JP3598829B2 - Method for manufacturing oxide semiconductor electrode - Google Patents

Method for manufacturing oxide semiconductor electrode Download PDF

Info

Publication number
JP3598829B2
JP3598829B2 JP18922598A JP18922598A JP3598829B2 JP 3598829 B2 JP3598829 B2 JP 3598829B2 JP 18922598 A JP18922598 A JP 18922598A JP 18922598 A JP18922598 A JP 18922598A JP 3598829 B2 JP3598829 B2 JP 3598829B2
Authority
JP
Japan
Prior art keywords
oxide semiconductor
electrode
semiconductor layer
dye
semiconductor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18922598A
Other languages
Japanese (ja)
Other versions
JP2000021462A (en
Inventor
和夫 樋口
喜章 福嶋
博昭 若山
伸二 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP18922598A priority Critical patent/JP3598829B2/en
Priority to PCT/JP1998/003822 priority patent/WO1999010167A1/en
Priority to US09/297,051 priority patent/US6194650B1/en
Priority to EP98940586A priority patent/EP0934819A4/en
Publication of JP2000021462A publication Critical patent/JP2000021462A/en
Application granted granted Critical
Publication of JP3598829B2 publication Critical patent/JP3598829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

【0001】
【技術分野】
本発明は,酸化物半導体電極,より具体的には,色素増感型の太陽電池等に用いる酸化物半導体電極の製造方法に関する。
【0002】
【従来技術】
従来より,後述する図3に示すごとく,色素増感型太陽電池1が知られている。色素増感型太陽電池1は,透明電極5を受光面20に配設した酸化物半導体電極2と,これに対向する対向電極3とを有していると共に,スペーサ81により電極間に設けた間隙に電解液4を満たして構成してある。
【0003】
この従来の色素増感型太陽電池1は,上記透明電極5を透過して酸化物半導体電極2に照射される光99によって,酸化物半導体電極2内において電子を発生させる。そして,酸化物半導体電極2内の電子は,透明電極5に集められ,この透明電極5から取出される。
従来の酸化物半導体電極2は,図7に示すごとく,TiO等の酸化物半導体の微粒子(粒径:nmオーダ)を部分的に焼結させて構成した多孔質の電極基体921と,その表面に配置したルテニウム錯体等の色素923とよりなる。
【0004】
【解決しようとする課題】
しかしながら,上記従来の酸化物半導体電極2においては,次の問題がある。
即ち,従来の酸化物半導体電極2における電極基体921は,上記のごとく酸化物半導体の微粒子を部分的に焼結させて多孔質状に構成してある。そのため,これらの微粒子の接触部分あるいは非接触部分において多数の不連続部分が存在する。この不連続部分において電子の移動が制限され,光電流が低下する。
【0005】
一方,上記微粒子に代えて他の大型の形状の酸化物半導体を用いた場合には,その比表面積が低下し,表面に配置する色素の量が低下してしまう。
それ故,従来の酸化物半導体電極では,エネルギー変換効率の高い太陽電池の作製が困難であった。
【0006】
本発明は,かかる従来の問題点に鑑みてなされたもので,酸化物半導体の比表面積を低下させることなく,電子の移動制限を緩和することができ,エネルギー変換効率に優れた,太陽電池用酸化物半導体電極の製造方法を提供しようとするものである。
【0007】
【課題の解決手段】
請求項1に記載の発明は,高比表面積を有する基材上に,酸化物半導体の前駆体を溶解した超臨界流体を接触させ,酸化物半導体を析出させて酸化物半導体層を形成し,次いで上記基材を除去することにより,酸化物半導体層からなる酸化物半導体電極を得ることを特徴とする酸化物半導体電極の製造方法にある。
【0008】
また,請求項に記載の発明は,高比表面積を有する基材上に,酸化物半導体の前駆体を溶解した超臨界流体を接触させ,酸化物半導体を析出させて酸化物半導体層を形成し,次いで上記基材を除去した後に,上記酸化物半導体層の表面に色素を配置することにより,酸化物半導体層と色素とからなる酸化物半導体電極を得ることを特徴とする太陽電池用酸化物半導体電極の製造方法にある。
【0009】
上記発明において最も注目すべきことは,上記高比表面積を有する基材上において酸化物半導体を析出又は被覆させることにより酸化物半導体層を形成し,次いで上記基材を除去することである。
【0010】
上記高比表面積を有する基材としては,液相ないしは気相中において酸化ないしは溶解などによって除去可能な材料を用いる。例えば,活性炭,高分子透過膜,多孔質酸化物,多孔質金属等,種々の多孔質材料を用いることができる。これらのうち,活性炭は,その後の除去が容易であることなどから,特に好ましい。
【0011】
また,上記基材の比表面積は,5m/g以上であることが好ましい。上記基材の比表面積が5m/g未満の場合には,得られる酸化物半導体層の比表面積が小さすぎて,例えば太陽電池用(請求項2)の場合において十分な量の色素を配置することができないおそれがある。
【0012】
上記基材上への酸化物半導体層の形成は,上記のごとく析出により行う。具体的には,超臨界流体を用いた方法を利用する
【0013】
超臨界流体を用いた方法(以下,超臨界コート法という)は,均一な酸化物半導体層を短時間で形成することができるこの超臨界コート法は,例えば,上記基材の表面に,前駆体を溶解した超臨界流体を接触させ,次いで,上記前駆体を析出させて上記酸化物半導体層を形成することにより行う。
【0014】
なお,上記酸化物半導体としては,例えば,酸化チタン(TiO),酸化スズ(SnO),酸化亜鉛(ZnO),酸化ニオブ(Nb),酸化インジウム(In),酸化ジルコニウム(ZrO),酸化ランタン(La),酸化タンタル(Ta),チタン酸ストロンチウム(SrTiO),チタン酸バリウム(BaTiO)等を用いることができる。
【0015】
上記超臨界流体とは,通常,物質の臨界点以上の温度および圧力下におかれた液体を示す。しかし,本発明における超臨界流体とは,少なくとも臨界点以上の温度を有する流体であり,圧力は上記の定義の範囲である必要はない。この状態の流体は,液体と同等の溶解能力と,気体に近い拡散性,粘性を有する性質がある。そのため,微細孔内まで容易かつ迅速に多量の前駆体を運ぶことができる。上記溶解能力は,温度,圧力,エントレーナー(添加物)等により調整できる。
【0016】
上記超臨界流体としては,例えば,メタン,エタン,プロパン,ブタン,エチレン,プロピレン等の炭化水素,メタノール,エタノール,プロパノール,iso−プロパノール,ブタノール,iso−ブタノール,sec−ブタノール,tert−ブタノール等のアルコール,アセトン,メチルエチルケトン等のケトン類,二酸化炭素,水,アンモニア,塩素,クロロホルム,フレオン類等を用いることができる。
【0017】
また,上記前駆体の超臨界流体への溶解度を調整するために,メタノール,エタノール,プロパノール等のアルコール,アセトン,エチルメチルケトン等のケトン類,ベンゼン,トルエン,キシレン等の芳香族炭化水素等をエントレーナとして用いることができる。
【0018】
上記前駆体としては,反応後に上記酸化物半導体となりうる物質であって,金属または/および半金属のアルコキシド,金属または/および半金属のアセチルアセテート,金属または/および半金属の有機酸塩,金属または/および半金属の硝酸塩,金属または/および半金属のオキシ塩化物,金属または/および半金属の塩化物等の単独又は2種以上よりなる混合物を用いることができる。
【0019】
具体的には,例えばTiOの前駆体として,チタンn−ブトキシド(Titanium n−butoxide:Ti[O(CHCH),チタンイソプロポキシド(Titanium isopropoxide:Ti[OCH(CH),チタンエトキシド(Titanium ethoxide:Ti(OC)等を用いることができる。
【0020】
また,太陽電池用酸化物半導体電極(請求項2)の場合には,上記のごとく,上記修飾層の表面に色素を配置する。
上記色素としては,例えば,ルテニウム錯体,特にルテニウムビピリジン錯体,フタロシアニン,シアニン,メロシアニン,ポルフィリン,クロロフィル,ピレン,メチレンブルー,チオニン,キサンテン,クマリン,ローダミン等の金属錯体ないしは有機色素ならびにそれらの誘導体を用いることができる。
【0021】
また,上記修飾層の上への色素の配置は次のように行うことができる。
例えばルテニウム錯体等の色素をエタノール等のアルコールやアセトニトリル等の有機溶媒に溶解した溶液に,上記酸化物半導体を浸漬させることにより該色素を吸着させることができる。この際に色素の吸着性能を調整するために溶液を加熱することもできる。
【0022】
なお,実際に太陽電池用の酸化物半導体電極を作製する場合には,上記酸化物半導体層を多数作製し,これを用いて透明電極上において膜を形成し,更にその上に色素を配置させることが好ましい。これにより,製造工程の合理化を図ることができる。
【0023】
次に,上記発明の作用効果につき説明する。
上記発明においては,上記の高比表面積を有する基材上において析出又は被覆により酸化物半導体層を形成する。そのため,得られる酸化物半導体層は,基材の表面形状をそのまま転写した高比表面積の形状を有するものとなる。それ故,特に太陽電池用の場合(請求項2)においては,酸化物半導体層の表面には,十分な量の色素を配置することができる。
【0024】
また,上記酸化物半導体層は,上記のごとく,基材上に酸化物半導体を析出あるいは被覆させて形成する。そして,この酸化物半導体層は,従来の酸化物半導体微粒子に比べて,高比表面積を維持しつつ大幅に酸化物半導体粒子を大型化することができる。そのため,酸化物半導体層は従来の微粒子を部分的に焼結させた場合に比べて,結晶粒界等の電子の移動にかかわる不連続部分がほとんどない状態で形成される。それ故,従来よりも電子の移動をスムーズに行わせることができる。
そして,上記酸化物半導体電極は,上記色素量の確保と,上記電子の移動制限の緩和によって,従来よりも高いエネルギー変換効率を得ることができる。
【0025】
また,上記酸化物半導体電極(請求項1)は,上記太陽電池用酸化物半導体電極(請求項2)の他に,通常の電池,エレクトロクロミック素子や水の光分解用の電極等としても利用することができる。
【0026】
このように,本発明によれば,酸化物半導体層の比表面積を低下させることなく,電子の移動制限を緩和することができ,エネルギー変換効率に優れた,酸化物半導体電極の製造方法を提供することができる。
【0027】
【発明の実施の形態】
実施形態例
本発明の実施形態例にかかる太陽電池用酸化物半導体電極の製造方法につき,図1〜図6を用いて説明する。
本例においては,本発明に係る2種類の製造方法(実施例E1,実施例E2)と,比較のための従来の製造方法(比較例C1)により,それぞれ太陽電池用の酸化物半導体電極を製造した。そして,得られた酸化物半導体電極を用いて色素増感型の太陽電池を構成し,その特性を比較した。
以下,各実施例E1,E2および比較例C1につき詳説する。
【0028】
(実施例E1)
本例は,図1に示すごとく,高比表面積を有する基材7上に酸化物半導体を析出又は被覆させて酸化物半導体層21を形成し,次いで上記基材7を除去した後に,上記酸化物半導体層21の表面に色素23を配置することにより,酸化物半導体層21と色素23とからなる,太陽電池用の酸化物半導体電極2を得た。
【0029】
上記酸化物半導体層21を作製するに当たっては,まず,図1(a)に示すごとく,上記基材7としての活性炭粉末(大阪瓦斯(株)製M30)を多数準備した。この活性炭粉末は,多孔質材料であって,比表面積が3100m/gのものである。
