JP3598421B2 - Method for producing 2-substituted-1,3-propanediol - Google Patents

Method for producing 2-substituted-1,3-propanediol Download PDF

Info

Publication number
JP3598421B2
JP3598421B2 JP23667895A JP23667895A JP3598421B2 JP 3598421 B2 JP3598421 B2 JP 3598421B2 JP 23667895 A JP23667895 A JP 23667895A JP 23667895 A JP23667895 A JP 23667895A JP 3598421 B2 JP3598421 B2 JP 3598421B2
Authority
JP
Japan
Prior art keywords
group
reaction
propanediol
substituted
aldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23667895A
Other languages
Japanese (ja)
Other versions
JPH0977709A (en
Inventor
伸一 井上
秀治 岩崎
直 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP23667895A priority Critical patent/JP3598421B2/en
Publication of JPH0977709A publication Critical patent/JPH0977709A/en
Application granted granted Critical
Publication of JP3598421B2 publication Critical patent/JP3598421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2−置換−1,3−プロパンジオールの製造方法に関する。本発明により製造される2−置換−1,3−プロパンジオールは、各種医薬、農薬の合成中間体として、例えば抗炎症剤、鎮痛剤として効果が期待されている(1S,4R)−シス−1−エチル−1,3,4,9−テトラヒドロ−4−(フェニルメチル)ピラノ[3,4−b]インドール−1−酢酸の合成中間体として有用である。
【0002】
【従来の技術】
2−置換−1,3−プロパンジオールの合成法としては、例えば、マロン酸ジエチルをナトリウムエトキシドの存在下にベンジルクロリドでアルキル化したのち、水素化リチウムアルミニウムで還元することにより2−ベンジル−1,3−プロパンジオールを得る方法が知られている[マクロモレキュラズ(Macromolecules)、20巻、1416〜1419頁(1987年)参照]。また、アルデヒドのα位にヒドロキシメチル基を導入する方法としては、イソバレルアルデヒドを、炭酸カリウム水溶液を用いてジエチルエーテルとホルマリン水溶液の二相系で反応させ、目的物であるヒドロキシメチル体を得る方法が知られている[ザ ジャーナル オブ アメリカン ケミカル ソサエティー(The Journal of American Chemical
Society)、70巻、1694〜1699頁(1948年)参照]。
【0003】
【発明が解決しようとする課題】
上記の2−ベンジル−1,3−プロパンジオールの製造方法は、原料であるマロン酸ジエチルおよび還元剤である水素化リチウムアルミニウムが高価であること、さらに水素化リチウムアルミニウムは工業的に取り扱いが困難であることから、工業的に有利な製造方法とは言い難い。また、上記のアルデヒドのα位にヒドロキシメチル基を導入する方法は、反応溶媒にジエチルエーテルを使用しており、該溶媒の引火性、揮発性、過酸化物の蓄積性等の理由から、工業的に有利な製造方法とは言い難い。一方、ヒドロキシメチル化反応溶媒として一般的なアルコール系の溶媒は、後述の比較例からも明らかなように、反応速度が非常に速く、反応調節が困難なため、目的物であるモノヒドロキシメチル体がジヒドロキシメチル体および脱水体に変換し、収率が低下するという欠点を有している。
しかして、本発明の目的は、工業的に取り扱いの困難な溶剤を用いることなく、2−置換−1,3−プロパンジオールを選択的に製造し得る方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明よれば、上記の目的は、一般式(I)
【0005】
【化3】

Figure 0003598421
【0006】
(式中、Rは置換基を有していてもよいアルキル基、アリール基またはアラルキル基を表す。)
で示されるアルデヒド(以下、これをアルデヒド(I)と略記することがある)を、沸点が50℃より高いエーテル系溶媒中、塩基性触媒の存在下にホルマリン水溶液と反応させてα位をモノヒドロキシメチル化し、次いで還元反応に付すことを特徴とする一般式(II)
【0007】
【化4】
Figure 0003598421
【0008】
(式中、Rは前記定義のとおりである。)
で示される2−置換−1,3−プロパンジオール(以下、これを2−置換−1,3−プロパンジオール(II)と略記することがある)の製造方法を提供することにより達成される。
【0009】
【発明の実施の形態】
前記一般式(I)および(II)においてRが表すアルキル基は、直鎖状または分岐鎖状のいずれでもよく、炭素数1〜10のアルキル基が好ましい。かかるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、イソアミル基、イソバレル基、ヘキシル基、オクチル基、デシル基等が挙げられる。Rが表すアリール基としては、例えばフェニル基、ナフチル基等が挙げられ、アラルキル基としてはベンジル基等が挙げられる。これらのアルキル基、アリール基およびアラルキル基は置換基を有していてもよく、置換基としては塩素原子、臭素原子等のハロゲン原子が挙げられる。また、アリール基およびアラルキル基のアリール基部分の置換基としては、メチル基、エチル基、プロピル基等の炭素数1〜6の低級アルキル基が挙げられる。
【0010】
本発明において使用される沸点が50℃より高いエーテル系溶媒としては、例えば、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、1,1−ジメトキシエタン、1,2−ジメトキシエタン、ジイソプロピルエーテル等が挙げられる。中でもテトラヒドロフランが好ましい。
【0011】
本発明において使用される塩基性触媒としては、例えば炭酸カリウム、炭酸ナトリウム等のアルカリ金属炭酸塩;水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属水酸化物等が挙げられるが、特に炭酸カリウム、炭酸ナトリウム等が好ましい。塩基性触媒の使用量は、アルデヒド(I)1モルに対して0.05〜20モルの範囲が好ましく、1〜2モルの範囲がより好ましい。かかる塩基性触媒は通常水溶液として使用するが、水溶液中の塩基性触媒の濃度は5〜20w/v%の範囲であることが好ましい。
【0012】
反応に用いられるホルマリン水溶液の濃度は特に限定されず、例えば、市販品の20〜45%水溶液を用いることができる。その使用量は、反応速度、経済性、副生成物の分離等の観点から、アルデヒド(I)1モルに対して1〜100モルの範囲が好ましく、2〜20モルの範囲がより好ましい。
【0013】
反応温度は、0〜50℃の範囲であることが好ましく、0〜5℃の範囲であることがより好ましい。
【0014】
上記の方法により製造されるアルデヒドのヒドロキシメチル体の反応混合物からの単離精製は、通常の有機化合物の単離精製において用いられる方法と同様にして行われる。例えば、反応混合物を水にあけ、酢酸エチル、イソプロピルエーテル等の有機溶媒で抽出する。抽出液を水で洗浄中和し、次いで飽和食塩水で洗浄したのち、乾燥、濃縮して粗生成物が得られる。この粗生成物は、通常の分離方法に従って精製することも可能であるが、粗生成物をそのまま次の還元反応に用いることも可能である。
【0015】
還元は、一般的な接触水素添加方法で行うことができる。かかる反応に使用される触媒としては、ニッケル、コバルト、ロジウム、パラジウム、プラチナ等の適当な金属触媒が挙げられる。好ましくはラネーニッケル等であるが、モリブデン変性のラネーニッケルを使用することがより好ましい。この反応は溶媒中で行うのが好ましく、溶媒としては、例えばエタノール、メタノール等のアルコール系溶媒等が使用される。水添温度は、20〜150℃の範囲であることが好ましく、90〜110℃の範囲であることがより好ましい。反応水素圧は、通常、5〜100kg/cmの範囲であることが好ましく、10〜30kg/cmの範囲であることがより好ましい。
【0016】
このようにして得られた2−置換−1,3−プロパンジオール(II)の反応混合物からの単離・精製は、上記の方法により製造される水添生成物から触媒を濾別したのち、濾液を減圧下に濃縮することによって粗生成物を得、該生成物を必要に応じて蒸留、再結晶またはクロマトグラフィー等により精製することによって行われる。
【0017】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
【0018】
比較例1
3−フェニルプロピオンアルデヒド1gをメタノール10mlに溶解し、得られた溶液に、20℃で37%ホルマリン水溶液3.0ml、10%炭酸カリウム水溶液10.4mlを順次加え、30分間撹拌した。得られた2−ヒドロキシメチル−3−フェニルプロピオンアルデヒド(目的物)、並びに副生成物であるジヒドロキシメチル体(2,3−ジヒドロキシメチル−3−フェニルプロピオンアルデヒド)および脱水体(C−CH−C(=CH)−CHO)のHPLCでの収率はそれぞれ5.9%、45.2%、31.8%であった。
【0019】
実施例1
2−ヒドロキシメチル−3−フェニルプロピオンアルデヒドの合成
実施例1−
3−フェニルプロピオンアルデヒド1gをテトラヒドロフラン10mlに溶解し、得られた溶液に20℃で37%ホルマリン水溶液3.0ml、10%炭酸カリウム水溶液10.4mlを順次加え、3時間撹拌した。得られた2−ヒドロキシメチル−3−フェニルプロピオンアルデヒド、ジヒドロキシメチル体(2,3−ジヒドロキシメチル−3−フェニルプロピオンアルデヒド)および脱水体(C65 −CH2 −C(=CH2 )−CHO)のHPLCでの収率はそれぞれ45.6%、16.3%、27.6%であった。
【0020】
実施例1−
反応温度を1℃、反応時間を15時間にした以外は実施例1−と同様の条件で反応を行った。得られた2−ヒドロキシメチル−3−フェニルプロピオンアルデヒド、ジヒドロキシメチル体(2,3−ジヒドロキシメチル−3−フェニルプロピオンアルデヒド)および脱水体(C65 −CH2 −C(=CH2 )−CHO)のHPLCでの収率はそれぞれ56.0%、6.7%、12.9%であった。
【0021】
実施例1−
3−フェニルプロピオンアルデヒド10gをテトラヒドロフラン100mlに溶解したのち、1℃に冷却した。この溶液に、37%ホルマリン水溶液を加え、次いで、14%炭酸カリウム水溶液73.5mlを滴下し、1℃のまま5時間撹拌した。反応終了液を水にあけ、酢酸エチルで抽出した。抽出液を水で洗浄中和し、次いで飽和食塩水で洗浄し、無水硫酸ナトリウムを用いて乾燥させたのち、減圧下に濃縮し、粗ヒドロキシメチル体14.4gを得た。
【0022】
実施例2
2−ベンジル−1,3−プロパンジオールの合成
実施例1−で得られた粗ヒドロキシメチル体14.4gにエタノール144mlを加えたのち、モリブデン変性ラネーニッケル1.44gを添加し、100℃、水素圧20気圧、11時間反応させた。反応終了後、反応液を濾過し、ラネーニッケルを除去したのち、濾液を濃縮、真空蒸発した。これにトルエンを加え再結晶することによって2−ベンジル−1,3−プロパンジオール5.6gを得た。
【0023】
【発明の効果】
本発明によって、2−置換−1,3−プロパンジオールを工業的に有利に製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing 2-substituted-1,3-propanediol. The 2-substituted-1,3-propanediol produced by the present invention is expected to be effective as an intermediate for synthesis of various medicines and agricultural chemicals, for example, as an anti-inflammatory agent and an analgesic (1S, 4R) -cis-. It is useful as a synthetic intermediate for 1-ethyl-1,3,4,9-tetrahydro-4- (phenylmethyl) pyrano [3,4-b] indole-1-acetic acid.
[0002]
[Prior art]
As a method for synthesizing 2-substituted-1,3-propanediol, for example, alkyl malonate is alkylated with benzyl chloride in the presence of sodium ethoxide, and then reduced with lithium aluminum hydride to give 2-benzyl-methyl-malonate. A method for obtaining 1,3-propanediol is known [see Macromolecules, Vol. 20, pp. 1416 to 1419 (1987)]. Further, as a method for introducing a hydroxymethyl group at the α-position of the aldehyde, isovaleraldehyde is reacted in a two-phase system of diethyl ether and a formalin aqueous solution using an aqueous potassium carbonate solution to obtain a hydroxymethyl derivative as an objective product. Methods are known [The Journal of American Chemical Society]
Society), 70, 1694-1699 (1948)].
[0003]
[Problems to be solved by the invention]
In the above-mentioned method for producing 2-benzyl-1,3-propanediol, diethyl malonate as a raw material and lithium aluminum hydride as a reducing agent are expensive, and lithium aluminum hydride is industrially difficult to handle. Therefore, it is hard to say that the production method is industrially advantageous. Further, the above-mentioned method of introducing a hydroxymethyl group at the α-position of an aldehyde uses diethyl ether as a reaction solvent, and the method is industrial because of the flammability, volatility, and accumulation of peroxide of the solvent. It is difficult to say that this is a production method that is economically advantageous. On the other hand, a general alcohol-based solvent as a hydroxymethylation reaction solvent has a very high reaction rate and is difficult to control the reaction, as is apparent from a comparative example described later, and therefore, the monohydroxymethyl compound which is the target substance is used. Has the drawback that it is converted into a dihydroxymethyl form and a dehydrated form, and the yield is reduced.
Thus, an object of the present invention is to provide a method capable of selectively producing 2-substituted-1,3-propanediol without using a solvent that is industrially difficult to handle.
[0004]
[Means for Solving the Problems]
According to the present invention, the above objects have the general formula (I)
[0005]
Embedded image
Figure 0003598421
[0006]
(In the formula, R represents an alkyl group, an aryl group or an aralkyl group which may have a substituent.)
(Hereinafter sometimes abbreviated as aldehyde (I)) is reacted with an aqueous formalin solution in an ether-based solvent having a boiling point higher than 50 ° C. in the presence of a basic catalyst to convert the α-position into a mono-form. General formula (II) characterized in that hydroxymethylation and subsequent reduction reaction
[0007]
Embedded image
Figure 0003598421
[0008]
(Wherein, R is as defined above.)
This is achieved by providing a method for producing 2-substituted-1,3-propanediol represented by the following formula (hereinafter sometimes abbreviated as 2-substituted-1,3-propanediol (II)).
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The alkyl group represented by R in the general formulas (I) and (II) may be linear or branched, and is preferably an alkyl group having 1 to 10 carbon atoms. Examples of such an alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an isoamyl group, an isovaler group, a hexyl group, an octyl group, and a decyl group. Examples of the aryl group represented by R include a phenyl group and a naphthyl group, and examples of the aralkyl group include a benzyl group. These alkyl group, aryl group and aralkyl group may have a substituent, and examples of the substituent include a halogen atom such as a chlorine atom and a bromine atom. Examples of the substituent of the aryl group portion of the aryl group and the aralkyl group include a lower alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group.
[0010]
Examples of the ether solvent having a boiling point higher than 50 ° C. used in the present invention include tetrahydrofuran, tetrahydropyran, dioxane, 1,1-dimethoxyethane, 1,2-dimethoxyethane, diisopropyl ether and the like. Among them, tetrahydrofuran is preferred.
[0011]
Examples of the basic catalyst used in the present invention include alkali metal carbonates such as potassium carbonate and sodium carbonate; and alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide. Potassium carbonate, sodium carbonate and the like are preferred. The amount of the basic catalyst used is preferably in the range of 0.05 to 20 mol, more preferably in the range of 1 to 2 mol, per 1 mol of the aldehyde (I). Such a basic catalyst is usually used as an aqueous solution, and the concentration of the basic catalyst in the aqueous solution is preferably in the range of 5 to 20 w / v%.
[0012]
The concentration of the formalin aqueous solution used for the reaction is not particularly limited, and for example, a commercially available 20 to 45% aqueous solution can be used. From the viewpoints of reaction rate, economy, separation of by-products, and the like, the amount is preferably 1 to 100 mol, more preferably 2 to 20 mol, per 1 mol of the aldehyde (I).
[0013]
The reaction temperature is preferably in the range of 0 to 50 ° C, more preferably in the range of 0 to 5 ° C.
[0014]
Isolation and purification of the hydroxymethyl form of the aldehyde produced by the above-mentioned method from the reaction mixture are carried out in the same manner as in a method generally used in the isolation and purification of organic compounds. For example, the reaction mixture is poured into water and extracted with an organic solvent such as ethyl acetate or isopropyl ether. The extract is washed and neutralized with water, then washed with saturated saline, dried and concentrated to obtain a crude product. This crude product can be purified according to a usual separation method, but the crude product can be used as it is in the next reduction reaction.
[0015]
The reduction can be performed by a general catalytic hydrogenation method. Suitable catalysts for use in such reactions include nickel, cobalt, rhodium, palladium, platinum and the like. Preferably, Raney nickel or the like is used, but it is more preferable to use molybdenum-modified Raney nickel. This reaction is preferably performed in a solvent. As the solvent, for example, an alcoholic solvent such as ethanol and methanol is used. The hydrogenation temperature is preferably in the range of 20 to 150C, more preferably in the range of 90 to 110C. The reaction hydrogen pressure is generally preferably in the range of 5 to 100 kg / cm 2, and more preferably in the range of 10 to 30 kg / cm 2.
[0016]
Isolation and purification of the thus-obtained 2-substituted-1,3-propanediol (II) from the reaction mixture is carried out by filtering off the catalyst from the hydrogenated product produced by the above-mentioned method, The reaction is carried out by concentrating the filtrate under reduced pressure to obtain a crude product, and purifying the product by distillation, recrystallization, chromatography or the like, if necessary.
[0017]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[0018]
Comparative Example 1
1 g of 3-phenylpropionaldehyde was dissolved in 10 ml of methanol, and 3.0 ml of a 37% aqueous solution of formalin and 10.4 ml of a 10% aqueous solution of potassium carbonate were sequentially added to the obtained solution at 20 ° C., followed by stirring for 30 minutes. The obtained 2-hydroxymethyl-3-phenylpropionaldehyde (target substance), and dihydroxymethyl derivative (2,3-dihydroxymethyl-3-phenylpropionaldehyde) and dehydrated product (C 6 H 5 −) as by-products The yields of CH 2 —C (= CH 2 ) —CHO) by HPLC were 5.9%, 45.2%, and 31.8%, respectively.
[0019]
Example 1
Synthesis of 2-hydroxymethyl-3-phenylpropionaldehyde Example 1- a
1 g of 3-phenylpropionaldehyde was dissolved in 10 ml of tetrahydrofuran, and 3.0 ml of a 37% aqueous solution of formalin and 10.4 ml of a 10% aqueous solution of potassium carbonate were sequentially added to the obtained solution at 20 ° C., followed by stirring for 3 hours. The resulting 2-hydroxymethyl-3-phenylpropionic aldehyde, dihydroxy methyl derivatives (2,3-dihydroxy-3-phenylpropionic aldehyde) and dried body (C 6 H 5 -CH 2 -C (= CH 2) - The yield of CHO) by HPLC was 45.6%, 16.3%, and 27.6%, respectively.
[0020]
Example 1- b
The reaction was carried out under the same conditions as in Example 1- a except that the reaction temperature was 1 ° C. and the reaction time was 15 hours. The resulting 2-hydroxymethyl-3-phenylpropionic aldehyde, dihydroxy methyl derivatives (2,3-dihydroxy-3-phenylpropionic aldehyde) and dried body (C 6 H 5 -CH 2 -C (= CH 2) - The yield of CHO) by HPLC was 56.0%, 6.7%, and 12.9%, respectively.
[0021]
Example 1- c
After dissolving 10 g of 3-phenylpropionaldehyde in 100 ml of tetrahydrofuran, the mixture was cooled to 1 ° C. To this solution, a 37% aqueous formalin solution was added, and then 73.5 ml of a 14% aqueous potassium carbonate solution was added dropwise, followed by stirring at 1 ° C. for 5 hours. The reaction-terminated liquid was poured into water and extracted with ethyl acetate. The extract was washed with water and neutralized, then washed with saturated saline, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain 14.4 g of a crude hydroxymethyl compound.
[0022]
Example 2
Synthesis of 2-benzyl-1,3-propanediol To 14.4 g of the crude hydroxymethyl compound obtained in Example 1- c , 144 ml of ethanol was added, and 1.44 g of molybdenum-modified Raney nickel was added. The reaction was carried out at a pressure of 20 atm for 11 hours. After completion of the reaction, the reaction solution was filtered to remove Raney nickel, and then the filtrate was concentrated and evaporated in vacuo. Toluene was added thereto and recrystallized to obtain 5.6 g of 2-benzyl-1,3-propanediol.
[0023]
【The invention's effect】
According to the present invention, 2-substituted-1,3-propanediol can be industrially advantageously produced.

Claims (1)

一般式(I)
Figure 0003598421
(式中、Rは置換基を有していてもよいアルキル基、アリール基またはアラルキル基を表す。)で示されるアルデヒドを、沸点が50℃より高いエーテル系溶媒中、0〜5℃の温度範囲で、塩基性触媒の存在下にホルマリン水溶液と反応させてα位をモノヒドロキシメチル化し、次いで還元反応に付すことを特徴とする一般式(II)
Figure 0003598421
(式中、Rは前記定義のとおりである。)で示される2−置換−1,3−プロパンジオールの製造方法。
General formula (I)
Figure 0003598421
(Wherein, R represents an alkyl group which may have a substituent, an aryl group or an aralkyl group.) Aldehyde, high ethereal solvent boiling point is 50 ° C. represented by the temperature of 0 to 5 ° C. A general formula (II) characterized by reacting with an aqueous formalin solution in the presence of a basic catalyst to monohydroxymethylate the α-position and then subjecting the α-position to a reduction reaction.
Figure 0003598421
(Wherein, R is as defined above).
JP23667895A 1995-09-14 1995-09-14 Method for producing 2-substituted-1,3-propanediol Expired - Fee Related JP3598421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23667895A JP3598421B2 (en) 1995-09-14 1995-09-14 Method for producing 2-substituted-1,3-propanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23667895A JP3598421B2 (en) 1995-09-14 1995-09-14 Method for producing 2-substituted-1,3-propanediol

Publications (2)

Publication Number Publication Date
JPH0977709A JPH0977709A (en) 1997-03-25
JP3598421B2 true JP3598421B2 (en) 2004-12-08

Family

ID=17004166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23667895A Expired - Fee Related JP3598421B2 (en) 1995-09-14 1995-09-14 Method for producing 2-substituted-1,3-propanediol

Country Status (1)

Country Link
JP (1) JP3598421B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112574016B (en) * 2020-12-03 2022-09-20 万华化学集团股份有限公司 Method for synthesizing alpha-methyl cinnamaldehyde from phenylpropyl aldehyde

Also Published As

Publication number Publication date
JPH0977709A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
HU198437B (en) Process for producing mono- or bis-carbonyl-compounds
KR20070116286A (en) Process for preparing cinacalcet hydrochloride
IL95480A (en) Process for the preparation of cyclic amino acids and intermediates
US4002666A (en) Process for the preparation of optically active p-hydroxyphenylglycine
JP3598421B2 (en) Method for producing 2-substituted-1,3-propanediol
HU229188B1 (en) Process for the preparation of n-[(s)-1-carboxybutyl]-(s)-alanine esters and their use for synthesizing perindopril
JP2018505179A (en) Process for the preparation of compounds such as 3-arylbutanal useful for the synthesis of medetomidine
JPH1087548A (en) New production method for 1,3-cyclohexanedione compound
JP2527319B2 (en) Method for producing 7-bromo-β-carboline derivative
CA1037047A (en) 2-hydroxymethyl-3-hydroxy-6-(1-hydroxy-2-t-butylaminoethyl)pyridine preparation and intermediate compounds
JP3285391B2 (en) Method for producing 2-phenoxybenzoic acid
HU203540B (en) Process for producing 1-propargyl-2,4-dioxo-imidazolidine
JP4397990B2 (en) Purification method of 3-alkylflavanonol derivatives
JP2998154B2 (en) L-Tartrate of (2R.4R) -4-methyl-2-piperidinecarboxylic acid ethyl ester and L-tartrate of (2R.4R) -4-methyl-2-piperidinecarboxylic acid ethyl ester and desalted product thereof Manufacturing method
US6403843B1 (en) Process for the preparation of 1-(3,4-dimethoxyphenyl)ethanol
EP0298695B1 (en) Tartaric acid amide derivative and method of producing the same
US4709086A (en) Process for the preparation of 4-benzyl aspartate
JP2762106B2 (en) Method for producing 3-hydroxypyrrolidine
JP3227020B2 (en) Ketals and their production
HU214579B (en) New process for producing lysinoprile
JP5247699B2 (en) Resolution process of chiral piperidine alcohol and synthesis process of pyrazolo- [1,5] -pyrimidine derivatives using piperidine alcohol
SU150791A1 (en) Method for preparing phenothiazine derivatives
JPS622570B2 (en)
HU228125B1 (en) Method for the production of 6-(4-chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro-1h-pyrrolizin-5-yl-acetic acid
JP2571939B2 (en) Cyclopentenone derivatives and their production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees