deposition and method of making same
JP2003231204A (en) * 2002-12-09 2003-08-19 Toto Ltd Functional material and functional coating composition
JP3707737B2 (en) * 2003-03-06 2005-10-19 重岡 誠司 Outdoor heat exchanger
DE10325768A1 (en) * 2003-06-05 2004-12-23 Chemetall Gmbh Coating system for glass surfaces, process for its production and its application
JP4493290B2 (en) * 2003-06-23 2010-06-30 菊治 山下 Artificial biomaterial and method for producing the same
US20050040151A1 (en) 2003-08-20 2005-02-24 Robert Dyrdek Heated side window glass
JP2005096336A (en) * 2003-09-26 2005-04-14 Lintec Corp Process film for ceramic green sheet production and its production method
JP2005186353A (en) * 2003-12-25 2005-07-14 Murakami Corp Anti-fogging element
JP4995428B2 (en) * 2004-03-10 2012-08-08 東海旅客鉄道株式会社 Titanium oxide coating formation method
JP2008510186A (en) * 2004-08-10 2008-04-03 日本板硝子株式会社 LCD mirror system and method
JP4758086B2 (en) * 2004-09-09 2011-08-24 タキロン株式会社 Construction structure using a sealing material used for polycarbonate resin parts with photocatalytic function
AU2005287016B2 (en) 2004-09-20 2012-04-12 Agc Flat Glass North America, Inc. Anti-fog refrigeration door and method of making the same
JP2006091249A (en) 2004-09-22 2006-04-06 Murakami Corp Camera
WO2006070395A1 (en) * 2004-12-28 2006-07-06 Council Of Scientific And Industrial Research Photocatalytic auto-cleaning process of stains
US7709552B2 (en) * 2005-02-18 2010-05-04 Nippon Soda Co., Ltd. Organic/inorganic composite
WO2006090631A1 (en) 2005-02-24 2006-08-31 Central Research Institute Of Electric Power Industry Multifunctional material
KR100954176B1 (en) 2005-02-24 2010-04-20 자이단호징 덴료쿠추오켄큐쇼 Process for producing multifunctional material
JP4771359B2 (en) * 2005-02-28 2011-09-14 財団法人電力中央研究所 Playground equipment
JP4807722B2 (en) * 2005-02-28 2011-11-02 財団法人電力中央研究所 Manufacturing method for environmentally resistant equipment
JP4807723B2 (en) * 2005-02-28 2011-11-02 財団法人電力中央研究所 Manufacturing method of heat-resistant member
JP4958029B2 (en) * 2005-02-28 2012-06-20 一般財団法人電力中央研究所 Building materials
JP4541929B2 (en) * 2005-02-28 2010-09-08 財団法人電力中央研究所 Flying object
JP4814534B2 (en) * 2005-02-28 2011-11-16 財団法人電力中央研究所 Manufacturing method of structural materials
JP4807724B2 (en) * 2005-02-28 2011-11-02 財団法人電力中央研究所 Rail vehicle manufacturing method
JP4995425B2 (en) * 2005-02-28 2012-08-08 一般財団法人電力中央研究所 Irrigation apparatus, irrigation member, manufacturing method thereof, and irrigation system
JP4843231B2 (en) * 2005-02-28 2011-12-21 財団法人電力中央研究所 Kitchen products
JP4807725B2 (en) * 2005-02-28 2011-11-02 財団法人電力中央研究所 Manufacturing method of energy generating equipment
JP4480014B2 (en) * 2005-02-28 2010-06-16 財団法人電力中央研究所 Rocket parts
JP2006247760A (en) * 2005-03-08 2006-09-21 Disco Abrasive Syst Ltd Machining apparatus
TW200631899A (en) 2005-03-09 2006-09-16 Tokai Ryokaku Tetsudo Kk Titanium oxide-coating agent, and forming method for titanium oxide-coating film
JP4659494B2 (en) * 2005-03-23 2011-03-30 株式会社ミクニ Infrared transmitting window material, infrared sensor unit, and combustion apparatus
US7757629B2 (en) * 2005-04-14 2010-07-20 Transitions Optical, Inc. Method and apparatus for coating an optical article
KR100796718B1 (en) * 2005-08-10 2008-01-21 요시노리 나카가와 Method for manufacturing photoelectro-chemical cell and photoelectro-chemical cell
JP3795515B1 (en) 2005-08-10 2006-07-12 善典 中川 Manufacturing method of semiconductor photoelectrochemical cell
WO2007052815A1 (en) * 2005-11-04 2007-05-10 Tokuyama Corporation Coater
JP5004561B2 (en) * 2005-11-30 2012-08-22 株式会社トクヤマ Coating equipment
GB0602933D0 (en) 2006-02-14 2006-03-22 Pilkington Automotive Ltd Vehicle glazing
EP1829991A1 (en) * 2006-03-02 2007-09-05 UGINE & ALZ FRANCE Stainless steel plate coated with self-cleaning coating.
JP2007247166A (en) * 2006-03-14 2007-09-27 Sumitomo Chemical Co Ltd Road mirror
JP2007262498A (en) * 2006-03-28 2007-10-11 National Institute Of Advanced Industrial & Technology Color-controlled titanium alloy bolt and nut
JP4849525B2 (en) * 2006-04-04 2012-01-11 花王株式会社 Resin composition
JP2007277935A (en) * 2006-04-07 2007-10-25 Sekisui Jushi Co Ltd Indicating body for road
JP2008013833A (en) * 2006-07-07 2008-01-24 National Institute Of Advanced Industrial & Technology Titanium alloy member which develops controlled color
JP4966614B2 (en) * 2006-09-14 2012-07-04 Mkvドリーム株式会社 Agricultural film
JP2008114760A (en) * 2006-11-06 2008-05-22 Asahi Glass Co Ltd Vehicle with anti-fogging glass and set of vehicle window glass
JP4823045B2 (en) * 2006-12-12 2011-11-24 旭化成ケミカルズ株式会社 Water-based photocatalytic composition
JP2008184357A (en) * 2007-01-30 2008-08-14 National Institute Of Advanced Industrial & Technology Method of making surface of oxide amphiphilic
JP5064817B2 (en) * 2007-01-30 2012-10-31 トヨタ自動車株式会社 Method for preventing contamination of automobile wheel and automobile wheel
US7659226B2 (en) 2007-02-26 2010-02-09 Envont Llc Process for making photocatalytic materials
JP2008260667A (en) * 2007-04-13 2008-10-30 Univ Of Electro-Communications Method for manufacturing titanium oxide thin film and resin product with titanium oxide thin film
KR100809030B1 (en) * 2007-05-08 2008-03-03 주식회사 에임하이글로벌 Board for road facilities and preparation method thereof
JP2009002979A (en) * 2007-06-19 2009-01-08 Mitsubishi Electric Corp Video display device and its manufacturing method
JP5510911B2 (en) * 2007-08-17 2014-06-04 株式会社伸興サンライズ Composite interior coating material for buildings
JP2007327071A (en) * 2007-08-23 2007-12-20 Kawasaki Heavy Ind Ltd Method for producing hydrophilic coating composition
JP2009090641A (en) 2007-09-20 2009-04-30 Fujifilm Corp Anticlouding cover and cover for meter using it
JP5705398B2 (en) * 2007-12-05 2015-04-22 トヨタ自動車株式会社 Vehicle wheels and wheel caps
JP5145023B2 (en) * 2007-12-19 2013-02-13 住友軽金属工業株式会社 Fin material for heat exchanger and manufacturing method thereof
JP4993745B2 (en) * 2007-12-28 2012-08-08 株式会社アルバック Deposition equipment
US7910085B2 (en) 2007-12-28 2011-03-22 Tdk Corporation Process for production of iron oxyhydroxide particles
JP2009185107A (en) * 2008-02-04 2009-08-20 Pialex Technologies Corp Hydrophilic coating material and hydrophilic coated object
KR101104262B1 (en) * 2008-12-31 2012-01-11 주식회사 노루홀딩스 Article wih self-cleaning effect and method of preparation thereof
JP5267308B2 (en) * 2009-04-28 2013-08-21 信越化学工業株式会社 Photocatalyst coating liquid that provides a photocatalytic thin film excellent in photoresponsiveness and the photocatalytic thin film
US20110008612A1 (en) * 2009-07-10 2011-01-13 Korea University Research And Business Foundation Self-cleaning surfaces
JP5365501B2 (en) * 2009-12-24 2013-12-11 平岡織染株式会社 Non-flammable interior illuminated signboard
JP5365500B2 (en) * 2009-12-24 2013-12-11 平岡織染株式会社 Non-flammable interior illuminated signboard
JP5411791B2 (en) * 2010-04-23 2014-02-12 三菱レイヨン株式会社 Manufacturing method of laminated resin plate
CN101830644B (en) * 2010-05-14 2012-11-14 中国科学院上海技术物理研究所 High-stability car coated glass membrane system