次いで,この活性炭粉末7の存在下において,前駆体としてのチタンイソプロポキシド{Ti(iso−PrO)}を3.5mol/l溶解させたイソプロパノール溶液を超臨界二酸化炭素(150℃,374atm)に溶解させた。そして,この状態で3時間保持した。
【0030】
これにより,図1(b)に示すごとく,上記前駆体を含有した超臨界二酸化炭素210は,多孔質の活性炭粉末7の表面(細孔穴内の壁も含む)に非常に均一に接触した。
その後,超臨界二酸化炭素を減圧・除去した。次いで,室温で10時間乾燥後,温度570℃の空気気流下において10時間熱処理を施した。これにより,図1(c)に示すごとく,TiOよりなる高比表面積の酸化物半導体層21が形成されると共に基材7としての活性炭粉末が焼失した。なお,酸化物半導体層21の内部には基材7の焼失跡が中空部201として残った。
【0031】
次いで,本例においては,上記TiOよりなる酸化物半導体層21を,イオン交換水:アセチルアセトン:界面活性剤(ポリエチレングリコールモノ−4−オクチルフェニルエーテル)=100:2:1(体積比)の溶媒に37.5重量%混ぜてTiO含有溶液を作製した。
【0032】
次いで,透明電極5としてのフッ素ドープSnOコートガラス(旭硝子製)を準備し,その表面の10mm×10mmの面積に上記TiO含有溶液を塗布した。次いで,室温で10時間乾燥した後,温度450℃の空気気流下において30分間熱処理を施した。これにより,図2(a)に示すごとく,透明電極5上に,高比表面積の酸化物半導体層21が配置された。
【0033】
次に,図1(d),図2(b)に示すごとく,上記酸化物半導体層21の上に次のように色素23を配置した。
まず,マグネシウムエトキシドで脱水した無水エタノールに,ルテニウム錯体(cis−Di(thiocyanato)−N,N’−bis(2,2’−bipyridyl−4,4’dicarboxylic acid)−ruthenium(II))を2.85×10−4mol/lの濃度で溶解させた溶液を調製した。次いで,この溶液に,先述の酸化物半導体層21を設けた透明電極を24時間浸漬した。これにより,図1(d),図2(b)に示すごとく,酸化物半導体層21の表面および内面には,色素23としてのルテニウム錯体が吸着され,太陽電池用の酸化物半導体電極2が得られた。
【0034】
なお,本例では,上記酸化物半導体層21内部の活性炭粉末7を焼失,除去させた後に,該酸化物半導体層21を上記透明電極5上に配置したが,活性炭粉末7の除去を,透明電極5上への配設後に行っても勿論よい。
【0035】
(実施例E2)
実施例E2は,上記実施例E1における,酸化物半導体層21形成時の超臨界コート方法における前駆体を変更した例である。
即ち,上記と同様の活性炭粉末7を準備し,その存在下において,前駆体としてのチタンn−ブトキシド{Ti(n−BuO)}の溶解したn−ブタノール溶液{2.9mol/l}を超臨界二酸化炭素(150℃,371atm)に溶解させた。この状態で3時間保持した。
【0036】
これにより,上記と同様に,前駆体を含有した超臨界二酸化炭素は,多孔質の活性炭粉末7の表面に非常に均一に付着した。
その後,超臨界二酸化炭素を減圧・除去した後に,室温で10時間乾燥した。次いで,温度570℃の空気気流下において10時間熱処理を施した。これにより,基材7としての活性炭粉末が焼失し,TiOよりなる高比表面積の酸化物半導体層21が多数形成された。
その他は,実施例E1と同様にして酸化物半導体電極2を作製した。
【0037】
(比較例C1)
本比較例C2は,実施例E1における酸化物半導体層21に代えて,多数のTiO微粒子を用いた例である。
即ち,まず,TiO粒子(日本アエロジル製P25)を準備し,これをイオン交換水:アセチルアセトン:界面活性剤(ポリエチレングリコールモノ−4−オクチルフェニルエーテル)}=100:2:1(体積比)の溶媒に37.5重量%混ぜてTiO含有溶液を作製した。
【0038】
次いで,透明電極5としてのフッ素ドープSnOコートガラス(旭硝子製)を準備し,その表面の10mm×10mmの面積に上記TiO含有溶液を塗布した。次いで,室温で10時間乾燥した後,温度450℃の空気気流下において30分間熱処理を施した。これにより,透明電極5上に,TiOよりなる電極基体921(図7)を形成した。
【0039】
次に,上記電極基体921上に色素923を配置するに当たっては,マグネシウムエトキシドで脱水した無水エタノールに,ルテニウム錯体を2.85×10−4mol/lの濃度で溶解させた溶液を調製し,この溶液に,先述の電極基体21を設けた透明電極5を24時間浸漬し,ルテニウム錯体(色素)3を吸着させた。その他は実施例E1と同様にして,酸化物半導体電極2を作製した。
【0040】
次に,上記各製造方法(実施例E1,E2,比較例C1)により作製した酸化物半導体電極を用いて,色素増感型の太陽電池1を構成した。
図3に示すごとく,透明電極5を外方にして酸化物半導体電極2と別途準備した白金を50Å蒸着したフッ素ドープSnOコートガラスよりなる対向電極3(10mm×20mm)とを対向させる。また,これらの間には,スペーサ81を介在させて間隙を形成する。そして,この間隙に電解液4をしみこませることにより,色素増感型の太陽電池1を得た。
なお,電解液4は,炭酸エチレン21.14gとアセトニトリル4.0mlの混合溶液にヨウ化テトラ−n−プロピルアンモニウム(Tetra−n−propylammonium Iodide)3.13gとヨウ素0.18gを溶解したものである。
【0041】
次に,本例においては,上記各酸化物半導体電極により構成した色素増感型の太陽電池1の特性を比較した。具体的には,各色素増感型太陽電池1に対して,ソーラーシュミレータ(ワコム電創製WXS−85)を用いて,730W/mの疑似太陽光を照射し,ポテンショスタットで電圧を掃引した際の電圧と電流の関係を測定した。
【0042】
測定結果を図4〜図6に示す。これらの図は,横軸に電圧(V)を,縦軸に電流(mA)をとったものである。また,図4は実施例E1,図5は実施例E2,図6は比較例C1,の結果をそれぞれ示す。
【0043】
また,上記測定結果から,エネルギー変換効率および曲線因子を求めた。エネルギー変換効率は,(最大出力×100)/(入射光エネルギー)により表される。また,曲線因子は,最大出力/(短絡電流×開放電圧)により表される。なお,短絡電流は符号S1,開放電圧は符号S2として図4〜図6に示してある。
また,上記曲線因子は,エネルギー変換効率と同様に,太陽電気の性能を示す指標であってこの値が大きい方が望ましい。
各色素増感型太陽電池のエネルギー変換効率および曲線因子を表1に示す。
【0044】
【表1】

Figure 0003598829
【0045】
図4〜図6,および表1より知られるごとく,上記本発明の製造方法により製造した酸化物半導体電極(実施例E1,E2)は,従来の方法により作製した酸化物半導体電極(比較例C1)に比べて,エネルギー変換効率や曲線因子を増大させることができ太陽電池の性能が大きく向上することが分かる。
【0046】
【発明の効果】
上述のごとく,本発明によれば,酸化物半導体層の比表面積を低下させることなく,電子の移動制限を緩和することができ,エネルギー変換効率に優れた,酸化物半導体電極の製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例における,酸化物半導体層の製造過程を示す説明図。
【図2】実施形態例における,酸化物半導体電極の製造過程を示す説明図。
【図3】実施形態例における,色素増感型太陽電池の構成を示す説明図。
【図4】実施形態例における,実施例E1の電圧と電流との関係を示す説明図。
【図5】実施形態例における,実施例E2の電圧と電流との関係を示す説明図。
【図6】実施形態例における,比較例C1の電圧と電流との関係を示す説明図。
【図7】従来例における,酸化物半導体電極の構成を示す説明図。
【符号の説明】
1...色素増感型太陽電池,
2...酸化物半導体電極,
21...酸化物半導体層,
23...色素,
3...対向電極,
4...電解液,
5...透明電極,[0001]
【Technical field】
The present invention relates to a method for manufacturing an oxide semiconductor electrode, more specifically, a method for manufacturing an oxide semiconductor electrode used for a dye-sensitized solar cell or the like.
[0002]
[Prior art]
BACKGROUND ART Conventionally, as shown in FIG. 3 described later, a dye-sensitized solar cell 1 is known. The dye-sensitized solar cell 1 has an oxide semiconductor electrode 2 having a transparent electrode 5 disposed on a light receiving surface 20 and a counter electrode 3 facing the oxide semiconductor electrode 2, and is provided between the electrodes by a spacer 81. The gap is filled with the electrolyte 4.
[0003]
In the conventional dye-sensitized solar cell 1, electrons are generated in the oxide semiconductor electrode 2 by the light 99 that passes through the transparent electrode 5 and irradiates the oxide semiconductor electrode 2. Then, electrons in the oxide semiconductor electrode 2 are collected by the transparent electrode 5 and extracted from the transparent electrode 5.
As shown in FIG. 7, a conventional oxide semiconductor electrode 2 includes a porous electrode base 921 formed by partially sintering fine particles (particle size: nm order) of an oxide semiconductor such as TiO 2 and the like. It consists of a dye 923 such as a ruthenium complex disposed on the surface.
[0004]
[Problem to be solved]
However, the conventional oxide semiconductor electrode 2 has the following problem.
That is, as described above, the electrode substrate 921 in the conventional oxide semiconductor electrode 2 is made porous by partially sintering the oxide semiconductor fine particles. Therefore, a large number of discontinuous portions exist in the contact portion or the non-contact portion of these fine particles. In the discontinuous portion, the movement of electrons is restricted, and the photocurrent decreases.
[0005]
On the other hand, when another large-sized oxide semiconductor is used in place of the fine particles, the specific surface area decreases, and the amount of the dye arranged on the surface decreases.
Therefore, it has been difficult to produce a solar cell with high energy conversion efficiency using a conventional oxide semiconductor electrode.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and is capable of relaxing the electron transfer restriction without lowering the specific surface area of the oxide semiconductor, and having excellent energy conversion efficiency. An object of the present invention is to provide a method for manufacturing an oxide semiconductor electrode.
[0007]
[Means for solving the problem]
According to the first aspect of the present invention, an oxide semiconductor layer is formed by contacting a supercritical fluid in which a precursor of an oxide semiconductor is dissolved on a substrate having a high specific surface area to precipitate an oxide semiconductor. Next, there is provided a method for manufacturing an oxide semiconductor electrode, characterized by obtaining an oxide semiconductor electrode comprising an oxide semiconductor layer by removing the base material.
[0008]
According to a third aspect of the present invention, an oxide semiconductor layer is formed by contacting a supercritical fluid in which an oxide semiconductor precursor is dissolved on a substrate having a high specific surface area to precipitate an oxide semiconductor. Removing the base material and then disposing a dye on the surface of the oxide semiconductor layer to obtain an oxide semiconductor electrode composed of the oxide semiconductor layer and the dye. In a method for manufacturing a semiconductor electrode.
[0009]
The most remarkable point in the invention is that an oxide semiconductor layer is formed by depositing or coating an oxide semiconductor on the substrate having the high specific surface area, and then removing the substrate.
[0010]
As the substrate having a high specific surface area, a material that can be removed by oxidation or dissolution in a liquid phase or a gas phase is used. For example, various porous materials such as activated carbon, polymer permeable membrane, porous oxide, and porous metal can be used. Among them, activated carbon is particularly preferable because it is easily removed thereafter.
[0011]
The specific surface area of the substrate is preferably 5 m 2 / g or more. When the specific surface area of the base material is less than 5 m 2 / g, the specific surface area of the obtained oxide semiconductor layer is too small, and a sufficient amount of the dye is disposed, for example, in the case of a solar cell (Claim 2). May not be possible.
[0012]
The formation of the oxide semiconductor layer on the base material is performed by precipitation as described above. Specifically, utilizing a method using a supercritical fluid.
[0013]
A method using a supercritical fluid (hereinafter, referred to as a supercritical coating method) can form a uniform oxide semiconductor layer in a short time . This supercritical coating method is performed by, for example, bringing a supercritical fluid in which a precursor is dissolved into contact with the surface of the base material, and then depositing the precursor to form the oxide semiconductor layer.
[0014]
Note that as the oxide semiconductor, for example, titanium oxide (TiO 2 ), tin oxide (SnO 2 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), indium oxide (In 2 O 3 ), and oxide Zirconium (ZrO 2 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), strontium titanate (SrTiO 3 ), barium titanate (BaTiO 3 ), or the like can be used.
[0015]
The supercritical fluid generally refers to a liquid placed at a temperature and pressure above the critical point of a substance. However, the supercritical fluid in the present invention is a fluid having a temperature of at least the critical point, and the pressure does not need to be in the above-defined range. The fluid in this state has the same dissolving power as a liquid, and has the property of diffusivity and viscosity close to that of a gas. Therefore, a large amount of precursor can be easily and quickly transported into the micropores. The above dissolving ability can be adjusted by temperature, pressure, entrainer (additive) and the like.
[0016]
Examples of the supercritical fluid include hydrocarbons such as methane, ethane, propane, butane, ethylene and propylene, methanol, ethanol, propanol, iso-propanol, butanol, iso-butanol, sec-butanol, tert-butanol and the like. Ketones such as alcohol, acetone and methyl ethyl ketone, carbon dioxide, water, ammonia, chlorine, chloroform, freons and the like can be used.
[0017]
In order to adjust the solubility of the precursor in a supercritical fluid, alcohols such as methanol, ethanol and propanol, ketones such as acetone and ethyl methyl ketone, and aromatic hydrocarbons such as benzene, toluene and xylene are used. It can be used as an entrainer.
