JP3602864B2 - Conductive paste - Google Patents

Conductive paste Download PDF

Info

Publication number
JP3602864B2
JP3602864B2 JP04600194A JP4600194A JP3602864B2 JP 3602864 B2 JP3602864 B2 JP 3602864B2 JP 04600194 A JP04600194 A JP 04600194A JP 4600194 A JP4600194 A JP 4600194A JP 3602864 B2 JP3602864 B2 JP 3602864B2
Authority
JP
Japan
Prior art keywords
silver
weight
powder
conductive paste
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04600194A
Other languages
Japanese (ja)
Other versions
JPH07254308A (en
Inventor
義忠 天岸
靖 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP04600194A priority Critical patent/JP3602864B2/en
Publication of JPH07254308A publication Critical patent/JPH07254308A/en
Application granted granted Critical
Publication of JP3602864B2 publication Critical patent/JP3602864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder

Description

【0001】
【産業上の利用分野】
本発明は、導電性ペースト、詳しくは例えばポリエステルフィルム上にスクリーン印刷により塗布し乾燥・硬化することにより導電性を与え、メンブレンスイッチ回路を形成する導電性ペーストに関し、特にカーボンペースト、絶縁ペースト等の保護なしに使用される用途に適した導電性ペーストに関する。
【0002】
【従来の技術】
従来、銀を配合した導電性ペーストにおいては銀の汚染、すなわち、硫化や塩化といった導電性の劣化を引き起こす問題の対策のために、カーボンペーストあるいは絶縁ペーストにより銀の保護(オーバーコート)が施されていた。
【0003】
しかし、電子部品の高密度化に伴う印刷回路のファイン化のため、カーボンペーストを使うことはショートの危険のため難しく、あるいは低コスト化のため、カーボンペースト又は絶縁ペーストを省略し製造工程の簡略化、材料費の削減等を図る際に、銀単独、もしくは銀の他の導電性材料として、例えばカーボンブラック等を混練りした導電性ペーストの1層により回路を形成することが多くなっている。
【0004】
【発明が解決しようとする課題】
ところで、前記従来技術では、銀が直接各種の汚染環境下に曝される機会が多くなり、特に硫化ガスによる銀の硫化、塩素による銀の塩化は銀が絶縁物を形成するために導電性に与える影響が大きく、極端な場合は回路の断線という致命的な欠陥につながる。
【0005】
そして、従来、上記問題の解決のために、例えばカップリング剤の添加により銀の導電性粒子を結合剤で充分に覆ったり、あるいは撥水性や耐ガスバリア性を有する結合剤を用いる等の対策がなされているが、前者は導電性が悪くなり、また、後者はポリエステルフィルムに対する接着性が悪くなるという欠点があった。
【0006】
本発明の目的は、導電性粉末に銀を含んでいても導通抵抗値の変化を少なくできる導電性ペーストを提供することにある。
【0007】
【課題を解決するための手段】
前記目的は、ポリエステルフィルム上にスクリーン印刷により塗布し乾燥・硬化することにより導電性を与える導電性ペーストにおいて、少なくとも銀を含んだ導電性粉末と、結合剤と、亜鉛粉末とを含み、前記亜鉛粉末の添加量は0.5%〜2%である手段により達成される。
【0011】
【作用】
前記第1の手段にあっては、亜鉛に硫黄又は塩素が結びつき、銀に影響を与えない。また、銀と亜鉛で電池を形成し、銀のイオン化を防ぐ。そして、イオン化されないので、銀は硫黄又は塩素と結びつかない。また、亜鉛を使用すると特に導通抵抗値の変化が少なくなる。また、亜鉛粉末の添加量が少なくとも0.5%以上あれば導通抵抗値の変化が少なくなり、また、亜鉛粉末の添加量が2%以下であれば、グラフの傾きが少なく添加量がばらついても抵抗値の値がさほど変化しないため、安定した導通抵抗を得ることができる。
【0015】
【実施例】
以下、本発明の実施例を図面を参照して説明する。
【0016】
図1は本発明の各実施例(及び比較例)の組成及び特性を表す説明図、図2は実施例(及び比較例)の塩化試験結果を示す特性図、図3は各実施例の塩化試験結果を示す特性図、図4は実施例(及び比較例)の硫化試験結果を示す特性図、図5は亜鉛粉の添加量と導通抵抗値の関係を示す特性図である。
【0017】
本発明は、高い導電性や接着性を損なうことなしに銀の汚染の対策する手段として、銀より卑な金属の亜鉛のような金属粉末を添加し混練りすることで銀の汚染に対して効果が絶大であることを見いだした。
【0018】
なお、図2の塩化試験(亜鉛添加、ニッケル添加、アルミニウム添加、未添加)は後述する実施例及び比較例に対し、2wt% Nacl溶液を付着させ、40℃ 90〜95%RHで行い、横軸は試験時間(時間),縦軸は導通抵抗値(Ω)であり、図3の塩化試験(亜鉛添加量)は後述する各実施例に対し、2wt% Nacl溶液を付着させ、40℃ 90〜95%RHで行い、横軸は試験時間(時間),縦軸は導通抵抗値(Ω)であり、図4の硫化試験(亜鉛添加、ニッケル添加、アルミニウム添加、未添加)は後述する実施例及び比較例に対し、H2S 3ppmの雰囲気中、40℃ 75%RHで行い、横軸は試験時間(時間),縦軸は導通抵抗値(Ω)である。
【0019】
本発明に係る実施例の導電性ペーストに添加する卑金属粉末としては、図2及び図4を見ればわかるように、アルミニウム(比較例7)、ニッケル(比較例8)に比べ亜鉛(実施例)の方が導通抵抗値の変化が少なくて良い。すなわちイオン化傾向が高い方が良い。但し、鉄は酸素と結びつきやすく好ましくない。錫、鉛は環境問題を生じさせる可能性があり好ましくない。
【0020】
本発明に係る実施例の導電性ペーストは、銀および銀以外の導電性微粉末、結合剤、卑金属微粉末、溶剤を主成分とし、卑金属微粉末の添加の割合が、