JP5810294B2 (en) * 2010-07-27 2015-11-11 パナソニックIpマネジメント株式会社 Rainwater collecting wall material
WO2012014893A1 (en) 2010-07-29 2012-02-02 Toto株式会社 Inorganic material comprising photocatalyst layer, method for producing same, and photocatalyst coating liquid for inorganic material
JP5835219B2 (en) 2010-07-29 2015-12-24 Toto株式会社 Photocatalyst-coated body and photocatalyst coating liquid
JP5848351B2 (en) * 2010-09-28 2016-01-27 ダウ グローバル テクノロジーズ エルエルシー Reactive flow static mixer with crossflow obstruction
JP2012086104A (en) * 2010-10-15 2012-05-10 Asahi Kasei Chemicals Corp Photocatalyst composition
JP2012087213A (en) * 2010-10-19 2012-05-10 Nippon Parkerizing Co Ltd Hydrophilic film for metal material, hydrophilization-treating agent, and hydrophilization-treating method
US8728563B2 (en) 2011-05-03 2014-05-20 Palmaz Scientific, Inc. Endoluminal implantable surfaces, stents, and grafts and method of making same
JP6083811B2 (en) * 2011-08-18 2017-02-22 株式会社インパクト Information display board
JP2013096959A (en) * 2011-11-04 2013-05-20 Shiyouichi Yoshino Radioactive decontamination method
JP5250685B2 (en) * 2011-11-25 2013-07-31 パナソニック株式会社 Camera cover and camera
KR20130118456A (en) * 2012-04-20 2013-10-30 호서대학교 산학협력단 Ozone contactor with static mixer
JP6171275B2 (en) * 2012-07-02 2017-08-02 大日本印刷株式会社 Transparent film and method for producing the same
JP6028495B2 (en) * 2012-09-27 2016-11-16 Toto株式会社 Photocatalyst member
CN102923836A (en) * 2012-11-15 2013-02-13 常州大学 Method for treating washing wastewater by using composite-film modified sintered gangue ceramsite
JP6105998B2 (en) * 2013-03-26 2017-03-29 パナホーム株式会社 Method for producing photocatalyst composition and method for producing photocatalyst
CN105732125B (en) * 2013-11-30 2018-03-13 国网河南省电力公司平顶山供电公司 A kind of porcelain and glass insulator low-temperature resistance coating
WO2015119192A1 (en) * 2014-02-05 2015-08-13 旭硝子株式会社 Laminated glass production method
CN104047343A (en) * 2014-06-20 2014-09-17 欧士玺 Mobile toilet capable of recycling water
CN106574165B (en) 2014-07-30 2018-10-19 三菱综合材料株式会社 Hydrophilic oil-repellent agent and its manufacturing method and surface covering material, coated film, resin combination, water-oil separating filter material, porous body
CN106659948B (en) 2014-07-30 2019-08-16 三菱综合材料株式会社 Filter material, the manufacturing method of filter material, water process module and water treatment facilities
JP6461573B2 (en) 2014-07-30 2019-01-30 三菱マテリアル株式会社 Oil / water separator / collector
US10364360B2 (en) 2014-07-30 2019-07-30 Mitsubishi Materials Corporation Surface coating material, coating film, and hydrophilic oil repellent member
KR101942261B1 (en) * 2014-09-24 2019-01-28 (주)엘지하우시스 Visible light active photocatalyst tile
KR101642870B1 (en) * 2014-10-21 2016-08-29 가천대학교 산학협력단 Endoscope
JP2016104681A (en) * 2014-12-01 2016-06-09 大日本印刷株式会社 Method for producing laminated glass, and laminated glass
JP6366813B2 (en) * 2015-02-27 2018-08-01 富士フイルム株式会社 Gas separation asymmetric membrane, gas separation module, gas separation device, and gas separation method
CN106580154B (en) * 2015-03-18 2018-11-27 杭州桑莱特卫浴有限公司 The production method of bathroom cabinet and bathroom cabinet
CN104848985B (en) * 2015-06-05 2017-03-08 合肥工业大学 A kind of vacuum detecting method based on infrared laser spectroscopy and system
JP2017090380A (en) * 2015-11-16 2017-05-25 株式会社デンソーウェーブ Laser radar device, window member for laser radar device, and control program for laser radar device
CN105349042A (en) * 2015-11-20 2016-02-24 杨京广 Silicon carbide coating and use method thereof
CN105444486A (en) * 2015-12-31 2016-03-30 广西路桥工程集团有限公司 Multi-way valve circulation system for cooling system
JP6811415B2 (en) * 2016-01-29 2021-01-13 パナソニックIpマネジメント株式会社 urinal
CN105694688B (en) * 2016-03-16 2017-09-26 曲阜师范大学 A kind of fast preparation method of high intensity super-hydrophobic coat
JP2017165612A (en) * 2016-03-16 2017-09-21 Towa株式会社 Translucent material, low adhesion material and molding member
CN107313490A (en) * 2016-04-26 2017-11-03 厦门致杰智能科技有限公司 A kind of Split intelligent toilet seat
CN105860692A (en) * 2016-04-29 2016-08-17 南京晨光艺术工程有限公司 Self-cleaning Buddha statue
CN106242314A (en) * 2016-08-23 2016-12-21 张洪建 A kind of glass copper-plating technique
CN108261086A (en) * 2017-01-03 2018-07-10 佛山市顺德区美的电热电器制造有限公司 The preparation method of Anti-fog mirror, cooking apparatus and Anti-fog mirror
JP6814473B2 (en) * 2017-02-28 2021-01-20 国立大学法人東北大学 Photocatalytic functional member and its manufacturing method
JP6428864B2 (en) * 2017-07-03 2018-11-28 大日本印刷株式会社 Transparent film and method for producing the same
KR102138411B1 (en) * 2017-07-07 2020-07-27 주식회사 엘지화학 Coating composition including the same, organic light emitting device using the same and method of manufacturing the same
JP2019070247A (en) * 2017-10-06 2019-05-09 スリーエム イノベイティブ プロパティズ カンパニー Window film
MX2023000863A (en) * 2018-01-30 2023-03-01 Viavi Solutions Inc Optical device having optical and mechanical properties.
CN108383396A (en) * 2018-02-27 2018-08-10 张家港外星人新材料科技有限公司 The double-deck film glass with anti-reflection film and antistatic automatically cleaning film and its preparation method
CN110157224A (en) * 2018-03-14 2019-08-23 成都今天化工有限公司 A method of preparing nano ceramics anti-pollution flashover coating
JP2019158247A (en) * 2018-03-14 2019-09-19 株式会社デンソー Heat exchanger
PL425045A1 (en) * 2018-03-28 2019-10-07 Uniwersytet Jagielloński Method for producing nanoporous semiconducting layers of metal oxides
KR101917149B1 (en) 2018-05-17 2018-11-09 주식회사 대수하이테크 Anti-fouling coating composition having excellent weatherability
JP7086744B2 (en) * 2018-06-22 2022-06-20 株式会社東芝 Camera system
JP7329909B2 (en) * 2018-06-28 2023-08-21 小林製薬株式会社 Coating agent for toilet bowl
JP2020069684A (en) * 2018-10-30 2020-05-07 三井化学株式会社 Multilayer structure
JP7290938B2 (en) * 2018-12-11 2023-06-14 イビデン株式会社 Manufacturing method of cover for infrared detection element
JP7499561B2 (en) 2018-12-28 2024-06-14 ホヤ レンズ タイランド リミテッド Manufacturing method of eyeglass lenses
CN109667139B (en) * 2018-12-31 2021-06-29 盐城工学院 Anti-ultraviolet self-cleaning composition and preparation method and application thereof
JP6901186B2 (en) * 2019-04-03 2021-07-14 株式会社ワンアンドオンリー Antistatic agent / antistatic method / antistatic coating film and antistatic layer forming resin composition / antistatic method
US11747272B2 (en) 2019-06-10 2023-09-05 Analog Devices, Inc. Gas detection using differential path length measurement
CN112811829A (en) * 2020-04-30 2021-05-18 法国圣戈班玻璃公司 Antifogging glass, vehicle and method for manufacturing antifogging glass
US11821836B2 (en) 2020-07-13 2023-11-21 Analog Devices, Inc. Fully compensated optical gas sensing system and apparatus
CN112143299B (en) * 2020-09-24 2022-02-01 南京长江涂料有限公司 Long-acting self-cleaning high-weatherability fluorocarbon coating and preparation method thereof
CN116235016A (en) * 2020-10-21 2023-06-06 三菱电机株式会社 Heat exchanger and method for manufacturing heat exchanger
CN113311444B (en) * 2021-06-22 2022-08-02 山东高速建设管理集团有限公司 Water film identification and treatment device and use method thereof
CN113462273A (en) * 2021-06-29 2021-10-01 广东康伴新材料科技有限公司 High-wear-resistance high-hand-sensitivity rubber coating and preparation method thereof

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211321B2 (en) * 1972-04-11 1977-03-30
JPS49124166A (en) * 1973-02-07 1974-11-27
JPS5826052A (en) * 1981-08-06 1983-02-16 Asahi Glass Co Ltd Glass body provided with alkali diffusion preventing silicon oxide film
JPS59145808A (en) * 1983-02-09 1984-08-21 財団法人鉄道総合技術研究所 Cloudiness-proof road mirror
JPS60151250A (en) * 1984-01-12 1985-08-09 Matsushita Electric Ind Co Ltd Enamel film backed phosphor
JPS60210641A (en) * 1984-02-22 1985-10-23 Unitika Ltd Antifogging plastic molding
JPS6183106A (en) * 1984-10-01 1986-04-26 Giken Kogyo Kk Method of preventing contamination of surface of solid material to be brought into contact with water
JPS6191042A (en) * 1984-10-08 1986-05-09 Toyota Motor Corp Anti-fogging glass and its production
JPS61133125A (en) * 1984-11-29 1986-06-20 Tsutomu Kagitani Denitration process using ultraviolet ray
JPS621750A (en) * 1985-06-27 1987-01-07 Toray Silicone Co Ltd Room temperature curing organopolysiloxane composition
JPH0647668B2 (en) * 1985-12-16 1994-06-22 三菱化成ビニル株式会社 Anti-fog composition
JPH0615407B2 (en) * 1986-05-07 1994-03-02 株式会社資生堂 Optical semiconductor and its manufacturing method
JPS635301A (en) * 1986-06-25 1988-01-11 Matsushita Electric Works Ltd Reflecting mirror
JPS6363726A (en) * 1986-09-05 1988-03-22 Nippon Shokubai Kagaku Kogyo Co Ltd Composition for surface treatment
JPS6381176A (en) * 1986-09-24 1988-04-12 Yoshio Ichikawa Composition for coating
JPS63100042A (en) * 1986-10-14 1988-05-02 Nippon Sheet Glass Co Ltd Glass article difficult-to be dirtied
JPS63246167A (en) * 1987-04-02 1988-10-13 チタン工業株式会社 White deodorant and its production
JPH01169866A (en) * 1987-12-25 1989-07-05 Hitachi Ltd Discharge lamp
JPH06102155B2 (en) * 1988-02-29 1994-12-14 株式会社日立製作所 Deodorant, deodorant manufacturing method, deodorizing method, deodorizing device, and refrigeration cycle device equipped with this deodorizing device
JP2856754B2 (en) * 1989-02-17 1999-02-10 株式会社東芝 Ultraviolet-suppressed luminescence source, coating agent for ultraviolet-suppressed luminescence source, and method for producing ultraviolet-suppressed luminescence source
JPH0787891B2 (en) * 1989-04-14 1995-09-27 日本ゼオン株式会社 Removing agent and method for removing oxidizable harmful substances
JPH0330314U (en) * 1989-07-31 1991-03-26
DE4023267A1 (en) * 1990-07-21 1992-01-23 Hoechst Ag PLATE, FILM OR TAPE-BASED CARRIER MATERIAL FOR OFFSET PRINT PLATES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
JP2618287B2 (en) * 1990-11-06 1997-06-11 日本ゼオン株式会社 Photoreactive harmful substance remover and harmful substance removal method using the same
JPH04206201A (en) * 1990-11-29 1992-07-28 Honda Motor Co Ltd Resin lens headlamp for vehicle
JPH04225301A (en) * 1990-12-27 1992-08-14 Seiko Epson Corp Optical product having clouding preventive performance
JP3224865B2 (en) * 1991-08-14 2001-11-05 東レ合成フィルム株式会社 Agricultural coating film and method for producing the same
JP2883761B2 (en) * 1991-12-06 1999-04-19 工業技術院長 Antibacterial growth inhibitor
JP2913966B2 (en) * 1991-12-10 1999-06-28 市光工業株式会社 Vehicle lighting
JPH05209072A (en) * 1992-01-29 1993-08-20 Japan Synthetic Rubber Co Ltd Method for treating substrate surface
JPH05232566A (en) * 1992-02-24 1993-09-10 Olympus Optical Co Ltd Optical member
JP3340149B2 (en) * 1992-04-28 2002-11-05 セントラル硝子株式会社 Hydrophilic coating and method for forming the coating
JPH06293519A (en) * 1992-07-28 1994-10-21 Ishihara Sangyo Kaisha Ltd Production of titanium oxide particles and film
JP3036247B2 (en) * 1992-08-14 2000-04-24 東陶機器株式会社 Lighting equipment
JPH06190340A (en) * 1992-09-11 1994-07-12 Sekisui Jushi Co Ltd Coated metal body
JPH06278241A (en) * 1992-09-22 1994-10-04 Takenaka Komuten Co Ltd Building material
DE4235996A1 (en) * 1992-10-24 1994-04-28 Degussa Titanium dioxide mixed oxide produced by flame hydrolysis, process for its preparation and use
JP3316048B2 (en) * 1992-11-06 2002-08-19 株式会社竹中工務店 Building material and manufacturing method thereof
JP3496229B2 (en) * 1993-02-19 2004-02-09 日本電池株式会社 Method for producing photocatalyst body
JP2878922B2 (en) * 1993-03-04 1999-04-05 シャープ株式会社 In-vehicle camera device
JPH06266289A (en) * 1993-03-10 1994-09-22 Dainippon Ink & Chem Inc Manufacture of durable display body
JPH06315614A (en) * 1993-03-11 1994-11-15 Agency Of Ind Science & Technol Method for removing contaminants and cleaning material
JPH085660B2 (en) * 1993-04-13 1996-01-24 工業技術院長 Method for producing silica gel containing titanium oxide ultrafine particles dispersed therein
AU676299B2 (en) * 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same
JP3115745B2 (en) * 1993-07-12 2000-12-11 富士写真フイルム株式会社 Photosensitive material
JPH0751646A (en) * 1993-08-12 1995-02-28 Ishihara Sangyo Kaisha Ltd Method for cleaning off contaminant on solid matter surface
JP3279755B2 (en) * 1993-08-24 2002-04-30 松下精工株式会社 Photocatalyst and method for supporting photocatalyst
JP3499585B2 (en) * 1993-09-21 2004-02-23 日揮ユニバーサル株式会社 Ethylene decomposition photocatalyst
JP2517874B2 (en) * 1993-09-30 1996-07-24 工業技術院長 Method for producing titanium oxide thin film photocatalyst
JP3334767B2 (en) * 1993-10-20 2002-10-15 日新製鋼株式会社 Building materials with moisture absorption and release functions
JP2602022Y2 (en) * 1993-11-25 1999-12-20 旭光学工業株式会社 Dew condensation removal device in camera
JPH07149520A (en) * 1993-11-29 1995-06-13 Hoya Corp Coating composition
JPH07164607A (en) * 1993-12-13 1995-06-27 Mitsubishi Chem Corp Agricultural film
JPH07168001A (en) * 1993-12-15 1995-07-04 Nikon Corp Mildew-proofing optical equipment
JP3488496B2 (en) * 1993-12-21 2004-01-19 日揮ユニバーサル株式会社 Poison-resistant deodorizing photocatalyst
JP3391543B2 (en) * 1993-12-27 2003-03-31 花王株式会社 Hydrophilizing agent and hydrophilizing method
JP2883000B2 (en) * 1994-03-29 1999-04-19 三菱重工業株式会社 Automobile sound insulation wall cleaning device
JP3693363B2 (en) * 1994-03-30 2005-09-07 松下エコシステムズ株式会社 Supporting method for forming a photocatalyst layer
JPH07331120A (en) * 1994-06-10 1995-12-19 Hitachi Ltd Coating for removing nitrogen oxide and its use
JP2832239B2 (en) * 1994-06-21 1998-12-09 三井金属鉱業株式会社 Lighting equipment with photocatalytic function
JPH0810576A (en) * 1994-07-05 1996-01-16 Ebara Res Co Ltd Removing method of harmful gas and device therefor
JPH08119673A (en) * 1994-10-21 1996-05-14 Kansai Paint Co Ltd Hydrophilization treatment of glass
JPH08277147A (en) * 1995-03-31 1996-10-22 Nippon Muki Co Ltd Plate glass
JPH09129012A (en) * 1995-03-31 1997-05-16 Toshiba Lighting & Technol Corp Photocatalyst, fluorescent lamp and luminaire
JP3101537B2 (en) * 1995-05-10 2000-10-23 ワイケイケイ株式会社 Antifouling building material and exterior building material unit
JPH0929103A (en) * 1995-05-17 1997-02-04 Toshiba Lighting & Technol Corp Photocatalytic body, photocatalytic device, light source and lightening equipment
JPH08313705A (en) * 1995-05-22 1996-11-29 Seiko Epson Corp Anti-clouding article and its production
JP3127827B2 (en) * 1995-06-14 2001-01-29 東陶機器株式会社 Anti-fog seal
EP1955768A1 (en) * 1995-06-19 2008-08-13 Nippon Soda Co., Ltd. Photocatalyst-carrying structure and photocatalyst coating material
JPH0990889A (en) * 1995-09-27 1997-04-04 Toshiba Lighting & Technol Corp Sign body and externally illuminated sign device
JPH09173783A (en) * 1995-10-27 1997-07-08 Matsushita Electric Ind Co Ltd Sheet glass and resin plate and their production and method for removing contaminant
JP4237830B2 (en) * 1995-12-20 2009-03-11 日本曹達株式会社 Photocatalyst-carrying lighting fixture
JPH09231821A (en) * 1995-12-22 1997-09-05 Toto Ltd Luminaire and method for maintaining illuminance

Also Published As

Publication number Publication date
JP3277983B2 (en) 2002-04-22
JP3588205B2 (en) 2004-11-10
JPH09228602A (en) 1997-09-02
JP3743075B2 (en) 2006-02-08
JPH09227156A (en) 1997-09-02
JP2002302646A (en) 2002-10-18
JPH09230107A (en) 1997-09-05
JPH09241038A (en) 1997-09-16
JP2000127289A (en) 2000-05-09
JPH09226531A (en) 1997-09-02
JP3882625B2 (en) 2007-02-21
JPH09228320A (en) 1997-09-02
JPH09229724A (en) 1997-09-05
JPH09232096A (en) 1997-09-05
JP3003593B2 (en) 2000-01-31
JPH09227832A (en) 1997-09-02
JP3063968B2 (en) 2000-07-12
JPH09225021A (en) 1997-09-02
JP2000141537A (en) 2000-05-23
JP3189682B2 (en) 2001-07-16
JP2001049829A (en) 2001-02-20
JPH09230106A (en) 1997-09-05
JPH09228545A (en) 1997-09-02
JPH09225396A (en) 1997-09-02
JPH09230810A (en) 1997-09-05
JPH09231499A (en) 1997-09-05
JPH09227160A (en) 1997-09-02
JP3348613B2 (en) 2002-11-20
JP3612896B2 (en) 2005-01-19
JPH09231821A (en) 1997-09-05
JPH09229546A (en) 1997-09-05
JP3588206B2 (en) 2004-11-10
JPH09224960A (en) 1997-09-02
JP2001089752A (en) 2001-04-03
JPH09224800A (en) 1997-09-02
JP2001122679A (en) 2001-05-08
JPH09228057A (en) 1997-09-02
JPH09224490A (en) 1997-09-02
JPH09227161A (en) 1997-09-02
JP3003581B2 (en) 2000-01-31
JPH09228332A (en) 1997-09-02
JPH09224874A (en) 1997-09-02
JPH09225388A (en) 1997-09-02
JP3339304B2 (en) 2002-10-28
JPH09230031A (en) 1997-09-05
JPH09230118A (en) 1997-09-05
JPH09231849A (en) 1997-09-05
JPH09228765A (en) 1997-09-02
JPH09230108A (en) 1997-09-05
JP2001049828A (en) 2001-02-20
JP3760509B2 (en) 2006-03-29
JPH09225054A (en) 1997-09-02
JP2001081948A (en) 2001-03-27
JPH09224793A (en) 1997-09-02
JPH09226040A (en) 1997-09-02
JP3414365B2 (en) 2003-06-09
JPH09226042A (en) 1997-09-02
JP3173391B2 (en) 2001-06-04
JPH09230119A (en) 1997-09-05
JPH09230493A (en) 1997-09-05
JP3141802B2 (en) 2001-03-07
JP2001048679A (en) 2001-02-20
JPH09229767A (en) 1997-09-05
JPH09228326A (en) 1997-09-02
JP2001129916A (en) 2001-05-15
JP3774955B2 (en) 2006-05-17
JPH09228134A (en) 1997-09-02
JP3303696B2 (en) 2002-07-22
JP3740736B2 (en) 2006-02-01
JPH09225389A (en) 1997-09-02
JPH09230796A (en) 1997-09-05
JPH09225276A (en) 1997-09-02
JPH09224957A (en) 1997-09-02
JPH09227169A (en) 1997-09-02
JPH09227162A (en) 1997-09-02
JPH09226060A (en) 1997-09-02
JP3588202B2 (en) 2004-11-10
JP3414367B2 (en) 2003-06-09
JPH09231807A (en) 1997-09-05
JP3465664B2 (en) 2003-11-10
JPH09229585A (en) 1997-09-05
JPH09228331A (en) 1997-09-02
JP3613085B2 (en) 2005-01-26
JPH09227159A (en) 1997-09-02
JPH09226041A (en) 1997-09-02
JPH09228022A (en) 1997-09-02
JP2000136370A (en) 2000-05-16
JP2003113345A (en) 2003-04-18
JP3075195B2 (en) 2000-08-07
JPH09225263A (en) 1997-09-02
JPH09225387A (en) 1997-09-02
JP2002030258A (en) 2002-01-31
JPH09227178A (en) 1997-09-02
JPH09227805A (en) 1997-09-02
JPH09227831A (en) 1997-09-02
JP3697795B2 (en) 2005-09-21
JP3844182B2 (en) 2006-11-08
JP3385850B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
JP3613084B2 (en) A member that exhibits hydrophilicity in response to photoexcitation of an optical semiconductor
ES2538807T3 (en) Cleaning procedure of a substrate that has an ultrahydrophilic and photocatalytic surface
JPH10237431A (en) Member with ultrawater-repellent surface
JPH10316820A (en) Member having extremely water-repelling surface and extremely water-repelling coating composition
JP2001152130A (en) Photocatalytically hydrophilizable member and its manufacturing method
JP3087682B2 (en) Photocatalytic hydrophilic member
JP3266526B2 (en) Photocatalytic hydrophilic member and method for producing the same
JPH11172239A (en) Hydrophilic member, method for hydrophilization/ hydrophilicity retention of surface of member, and hydrophilic coating composition
JP3298440B2 (en) Photocatalytic hydrophilic coating liquid
JPH09188850A (en) Photocatalytic hydrophilic coating composition
JP3298439B2 (en) Photocatalytic hydrophilic coating liquid
JPH1085610A (en) Photocatalytic hydrophilic member and its production
JP3266523B2 (en) Photocatalytic hydrophilic member and method for producing the same
JPH10235204A (en) Photocatalytic hydrophilic member
JPH1067543A (en) Photocatalytic hydrophilic parts material
KR100393733B1 (en) Ceramic Compositions for superhydrophilic coating and its manufacturing method
JPH10237380A (en) Member having water-repelling surface and water-repelling coating composition
JPH1081840A (en) Photocatalitic hydrophilic coating composition
JP2004306036A (en) Photocatalytic hydrophilic member
JP2001001438A (en) Film and production thereof
JPH1085609A (en) Photocatalytic hydrophilic member and its production
JPH1134242A (en) Photocatalytic hydrophilic member and photocatalytic hydrophilic coating composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314211

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

EXPY Cancellation because of completion of term