[0018]
The precursor is a substance that can become the oxide semiconductor after the reaction, such as metal or metalloid alkoxide, metal or metalloid acetylacetate, metal or metalloid organic acid salt, metal Alternatively, one or a mixture of two or more of metalloid nitrate, metal or metalloid oxychloride, metal or metalloid chloride, or the like can be used.
[0019]
Specifically, for example, as precursors of TiO 2 , titanium n-butoxide (Titanium n-butoxide: Ti [O (CH 2 ) 3 CH 3 ] 4 ) and titanium isopropoxide (Titanium isopropoxide: Ti [OCH (CH 3 ) 2 ] 4 ), titanium ethoxide (Titanium ethoxide: Ti (OC 2 H 5 ) 4 ) or the like can be used.
[0020]
In the case of an oxide semiconductor electrode for a solar cell (claim 2), a dye is disposed on the surface of the modification layer as described above.
As the dye, for example, metal complexes or organic dyes such as ruthenium complexes, particularly ruthenium bipyridine complexes, phthalocyanine, cyanine, merocyanine, porphyrin, chlorophyll, pyrene, methylene blue, thionin, xanthene, coumarin, and rhodamine, and derivatives thereof are used. Can be.
[0021]
The arrangement of the dye on the modified layer can be performed as follows.
For example, the dye can be adsorbed by immersing the oxide semiconductor in a solution in which a dye such as a ruthenium complex is dissolved in an alcohol such as ethanol or an organic solvent such as acetonitrile. At this time, the solution can be heated to adjust the dye adsorption performance.
[0022]
When actually producing an oxide semiconductor electrode for a solar cell, a large number of the above oxide semiconductor layers are produced, a film is formed on the transparent electrode, and a dye is disposed thereon. Is preferred. This makes it possible to streamline the manufacturing process.
[0023]
Next, the operation and effect of the above invention will be described.
In the above invention, the oxide semiconductor layer is formed on the substrate having the high specific surface area by deposition or coating. Therefore, the obtained oxide semiconductor layer has a shape with a high specific surface area obtained by transferring the surface shape of the base material as it is. Therefore, particularly in the case of a solar cell (claim 2), a sufficient amount of dye can be disposed on the surface of the oxide semiconductor layer.
[0024]
Further, as described above, the oxide semiconductor layer is formed by depositing or coating an oxide semiconductor on a base material. The oxide semiconductor layer can greatly increase the size of the oxide semiconductor particles while maintaining a high specific surface area as compared with conventional oxide semiconductor particles. Therefore, the oxide semiconductor layer is formed in a state in which there is almost no discontinuous portion related to the movement of electrons, such as a crystal grain boundary, as compared with a conventional case where particles are partially sintered. Therefore, the movement of electrons can be performed more smoothly than before.
In addition, the oxide semiconductor electrode can obtain higher energy conversion efficiency than the conventional one by securing the amount of the dye and relaxing the restriction of the electron transfer.
[0025]
The oxide semiconductor electrode (Claim 1) is used as an ordinary battery, an electrochromic device, an electrode for photolysis of water, and the like, in addition to the oxide semiconductor electrode for a solar cell (Claim 2). can do.
[0026]
As described above, according to the present invention, it is possible to provide a method for manufacturing an oxide semiconductor electrode which can ease the restriction of electron transfer without lowering the specific surface area of the oxide semiconductor layer and has excellent energy conversion efficiency. can do.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment Example A method of manufacturing an oxide semiconductor electrode for a solar cell according to an embodiment of the present invention will be described with reference to FIGS.
In this example, the oxide semiconductor electrodes for a solar cell were respectively formed by two types of manufacturing methods according to the present invention (Example E1 and Example E2) and a conventional manufacturing method for comparison (Comparative Example C1). Manufactured. Then, a dye-sensitized solar cell was constructed using the obtained oxide semiconductor electrode, and its characteristics were compared.
Hereinafter, each of Examples E1 and E2 and Comparative Example C1 will be described in detail.
[0028]
(Example E1)
In the present embodiment, as shown in FIG. 1, an oxide semiconductor layer 21 is formed by depositing or coating an oxide semiconductor on a base material 7 having a high specific surface area, and then removing the base material 7 and then removing the oxide semiconductor layer 21. By arranging the dye 23 on the surface of the product semiconductor layer 21, the oxide semiconductor electrode 2 for a solar cell comprising the oxide semiconductor layer 21 and the dye 23 was obtained.
[0029]
In manufacturing the oxide semiconductor layer 21, first, as shown in FIG. 1A, a large number of activated carbon powders (M30, manufactured by Osaka Gas Co., Ltd.) as the base material 7 were prepared. This activated carbon powder is a porous material having a specific surface area of 3100 m 2 / g.
Next, in the presence of the activated carbon powder 7, an isopropanol solution in which 3.5 mol / l of titanium isopropoxide {Ti (iso-PrO) 4 } as a precursor was dissolved was supercritical carbon dioxide (150 ° C., 374 atm). Was dissolved. Then, this state was maintained for 3 hours.
[0030]
As a result, as shown in FIG. 1 (b), the supercritical carbon dioxide 210 containing the precursor was in very uniform contact with the surface of the porous activated carbon powder 7 (including the walls inside the pores).
Thereafter, the supercritical carbon dioxide was decompressed and removed. Next, after drying at room temperature for 10 hours, a heat treatment was performed for 10 hours in an air stream at a temperature of 570 ° C. Thereby, as shown in FIG. 1C, the oxide semiconductor layer 21 made of TiO 2 having a high specific surface area was formed, and the activated carbon powder as the base material 7 was burned. Note that burn-out traces of the base material 7 remained as hollow portions 201 inside the oxide semiconductor layer 21.
[0031]
Next, in the present example, the oxide semiconductor layer 21 made of TiO 2 was coated with ion-exchanged water: acetylacetone: surfactant (polyethylene glycol mono-4-octylphenyl ether) = 100: 2: 1 (volume ratio). The mixture was mixed with a solvent at 37.5% by weight to prepare a TiO 2 -containing solution.
[0032]
Next, a fluorine-doped SnO 2 -coated glass (made by Asahi Glass) as a transparent electrode 5 was prepared, and the TiO 2 -containing solution was applied to an area of 10 mm × 10 mm on the surface thereof. Next, after drying at room temperature for 10 hours, heat treatment was performed for 30 minutes in an air stream at a temperature of 450 ° C. Thereby, as shown in FIG. 2A, the oxide semiconductor layer 21 having a high specific surface area was disposed on the transparent electrode 5.
[0033]
Next, as shown in FIGS. 1D and 2B, a dye 23 was disposed on the oxide semiconductor layer 21 as follows.
First, a ruthenium complex (cis-Di (thiocyanato) -N, N'-bis (2,2'-bipyridyl-4,4'dicarboxylic acid) -ruthenium (II)) was added to anhydrous ethanol dehydrated with magnesium ethoxide. A solution dissolved at a concentration of 2.85 × 10 −4 mol / l was prepared. Next, the transparent electrode provided with the above-described oxide semiconductor layer 21 was immersed in this solution for 24 hours. As a result, as shown in FIGS. 1D and 2B, the ruthenium complex as the dye 23 is adsorbed on the surface and the inner surface of the oxide semiconductor layer 21, and the oxide semiconductor electrode 2 for a solar cell is formed. Obtained.
[0034]
In this example, after the activated carbon powder 7 inside the oxide semiconductor layer 21 was burned off and removed, the oxide semiconductor layer 21 was disposed on the transparent electrode 5. Of course, it may be performed after disposition on the electrode 5.
[0035]
(Example E2)
Example E2 is an example in which the precursor in the supercritical coating method for forming the oxide semiconductor layer 21 in Example E1 was changed.
That is, an activated carbon powder 7 similar to the above was prepared, and in the presence thereof, an n-butanol solution {2.9 mol / l} in which titanium n-butoxide {Ti (n-BuO) 4 } was dissolved as a precursor was dissolved. It was dissolved in supercritical carbon dioxide (150 ° C., 371 atm). This state was maintained for 3 hours.
[0036]
As a result, similarly to the above, the supercritical carbon dioxide containing the precursor adhered to the surface of the porous activated carbon powder 7 very uniformly.
Thereafter, the supercritical carbon dioxide was removed under reduced pressure and dried at room temperature for 10 hours. Next, heat treatment was performed for 10 hours in an air stream at a temperature of 570 ° C. As a result, the activated carbon powder as the substrate 7 was burned off, and a large number of oxide semiconductor layers 21 made of TiO 2 and having a high specific surface area were formed.
Otherwise, the oxide semiconductor electrode 2 was manufactured in the same manner as in Example E1.
[0037]
(Comparative Example C1)
Comparative Example C2 is an example in which a large number of TiO 2 fine particles were used instead of the oxide semiconductor layer 21 in Example E1.
That is, first, TiO 2 particles (P25 manufactured by Nippon Aerosil Co., Ltd.) are prepared, and they are ion-exchanged water: acetylacetone: surfactant (polyethylene glycol mono-4-octylphenyl ether)} = 100: 2: 1 (volume ratio). Was mixed with 37.5% by weight of the solvent to prepare a TiO 2 -containing solution.
[0038]
Next, a fluorine-doped SnO 2 -coated glass (made by Asahi Glass) as a transparent electrode 5 was prepared, and the TiO 2 -containing solution was applied to an area of 10 mm × 10 mm on the surface thereof. Next, after drying at room temperature for 10 hours, heat treatment was performed for 30 minutes in an air stream at a temperature of 450 ° C. Thus, an electrode substrate 921 (FIG. 7) made of TiO 2 was formed on the transparent electrode 5.
[0039]
Next, in disposing the dye 923 on the electrode substrate 921, a solution was prepared by dissolving a ruthenium complex at a concentration of 2.85 × 10 −4 mol / l in anhydrous ethanol dehydrated with magnesium ethoxide. The transparent electrode 5 provided with the above-described electrode substrate 21 was immersed in this solution for 24 hours to adsorb the ruthenium complex (dye) 3. Otherwise, in the same manner as in Example E1, an oxide semiconductor electrode 2 was produced.
[0040]
Next, a dye-sensitized solar cell 1 was formed using the oxide semiconductor electrodes manufactured by the above-described manufacturing methods (Examples E1, E2, and Comparative Example C1).
As shown in FIG. 3, with the transparent electrode 5 facing outward, the oxide semiconductor electrode 2 is opposed to a counter electrode 3 (10 mm × 20 mm) made of fluorine-doped SnO 2 coated glass prepared by depositing platinum at 50 °. In addition, a gap is formed between them with a spacer 81 interposed therebetween. Then, the electrolyte solution 4 was impregnated into the gap to obtain a dye-sensitized solar cell 1.
The electrolyte 4 is a solution obtained by dissolving 3.13 g of tetra-n-propylammonium iodide (0.13 g) and iodine 0.18 g in a mixed solution of 21.14 g of ethylene carbonate and 4.0 ml of acetonitrile. is there.
[0041]
Next, in this example, the characteristics of the dye-sensitized solar cell 1 constituted by each of the above oxide semiconductor electrodes were compared. Specifically, each of the dye-sensitized solar cells 1 was irradiated with 730 W / m 2 pseudo sunlight using a solar simulator (WXS-85 manufactured by Wacom Denso), and the voltage was swept by a potentiostat. The relationship between the voltage and current at that time was measured.
[0042]
The measurement results are shown in FIGS. In these figures, the voltage (V) is plotted on the horizontal axis and the current (mA) is plotted on the vertical axis. 4 shows the results of Example E1, FIG. 5 shows the results of Example E2, and FIG. 6 shows the results of Comparative Example C1, respectively.
[0043]
In addition, the energy conversion efficiency and the fill factor were determined from the above measurement results. The energy conversion efficiency is represented by (maximum output × 100) / (incident light energy). The fill factor is represented by the maximum output / (short circuit current × open voltage). The short-circuit current is shown as S1 and the open-circuit voltage is shown as S2 in FIGS.
In addition, the above-mentioned fill factor is an index indicating the performance of solar electricity similarly to the energy conversion efficiency, and it is desirable that this value be larger.
Table 1 shows the energy conversion efficiency and fill factor of each dye-sensitized solar cell.
[0044]
[Table 1]
Figure 0003598829
[0045]
As can be seen from FIGS. 4 to 6 and Table 1, the oxide semiconductor electrodes (Examples E1 and E2) manufactured by the manufacturing method of the present invention are the same as the oxide semiconductor electrodes manufactured by the conventional method (Comparative Example C1). It can be seen that the energy conversion efficiency and the fill factor can be increased as compared with (), and the performance of the solar cell is greatly improved.
[0046]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method for manufacturing an oxide semiconductor electrode, which can ease the electron transfer restriction without lowering the specific surface area of the oxide semiconductor layer and has excellent energy conversion efficiency. can do.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a manufacturing process of an oxide semiconductor layer in an embodiment.
FIG. 2 is an explanatory view showing a manufacturing process of the oxide semiconductor electrode in the embodiment.
FIG. 3 is an explanatory diagram showing a configuration of a dye-sensitized solar cell in an embodiment.
FIG. 4 is an explanatory diagram showing the relationship between the voltage and the current of Example E1 in the embodiment.
FIG. 5 is an explanatory diagram showing the relationship between the voltage and the current of Example E2 in the embodiment.
FIG. 6 is an explanatory diagram showing a relationship between a voltage and a current of a comparative example C1 in the embodiment.
FIG. 7 is an explanatory diagram showing a configuration of an oxide semiconductor electrode in a conventional example.
[Explanation of symbols]
1. . . Dye-sensitized solar cells,
2. . . Oxide semiconductor electrode,
21. . . Oxide semiconductor layer,
23. . . Pigment,
3. . . Counter electrode,
4. . . Electrolyte,
5. . . Transparent electrode,

Claims (4)

高比表面積を有する基材上に,酸化物半導体の前駆体を溶解した超臨界流体を接触させ,酸化物半導体を析出させて酸化物半導体層を形成し,
次いで上記基材を除去することにより,酸化物半導体層からなる酸化物半導体電極を得ることを特徴とする酸化物半導体電極の製造方法。
A supercritical fluid in which a precursor of an oxide semiconductor is dissolved is brought into contact with a substrate having a high specific surface area to precipitate an oxide semiconductor and form an oxide semiconductor layer.
Next, an oxide semiconductor electrode comprising an oxide semiconductor layer is obtained by removing the base material.
請求項1において,上記基材は,活性炭よりなることを特徴とする酸化物半導体電極の製造方法。  2. The method according to claim 1, wherein the base is made of activated carbon. 高比表面積を有する基材上に,酸化物半導体の前駆体を溶解した超臨界流体を接触させ,酸化物半導体を析出させて酸化物半導体層を形成し,
次いで上記基材を除去した後に,
上記酸化物半導体層の表面に色素を配置することにより,酸化物半導体層と色素とからなる酸化物半導体電極を得ることを特徴とする太陽電池用酸化物半導体電極の製造方法。
A supercritical fluid in which a precursor of an oxide semiconductor is dissolved is brought into contact with a substrate having a high specific surface area to precipitate an oxide semiconductor and form an oxide semiconductor layer.
Then, after removing the substrate,
A method for producing an oxide semiconductor electrode for a solar cell, comprising obtaining an oxide semiconductor electrode comprising an oxide semiconductor layer and a dye by disposing a dye on the surface of the oxide semiconductor layer.
請求項3において,上記基材は,活性炭よりなることを特徴とする太陽電池用酸化物半導体電極の製造方法。  4. The method according to claim 3, wherein the base is made of activated carbon.
JP18922598A 1997-08-27 1998-07-03 Method for manufacturing oxide semiconductor electrode Expired - Fee Related JP3598829B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18922598A JP3598829B2 (en) 1998-07-03 1998-07-03 Method for manufacturing oxide semiconductor electrode
PCT/JP1998/003822 WO1999010167A1 (en) 1997-08-27 1998-08-26 Coated object and process for producing the same
US09/297,051 US6194650B1 (en) 1997-08-27 1998-08-26 Coated object and process for producing the same
EP98940586A EP0934819A4 (en) 1997-08-27 1998-08-26 Coated object and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18922598A JP3598829B2 (en) 1998-07-03 1998-07-03 Method for manufacturing oxide semiconductor electrode

Publications (2)

Publication Number Publication Date
JP2000021462A JP2000021462A (en) 2000-01-21
JP3598829B2 true JP3598829B2 (en) 2004-12-08

Family

ID=16237684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18922598A Expired - Fee Related JP3598829B2 (en) 1997-08-27 1998-07-03 Method for manufacturing oxide semiconductor electrode

Country Status (1)

Country Link
JP (1) JP3598829B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529293B2 (en) * 2001-01-31 2010-08-25 株式会社豊田中央研究所 Method for manufacturing form transfer material
JP4558380B2 (en) * 2004-05-25 2010-10-06 電源開発株式会社 Oxide film structure and manufacturing method thereof
JP5008034B2 (en) * 2005-03-03 2012-08-22 国立大学法人九州工業大学 Photoelectric conversion element and manufacturing method thereof
JP4887664B2 (en) * 2005-05-17 2012-02-29 ソニー株式会社 Method for producing porous structure and method for producing photoelectric conversion element
KR100929812B1 (en) 2007-08-02 2009-12-08 한국전자통신연구원 Solar cell having increased energy conversion efficiency and manufacturing method thereof
JP5445991B2 (en) * 2007-08-09 2014-03-19 独立行政法人物質・材料研究機構 Nano-flaked metal composite material, method for producing the same, and surface-enhanced Raman scattering active substrate
KR101179005B1 (en) 2010-12-24 2012-08-31 부산대학교 산학협력단 Hybrid Nano Structure And Electrode Using It And Manufacturing Method Thereof

Also Published As

Publication number Publication date
JP2000021462A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
Kashiwa et al. All-metal-electrode-type dye sensitized solar cells (transparent conductive oxide-less dye sensitized solar cell) consisting of thick and porous Ti electrode with straight pores
KR20060085465A (en) Continuous semiconductive electrode, process for preparing the same and solar cells using the same
TWI229457B (en) Dye sensitization electrooptic converter and fabrication method thereof
Melhem et al. TiO2 Nanocrystals Synthesized by Laser Pyrolysis for the Up‐Scaling of Efficient Solid‐State Dye‐Sensitized Solar Cells
KR101045849B1 (en) High Efficiency Flexible Dye-Sensitized Solar Cell and Manufacturing Method Thereof
JP2000357544A (en) Coloring matter sensitizing type solar battery
Sun et al. In-situ growth of antimony sulfide in carbon nanoparticle matrix: Enhanced electrocatalytic activity as counter electrode in dye-sensitized solar cells
Bharwal et al. Tuning bimodal porosity in TiO2 photoanodes towards efficient solid-state dye-sensitized solar cells comprising polysiloxane-based polymer electrolyte
Cai et al. Low-Pt-loading acetylene-black cathode for high-efficient dye-sensitized solar cells
KR20090080205A (en) Syntesis of titanium dioxide by aging and peptization methods for photo-electrode of dye-sensitized solar cells
JP3598829B2 (en) Method for manufacturing oxide semiconductor electrode
Trifiletti et al. Dye-sensitized solar cells containing plasma jet deposited hierarchically nanostructured TiO 2 thin photoanodes
JP2009238571A (en) Electrolyte for dye-sensitized solar cell
Ito et al. Dye-Sensitized Photocells with Meso-Macroporous TiO2 Film Electrodes.
Choi et al. Doubly open-ended TiO 2 nanotube arrays decorated with a few nm-sized TiO 2 nanoparticles for highly efficient dye-sensitized solar cells
JP2002231326A (en) Photoelectric conversion element and manufacturing method therefor
JP2000021460A (en) Pigment sensitizing solar battery
Pydzińska-Białek et al. Impact of improvements in mesoporous titania layers on ultrafast electron transfer dynamics in perovskite and dye-sensitized solar cells
Park et al. Fabrication of hole-patterned TiO2 photoelectrodes for solid-state dye-sensitized solar cells
JP4631000B2 (en) Semiconductor film-forming coating agent, and semiconductor film, photoelectric conversion element, and solar cell manufacturing method
Ahn et al. Synergistic effects of inter-and intra-particle porosity of TiO2 nanoparticles on photovoltaic performance of dye-sensitized solar cells
JP4379865B2 (en) Photoelectrode, method for producing the same, and solar cell using the same
JP3598828B2 (en) Method for manufacturing oxide semiconductor electrode
JP2002246076A (en) Manufacturing method for pigment-sensitized wet solar cell
Subramanian et al. Hierarchical multilayer-structured TiO2 electrode for dye-sensitized solar cells

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees