JP3574101B2 - Ground improvement equipment using powder material - Google Patents

Ground improvement equipment using powder material Download PDF

Info

Publication number
JP3574101B2
JP3574101B2 JP2001336695A JP2001336695A JP3574101B2 JP 3574101 B2 JP3574101 B2 JP 3574101B2 JP 2001336695 A JP2001336695 A JP 2001336695A JP 2001336695 A JP2001336695 A JP 2001336695A JP 3574101 B2 JP3574101 B2 JP 3574101B2
Authority
JP
Japan
Prior art keywords
outlet
connection surface
switching
supply
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001336695A
Other languages
Japanese (ja)
Other versions
JP2003138556A (en
Inventor
昌平 千田
一紘 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIDA ENGINEERING INC.
Original Assignee
CHIDA ENGINEERING INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIDA ENGINEERING INC. filed Critical CHIDA ENGINEERING INC.
Priority to JP2001336695A priority Critical patent/JP3574101B2/en
Publication of JP2003138556A publication Critical patent/JP2003138556A/en
Application granted granted Critical
Publication of JP3574101B2 publication Critical patent/JP3574101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Description

【0001】
【発明の属する技術分野】
粉粒体固化材を用い地盤改良装置に関する。
【0002】
【従来の技術】
地盤を改良するための工法として、攪拌翼が突設された改良ロッドを回転さながら地盤中に挿入し、挿入過程や引き上げ過程において、改良ロッドの所定部位から粉粒体状の固化材(以下、単に固化材ともいう)を噴射し、地盤中に柱体状の固化処理体を造成し軟弱地盤を処理するものが知られている。
【0003】
例えば、深層混合処理工法として知られているものがこれに該当する。
【0004】
一般に、深層混合処理工法では、地盤強度のばらつきを考慮して、攪拌翼の貫入時に固化材を噴射するのではなく、貫入によって一旦ほぐした状態で引き上げ噴射を行なう方式を採用している。そのため、図10に示すようにメインの噴射孔1Uが攪拌翼群1w,1w…の最上段部に取り付けられた改良ロッド1を用いるのが一般的である。この場合、最上段翼1wと最下段翼1wとの間に攪拌しただけで固化材の混入しないいわゆる未改良部A3ができる。この先端側未改良部A3を無くすための対策が深層混合処理工法のひとつの課題となっており、これまで以下のような各種の対策がとられてきている。
【0005】
(先行技術1)
先行技術1は、改良ロッドとは別に外部に固化材噴射専用管を取り付け、これを上下にスライドさせることによって固化材の噴射位置を切替えながら、最上段翼と最下段翼との間の部位に対しても固化材を噴射して改良体を造成するものである。
【0006】
(先行技術2)
先行技術2は、最上段翼と最下段翼との間の範囲における攪拌翼の近傍にも噴射孔を設けるとともに攪拌翼部分を数十度揺動可能にし、この揺動範囲において攪拌翼により噴射孔が開放・閉塞されるようになし、翼にかかる抵抗力を利用して翼の回転方向に応じて噴射孔の開・閉を切替えるものである。
【0007】
(先行技術3)
先行技術3は、改良ロッド管内に固化材供給管を配置して2重管構造となし、改良ロッドの最上段翼と最下段翼との間の範囲にも噴射孔を穿孔し、ロッド最上部にシリンダーを設け、このシリンダーにより内管である固化材供給管を上下スライドさせてこれに連通する噴射孔を切替えながら、最上段翼と最下段翼との間の部位に対しても固化材を噴射して改良体を造成するものである。
【0008】
【発明が解決しようとする課題】
しかしながら、先行技術1は2軸以上の攪拌翼を有する海上施工機械に適用されたもので、陸地への応用は、構造的にも操作性的にも非常に困難である。また先行技術2は、あくまでも切替えを期待するものであって、切替わっているかを確認する方法がなく、固化材の付着によって翼部が動かず切替えが行なわれないおそれもある点が問題である。さらに先行技術3は、シリンダーのストロークで切替えが行なわれたか否かは確認できるが、構造が非常に複雑となる点が問題である。
【0009】
したがって、本発明の主たる課題は、簡素な構造・機構でありながらも確実な固化材噴射の切り替えが可能な地盤改良装置を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決した本発明は、次記のとおりである。
<請求項1記載の発明>
下端部に設けられた下部噴射孔、その上方に離間して設けられた上部噴射口、およびこれら下部噴射口から上部噴射口にわたる範囲に設けられた攪拌翼を有する改良ロッドと、
前記下部噴射口及び上部噴射口に対してそれぞれ接続され、前記下部噴射口に対する粉粒体固化材の供給と、前記上部噴射口に対する粉粒体固化材の供給とを切り替える切替装置と、
粉粒体固化材を伴う圧気を前記切替供給装置を介して前記改良ロッドに対して供給する圧送供給装置とを備えた、地盤改良装置であって、
前記切替装置が;
前記圧送供給装置からの固化材を伴う圧気が吹き込まれる供給口、前記下部噴射口に対して接続された第1の送出口、および前記上部噴射口に対して接続された第2の送出口をそれぞれ備えたケーシングと、
このケーシング内にあって前記供給口に対して一方の開口が接続され、他方の開口が前記第1の送出口との接続位置及び第2の送出口との接続位置のそれぞれに移動自在とされた切替管路と、この切替管路に移動力を与える駆動手段と、
ケーシング内に圧気を供給する圧気供給装置と、
からなるものとされた、
ことを特徴とする粉粒体固化材を用いる地盤改良装置。
【0011】
(作用効果)
本発明では、上部噴射口に対する固化材供給と下部噴射口に対する固化材供給との切り替えを、圧送供給装置から改良ロッドへの固化材供給経路に介在された切替装置により行う。したがって、改良ロッドの構造は非常に簡素で済む。
【0012】
また本発明の切替装置は、固化材を伴う圧気が吹き込まれる供給口、改良ロッドの下部噴射口に対して接続された第1の送出口、および改良ロッドの上部噴射口に対して接続された第2の送出口を有するケーシング内に、供給口に対して一方の開口が接続され、他方の開口が第1の送出口との接続位置及び第2の送出口との接続位置のそれぞれに移動自在とされた切替管路を有し、切替管路の他方の開口を第1の送出口との接続位置または第2の送出口との接続位置に移動させることによって、固化材の送出経路を切り替えるものである。よって構造・機構が非常に簡素であるため、非常に確実な切り替えが可能となる。
【0013】
なお、この切り替えの際、切替管路が一方の送出口に連通された状態では、他方の送出口はケーシング内に連通する。このため、この他方の送出口から粉粒体が逆流したり、対応する噴射口から地下水や軟弱土が逆流したりするおそれがあるが、本発明ではケーシング内に圧気を供給する圧気供給装置を備えているため、このような逆流を防止することが可能である。
【0014】
他方、本請求項1記載の発明では、かかる切り替えを利用して、改良ロッドの挿入過程において、下部噴射口が、深さ方向改良範囲の最下端から下部噴射口と上部噴射口との離間距離分だけ上方の位置に到達したならば、それ以降、切替管路の他方の開口を第1の送出口にのみ接続して、圧送供給装置からの粉粒体固化材を伴う圧気を下部噴射口のみから噴射させながら、改良ロッドの回転挿入を行う。したがって、前述したような先端側未改良部を無くすことができる。
【0015】
<請求項2記載の発明>
前記改良ロッドは、前記下部噴射口および上部噴射口にそれぞれ連通された、ロッド長手方向に沿って上端部まで延在する搬送管路を横並びで一対備えており、
これらの搬送管路は、スイーベル装置を介して前記切替装置の第1の送出口および第2の送出口に対してそれぞれ接続されており、
前記スイーベル装置は、上部固定部と、その下面に気密に且つ回転自在に接続された下部回転部を有し、
このスイーベル装置の上部固定部は一対の管路を有し、これら一対の管路は、前記切替装置の第1の送出口および第2の送出口に対してそれぞれ接続された横並び配置の入側部分を有するとともに、一方の管路は下部回転部との接続面側に向かうにつれて徐々に下部回転部の回転中心線に近づき、かつ接続面において前記回転中心線と同軸をなす円形出口を有し、他方の管路は下部回転部との接続面側に向かうにつれて徐々に前記一方の管路を取り囲むように変形し、かつ接続面において前記一方の管路の円形出口を同軸的に取り囲む円環状出口を有し、
一方、前記スイーベル装置の下部回転部は一対の管路を有し、これら一対の管路は、前記改良ロッドの一対の搬送管路に対してそれぞれ接続された横並び配置の出側部分を有するとともに、一方の管路は上部固定部との接続面側に向かうにつれて徐々に前記回転中心線に近づき、かつ接続面において前記回転中心線と同軸をなす円形入口を有し、他方の管路は上部固定部との接続面側に向かうにつれて徐々に前記一方の管路を取り囲むように変形し、かつ接続面において前記一方の管路の円形入口を同軸的に取り囲む円環状入口を有し、
前記固定部と回転部との接続面にある円形出口および円形入口相互ならびに円環状出口および円環状入口相互が、それぞれ、接続面に関して対称をなし且つ常に連通されるように構成されている、
請求項記載の粉粒体固化材を用いる地盤改良装置。
【0016】
(作用効果)
本発明のように切替装置を用いて上部及び下部噴射口からの固化材噴射を切り替える場合、改良ロッド内に、上部及び下部の各噴射口に対する固化材搬送管路を個別に設けるのが望ましい。そしてこの場合、改良ロッド内に搬送管路を横並びで一対設けると構造が非常に簡素となるとともに、両管路の搬送抵抗や横断面形状を等しくでき、上下噴射口からバランス良く固化材を噴射できるため好ましい。
【0017】
しかし、搬送管路を横並びで配置するとそれらも改良ロッドの回転に伴って回転してしまい、搬送管路と固化材圧送供給装置とを連結することができない。このため従来の改良ロッドでは、内管及び外管の一方が上部噴射口に接続され他方が下部噴射口に接続された二重管構造とし、固化材圧送供給装置に対しては二重管構造のスイーベル装置により接続しているが、改良ロッドの構造が複雑となるとともに、内管と外管とでは搬送抵抗や横断面形状も異なり、上部噴射口における固化材噴射と下部噴射口のそれとをバランスさせることが困難である。
【0018】
これに対して、本発明では、切替装置から改良ロッドの上下噴射口までの固化材搬送経路のうち、スイベール装置の接続面部分のみ二重管構造となし、スイーベル装置の入側部分および出側部分は横並び配置としているため、改良ロッド内の搬送管路を横並び配置とすることができる。また、スイーベル装置内の一対の管路は、接続面に近づくにつれて徐々に二重管形状に変化するため、固化材が付着・堆積することなく円滑に通過できる利点もある。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について、添付図面を参照しながら詳説する。
<地盤改良工法およびその装置に関して>
図1は、本発明に係る地盤改良装置例の概略を示しており、地盤に挿入される改良ロッド1、スイーベル装置4、切替装置2および粉粒体固化材の圧送供給装置3から主に構成されている。改良ロッド1は、下端部に設けられた下部噴射孔1b、その上方に所定距離離間して設けられた上部噴射口1u、これら下部噴射口1bから上部噴射口1uにわたる範囲に適宜の間隔をおいて設けられた複数の攪拌翼1w,1w…を備えている。また、攪拌翼1wの下端部および軸部の先端には適切な形状の掘削ビット1a,1cがそれぞれ設けられている。
【0020】
切替装置2は図2にも示されるように、ケーシング2Cを備えている。このケーシング2Cは本発明の圧力保持が可能なように使用状態において完全に密閉できるものが用いられる。さらにケーシング2Cには、一方側の側壁上部中央に、固化材圧送供給装置3の出側に対して管路P1を介して接続された供給口2iが設けられ、他方側の側壁の下部両脇に、改良ロッド1の下部噴射口1bおよび上部噴射口1uに対して管路P2,P3を介して一対一で接続された第1の送出口2aおよび第2の送出口2bが並設されるとともに、これらの間に、供給口2iに対して一方の開口が接続され、他方の開口が第1の送出口2aとの接続位置(すなわち連通位置。以下同じ。)及び第2の送出口2bとの接続位置のそれぞれに移動自在とされた切替管路2Pが設けられている。
【0021】
特に本例では、切替管路2Pの移動は図2に示されるようにケース2C外に取り付けられたシリンダー2Sの往復駆動によって行われる。すなわち、切替管路2Pの一方の開口は供給口2iと同軸的に且つ回動自在に連結されるとともに、この回動による切替管路2Pの他方側開口の軌跡が第1の送出口2aおよび第2の送出口2bを通るように切替管路2Pが屈曲されており、ケース2C外に取り付けられたシリンダー2Sからの往復駆動力は切替管路2Pの回動方向の回動力に機械的に変換されて、切替管路2Pに伝達される。かくして、前述の切替管路2Pの切替移動が可能となっている。
【0022】
また、ケーシング2C内の圧力を所定レベル以上に保つ圧力保持手段として、圧縮空気等の圧気を導入する導入口2nがケーシング2Cの適宜の位置に形成され、この圧気導入口2nに対して図示しないコンプレッサー等の圧気供給装置が接続される。このコンプレッサーとしては固化材圧送供給装置と共通のものを用いることができる。
【0023】
他方、より好ましい改良ロッド1の詳細構造およびスイーベル装置4が、図3〜8に示されている。すなわち図3に示すように、改良ロッド1は、下部噴射口1bおよび上部噴射口1uにそれぞれ連通された、ロッド長手方向に沿って上端部まで延在する搬送管路1p,1pを横並びで一対備えており、これらの搬送管路1p,1pが、スイーベル装置4を介して切替装置2の第1および第2の送出口2a,2bに対してそれぞれ接続されている。図示例の搬送管路1p,1pは、横断面正方形の保護筒1T内に収納保護されているが、この保護筒1Tの形状は断面円形等の適宜の形状とすることができる。また、この保護筒1Tは省略することもできる。
【0024】
スイーベル装置4は、公知のものと同様に、回転しない上部固定部5と、その下面に気密に且つ縦軸周りに回転自在に接続された下部回転部6を有する。ただし、内部の管路構造は公知のものとは全く異なる構成となっている。
【0025】
すなわち、スイーベル装置4の上部固定部5は一対の管路7A,7Bを有し、これら一対の管路7A,7Bは、切替装置2の第1の送出口2aおよび第2の送出口2bに対してそれぞれ接続された横並び配置の入側部分7i,7nをそれぞれ有する。また、一方の管路7Bは下部回転部6との接続面側に向かうにつれて徐々に下部回転部6の回転中心線に近づき、かつ接続面において回転中心線と同軸をなす円形出口7xを有し、他方の管路7Aは下部回転部との接続面側に向かうにつれて徐々に一方の管路7Bを取り囲むように変形し、かつ接続面において一方の管路7Bの円形出口7xを同軸的に取り囲む円環状出口7eを有する。
【0026】
一方、スイーベル装置4の下部回転部6の内部管路は上部固定部5と面対称をなすように構成される。すなわち、下部回転部6は一対の管路8A,8Bを有し、これら一対の管路8A,8Bは、改良ロッドの一対の搬送管路1p,1pに対してそれぞれ接続された横並び配置の出側部分8e,8xを有するとともに、一方の管路8Bは上部固定部5との接続面側に向かうにつれて徐々に回転中心線に近づき、かつ接続面において回転中心線と同軸をなす円形入口8nを有し、他方の管路8Aは上部固定部5との接続面側に向かうにつれて徐々に一方の管路8Bを取り囲むように変形し、かつ接続面において一方の管路8Bの円形入口8nを同軸的に取り囲む円環状入口8iを有する。
【0027】
そして、本発明のスイーベル装置4では、これら上部固定部5と下部回転部6との接続面にある円形出口7xおよび円形入口8n相互ならびに円環状出口7eおよび円環状入口8i相互が、それぞれ、接続面に関して対称をなし且つ下部回転部6の回転に関わらず常に連通されるように構成される。
【0028】
かくして、回転する改良ロッド1の上下噴射口1u,1bに対して常時連通する個別の固化材搬送路が形成される。しかも本発明では、切替装置2から改良ロッド1の上下噴射口1u,1bまでの固化材搬送経路のうち、スイベール装置4内の接続面部分のみ二重管構造となし、スイーベル装置4の入側部分および出側部分は横並び配置としているため、改良ロッド1内の搬送管路を横並び配置とすることができる。よって、改良ロッド1の構造の簡素化およびバランスの良い固化材噴射が可能となる。また、スイーベル装置4内の一対の管路7a,7b,8a,8bは、接続面に近づくにつれて徐々に二重管形状に変化するため、固化材が付着・堆積することなく円滑に通過できる利点もある。
【0029】
なお図示しないが、本例の改良ロッド1では、固化材噴射口1u,1bを上部および下部にしか設けなかったが、これら上部及び下部噴射口1u,1bを有する限り、さらに別の位置に噴射口を設けることもできる。この場合、切替装置2も同様に送出口2a,2bの数をさらに増やし、3以上の数の噴射口に対する固化材の切替供給が可能なように構成することもできる。
【0030】
他方、かくして構成された地盤改良装置を用いると、図9に示すように先端側未改良部の無い地盤改良を行うことができる。すなわち、先ず図9(a)〜(c)に示すように、改良ロッド1をその軸心周りに回転させ地盤を切削攪拌しながら、下部噴射口1bが改良対象地盤における深さ方向改良範囲の下端Bに到達するまで挿入する。この際、図9(a)に示すように、深さ方向改良範囲の最下端Bから下部噴射口1bと上部噴射口1uとの離間距離Lだけ上方の位置に下部噴射口1bが到達したならば、それ以降、切替装置2において切替管路2Pの他方の開口を第1の送出口2aにのみ接続して(図1参照。同図に実線で示す状態。)、圧送供給装置3からの粉粒体固化材を伴う圧気を下部噴射口1bのみから噴射させながら、改良ロッドの回転挿入を行う。よって、図9(b)及び(c)に示すように、攪拌範囲の下端Bまで固化材噴射およびその現位置土との攪拌混合を行うことができる。図9には、このロッド挿入時改良領域が符号A1により示されている。
【0031】
かくして改良ロッド1を改良範囲の下端Bまで挿入したならば、次いで改良ロッド1を改良範囲の上端(図示せず)まで引き上げる。この際には図9(c)〜(e)に示すように、切替装置2において切替管路2Pの他方の開口を第2の送出口2bにのみ接続した状態(図1参照。同図に点線で示す状態。)に切り替えて、圧送供給装置3からの粉粒体固化材を伴う圧気を上部噴射口1uのみから噴射させながら、改良ロッド1の回転引き上げを行う。かくして、ロッド挿入時改良領域A1の上側の引上げ時改良領域A2についても改良がなされ、攪拌部分全体に改良体を造成できる。なお、ロッド挿入時改良領域A1はこの改良ロッド1の引き上げ回転によって再攪拌されるので、引上げ時改良領域A2と同程度まで攪拌混合がなされ、深さ方向に均質な改良体が造成される。また上下噴射口1u,1bの切替に際し、いずれか一方の噴射口に対する固化材搬送路は切替装置2のケーシング2C内に連通することになるので、対応する噴射口への固化材搬送経路を介して、粉粒体、地下水、軟弱土が逆流するおそれがあるが、ケーシング2C内の圧力を所定レベル以上に保つ圧力保持手段によりケーシング内圧を適切に保持すればこのような逆流を防止することが可能である。ケーシング2Cの内圧は適宜定めることができるが、固化材の圧送圧力以上とするのが好ましい。
【0032】
<粉粒体圧送供給装置に関して>
次に、上記地盤改良工法及び装置で好適に用いることができる粉粒体圧送供給装置について詳説する。
図11及び図12は、粉粒体圧送供給装置の第1の形態を示している。この粉粒体圧送供給装置は、主に、粉体計量供給手段10、第1の開閉弁20、中間チャンバ30、第2の開閉弁40、圧送チャンバ50、送出手段60およびローレベル検出手段51から構成されている。
【0033】
粉粒体計量供給手段10は、上部に粉粒体供給口11iおよび下端部に排出口11xを有する収納チャンバ11と、この収納チャンバ11内に設けられた、外部から粉粒体供給口を介して粉粒体を受け入れて貯留し及び貯留した粉粒体を外部へ排出しうるように構成された計量容器12と、この計量容器12内の粉粒体量を計量する計量手段としてのロードセル13,13を有する。この構成からも理解できるように、この装置は、粉粒体計量供給手段10の上部粉粒体供給口11iに対し、例えば出側に供給開閉装置を備えたサイロ等の大型貯留槽(図示せず)から粉粒体を供給することを想定したものである。
【0034】