(導電性微粉末+結合剤)/(卑金属微粉末)が99.5/0.5〜98/2(重量比)の範囲である。
【0021】
図3を見れば明かなように、実施例4(亜鉛粉添加量0.5wt%)、実施例5(亜鉛粉添加量1.0wt%)、及び実施例6(亜鉛粉添加量2.0wt%)の導通抵抗値のデータは時間が経過してもさほど変化せず、したがって、卑金属微粉末は少なくとも0.5wt%(重量比)以上あれば効果があることがわかる。
【0022】
また、図5は初期における抵抗値を示しており、卑金属微粉末が2wt%以下であれば、図5から明かなようにグラフの傾きが少なく添加量がばらついても導通抵抗値の値がさほど変化しないため、安定した導通抵抗を得ることができる。
【0023】
銀の導電性微粉末とは、銀単独、または銀の合金あるいは複合粉末や、他の金属微粉末あるいは樹脂、ガラス等の微粉末に銀をめっき等によりコーティングされたものが使用できる。
【0024】
銀以外の導電性微粉末とは、カーボンブラック、グラファイト、銅、金、パラジウム、さらにはこれらの合金類であり、これらの導電性微粉末は形状や粒径に制限はなく球状、粒状、鱗片状、板状、樹枝状、スパイク状のものなどが使用できる。また、粒径は0.1〜100μmのものが使用できるが、スクリーン印刷等を考えると0.1〜10μmのものが好ましい。
【0025】
銀より卑な金属としては、亜鉛であり、形状や粒径に制限はないが、スクリーン印刷に適したものとして粒径0.1〜10μmの球状、粒状、片状、板状、樹枝状、スパイク状のものが好ましく、表面積の大きい粒状、樹枝状が特によい。
【0026】
結合剤はその種類に特に制限はなく、汎用の熱硬化性樹脂、熱可塑性樹脂が使用できる。但し、卑金属粉添加の効果は熱可塑性樹脂で著しい。なぜならば、フェルト樹脂等の熱硬化性樹脂は、一般に銀を覆うので問題が少ないが、ポリエステル等の熱可塑性樹脂は、銀を覆う特性が劣るので問題が大きく、卑金属粉を熱可塑性樹脂に適用するのは有効で効果が大きい。なお、熱硬化性樹脂に適用しても若干の効果はある。なお、本実施例の導電性ペーストが可撓性基板に導電パターンを形成するメンブレンスイッチ等に使用される場合、可撓性を有するポリエステル等の熱可塑性樹脂を結合剤として用いていると好適である。
【0027】
溶剤はエステル系、ケトン系、エーテル系、エーテルエステル系、塩素系、アルコール系、炭化水素系などの有機溶剤が使用できる。
【0028】
以下、各実施例を説明する。
【0029】
〔比較例1〕
この比較例1では、図1の組成(重量部)に示す、銀粉85wt%、ポリエステル樹脂15wt%、銀粉とポリエステル樹脂を100として溶剤30wt%、レベリング剤0.5wt%を混練りして導電性ペーストを得る。
【0030】
この比較例1の導電性ペーストの特性を測定すると、比抵抗は7×10 ̄Ω・cm、鉛筆硬度は2Hであった。
【0031】
〔比較例2〕
この比較例2では、図1の組成(重量部)に示す、銀粉80wt%、カーボン5wt%、ポリエステル樹脂15wt%、銀粉とカーボンとポリエステル樹脂を100として溶剤30wt%、レベリング剤0.5wt%を混練りして導電性ペーストを得る。
【0032】
この比較例2の導電性ペーストの特性を測定すると、比抵抗は1×10 ̄Ω・cm、鉛筆硬度はHであった。
【0033】
〔実施例3〕
この実施例3では、図1の組成(重量部)に示す、銀粉80wt%、カーボン5wt%、ポリエステル樹脂15wt%、銀粉とカーボンとポリエステル樹脂を100として卑金属である亜鉛0.1wt%、溶剤30wt%、レベリング剤0.5wt%を混練りして導電性ペーストを得る。
【0034】
この実施例3の導電性ペーストの特性を測定すると、比抵抗は1×10 ̄Ω・cm、鉛筆硬度は2Hであった。
【0035】
〔実施例4〕
この実施例4では、図1の組成(重量部)に示す、銀粉80wt%、カーボン5wt%、ポリエステル樹脂15wt%、銀粉とカーボンとポリエステル樹脂を100として卑金属である亜鉛0.5wt%、溶剤30wt%、レベリング剤0.5wt%を混練りして導電性ペーストを得る。
【0036】
この実施例4の導電性ペーストの特性を測定すると、比抵抗は9×10 ̄Ω・cm、鉛筆硬度は2Hであった。
【0037】
〔実施例5〕
この実施例5では、図1の組成(重量部)に示す、銀粉80wt%、カーボン5wt%、ポリエステル樹脂15wt%、銀粉とカーボンとポリエステル樹脂を100として卑金属である亜鉛1.0wt%、溶剤30wt%、レベリング剤0.5wt%を混練りして導電性ペーストを得る。
【0038】
この実施例5の導電性ペーストの特性を測定すると、比抵抗は8×10 ̄Ω・cm、鉛筆硬度は2Hであった。
【0039】
〔実施例6〕
この実施例6では、図1の組成(重量部)に示す、銀粉80wt%、カーボン5wt%、ポリエステル樹脂15wt%、銀粉とカーボンとポリエステル樹脂を100として卑金属である亜鉛2.0wt%、溶剤30wt%、レベリング剤0.5wt%を混練りして導電性ペーストを得る。
【0040】
この実施例6の導電性ペーストの特性を測定すると、比抵抗は9×10 ̄Ω・cm、鉛筆硬度はHであった。
【0041】
比較例7〕
この比較例7では、図1の組成(重量部)に示す、銀粉80wt%、カーボン5wt%、ポリエステル樹脂15wt%、銀粉とカーボンとポリエステル樹脂を100として卑金属であるアルミニウム1.0wt%、溶剤30wt%、レベリング剤0.5wt%を混練りして導電性ペーストを得る。
【0042】
この比較例7の導電性ペーストの特性を測定すると、比抵抗は8×10~5Ω・cm、鉛筆硬度は2Hであった。
【0043】
比較例8〕
この比較例8では、図1の組成(重量部)に示す、銀粉80wt%、カーボン5wt%、ポリエステル樹脂15wt%、銀粉とカーボンとポリエステル樹脂を100として卑金属であるニッケル1.0wt%、溶剤30wt%、レベリング剤0.5wt%を混練りして導電性ペーストを得る。
【0044】
この比較例8の導電性ペーストの特性を測定すると、比抵抗は8×10~5Ω・cm、鉛筆硬度は2Hであった。
【0045】
【発明の効果】
請求項1記載の発明によれば、亜鉛に硫黄又は塩素が結びつき、に影響を与えない。また、銀と亜鉛で電池を形成し、銀のイオン化を防ぐので、硫黄又は塩素と結びつかない。したがって、導通抵抗値の変化を少なくできる。また、亜鉛を使用することによって特に導通抵抗値の変化を少なくできる。また、亜鉛粉末の添加量が少なくとも0.5%以上にすることによって特に導通抵抗値の変化を少なくでき、また、亜鉛粉末の添加量が2%以下にすることによって添加量がばらついても抵抗値の値がさほど変化しないため、安定した導通抵抗を得ることができる。このように、塩化および硫化に対して有利であると共に、抵抗値を損なわない。
【図面の簡単な説明】
【図1】本発明の各実施例及び比較例の組成及び特性を表す説明図である。
【図2】本発明の実施例及び比較例の塩化試験結果を示す特性図である。
【図3】本発明の各実施例の塩化試験結果を示す特性図である。
【図4】本発明の実施例及び比較例の硫化試験結果を示す特性図である。
【図5】亜鉛粉の添加量と導通抵抗値の関係を示す特性図である。
[0001]
[Industrial applications]
The present invention relates to a conductive paste, more specifically, for example, a conductive paste applied to a polyester film by screen printing to give conductivity by drying and curing, and to form a membrane switch circuit. The present invention relates to a conductive paste suitable for use without protection.
[0002]
[Prior art]
Conventionally, in a conductive paste containing silver, silver is protected (overcoated) by a carbon paste or an insulating paste in order to prevent silver contamination, that is, a problem of causing conductivity deterioration such as sulfurization or chloride. I was
[0003]
However, it is difficult to use carbon paste due to the danger of short circuit due to the fine printed circuit accompanying the high density of electronic parts, or to simplify the manufacturing process by omitting carbon paste or insulating paste to reduce the cost. In order to reduce the cost of materials and the like, circuits are often formed from one layer of conductive paste obtained by kneading silver alone or other conductive material such as carbon black, for example. .
[0004]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional technology, silver is often exposed directly to various polluted environments, and in particular, sulfuration of silver by sulfide gas and chloride of silver by chlorine become conductive because silver forms an insulator. The influence is large, and in extreme cases, it leads to a fatal defect such as disconnection of a circuit.
[0005]
Conventionally, in order to solve the above problem, for example, the silver conductive particles are sufficiently covered with a binder by adding a coupling agent, or a measure such as using a binder having water repellency or gas barrier resistance is taken. However, the former has a drawback that the conductivity is poor, and the latter has a drawback that the adhesiveness to the polyester film is poor.
[0006]
An object of the present invention is to provide a conductive paste capable of reducing the change in the conduction resistance value even when the conductive powder contains silver.
[0007]
[Means for Solving the Problems]
The objects are achieved by a conductive paste to provide a conductivity by coating and drying and curing by screen printing onto a polyester film, seen containing a conductive powder including at least silver, a binder, and a zinc powder, wherein The amount of zinc powder added is achieved by means of 0.5% to 2% .
[0011]
[Action]
In the first means, sulfur or chlorine binds to zinc and does not affect silver. In addition, a battery is formed with silver and zinc to prevent silver ionization. And, because it is not ionized, silver does not combine with sulfur or chlorine. In addition, when zinc is used, the change in the conduction resistance value is particularly reduced. If the addition amount of zinc powder is at least 0.5% or more, the change in the conduction resistance value is small, and if the addition amount of zinc powder is 2% or less, the slope of the graph is small and the addition amount varies. Also, since the resistance value does not change much, a stable conduction resistance can be obtained.
[0015]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
1 is an explanatory view showing the composition and properties of the embodiments of the present invention (and Comparative Example), FIG. 2 is a characteristic diagram showing the chloride test results of actual施例(and Comparative Example), FIG. 3 of the Examples characteristic diagram showing the chloride test result, FIG. 4 is a characteristic diagram showing the sulfide test results of actual施例(and Comparative example), FIG. 5 is a characteristic diagram showing the relationship between the conduction resistance between the mixing amount of the zinc powder.
[0017]
The present invention provides a means for preventing silver contamination without impairing high conductivity and adhesion, by adding and kneading a metal powder such as zinc , which is a metal lower than silver, to prevent silver contamination. The effect was found to be enormous.
[0018]
Incidentally, chloride test 2 (zinc additive, a nickel addition, aluminum is added, without addition) whereas real施例and Comparative Examples you later, by adhering 2 wt% NaCl solution, and at 40 ° C. 90-95% RH The horizontal axis represents the test time (hours), and the vertical axis represents the conduction resistance (Ω). In the chloride test (the amount of zinc added) in FIG. 3, a 2 wt% Nacl solution was applied to each of the examples described below. C. 90-95% RH, the horizontal axis is the test time (hours), the vertical axis is the conduction resistance (Ω), and the sulfidation test (zinc addition, nickel addition, aluminum addition, no addition) in FIG. to real施例and Comparative examples you, in an atmosphere of H2 S 3 ppm, carried out at 40 ° C. 75% RH, the horizontal axis is test time (time), the vertical axis represents the conduction resistance value (Omega).
[0019]
As can be seen from FIGS. 2 and 4, the base metal powder to be added to the conductive paste of the example according to the present invention was zinc (Example 5 ) compared to aluminum ( Comparative Example 7) and nickel ( Comparative Example 8). The change in the conduction resistance value in ()) may be smaller. That is, the higher the ionization tendency, the better. However, iron is not preferable because it easily binds to oxygen. Tin and lead are not preferred because they may cause environmental problems.
[0020]
The conductive paste of Examples according to the present invention, silver and conductive fine powder other than silver, a binder, a base metal fine powder, a solvent as a main component, the ratio of the addition of the base metal fine powder,
(Conductive fine powder + binder) / (base metal fine powder) is in the range of 99.5 / 0.5 to 98/2 (weight ratio).
[0021]
As is apparent from FIG. 3, Example 4 (addition amount of zinc powder: 0.5 wt%), Example 5 (addition amount of zinc powder: 1.0 wt%), and Example 6 (addition amount of zinc powder: 2.0 wt%) %) Does not change much with the passage of time. Therefore, it can be seen that the base metal fine powder is effective if it is at least 0.5 wt% (weight ratio) or more.
[0022]
FIG. 5 shows the resistance value in the initial stage. When the base metal fine powder is 2 wt% or less, as is clear from FIG. 5, the slope of the graph is small and the value of the conduction resistance value is very large even when the addition amount varies. Since it does not change, a stable conduction resistance can be obtained.
[0023]
As the silver conductive fine powder, silver alone, a silver alloy or a composite powder, or another metal fine powder or a fine powder of resin, glass, or the like coated with silver by plating or the like can be used.
[0024]
The conductive fine powders other than silver are carbon black, graphite, copper, gold, palladium, and alloys thereof, and these conductive fine powders are not limited in shape and particle size, and are spherical, granular, and scale-like. Shapes, plates, dendrites, spikes and the like can be used. Further, a particle size of 0.1 to 100 μm can be used, but a particle size of 0.1 to 10 μm is preferable in consideration of screen printing or the like.
[0025]
The base metal than silver, a zinc, but are not limited to the shape and particle diameter, particle size 0.1~10μm spherical as being suitable for screen printing, granular, flake, plate, dendritic, spike It is preferably in the form of a grain, and is particularly preferably in the form of granules or dendrites having a large surface area.
[0026]
The type of the binder is not particularly limited, and general-purpose thermosetting resins and thermoplastic resins can be used. However, the effect of adding the base metal powder is remarkable for the thermoplastic resin. This is because thermosetting resins such as felt resins generally cover silver, so there are few problems.However, thermoplastic resins such as polyester have a large problem due to poor silver-covering properties, and base metal powder is applied to thermoplastic resins. It is effective and effective. In addition, there is a slight effect even when applied to a thermosetting resin. When the conductive paste of this embodiment is used for a membrane switch or the like that forms a conductive pattern on a flexible substrate, it is preferable to use a thermoplastic resin such as polyester having flexibility as a binder. is there.
[0027]
As the solvent, an organic solvent such as ester, ketone, ether, ether ester, chlorine, alcohol, and hydrocarbon can be used.
[0028]
Hereinafter, each embodiment will be described.
[0029]
[Comparative Example 1]
In Comparative Example 1, 85% by weight of silver powder, 15% by weight of polyester resin, 30% by weight of a solvent with silver powder and polyester resin as 100, and 30% by weight of a leveling agent as shown in the composition (parts by weight) of FIG. Get the paste.
[0030]
When the characteristics of the conductive paste of Comparative Example 1 were measured, the specific resistance was 7 × 10 5 Ω · cm, and the pencil hardness was 2H.
[0031]
[Comparative Example 2]
In Comparative Example 2, 80 wt% of silver powder, 5 wt% of carbon, 15 wt% of polyester resin, 30 wt% of solvent with silver powder, carbon and polyester resin as 100, and 0.5 wt% of leveling agent shown in the composition (parts by weight) of FIG. A conductive paste is obtained by kneading.
[0032]
When the characteristics of the conductive paste of Comparative Example 2 were measured, the specific resistance was 1 × 10 4 Ω · cm, and the pencil hardness was H.
[0033]
[Example 3]
In Example 3, 80% by weight of silver powder, 5% by weight of carbon, 15% by weight of polyester resin, 0.1% by weight of zinc as a base metal, and 30% by weight of solvent assuming that silver powder, carbon and polyester resin are 100, as shown in the composition (parts by weight) of FIG. % And a leveling agent of 0.5 wt% are kneaded to obtain a conductive paste.
[0034]
When the characteristics of the conductive paste of Example 3 were measured, the specific resistance was 1 × 10 4 Ω · cm, and the pencil hardness was 2H.
[0035]
[Example 4]
In Example 4, 80% by weight of silver powder, 5% by weight of carbon, 15% by weight of polyester resin, 0.5% by weight of zinc as a base metal, and 30% by weight of solvent, assuming that silver powder, carbon and polyester resin are 100, as shown in the composition (parts by weight) of FIG. % And a leveling agent of 0.5 wt% are kneaded to obtain a conductive paste.
[0036]
When the characteristics of the conductive paste of Example 4 were measured, the specific resistance was 9 × 10 5 Ω · cm and the pencil hardness was 2H.
[0037]
[Example 5]
In Example 5, 80% by weight of silver powder, 5% by weight of carbon, 15% by weight of polyester resin, 1.0% by weight of zinc as a base metal, and 30% by weight of solvent, assuming that silver powder, carbon and polyester resin are 100, as shown in the composition (parts by weight) of FIG. % And a leveling agent of 0.5 wt% are kneaded to obtain a conductive paste.
[0038]
When the characteristics of the conductive paste of Example 5 were measured, the specific resistance was 8 × 10 5 Ω · cm and the pencil hardness was 2H.
[0039]
[Example 6]
In Example 6, 80 wt% of silver powder, 5 wt% of carbon, 15 wt% of polyester resin, 2.0 wt% of zinc, which is a base metal, and 100 wt% of silver powder, carbon and polyester resin, and 30 wt% of solvent, as shown in the composition (parts by weight) of FIG. % And a leveling agent of 0.5 wt% are kneaded to obtain a conductive paste.
[0040]
When the characteristics of the conductive paste of Example 6 were measured, the specific resistance was 9 × 10 4 Ω · cm and the pencil hardness was H.
[0041]
[ Comparative Example 7]
In Comparative Example 7, 80% by weight of silver powder, 5% by weight of carbon, 15% by weight of polyester resin, 1.0% by weight of aluminum as a base metal, and 30% by weight of solvent, with silver powder, carbon and polyester resin being 100, as shown in the composition (parts by weight) of FIG. Then, a conductive paste is obtained by kneading 0.5 wt% of a leveling agent.
[0042]
When the characteristics of the conductive paste of Comparative Example 7 were measured, the specific resistance was 8 × 10 to 5 Ω · cm, and the pencil hardness was 2H.
[0043]
[ Comparative Example 8]
In Comparative Example 8, 80% by weight of silver powder, 5% by weight of carbon, 15% by weight of polyester resin, and 1.0% by weight of nickel, which is a base metal, and 30% by weight of solvent, assuming that silver powder, carbon and polyester resin are 100, as shown in the composition (parts by weight) of FIG. Then, a conductive paste is obtained by kneading 0.5 wt% of a leveling agent.
[0044]
When the characteristics of the conductive paste of Comparative Example 8 were measured, the specific resistance was 8 × 10 to 5 Ω · cm, and the pencil hardness was 2H.
[0045]
【The invention's effect】
According to the first aspect of the present invention, sulfur or chlorine binds to zinc and does not affect silver . In addition, since a battery is formed by silver and zinc and ionization of silver is prevented, the battery is not connected to sulfur or chlorine. Therefore, the change in the conduction resistance value can be reduced. In addition, the use of zinc can reduce particularly the change in the conduction resistance value. In addition, when the addition amount of zinc powder is at least 0.5% or more, the change in conduction resistance can be particularly reduced, and when the addition amount of zinc powder is 2% or less, the resistance can be reduced even if the addition amount varies. Since the value does not change much, a stable conduction resistance can be obtained. Thus, it is advantageous for chloride and sulfidation and does not impair the resistance value.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the composition and characteristics of each Example and Comparative Example of the present invention.
Is a characteristic diagram showing the chloride test results of actual施例and Comparative Examples of the present invention; FIG.
FIG. 3 is a characteristic diagram showing a result of a salification test of each example of the present invention.
Is a characteristic diagram showing the sulfide test results of actual施例and Comparative Examples of the present invention; FIG.
FIG. 5 is a characteristic diagram showing the relationship between the amount of zinc powder added and the conduction resistance value.

Claims (1)

ポリエステルフィルム上にスクリーン印刷により塗布し乾燥・硬化することにより導電性を与える導電性ペーストにおいて、少なくとも銀を含んだ導電性粉末と、結合剤と、亜鉛粉末とを含み、前記亜鉛粉末の添加量は0.5%〜2%であることを特徴とする導電性ペースト。In the conductive paste to provide a conductivity by coating and drying and curing by screen printing onto a polyester film, seen containing a conductive powder including at least silver, a binder, and a zinc powder, the addition of the zinc powder A conductive paste characterized in that the amount is 0.5% to 2% .
JP04600194A 1994-03-16 1994-03-16 Conductive paste Expired - Lifetime JP3602864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04600194A JP3602864B2 (en) 1994-03-16 1994-03-16 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04600194A JP3602864B2 (en) 1994-03-16 1994-03-16 Conductive paste

Publications (2)

Publication Number Publication Date
JPH07254308A JPH07254308A (en) 1995-10-03
JP3602864B2 true JP3602864B2 (en) 2004-12-15

Family

ID=12734851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04600194A Expired - Lifetime JP3602864B2 (en) 1994-03-16 1994-03-16 Conductive paste

Country Status (1)

Country Link
JP (1) JP3602864B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH117857A (en) * 1997-06-17 1999-01-12 Denso Corp Membrane switch
JP2003041218A (en) * 2000-08-31 2003-02-13 Matsushita Electric Ind Co Ltd Conductive adhesive agent and packaging structure using the same
US6524721B2 (en) 2000-08-31 2003-02-25 Matsushita Electric Industrial Co., Ltd. Conductive adhesive and packaging structure using the same
JP2002141520A (en) * 2000-10-31 2002-05-17 Kyocera Corp Solar cell element and its manufacturing method
JP4800609B2 (en) * 2003-12-12 2011-10-26 藤倉化成株式会社 Conductive paste, conductive sheet and method for producing the same
EP1965397B1 (en) * 2005-12-22 2019-03-20 Namics Corporation Thermosetting conductive paste and multilayer ceramic component having external electrode which is formed by using such thermosetting conductive paste
JP5530920B2 (en) * 2007-04-25 2014-06-25 ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー Formation of thick film conductor made of silver and nickel, or silver and nickel alloy, and solar cell made therefrom
CN104143373B (en) * 2014-07-30 2016-07-20 安徽状元郎电子科技有限公司 Conductive silver paste that a kind of Concha Ostreae/fluor-apatite is compound and preparation method thereof
CN104143372B (en) * 2014-07-30 2016-08-24 安徽状元郎电子科技有限公司 A kind of modified mullite conductive silver paste and preparation method thereof

Also Published As

Publication number Publication date
JPH07254308A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
JP2886340B2 (en) Composite particles of a conductive core material having a surface oxide layer and a refractory material and materials containing the same for shielding electromagnetic energy or erasing static electricity
JP3643128B2 (en) Composition for EMI shielding material or electrostatic charge dissipation material and method for providing EMI shielding
JP3602864B2 (en) Conductive paste
JP2012209148A (en) Conductive particle, conductive paste, and circuit board
JPH06295616A (en) Conductive paste for forming film capable of applying soldering
CA2068657C (en) Moisture resistant electrically conductive cements and methods for making and using same
JP2009209347A (en) Electrically-conductive ink
JP2000174400A (en) Flexible printed board
TWI428064B (en) Membrane circuit board
JP2010090264A (en) Functional electroconductive coating and method for production of printed circuit board using the same
US4455167A (en) Nickel-zinc dust-iron-nickel powder pigment system
JPS61163975A (en) Electrically conductive paint composition
JPH01201486A (en) Ag plated powder for electrically conductive paint having superior migration resistance
JPH07226110A (en) Copper powder for conductive paste and conductive copper paste using it
EP0292190B1 (en) Electrically conductive coating composition
JPH1166956A (en) Conductive paste
JP2005190819A (en) Carbon paste
JP2001273816A (en) Conductive paste
JPH10316901A (en) Electroconductive coating material
JPH0992031A (en) Conductive composition and soldered structure using the same
JP2834116B2 (en) Paint for resistance
JPS58103565A (en) Electrically conductive paint
JPH0149390B2 (en)
JPS63125582A (en) Conductive paint
JPS6111272B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

EXPY Cancellation because of completion of term