特に本第1の形態では、収納チャンバ11の上部に排気フィルタ14が連通されている。また、計量容器12は上面が開口した形状をなしており、両側面に回転軸15,15の一端がそれぞれ連結されており、これらの回転軸15,15の他端はモータ等の回転駆動源16,16にそれぞれ連結されており、回転駆動源16,16は、収納チャンバ11の天板11u内面に対してロードセル13,13を介して吊り下げ支持された内部側板17,17に固定されている。したがって、計量容器12はロードセル13,13を介して収納チャンバ11内に吊り下げられ、ロードセル13,13によって内部の粉粒体量が計量可能となっており、また回転駆動源15,15により反転されて内部の貯留粉粒体を排出できるようになっている。反転後の状態が点線で示されている。
【0035】
収納チャンバ11の下端部排出口11xには第1の開閉弁20を介して中間チャンバ30が接続され、この中間チャンバ30の下端部排出口30xに対して第2の開閉弁40を介して圧送チャンバ50が接続される。各開閉弁20,40としては、図示のように管路21,41内に水平横断方向に沿う回転軸22,42を設け、この回転軸22,42に管路21を塞ぎ得る形状の板状弁体23,43を取付け、管路外に回転軸22,32の回転駆動源24,44を設けたものを用いることができる。図示例ではシリンダ25,45の往復駆動力を回転軸22,32の回転方向に機械的に変換して回転軸22,42に伝達する構成としている。一方、各チャンバ11,30,50は粉粒体を自重落下により搬送するため、図示のように、下端に向かうにつれて内径が小さくなる筒状体を用いるのが望ましい。
【0036】
特に、圧送チャンバ50内には、所定高さ位置にローレベルセンサ51が設けられており、このローレベルセンサ51によって圧送チャンバ50内の粉粒体量が所定量に達してないローレベル状態を検出できるようになっている。このローレベルセンサの高さ位置は、例えばローレベル状態を検出してから圧送チャンバ50内に粉粒体が補充されるまでの間、外部送出手段60が粉粒体を連続定量供給するのに十分な粉粒体量と対応した高さ位置とされる。
【0037】
また圧送チャンバ50には、内部に貯留された粉粒体を連続的に所定量取り出し、圧気に乗せて外部に送り出す送出手段60が設けられる。
【0038】
この外部送出手段60は、例えば図示のように、圧送チャンバ50の下端部から連続するロータケース部61、およびこのロータケース部61に内装された所定方向に連続的に回転駆動されるロータ62からなる連続定量供給式ロータリーフィーダと、このロータリーフィーダにより切り出した粉粒体を、図示しないコンプレッサ等の圧気供給源からの圧気に乗せて送出する送出部とによって構成することができる。ロータ62は、横向き(又は水平)回転軸63周りに回転自在とされており、この回転軸63の外周面には径方向に突出する区画羽根部64が周方向に等間隔で多数形成され、これら羽根部64間がポケット65として形成されている。また回転軸63は、ケース部61の外部に連結された図示しないモータ等の回転駆動源に連結されており、この回転駆動源によってロータ62が回転されるように構成されている。もちろん、他の公知の形状のロータを用いることもできる。また送出部としては、図示のようにロータケース部61におけるロータ62の回転軸63方向と直交する側面の下端部に粉粒体送出口66を形成し、これと対向する側面の下端部には圧気供給源からの圧気導入口67を形成し、圧気導入口67からの圧気がこれらと対応する位置のポケット65を介して粉粒体送出口66へと流通する構成を採用することができる。
【0039】
また特開平8−113370号公報に記載されたスクリューフィーダを用いたものや、特願平2001−233135号の図6〜8に記載のもの及び図9〜図11に記載のものように、複数の外部送出路に対して連続定量供給できるものも用いることができる。
【0040】
他方、上記第1の形態では、計量容器12をロードセルを介して収納チャンバに対して支持することにより、計量容器12内の粉粒体量が計量可能となっているが、第2の形態として図13及び14に示すように、粉粒体計量供給手段10全体を架台70(一部のみ図示)に対してロードセル13を介して吊り下げ支持し、装置分の重さを差し引くことによって計量容器12内の粉粒体量を計量できるように構成しても良い。この場合、粉粒体計量供給手段10の収納チャンバ11と第1の開閉弁20とは、上下方向に伸縮可能なフレキシブル継手(例えばゴム等の樹脂製蛇腹管)80により接続され、第1の開閉弁20よりも下側の部分は別途架台70に対して固定される。またこの場合、図示のように計量容器の回転軸15を収納チャンバ外部へ連通させ、収納チャンバ11の外周面に固定した回転駆動源16に連結し、内部側板17を省略することができる。
【0041】
また、上記第1の形態では、計量容器11は反転により貯留粉粒体を排出するように構成しているが、図15に示す第3の形態、ならびに図16に示す第4の形態のように、上面全体が粉粒体受け入れ開口部91とされ、かつ下端部に粉粒体排出口92が形成され、この下端部排出口92に開閉弁を設けたホッパ形状の計量容器90を用いることもできる。開閉弁は、図示のように下側から排出口内に嵌合する錘状弁体93と、天板11uに固定された、この錘状弁体93を上下動させ排出口92に対する嵌脱を行うためのシリンダー94とから構成されている。また、第3の形態と第4の形態とは計量容器12の吊り下げ方が異なり、前者は計量容器12をロードセル13を介して収納チャンバに対して支持する点で第1の形態と対応する粉粒体計量構成を採用したものであり、後者は、粉粒体計量供給手段10全体を架台70に対してロードセル13を介して吊り下げ支持し、粉粒体計量供給手段10の収納チャンバ11と第1の開閉弁20とをフレキシブル継手80により接続する点で、第2の形態と対応する粉粒体計量構成を採用したものである。
【0042】
他方、かくして構成された粉粒体圧送供給装置の動作態様は、図17に示すようになる。なお図17では代表的に上記第3の形態の装置の場合を示しているが、他の形態の装置の場合についても基本的に同様である。
【0043】
(装置始動時)
装置始動時には、先ず外部送出手段60による外部送出を行わずに、すなわち少なくともロータリーフィーダは停止させた状態で、圧送チャンバ50、中間チャンバ30及び計量容器11のそれぞれが所定量の粉粒体を蓄えた状態とする(図示せず)。
【0044】
このため、先ずサイロ等の外部大型貯留槽から供給口11iを介して計量容器90に粉粒体を投入供給する。この際、ロードセル13により計量容器90内の粉粒体量を計量し、所定量に達したら外部からの供給が自動的に停止するようにする。計量が終了したならば計量容器90の開閉弁を開けて内部の粉粒体を収納チャンバ11内に排出するとともに、第1の開閉弁20及び第2の開閉弁30を適宜開閉して、中間チャンバ30まで又は圧送チャンバ50まで粉粒体を送り込む。必要に応じて外部貯留槽からの粉粒体供給を複数回行うことができる。なお、既に圧送チャンバ50、中間チャンバ30及び計量容器90のそれぞれが所定量の粉粒体を蓄えときにはこの装置始動時動作を行う必要はない。
【0045】
(粉粒体の外部供給動作時)
外部への粉粒体供給動作時には、外部送出手段60を常時作動させて外部に対して連続定量送出を行う。より詳細には図18に示すように、ロータリーフィーダのロータ62が所定方向に連続的に回転され、圧送チャンバ50内に貯留された粉粒体P3が、ロータ62のポケット65に順次受け入れられ、ロータ62の回転に伴って送出口66側へ移送される。その一方で、図示しない圧気供給源から圧気が、圧気導入口67と連通するポケット65内に導入される。その結果、ポケット65に受け入れられた粉粒体P4は、当該ポケット65が圧送チャンバ50と連通せず且つ下端の送出口66と連通したときに、ポケット65を通過する圧気に乗せられて送出口66を介して外部に対して送出される。なお、圧気の殆どは粉粒体を伴って送出されるが、粉粒体が送出された後のロータポケット65はロータ62の回転によって圧送チャンバ側に循環されるため、これに伴って圧気が圧送チャンバ50内に若干漏れる。
【0046】
かかる外部送出によって圧送チャンバ50内の粉粒体P3の貯留量が図17(a)に示すように減少し、ローレベル検出手段51によってローレベル状態が検出されたときには、図17(b)に示すように第1の開閉弁20を閉じた状態で第2の開閉弁40が所定時間だけ開放され、中間チャンバ30内の貯留粉粒体が圧送チャンバ50に落下供給される。この際、圧送チャンバ50内に漏れた圧気の一部が中間チャンバ30内に若干漏れる。
【0047】
この第2の開閉弁40の開閉動作があると、続いて図17(c)に示すように、本例では第2の開閉弁40を閉じた状態で第1の開閉弁20が所定時間だけ開放され、中間チャンバ30内の圧気が収納チャンバ11内に送られ、排気フィルタ14を介して装置外部へ排気される。この際、収納チャンバ11内の粉粒体P1は計量容器90内に収容されているので、収納チャンバ11を通過する圧気が殆ど作用しない。したがって、の装置では圧気が適切に排気され、粉粒体が逆流するような事態は発生し難い。
【0048】
次いで、図17(d)に示すように、第2の開閉弁40を閉じた状態で、第1の開閉弁20を開けるとともに計量容器90に貯留された計量済み粉粒体を排出して中間チャンバ30に供給する中間チャンバ補給動作がなされる。また続いて図17(e)に示すように、第1の開閉弁20を閉じた状態で、外部から計量容器90内に粉粒体の受け入れが開始されるとともにロードセル13による計量がなされ、計量容器90内に所定量の粉粒体が受け入れられる(計量容器補給動作)。これらの補給動作は、一回の補給量が少ない設計となっている場合には、必要に応じて交互に複数回繰り返すようにしても良い。
【0049】
よってこの場合、圧送チャンバ50内の粉粒体がローレベルに達するまでの間に中間チャンバ30への補給が終了するように、圧送チャンバ50の容積やローレベル位置、補給量等を適切に設計する。換言すれば、中間チャンバ30への供給最短時間と圧送チャンバ50の貯留量がローレベルに達するまでの時間が等しいところが、この装置の最大圧送能力ということになる。ただし、この計量容器供給動作においては少なくとも第1の開閉弁20を閉じていれば足り、したがってこの動作中に圧送チャンバ50の貯留量がローレベルになる(又はなったとき)場合、並行して第2の開閉弁40を開けて圧送チャンバ補給動作を行うこともできる。
【0050】
かくして、粉粒体の外部圧送中は常に、中間チャンバ30および計量容器90内に所定量の粉粒体が蓄えられ、この粉粒体は必要に応じて圧送チャンバ50へ向けて段階的に供給される。以降は、この繰り返しである。
【0051】
そして、このように構成された粉粒体圧送供給装置においては、次のような利点がもたらされる。
(イ)粉粒体を計量容器90(第1及び第2の形態では符号12で示されている)及び計量手段13による計量を経て圧送するため、粉粒体使用量の管理記録を容易且つ正確に行うことができる。
(ロ)装置内に粉粒体を大量に貯留する必要がないため、装置の小型化を図ることができる。このようにしても、小規模工事の場合を除いては、粉粒体を貯留しておく大型貯留装置を使用するから実用上は問題がない。
(ハ)上記手順による適切な弁開閉タイミングによって装置内の圧気が適切に排気され、粉粒体の逆流が発生しにくい。
(ニ)2つの開閉弁20,40によって固化材供給経路を間隔をおいて遮断しているだけなので、非常に簡素な構造であり、内部清掃等のメンテナンスも非常に容易である。
【0052】
【発明の効果】
以上のとおり本発明の地盤改良装置においては、簡素な構造・機構でありながらも確実な固化材噴射の切り替えが可能となる等の利点がもたらされる。
【図面の簡単な説明】
【図1】本発明の地盤改良工法および装置の概要、および特に切替装置の横断面を示す図である。
【図2】本発明の切替装置の縦断面図である。
【図3】好適な地盤改良ロッド例を示す一部破断図である。
【図4】図3のA部拡大図である。
【図5】図3のB−B断面図である。
【図6】図3のC部拡大図である。
【図7】図3のD部拡大図である。
【図8】図3のE部拡大図である。
【図9】本発明の地盤改良工法の施工要領を示す図である。
【図10】従来の地盤改良工法の施工要領を示す図である。
【図11】粉粒体圧送供給装置の第1の形態の縦断面図である。
【図12】第1の形態の別の方向からの縦断面図である。
【図13】粉粒体圧送供給装置の第2の形態の縦断面図である。
【図14】第2の形態の別の方向からの縦断面図である。
【図15】粉粒体圧送供給装置の第3の形態の縦断面図である。
【図16】粉粒体圧送供給装置の第4の形態の縦断面図である。
【図17】粉粒体圧送供給装置の動作要領を示す図である。
【図18】粉粒体圧送供給装置の動作要領を示す要部拡大図である。
【符号の説明】
1…改良ロッド、2…切替装置、3…粉粒体固化材圧送供給装置、4…スイーベル装置、10…粉粒体計量供給手段、11…収納チャンバ、12…計量容器、13…ロードセル、14…排気フィルタ、20…第1の開閉弁、30…中間チャンバ、40…第2の開閉弁、50…圧送チャンバ、51…ローレベル検出手段、60…外部送出手段。
[0001]
TECHNICAL FIELD OF THE INVENTION
Using solidified powder materialToGround improvementRelated to the device.
[0002]
[Prior art]
As a construction method for improving the ground, a rotating rod having a stirring blade protruding is inserted into the ground while rotating, and during a process of insertion and lifting, a solidified material (hereinafter, referred to as a granular material) is formed from a predetermined portion of the improved rod. There is known a method of injecting a solidified material) to form a solidified body in the ground and treating the soft ground.
[0003]
For example, what is known as a deep mixing treatment method corresponds to this.
[0004]
In general, in the deep mixing treatment method, in consideration of variations in ground strength, a method is employed in which a solidified material is not injected at the time of penetration of a stirring blade, but is pulled up once in a state of being loosened by penetration. Therefore, as shown in FIG. 10, it is common to use the improved rod 1 in which the main injection hole 1U is attached to the uppermost stage of the stirring blade group 1w. In this case, a so-called unimproved portion A3 is formed between the uppermost blade 1w and the lowermost blade 1w, in which the solidified material is not mixed just by stirring. A countermeasure for eliminating the tip side unimproved portion A3 is one of the problems of the deep mixing method, and the following various countermeasures have been taken so far.
[0005]
(Prior art 1)
Prior art 1 attaches a solidified material injection dedicated pipe to the outside separately from the improved rod, and slides it up and down to switch the solidified material injection position, and to a portion between the uppermost blade and the lowermost blade. On the other hand, a solidified material is sprayed to form an improved body.
[0006]
(Prior art 2)
In Prior Art 2, an injection hole is provided near the stirring blade in the range between the uppermost blade and the lowermost blade, and the stirring blade portion can be swung several tens of degrees. The hole is opened and closed, and the opening / closing of the injection hole is switched according to the rotation direction of the blade by using the resistance force applied to the blade.
[0007]
(Prior art 3)
In prior art 3, a solidified material supply pipe is arranged in an improved rod pipe to form a double pipe structure, and an injection hole is formed in a range between the uppermost blade and the lowermost blade of the improved rod, and the uppermost portion of the rod is formed. The solidification material supply pipe, which is the inner pipe, is slid up and down by this cylinder to switch the injection hole communicating with it, and the solidification material is also applied to the part between the uppermost blade and the lowermost blade. This is to form an improved body by spraying.
[0008]
[Problems to be solved by the invention]
However, Prior Art 1 is applied to a marine construction machine having two or more agitating blades, and it is very difficult to apply it to land both structurally and operably. Further, the prior art 2 only expects the switching, and there is no method for confirming whether the switching is performed, and there is a problem that the switching may not be performed because the wings do not move due to the adhesion of the solidified material. . Further, in the prior art 3, it is possible to confirm whether or not the switching is performed by the stroke of the cylinder, but there is a problem in that the structure becomes very complicated.
[0009]
Therefore, the main problem of the present invention is that the ground has a simple structure and mechanism but can reliably switch the solidified material injection.Improved equipmentIs to provide.
[0010]
[Means for Solving the Problems]
The present invention that has solved the above problems is as described below.
<Invention according to claim 1>
An improved rod having a lower injection hole provided at a lower end portion, an upper injection hole provided at a distance above the lower injection hole, and a stirring blade provided in a range extending from the lower injection hole to the upper injection hole,
A switching device that is connected to the lower outlet and the upper outlet, respectively, and switches between supply of the powdered solidified material to the lower outlet and supply of the powdered solidified material to the upper outlet,
A ground improvement device, comprising: a pressurized supply device that supplies compressed air with a powder solidification material to the improved rod via the switching supply device.
Said switching device;
SaidPressure feederProvided with a supply port through which compressed air with a solidifying material is blown, a first outlet connected to the lower outlet, and a second outlet connected to the upper outlet. When,
One opening is connected to the supply port in the casing, and the other opening is movable to a connection position with the first outlet and a connection position with the second outlet. A switching pipe, a driving means for applying a moving force to the switching pipe,
In casingA compressed air supply device for supplying compressed air to the
Consisting of
A ground improvement device using a solidified material of a granular material, characterized in that:
[0011]
(Effect)
In the present invention, switching between the supply of the solidified material to the upper injection port and the supply of the solidified material to the lower injection port is performed by a switching device interposed in the solidified material supply path from the pressure feeding device to the improved rod. Therefore, the structure of the improved rod is very simple.
[0012]
Further, the switching device of the present invention is connected to the supply port into which the compressed air with the solidified material is blown, the first outlet connected to the lower outlet of the improved rod, and the upper outlet of the improved rod. One opening is connected to the supply port in the casing having the second outlet, and the other opening moves to a connection position with the first outlet and a connection position with the second outlet. By having a switching pipe made free, the other opening of the switching pipe is moved to a connection position with the first discharge port or a connection position with the second discharge port, so that the delivery path of the solidified material is changed. Switch. Therefore, since the structure and mechanism are very simple, very reliable switching is possible.
[0013]
At the time of this switching, in a state where the switching conduit is connected to one of the outlets, the other outlet communicates with the inside of the casing. For this reason, the granular material flows backward from the other outlet, and groundwater or soft soil flows backward from the corresponding injection port.OrHowever, in the present invention, theSupply device for supplying compressed air to, It is possible to prevent such a backflow.
[0014]
On the other hand, in the invention according to the first aspect, by utilizing such switching, in the process of inserting the improved rod, the lower outlet is separated from the lowermost end of the depth improvement range by a distance between the lower outlet and the upper outlet. After reaching the position above by minutes, the other opening of the switching line is thereafter connected only to the first outlet,Pressure feederRotary insertion of the improved rod is performed while injecting compressed air with the solidified material from the lower injection port only. Therefore, the above-mentioned unimproved portion on the distal end side can be eliminated.
[0015]
<Invention according to claim 2>
The improved rod is provided with a pair of conveying pipes, which are respectively communicated with the lower jetting port and the upper jetting port, and extend in a longitudinal direction of the rod to an upper end portion side by side,
These transport pipelines are connected to a first outlet and a second outlet of the switching device via a swivel device, respectively.
The swivel device has an upper fixed portion and a lower rotating portion airtightly and rotatably connected to a lower surface thereof,
The upper fixing portion of the swivel device has a pair of conduits, and the pair of conduits are connected to a first outlet and a second outlet of the switching device, respectively. And one of the conduits has a circular outlet gradually approaching the rotation center line of the lower rotation part toward the connection surface side with the lower rotation part, and coaxial with the rotation center line at the connection surface. The other conduit gradually deforms so as to surround the one conduit as it goes toward the connection surface side with the lower rotating part, and at the connection surface coaxially surrounds the circular outlet of the one conduit. Has an exit,
On the other hand, the lower rotating part of the swivel device has a pair of pipelines, and the pair of pipelines have side-by-side outlet portions connected to the pair of transport pipelines of the improved rod, respectively. One of the pipelines gradually approaches the rotation center line toward the connection surface side with the upper fixing portion, and has a circular inlet coaxial with the rotation center line at the connection surface, and the other pipeline has an upper portion. It has an annular inlet that deforms gradually toward the connecting surface side with the fixed part so as to surround the one conduit, and coaxially surrounds the circular inlet of the one conduit at the connecting surface,
A circular outlet and a circular inlet at the connection surface between the fixed part and the rotary part, and a circleAnnular outlet and annular inletThe respective ones are configured to be symmetrical about the connection surface and always communicated,
Claim1A ground improvement apparatus using the powdered solidification material according to the above.
[0016]
(Effect)
When switching the solidified material injection from the upper and lower injection ports by using the switching device as in the present invention, it is desirable to separately provide solidified material transport conduits for the upper and lower injection ports in the improved rod. In this case, if a pair of conveying pipes are provided side by side in the improved rod, the structure becomes very simple, the conveying resistance and the cross-sectional shape of both pipes can be made equal, and the solidified material is injected from the upper and lower injection ports in a well-balanced manner. It is preferable because it is possible.
[0017]
However, when the conveying pipes are arranged side by side, they also rotate with the rotation of the improvement rod, and the conveying pipe and the solidified material feeding and feeding device cannot be connected. For this reason, the conventional improved rod has a double pipe structure in which one of the inner pipe and the outer pipe is connected to the upper injection port and the other is connected to the lower injection port. However, the structure of the improved rod is complicated, and the inner pipe and outer pipe have different conveyance resistance and cross-sectional shape. Difficult to balance.
[0018]
On the other hand, in the present invention, in the solidified material transport path from the switching device to the upper and lower injection ports of the improved rod, only the connection surface portion of the swivel device has a double pipe structure, and the entrance portion and the exit side of the swivel device are not provided. Since the parts are arranged side by side, the conveying pipeline in the improved rod can be arranged side by side. In addition, since the pair of conduits in the swivel device gradually changes to a double-pipe shape as approaching the connection surface, there is also an advantage that the solidified material can pass smoothly without adhering and accumulating.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<Regarding the ground improvement method and its equipment>
FIG. 1 schematically shows an example of a soil improvement device according to the present invention, which mainly includes an improved rod 1 inserted into the ground, a swivel device 4, a switching device 2, and a pressure-feeding supply device 3 for a powdered solidified material. Have been. The improved rod 1 has a lower injection hole 1b provided at a lower end portion, an upper injection hole 1u provided at a predetermined distance above the lower injection hole 1b, and an appropriate interval in a range from the lower injection hole 1b to the upper injection hole 1u. , Provided with a plurality of stirring blades 1w. Excavation bits 1a and 1c having appropriate shapes are provided at the lower end of the stirring blade 1w and the tip of the shaft, respectively.
[0020]
The switching device 2 includes a casing 2C as shown in FIG. As the casing 2C, a casing that can be completely sealed in a use state so that the pressure of the present invention can be maintained is used. Further, in the casing 2C, a supply port 2i is provided at the center of the upper part of one side wall and connected to the outlet side of the solidified material pressure feeding and supply device 3 via a pipe P1, and both lower sides of the other side wall are provided. A first outlet 2a and a second outlet 2b are connected side by side to the lower outlet 1b and the upper outlet 1u of the improved rod 1 via pipes P2 and P3, respectively. In addition, between these, one opening is connected to the supply port 2i, and the other opening is connected to the first outlet 2a (i.e., a communicating position; the same applies hereinafter) and the second outlet 2b. A switching pipeline 2P movably provided at each of the connection positions.
[0021]
In particular, in this example, the movement of the switching pipe 2P is performed by reciprocating drive of a cylinder 2S attached outside the case 2C as shown in FIG. That is, one opening of the switching pipe 2P is coaxially and rotatably connected to the supply port 2i, and the trajectory of the other opening of the switching pipe 2P due to this rotation is the first outlet 2a and The switching pipe 2P is bent so as to pass through the second outlet 2b, and the reciprocating driving force from the cylinder 2S attached to the outside of the case 2C is mechanically converted into a rotational force in the rotating direction of the switching pipe 2P. It is converted and transmitted to the switching pipeline 2P. Thus, the switching movement of the above-described switching pipeline 2P is possible.
[0022]
An inlet 2n for introducing compressed air such as compressed air is formed at an appropriate position in the casing 2C as a pressure holding means for maintaining the pressure in the casing 2C at a predetermined level or higher, and this inlet 2n is not shown. A compressed air supply device such as a compressor is connected. As the compressor, a compressor common to the solidified material pressure feeding / supplying device can be used.
[0023]
On the other hand, the more detailed structure of the improved rod 1 and the swivel device 4 are shown in FIGS. That is, as shown in FIG. 3, the improved rod 1 has a pair of conveying pipes 1p, 1p, which are communicated with the lower jet port 1b and the upper jet port 1u, respectively, and extend in the longitudinal direction of the rod to the upper end, side by side. The transfer pipes 1p, 1p are connected to the first and second outlets 2a, 2b of the switching device 2 via the swivel device 4, respectively. Although the transport pipelines 1p and 1p in the illustrated example are housed and protected in a protective tube 1T having a square cross section, the shape of the protective tube 1T can be an appropriate shape such as a circular cross section. Further, the protection cylinder 1T may be omitted.
[0024]
The swivel device 4 has an upper fixed portion 5 that does not rotate and a lower rotating portion 6 that is airtightly connected to the lower surface of the swivel device 4 so as to be rotatable around a vertical axis, similarly to the known device. However, the internal pipeline structure is completely different from the known one.
[0025]
That is, the upper fixing portion 5 of the swivel device 4 has a pair of conduits 7A and 7B, and the pair of conduits 7A and 7B are connected to the first outlet 2a and the second outlet 2b of the switching device 2. In addition, it has the input side parts 7i and 7n of the side-by-side arrangement respectively connected to it. One of the conduits 7B has a circular outlet 7x that gradually approaches the rotation center line of the lower rotation unit 6 toward the connection surface side with the lower rotation unit 6 and is coaxial with the rotation center line at the connection surface. The other pipeline 7A gradually deforms so as to surround the one pipeline 7B toward the connection surface side with the lower rotating portion, and coaxially surrounds the circular outlet 7x of the one pipeline 7B at the connection surface. It has an annular outlet 7e.
[0026]
On the other hand, the internal conduit of the lower rotating part 6 of the swivel device 4 is configured to be plane-symmetric with the upper fixed part 5. That is, the lower rotating part 6 has a pair of pipelines 8A and 8B, and the pair of pipelines 8A and 8B are arranged side by side connected to the pair of transport pipelines 1p and 1p of the improved rod, respectively. Along with the side portions 8e and 8x, one of the conduits 8B has a circular inlet 8n that gradually approaches the rotation center line toward the connection surface side with the upper fixing portion 5 and is coaxial with the rotation center line at the connection surface. The other pipeline 8A gradually deforms so as to surround the one pipeline 8B toward the connection surface side with the upper fixing portion 5, and coaxially connects the circular inlet 8n of the one pipeline 8B at the connection surface. It has an annular inlet 8i that surrounds it.
[0027]
In the swivel device 4 of the present invention, the circular outlet 7x and the circular inlet 8n on the connection surface between the upper fixed part 5 and the lower rotating part 6 and the circular outlet 7e andRingEach of the inlets 8i is configured to be symmetrical with respect to the connection surface and to be always in communication regardless of the rotation of the lower rotary unit 6.
[0028]
In this way, individual solidified material conveying paths which are always in communication with the upper and lower injection ports 1u and 1b of the rotating improved rod 1 are formed. Moreover, in the present invention, only the connecting surface portion in the swivel device 4 of the solidified material transfer path from the switching device 2 to the upper and lower injection ports 1u and 1b of the improved rod 1 has a double pipe structure, and the entrance side of the swivel device 4 Since the portion and the outgoing portion are arranged side by side, the conveying pipeline in the improved rod 1 can be arranged side by side. Therefore, the structure of the improved rod 1 can be simplified and the solidified material can be well-balanced. Further, the pair of pipes 7a, 7b, 8a, 8b in the swivel device 4 gradually changes into a double pipe shape as approaching the connection surface, so that the solidified material can pass smoothly without adhering / accumulating. There is also.
[0029]
Although not shown, in the improved rod 1 of this example, the solidified material injection ports 1u and 1b are provided only in the upper and lower portions, but as long as the upper and lower injection ports 1u and 1b are provided, the solidified material injection ports are further injected. A mouth can also be provided. In this case, the switching device 2 can also be configured so that the number of the outlets 2a and 2b can be further increased and the solidified material can be switched and supplied to three or more injection ports.
[0030]
On the other hand, when the ground improvement device thus configured is used, it is possible to perform the ground improvement without the front-side unimproved portion as shown in FIG. That is, first, as shown in FIGS. 9A to 9C, the lower injection port 1 b is used to rotate the improved rod 1 around its axis and cut and agitate the ground so that the lower jetting port 1 b is in the depth direction improved range in the ground to be improved. Insert until the lower end B is reached. At this time, as shown in FIG. 9A, if the lower injection port 1b reaches a position above the lowermost end B of the depth direction improvement range by a distance L between the lower injection port 1b and the upper injection port 1u. For example, thereafter, the other opening of the switching pipe 2P in the switching device 2 is connected only to the first outlet 2a (see FIG. 1; a state shown by a solid line in FIG. 1).Pressure feederRotary insertion of the improved rod is performed while injecting the compressed air accompanied by the solidified material from 3 only from the lower injection port 1b. Therefore, as shown in FIGS. 9B and 9C, it is possible to perform the solidified material injection to the lower end B of the stirring range and the stirring and mixing with the current position soil. In FIG. 9, the improved area at the time of rod insertion is indicated by reference numeral A1.
[0031]
After the improvement rod 1 has been inserted to the lower end B of the improvement range, the improvement rod 1 is then pulled up to the upper end (not shown) of the improvement range. In this case, as shown in FIGS. 9C to 9E, the other opening of the switching pipe 2P in the switching device 2 is connected only to the second outlet 2b (see FIG. 1; FIG. Switch to the state shown by the dotted line.)Pressure feederThe improved rod 1 is rotated and pulled up while injecting the compressed air accompanied by the solidified material from 3 only from the upper injection port 1u. Thus, the improvement is also made in the pull-up improvement area A2 above the rod insertion improvement area A1, and an improved body can be formed over the entire stirring portion. Since the improved area A1 at the time of inserting the rod is re-stirred by the pulling-up rotation of the improved rod 1, stirring and mixing are performed to the same extent as the improved area A2 at the time of pulling up, and a uniform body is formed in the depth direction. When the upper and lower injection ports 1u and 1b are switched, the solidified material conveying path for one of the injection ports communicates with the inside of the casing 2C of the switching device 2, so that the solidified material conveying path to the corresponding injection port is provided. Therefore, there is a possibility that the granular material, the groundwater, and the soft soil flow backward. However, such a backflow can be prevented by appropriately maintaining the internal pressure of the casing by a pressure holding means for maintaining the pressure in the casing 2C at a predetermined level or more. It is possible. Although the internal pressure of the casing 2C can be determined as appropriate, it is preferable that the internal pressure be equal to or higher than the pressure of the solidified material.
[0032]
<Regarding the granular material feeding and supply device>
Next, it can be suitably used in the above ground improvement method and apparatus.Powder pressure feederWill be described in detail.
FIG. 11 and FIG.Powder pressure feederOf the first embodiment is shown. The powder material supply apparatus mainly includes a powder metering means 10, a first opening / closing valve 20, an intermediate chamber 30, a second opening / closing valve 40, a pressure feeding chamber 50, a sending means 60, and a low level detecting means 51. It is composed of
[0033]
The powder material supply means 10 includes a storage chamber 11 having a powder material supply port 11i at an upper portion and a discharge port 11x at a lower end portion, and a powder material supply port provided in the storage chamber 11 from outside. Container 12 configured to receive and store the powder and granules, and to discharge the stored powder and granules to the outside, and a load cell 13 as a measuring means for measuring the amount of the powder and granules in the measurement container 12. , 13. As can be understood from this configuration,thisThe apparatus supplies the granular material to the upper granular material supply port 11i of the granular material supply means 10 from, for example, a large storage tank (not shown) such as a silo provided with a supply opening / closing device on the outlet side. Is assumed.
[0034]
In particular, in the first embodiment, the exhaust filter 14 communicates with the upper part of the storage chamber 11. The measuring container 12 has a shape with an open upper surface, and one end of each of the rotating shafts 15, 15 is connected to both side surfaces, and the other end of each of the rotating shafts 15, 15 is connected to a rotating drive source such as a motor. The rotation driving sources 16 are fixed to the inner side plates 17 suspended from the inner surface of the top plate 11u of the storage chamber 11 via the load cells 13, 13, respectively. I have. Therefore, the weighing container 12 is suspended in the storage chamber 11 via the load cells 13, 13, and the amount of the powder or granular material inside can be measured by the load cells 13, 13. Then, the stored powder particles inside can be discharged. The state after the inversion is shown by a dotted line.
[0035]
An intermediate chamber 30 is connected to a lower end outlet 11x of the storage chamber 11 via a first on-off valve 20. The lower chamber outlet 30x of the intermediate chamber 30 is pressure-fed via a second on-off valve 40. The chamber 50 is connected. Each of the on-off valves 20 and 40 is provided with rotary shafts 22 and 42 extending in the horizontal transverse direction in the pipelines 21 and 41 as shown in the figure, and the rotary shafts 22 and 42 have a plate-like shape capable of closing the pipeline 21. It is possible to use a valve in which the valve bodies 23 and 43 are attached and the rotary drive sources 24 and 44 for the rotary shafts 22 and 32 are provided outside the pipeline. In the illustrated example, the reciprocating driving force of the cylinders 25 and 45 is mechanically converted into the rotation direction of the rotating shafts 22 and 32 and transmitted to the rotating shafts 22 and 42. On the other hand, since each of the chambers 11, 30, and 50 transports the granular material by its own weight, it is preferable to use a cylindrical body whose inner diameter decreases toward the lower end as shown in the figure.
[0036]
In particular, a low-level sensor 51 is provided at a predetermined height position in the pumping chamber 50, and the low-level sensor 51 detects a low-level state in which the amount of powder in the pumping chamber 50 has not reached a predetermined amount. It can be detected. The height position of the low-level sensor is, for example, between the time when the low-level state is detected and the time when the granular material is replenished in the pumping chamber 50, so that the external delivery means 60 can supply the granular material continuously and quantitatively. The height position corresponds to a sufficient amount of the granular material.
[0037]
Further, the pressure feeding chamber 50 is provided with a feeding means 60 for continuously taking out a predetermined amount of the powder and granules stored in the inside thereof, and putting the powder and granules out to the outside with the pressurized air.
[0038]
For example, as shown in the figure, the external sending means 60 is provided with a rotor case portion 61 continuous from the lower end portion of the pressure feeding chamber 50 and a rotor 62 internally and continuously driven to rotate in a predetermined direction. The rotary feeder can be constituted by a continuous quantitative supply type rotary feeder, and a delivery unit for sending the powder and granules cut out by the rotary feeder on the compressed air from a compressed air supply source such as a compressor (not shown). The rotor 62 is rotatable around a horizontal (or horizontal) rotation shaft 63, and a large number of radially protruding partition blades 64 are formed on the outer peripheral surface of the rotation shaft 63 at equal intervals in the circumferential direction. A space between the blade portions 64 is formed as a pocket 65. The rotating shaft 63 is connected to a rotation drive source such as a motor (not shown) connected to the outside of the case portion 61, and the rotor 62 is configured to be rotated by the rotation drive source.of courseAlternatively, a rotor having another known shape may be used. As the delivery section, as shown in the drawing, a powder material outlet 66 is formed at the lower end of a side surface of the rotor case 61 that is orthogonal to the direction of the rotation axis 63 of the rotor 62, and the lower end of the side surface opposite to this is formed at the lower end. It is possible to adopt a configuration in which a compressed air inlet 67 from a compressed air supply source is formed, and the compressed air from the compressed air inlet 67 flows to the powder material outlet 66 via the pocket 65 at a position corresponding thereto.
[0039]
In addition, as shown in FIGS. 6 to 8 and FIGS. 9 to 11 of Japanese Patent Application No. 2001-233135, a plurality of types are used, such as those using a screw feeder described in JP-A-8-113370. Can be continuously supplied to the external delivery path.
[0040]
On the other hand, in the above-described first embodiment, the amount of the granular material in the measuring container 12 can be measured by supporting the measuring container 12 with respect to the storage chamber via the load cell. As shown in FIGS. 13 and 14, the entirety of the granular material metering / supplying means 10 is suspended and supported on a gantry 70 (only part of which is shown) via a load cell 13, and the weight of the apparatus is subtracted from the weighing container. It may be configured to be able to measure the amount of the powder and granules in 12. In this case, the storage chamber 11 of the powder and granular material supply means 10 and the first opening / closing valve 20 are connected by a flexible joint (for example, a bellows pipe made of resin such as rubber) 80 which can expand and contract in the vertical direction. The portion below the on-off valve 20 is separately fixed to the gantry 70. Further, in this case, as shown in the figure, the rotating shaft 15 of the measuring container is communicated with the outside of the storage chamber, and is connected to the rotary drive source 16 fixed to the outer peripheral surface of the storage chamber 11, so that the internal side plate 17 can be omitted.
[0041]
Further, in the first embodiment, the measuring container 11 is configured to discharge the stored powder particles by inversion. However, as in the third embodiment shown in FIG. 15 and the fourth embodiment shown in FIG. A hopper-shaped weighing container 90 in which the entire upper surface is a powder / particle receiving opening 91, and a powder / particle discharge port 92 is formed at the lower end, and an opening / closing valve is provided at the lower end discharge port 92. You can also. As shown in the figure, the opening / closing valve is configured such that the weight-shaped valve element 93 fitted into the discharge port from below and the weight-shaped valve element 93 fixed to the top plate 11u are moved up and down so as to be fitted to and removed from the discharge port 92. And a cylinder 94. In addition, the third embodiment and the fourth embodiment differ in how the measuring container 12 is suspended, and the former corresponds to the first embodiment in that the measuring container 12 is supported on the storage chamber via the load cell 13. The latter employs a powder and granule weighing structure. The latter suspends and supports the whole of the powder and granule weighing / supplying means 10 with respect to a gantry 70 via a load cell 13, and stores the powder / particle weighing / supplying means 10 in a storage chamber 11. The first embodiment employs a powder / particle measurement configuration corresponding to the second embodiment in that the first on-off valve 20 and the first on-off valve 20 are connected by a flexible joint 80.
[0042]
On the other hand, thus constitutedPowder pressure feeder17 is as shown in FIG. Although FIG. 17 typically shows the case of the device of the third embodiment, the same applies to the case of the device of another embodiment.
[0043]
(When the device starts)
At the start of the apparatus, first, the external feeding means 60 does not perform the external feeding, that is, at least the rotary feeder is stopped, and each of the pressure feeding chamber 50, the intermediate chamber 30, and the measuring container 11 stores a predetermined amount of the granular material. (Not shown).
[0044]
For this purpose, first, the granular material is charged and supplied from an external large storage tank such as a silo to the measuring container 90 via the supply port 11i. At this time, the amount of the granular material in the measuring container 90 is measured by the load cell 13, and when the amount reaches a predetermined amount, the supply from the outside is automatically stopped. When the weighing is completed, the on-off valve of the weighing container 90 is opened to discharge the powder inside the storage chamber 11, and the first on-off valve 20 and the second on-off valve 30 are opened and closed as appropriate, so that the intermediate The granular material is fed to the chamber 30 or the pumping chamber 50. If necessary, the supply of the granular material from the external storage tank can be performed a plurality of times. When the pressure feeding chamber 50, the intermediate chamber 30, and the measuring container 90 have already stored a predetermined amount of the powdery material, it is not necessary to perform the operation at the time of starting the apparatus.
[0045]
(During external supply of powder and granules)
During the supply operation of the powder and granules to the outside, the external sending means 60 is always operated to perform the continuous fixed amount sending to the outside. More specifically, as shown in FIG. 18, the rotor 62 of the rotary feeder is continuously rotated in a predetermined direction, and the granular materials P3 stored in the pumping chamber 50 are sequentially received in the pockets 65 of the rotor 62. As the rotor 62 rotates, it is transferred to the outlet 66 side. On the other hand, compressed air from a compressed air supply source (not shown) is introduced into the pocket 65 communicating with the compressed air inlet 67. As a result, when the pocket 65 does not communicate with the pumping chamber 50 and communicates with the outlet 66 at the lower end, the powder P4 received in the pocket 65 is put on the compressed air passing through the pocket 65 and the outlet P4. It is sent to the outside via 66. Most of the compressed air is sent out together with the powder, but the rotor pocket 65 after the powder is sent out is circulated to the pumping chamber side by the rotation of the rotor 62. It slightly leaks into the pumping chamber 50.
[0046]
By the external delivery, the storage amount of the granular material P3 in the pumping chamber 50 is reduced as shown in FIG. 17A, and when the low level state is detected by the low level detecting means 51, FIG. As shown, the second on-off valve 40 is opened for a predetermined time while the first on-off valve 20 is closed, and the powder stored in the intermediate chamber 30 is dropped and supplied to the pressure feeding chamber 50. At this time, part of the compressed air leaking into the pressure feeding chamber 50 slightly leaks into the intermediate chamber 30.
[0047]
When the opening and closing operation of the second opening and closing valve 40 is performed, as shown in FIG. 17C, in this example, the first opening and closing valve 20 is operated for a predetermined time in a state where the second opening and closing valve 40 is closed. After being opened, the compressed air in the intermediate chamber 30 is sent into the storage chamber 11 and exhausted to the outside of the apparatus via the exhaust filter 14. At this time, since the granular material P1 in the storage chamber 11 is stored in the measuring container 90, the compressed air passing through the storage chamber 11 hardly acts. Therefore,ThisIn the apparatus described above, the pressure air is appropriately exhausted, and a situation in which the granular material flows backward hardly occurs.
[0048]
Next, as shown in FIG. 17D, with the second on-off valve 40 closed, the first on-off valve 20 is opened, and the weighed powder and granules stored in the weighing container 90 are discharged, and the An intermediate chamber replenishing operation for supplying to the chamber 30 is performed. Subsequently, as shown in FIG. 17 (e), in a state where the first on-off valve 20 is closed, the reception of the powder and granules from the outside into the weighing container 90 is started, and the weighing is performed by the load cell 13. A predetermined amount of the granular material is received in the container 90 (a measuring container supply operation). These replenishing operations may be alternately repeated a plurality of times, if necessary, if the amount of replenishment at one time is designed to be small.
[0049]
Therefore, in this case, the volume, low-level position, replenishing amount, and the like of the pumping chamber 50 are appropriately designed so that the replenishment to the intermediate chamber 30 is completed before the powder in the pumping chamber 50 reaches the low level. I do. In other words, the point at which the shortest time of supply to the intermediate chamber 30 is equal to the time required for the stored amount of the pumping chamber 50 to reach a low level is the maximum pumping capability of this apparatus. However, in this measuring container supply operation, it is sufficient that at least the first on-off valve 20 is closed. Therefore, when the storage amount of the pressure-feeding chamber 50 becomes low (or becomes low) during this operation, at the same time, The second opening / closing valve 40 can be opened to perform the pressure feeding chamber supply operation.
[0050]
Thus, during the external pumping of the granules, a predetermined amount of the granules is always stored in the intermediate chamber 30 and the measuring container 90, and the granules are supplied stepwise to the pumping chamber 50 as necessary. Is done. Hereinafter, this is repeated.
[0051]
And it was configured like thisPowder pressure feederHas the following advantages.
(A) Since the powder is fed by pressure through the measuring container 90 (indicated by the reference numeral 12 in the first and second embodiments) and the measuring means 13, the management record of the amount of the powder used can be easily and easily recorded. Can be done accurately.
(B) Since there is no need to store a large amount of powder and granules in the device, the size of the device can be reduced. Even in such a case, there is no practical problem since a large storage device for storing the powder and granules is used except in the case of small-scale construction.
(C) With the appropriate valve opening / closing timing according to the above procedure, the compressed air in the apparatus is appropriately exhausted, and the backflow of the granular material is unlikely to occur.
(D) Since the solidified material supply path is merely blocked at intervals by the two on-off valves 20, 40, the structure is very simple, and maintenance such as internal cleaning is also very easy.
[0052]
【The invention's effect】
As described above, the ground improvement of the present inventionapparatusIn this case, there is an advantage that the solidified material injection can be reliably switched in spite of the simple structure and mechanism.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a ground improvement method and apparatus of the present invention, and in particular, a cross section of a switching device.
FIG. 2 is a longitudinal sectional view of the switching device of the present invention.
FIG. 3 is a partially cutaway view showing an example of a suitable ground improvement rod.
FIG. 4 is an enlarged view of a portion A in FIG. 3;
FIG. 5 is a sectional view taken along line BB of FIG. 3;
FIG. 6 is an enlarged view of a portion C in FIG. 3;
FIG. 7 is an enlarged view of a portion D in FIG. 3;
FIG. 8 is an enlarged view of a portion E in FIG. 3;
FIG. 9 is a view showing a construction procedure of the ground improvement method of the present invention.
FIG. 10 is a view showing a construction procedure of a conventional ground improvement method.
FIG. 11 is a longitudinal sectional view of a first embodiment of the granular material feeding and supplying device.
FIG. 12 is a longitudinal sectional view of the first embodiment viewed from another direction.
FIG. 13 is a vertical cross-sectional view of a second embodiment of the granular material pressure feeding apparatus.
FIG. 14 is a longitudinal sectional view of the second embodiment viewed from another direction.
FIG. 15 is a longitudinal sectional view of a third embodiment of the powder and granular material feeding / supplying device.
FIG. 16 is a longitudinal sectional view of a fourth embodiment of the granular material feeding and supplying device.
FIG. 17 is a diagram showing an operation procedure of the powder and granular material feeding / supplying apparatus.
FIG. 18 is an enlarged view of a main part showing an operation procedure of the granular material pressure feeding device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Improvement rod, 2 ... Switching device, 3 ... Powder / solidification material press-feeding / supplying device, 4 ... Swivel device, 10 ... Powder / grain weighing supply means, 11 ... Storage chamber, 12 ... Measuring container, 13 ... Load cell, 14 ... exhaust filter, 20 ... first on-off valve, 30 ... intermediate chamber, 40 ... second on-off valve, 50 ... pumping chamber, 51 ... low level detection means, 60 ... external sending means.

Claims (2)

下端部に設けられた下部噴射孔、その上方に離間して設けられた上部噴射口、およびこれら下部噴射口から上部噴射口にわたる範囲に設けられた攪拌翼を有する改良ロッドと、
前記下部噴射口及び上部噴射口に対してそれぞれ接続され、前記下部噴射口に対する粉粒体固化材の供給と、前記上部噴射口に対する粉粒体固化材の供給とを切り替える切替装置と、
粉粒体固化材を伴う圧気を前記切替供給装置を介して前記改良ロッドに対して供給する圧送供給装置とを備えた、地盤改良装置であって、
前記切替装置が;
前記圧送供給装置からの固化材を伴う圧気が吹き込まれる供給口、前記下部噴射口に対して接続された第1の送出口、および前記上部噴射口に対して接続された第2の送出口をそれぞれ備えたケーシングと、
このケーシング内にあって前記供給口に対して一方の開口が接続され、他方の開口が前記第1の送出口との接続位置及び第2の送出口との接続位置のそれぞれに移動自在とされた切替管路と、この切替管路に移動力を与える駆動手段と、
ケーシング内に圧気を供給する圧気供給装置と、
からなるものとされた、
ことを特徴とする粉粒体固化材を用いる地盤改良装置。
An improved rod having a lower injection hole provided at a lower end portion, an upper injection hole provided at a distance above the lower injection hole, and a stirring blade provided in a range extending from the lower injection hole to the upper injection hole,
A switching device that is connected to the lower outlet and the upper outlet, respectively, and switches between supply of the powdered solidified material to the lower outlet and supply of the powdered solidified material to the upper outlet,
A ground improvement device, comprising: a pressurized supply device that supplies compressed air with a powder solidification material to the improved rod via the switching supply device.
Said switching device;
A supply port through which compressed air with a solidified material is blown from the pressure supply device , a first outlet connected to the lower outlet, and a second outlet connected to the upper outlet. With the casing provided respectively,
One opening is connected to the supply port in the casing, and the other opening is movable to a connection position with the first outlet and a connection position with the second outlet. A switching pipe, a driving means for applying a moving force to the switching pipe,
A compressed air supply device for supplying compressed air into the casing ;
Consisting of
A ground improvement device using a solidified material of a granular material, characterized in that:
前記改良ロッドは、前記下部噴射口および上部噴射口にそれぞれ連通された、ロッド長手方向に沿って上端部まで延在する搬送管路を横並びで一対備えており、
これらの搬送管路は、スイーベル装置を介して前記切替装置の第1の送出口および第2の送出口に対してそれぞれ接続されており、
前記スイーベル装置は、上部固定部と、その下面に気密に且つ縦軸周りに回転自在に接続された下部回転部を有し、
このスイーベル装置の上部固定部は一対の管路を有し、これら一対の管路は、前記切替装置の第1の送出口および第2の送出口に対してそれぞれ接続された横並び配置の入側部分を有するとともに、一方の管路は下部回転部との接続面側に向かうにつれて徐々に下部回転部の回転中心線に近づき、かつ接続面において前記回転中心線と同軸をなす円形出口を有し、他方の管路は下部回転部との接続面側に向かうにつれて徐々に前記一方の管路を取り囲むように変形し、かつ接続面において前記一方の管路の円形出口を同軸的に取り囲む円環状出口を有し、
一方、前記スイーベル装置の下部回転部は一対の管路を有し、これら一対の管路は、前記改良ロッドの一対の搬送管路に対してそれぞれ接続された横並び配置の出側部分を有するとともに、一方の管路は上部固定部との接続面側に向かうにつれて徐々に前記回転中心線に近づき、かつ接続面において前記回転中心線と同軸をなす円形入口を有し、他方の管路は上部固定部との接続面側に向かうにつれて徐々に前記一方の管路を取り囲むように変形し、かつ接続面において前記一方の管路の円形入口を同軸的に取り囲む円環状入口を有し、
前記固定部と回転部との接続面にある円形出口および円形入口相互ならびに円環状出口および円環状入口相互が、それぞれ、接続面に関して対称をなし且つ常に連通されるように構成されている、
請求項記載の粉粒体固化材を用いる地盤改良装置。
The improved rod is provided with a pair of conveying pipes, which are respectively communicated with the lower jetting port and the upper jetting port, and extend in a longitudinal direction of the rod to an upper end portion side by side,
These transport pipelines are connected to a first outlet and a second outlet of the switching device via a swivel device, respectively.
The swivel device has an upper fixed portion, a lower rotating portion airtightly connected to the lower surface thereof and rotatably connected around a vertical axis,
The upper fixing portion of the swivel device has a pair of conduits, and the pair of conduits are connected to a first outlet and a second outlet of the switching device, respectively. And one of the conduits has a circular outlet gradually approaching the rotation center line of the lower rotation part toward the connection surface side with the lower rotation part, and coaxial with the rotation center line at the connection surface. The other conduit gradually deforms so as to surround the one conduit as it goes toward the connection surface side with the lower rotating part, and at the connection surface coaxially surrounds the circular outlet of the one conduit. Has an exit,
On the other hand, the lower rotating part of the swivel device has a pair of pipelines, and the pair of pipelines have side-by-side outlet portions connected to the pair of transport pipelines of the improved rod, respectively. One of the pipelines gradually approaches the rotation center line as it goes toward the connection surface side with the upper fixing portion, and has a circular inlet coaxial with the rotation center line at the connection surface, and the other pipeline has an upper portion. It has an annular inlet that deforms gradually toward the connecting surface side with the fixed part so as to surround the one conduit, and coaxially surrounds the circular inlet of the one conduit at the connecting surface,
The circular outlet and the circular inlet and the annular outlet and the annular inlet at the connection surface between the fixed portion and the rotating portion are configured so as to be symmetrical with respect to the connection surface and always communicate with each other,
A ground improvement device using the solidified powder material according to claim 1 .
JP2001336695A 2001-11-01 2001-11-01 Ground improvement equipment using powder material Expired - Fee Related JP3574101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001336695A JP3574101B2 (en) 2001-11-01 2001-11-01 Ground improvement equipment using powder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001336695A JP3574101B2 (en) 2001-11-01 2001-11-01 Ground improvement equipment using powder material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004165940A Division JP3738026B2 (en) 2004-06-03 2004-06-03 Powder body pressure feeding device

Publications (2)

Publication Number Publication Date
JP2003138556A JP2003138556A (en) 2003-05-14
JP3574101B2 true JP3574101B2 (en) 2004-10-06

Family

ID=19151479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001336695A Expired - Fee Related JP3574101B2 (en) 2001-11-01 2001-11-01 Ground improvement equipment using powder material

Country Status (1)

Country Link
JP (1) JP3574101B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106081402B (en) * 2016-07-30 2018-09-18 安吉艺科装饰材料科技有限公司 Sticky ornament materials production line
CN109626016B (en) * 2018-12-28 2024-03-26 晋江海纳机械有限公司 Granular polymer resin accurate metering and feeding system and control method thereof
JP6948665B1 (en) * 2020-06-29 2021-10-13 株式会社チダエンジニアリング Powder and granular material pumping supply device

Also Published As

Publication number Publication date
JP2003138556A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP2010228917A (en) Rotor configuration for rotary valve
JP3574101B2 (en) Ground improvement equipment using powder material
CA2986264A1 (en) Device for conditioning radioactive waste
CN107406152A (en) Apparatus and method for filling open-top receptacle
CA2874544C (en) Device for introducing a defined amount of second powder into a process container
KR100759676B1 (en) Method and device for ameliorating a foundation using the powdered body of the ameliorating material, and apparatus for providing powdered body
JP2017095255A (en) Dew condensation-preventive device in discharge chute, and granular powder feeder
CN206501245U (en) One kind energy-conservation ready-mixed concrete proportioning machine
JP3738026B2 (en) Powder body pressure feeding device
KR20020092366A (en) Filler material packing system and method
JPH1059542A (en) Powder and grain feeder
EP1224061A1 (en) Abrasive blasting apparatus
JP6948665B1 (en) Powder and granular material pumping supply device
CN112723289A (en) Oil preparation granule class sauce material filling device
JP2828638B2 (en) High concentration pneumatic transportation equipment
KR101872454B1 (en) Automatic powder suppling plant unificated a body with weighing, mixing and conveying processes to supply powder type materials for soft ground improvement to a stirring axis of mixing treatment equipment in 1.5 shot mode
CN206676333U (en) One kind pickles vegetable automatic stirring unit equipment
CN217038477U (en) Distributed feeding device for aquaculture
CN220975361U (en) Discharging mechanism of steel plate bin
JP2007182328A (en) Powder supplying system
US5851493A (en) Injection system and method for feeding particulate to a process vessel
ES2880251T3 (en) Apparatus for plasma treatment of granular polymeric material
CN215574055U (en) Sampling device and system
JPH1120953A (en) Powder and grain constant volume feeder
JP3978701B2 (en) Method and apparatus for supplying powdery improvement material into earth and sand transport pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040630

R150 Certificate of patent or registration of utility model

Ref document number: 3574101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees