JP3568613B2 - Coating agents and processed fibers for imparting heat retention, antibacterial, deodorant, and deodorant properties - Google Patents

Coating agents and processed fibers for imparting heat retention, antibacterial, deodorant, and deodorant properties Download PDF

Info

Publication number
JP3568613B2
JP3568613B2 JP04108295A JP4108295A JP3568613B2 JP 3568613 B2 JP3568613 B2 JP 3568613B2 JP 04108295 A JP04108295 A JP 04108295A JP 4108295 A JP4108295 A JP 4108295A JP 3568613 B2 JP3568613 B2 JP 3568613B2
Authority
JP
Japan
Prior art keywords
fine particles
deodorant
antibacterial
mixture
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04108295A
Other languages
Japanese (ja)
Other versions
JPH08231897A (en
Inventor
淳 岸本
宏次 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP04108295A priority Critical patent/JP3568613B2/en
Publication of JPH08231897A publication Critical patent/JPH08231897A/en
Application granted granted Critical
Publication of JP3568613B2 publication Critical patent/JP3568613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Paints Or Removers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、衣料の色合いや風合いを損ねることなく、綿などの天然繊維への加工ならびに肌着への使用が可能で、かつ皮膚への安全性ならびに耐久性が良好であり、さらに保温性能、抗菌性能、防臭性能、消臭性能を一度に糸及び布に付与することができる後加工剤として好適に使用できるコーティング剤及びその製造方法と、該コーティング剤によって保温性能、抗菌性能、防臭性能、消臭性能が付与された加工繊維に関するものである。
【0002】
【従来の技術】
近年、保温衣料の分野においては、遠赤外線放射能力を有する炭化系・窒化系セラミックス微粒子を練り込んだ繊維を使用して保温効果を高める試みが、多数提案されている。また、アルミニウムやチタン等の金属を蒸着した繊維を裏地に用いることで、体からの熱を裏地の表面で反射させ、衣服の保温効果を高める試みもなされている。また、抗菌・防臭衣料の分野では、繊維に有機系、銀系抗菌剤を練り込んだり、塗布して加工したものが考えられている。また、消臭衣料の分野においては、活性炭の物理吸着性能、ゼオライト・カオリンの物理吸着及び化学吸着性能が消臭性を付与するものとして利用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、近年保温衣料に使用されているセラミックス粒子は、可視光線から近赤外線領域の光を吸収し熱エネルギーに変える目的から炭化物・窒化物が殆どであり、これらは濃い色を有しているため白色や淡色の繊維には用いることができないばかりか、これらのセラミックス粒子の粒子径が数ミクロンオーダーであるため練り込んだ繊維が太くなり、肌着としての使用が困難である上に、主に肌着等に多く使用されている綿等の天然繊維には加工することができなかった。
また、アルミニウムやチタン等の金属を繊維表面に蒸着加工する場合、蒸着加工に伴うコストアップや、蒸着加工前の準備工程における繊維の微妙な取り扱いによる蒸着斑の発生等の問題があった。
【0004】
また、抗菌・防臭衣料で使用されてきた第四級アンモニウム塩等の有機系抗菌剤は、皮膚への刺激や耐洗濯性の点で問題があり、銀ゼオライト等の銀系抗菌剤は、着色や粒子径が数μmあるため後加工で使用された場合、色合いや風合いを損ねるなどの問題があった。
また、消臭衣料で使用されている活性炭は、濃い色を有しているため白色や淡色の繊維には用いることができないばかりか色移りの問題があり、ゼオライト・カオリンの天然鉱物は、粉砕できる平均粒子径が0.1μm以上で、通常は数μmであるため後加工で使用された場合、色合いや風合いを損ねるなどの問題があった。
【0005】
この発明は、このような従来の問題点に着目してなされたもので、衣料の色合いや風合いを損ねることなく、綿などの天然繊維への加工ならびに肌着への使用が可能で、かつ皮膚への安全性ならびに耐久性が良好であり、さらに保温性能、抗菌性能、防臭性能、消臭性能の全てを一度に糸または布に付与することができる後加工剤として好適に使用できるコーティング剤と、保温性能、抗菌性能、防臭性能、消臭性能が付与された加工繊維を提供することを目的としてなされたものである。
【0006】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために鋭意研究の結果、肌に直接触れることの多い衣料等に求められる性能の保温性・抗菌性・防臭性・消臭性・皮膚への安全性・色等の意匠性・風合いの全てを満足しながら一度に糸または布に付与することができる後加工用コーティング剤とそれらの機能が付与された加工繊維が得られることを見出し、本発明に到達したのである。
本発明の保温・抗菌・防臭・消臭性付与コーティング剤にあっては、平均分散粒子径が0.003〜0.1μmで比表面積が20m /g以上の亜鉛化合物微粒子と平均分散粒子径が0.003〜0.1μmで比表面積20m /g以上のジルコニウム化合物微粒子とからなる微粒子の混合物を主成分とし、上記微粒子の混合物中の混合割合が亜鉛化合物微粒子:ジルコニウム化合物微粒子=5:95〜95:5(重量比)であり、上記微粒子の混合物と、エマルションまたは水可溶性バインダー樹脂との割合が微粒子の混合物:バインダー樹脂=95:5〜5:95(重量比)で配合されてなることを上記課題の解決手段とした。
また、本発明は、上記構成の本発明の保温・抗菌・防臭・消臭性付与コーティング剤において、上記微粒子の混合物中にさらに平均分散粒子径が0.003〜0.1μmで比表面積が20m /g以上の珪素化合物微粒子が配合されたことを上記課題の解決手段とした。
また、本発明は、上記いずれかの構成の本発明の保温・抗菌・防臭・消臭性付与コーティング剤において、上記ジルコニウム化合物が、ジルコニウムの酸化物又は水和物であることを上記課題の解決手段とした。
また、本発明は、上記いずれかの構成の本発明の保温・抗菌・防臭・消臭性付与コーティング剤において、上記亜鉛化合物が酸化亜鉛であることを上記課題の解決手段とした。
また、本発明は、上記いずれかの構成の本発明の保温・抗菌・防臭・消臭性付与コーティング剤において、上記エマルションまたは水可溶性バインダー樹脂が、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリエステルのうちから選択される少なくとも1種を主成分とするものであることを上記課題の解決手段とした。
また、本発明の保温・抗菌・防臭・消臭効果のある加工繊維は、上記のいずれかの構成の本発明の保温・抗菌・防臭・消臭性付与コーティング剤により糸または布に後加工が施され、上記糸または布に上記コーティング剤中の微粒子の混合物とエマルションまたは水可溶性バインダー樹脂からなる被覆層が形成されてなることを上記課題の解決手段とした。
また、本発明は、上記の構成の本発明の保温・抗菌・防臭・消臭効果のある加工繊維において、上記被覆層中の微粒子の混合物の量が、上記糸または布の重量に対し0.05重量%〜20重量%であることを上記課題の解決手段とした。
また、本発明は、上記のいずれかの構成の本発明の保温・抗菌・防臭・消臭効果のある加工繊維が使用時に直接肌に触れる衣料に用いられるものであることを特徴とする。
また、本発明は、上記構成の本発明の保温・抗菌・防臭・消臭効果のある加工繊維において、上記使用時に直接肌に触れる衣料が、靴下、肌着、シャツ、ズボン、毛布、シーツのうちから選ばれるものであることを特徴とする。
【0007】
すなわち、本発明の保温・抗菌・防臭・消臭性付与コーティング剤にあっては、平均分散粒子径0.1μm以下で比表面積が20m/g以上の亜鉛化合物微粒子と平均分散粒子径が0.1μm以下で比表面積20m/g以上のジルコニウム化合物微粒子とからなる微粒子の混合物を主成分とし、上記微粒子の混合物中の混合割合が亜鉛化合物微粒子:ジルコニウム化合物微粒子=5:95〜95:5(重量比)であり、上記微粒子の混合物と、エマルションまたは水可溶性バインダー樹脂との割合が微粒子の混合物:バインダー樹脂=95:5〜5:95(重量比)で配合されてなることを上記課題の解決手段とした。
【0008】
また、本発明の保温・抗菌・防臭・消臭性付与コーティング剤にあっては、上記の保温・抗菌・防臭・消臭性付与コーティング剤において、上記ジルコニウム化合物微粒子に代えて珪素化合物微粒子が配合されたことを上記課題の解決手段とした。
また、本発明の保温・抗菌・防臭・消臭性付与コーティング剤にあっては、上記の保温・抗菌・防臭・消臭性付与コーティング剤において、上記ジルコニウム化合物微粒子に代えて、ジルコニウム化合物微粒子99〜1重量%と珪素化合物微粒子1〜99重量%が配合されたことを上記課題の解決手段とした。
【0009】
また、本発明の保温・抗菌・防臭・消臭効果のある加工繊維にあっては、上記のいずれかに記載の保温・抗菌・防臭・消臭性付与コーティング剤により糸または布に後加工が施され、上記糸または布に上記コーティング剤中の微粒子の混合物とエマルションまたは水可溶性バインダー樹脂からなる被覆層が形成されてなることを課題の解決手段とした。
また、本発明の保温・抗菌・防臭・消臭効果のある加工繊維にあっては、上記の加工繊維において、上記微粒子の混合物が、上記糸または布の重量に対し0.05重量%〜20重量%付着されてなることを課題の解決手段とした。
【0010】
以下、本発明について詳細に説明する。
本発明のコーティング剤に使用される微粒子の混合物を構成する、亜鉛化合物微粒子、ジルコニウム化合物微粒子および/または珪素化合物微粒子は、それぞれ平均一次粒子径が0.1μm以下、好ましくは0.003〜0.1μm、より好ましくは0.01〜0.04μmであり、比表面積が20m/g以上、好ましくは20〜800m/gで、より好ましくは100〜300m/gである。また、上記微粒子の混合物を構成する各微粒子は白色微粒子である。
【0011】
このように白色微粒子の平均分散粒子径を0.1μm以下、より好ましくは0.04μmとすることで、可視光の散乱が無くなり、また無色透明性となるので、本発明のコーティング剤を用いて糸または布に後加工を施しても、上記糸または布の色等の意匠性に影響を与えることがない。
また、白色微粒子の比表面積を20m/g以上にすることで消臭性も大幅に高くすることができる。
本発明のコーティング剤に使用される亜鉛化合物としては、酸化亜鉛を用いることが好ましい。
【0012】
このような上記微粒子の混合物を構成する各金属化合物微粒子は、たとえば特開平2−311314号公報や特開昭59−107969号公報に記載されている方法で製造することができる。
上記特開平2−311314号公報中には、特に、酸化亜鉛微粒子の製造方法について言及されている。すなわち、亜鉛の酸性塩と酢酸アンモニウムの混合溶液に硫化水素を通じて、得られた沈殿物から可溶塩を除去し、次いで、この沈澱物を有機溶媒に分散した後、これをオートクレーブにて250〜400℃で加熱してガス分を除去し、その後得られた乾粉を500〜800℃で加熱処理することで酸化亜鉛微粒子を得る。
【0013】
また、上記特開昭59−107969号公報中には、特に、ジルコニウム化合物微粒子の製造方法について言及されている。すなわち、ジルコニウムの酸性塩とイットリウムの酸性塩よりなる混合溶液にアンモニウム水を添加し共沈ゲルを作成後、共沈ゲルを分離し、濃塩酸で可溶物を溶解除去し、希塩酸で洗浄後、乾燥することでジルコニウム系単結晶微粒子を得る。また、珪素化合物微粒子はコロイダルシリカやアエロジルシリカ等が液相法または気相法を用いて得ることができる。
【0014】
上記酸化亜鉛は微粒子化されると、抗菌性能ならびに防臭性能が発現するばかりか、体臭で汗の分解に起因する酢酸・イソ吉草酸等の酸性ガスを化学的に消臭する能力が高くなる。また、酸化亜鉛は化粧品の原料に使用され人体に対する安全性が高いことが実証されており、皮膚と直接接触することの多い衣料の抗菌剤及び酸性ガスの消臭剤として優れている。
【0015】
本発明のコーティング剤で使用されるジルコニウム化合物は、ジルコニウムの酸化物、水和物、イットリウム・スカンジウム・稀土類元素添加物の非晶質または結晶質のうちから選択された微粒子であり、体臭のアンモニア・トリメチルアミン等の塩基性ガスを消臭する能力が高い。また、ジルコニウム化合物は、酸化亜鉛と同様に化粧品原料に使用され人体に対する安全性の高いことが実証とれており、皮膚と直接接触することの多い衣料で塩基性ガスの消臭剤として優れている。
【0016】
本発明のコーティング剤で使用される珪素化合物は、珪素の酸化物、水和物の非晶質のうちから選択された微粒子で、体臭のアンモニア・トリメチルアミン等の塩基性ガスを消臭する能力が高い。また、酸化亜鉛と同様に化粧品原料に使用され人体に対する安全性の高いことが実証されており皮膚と直接接触することの多い衣料の消臭剤として優れている。
【0017】
従って、酸化亜鉛微粒子と、ジルコニウム化合物微粒子および/または珪素化合物微粒子が配合されたコーティング剤により後加工された加工繊維は、アンモニア・トリメチルアミン等の塩基性ガスならびに酢酸・イソ吉草酸等の酸性ガスの両方の消臭に効果的である。
【0018】
ところで、肌着等の衣料で保温性を出すには、体からでる熱エネルギーを外部に漏れるのを抑制する必要がある。酸化亜鉛は赤外線領域で高い反射率を示すため、これにより熱エネルギーが外部へ漏れるのを抑制でき、高い保温性が確保できる。
また、ジルコニウム化合物ならびに珪素化合物は良好な赤外線放射性を有し、人体から発生される熱エネルギーを吸収し赤外線を放射するので、本発明のコーティング剤により後加工された加工繊維を衣料として使用すると、体の芯まで温かくなる。このように赤外線反射性微粒子である酸化亜鉛微粒子と、赤外線放射性微粒子であるジルコニウム化合物微粒子および/または珪素化合物とを独立した微粒子の複合体(微粒子の混合物)とすることで相乗的に保温効果が高くなることを見出した。
従って、遠赤外線反射性を有する亜鉛化合物微粒子と遠赤外線放射性を有するジルコニウム化合物微粒子および/または珪素化合物微粒子が配合されたコーティング剤により後加工された加工繊維は、保温効果が優れる。
【0019】
上記微粒子の混合物中の亜鉛化合物微粒子と、ジルコニウム化合物微粒子および/または珪素化合物微粒子のそれぞれの平均分散粒子径の比は10倍以内とすることが好ましく、このようにすると特徴である保温性、抗菌性、防臭性、消臭性効果が平均して得られる。平均分散粒子径の比が10倍をこえると、大きな粒子に小さな粒子が付着する傾向が強くなり、全体的に小さい粒子の性質に近くなるからである。
それに対し、保温性能を最大に引き出すには、赤外線反射性の高い亜鉛化合物微粒子が核になり、その回りを赤外線放射性のジルコニウム化合物微粒子および/または珪素化合物微粒子が付着した構造が好ましく、このため、亜鉛化合物微粒子の平均分散粒子径:ジルコニウム化合物微粒子および/または珪素化合物微粒子の平均分散粒子径=10以上:1とするのが望ましい。
【0020】
上記微粒子の混合物中の亜鉛化合物微粒子とジルコニウム化合物微粒子の混合割合は、亜鉛化合物微粒子:ジルコニウム化合物=5:95〜95〜5(重量比)程度である。
また、上記微粒子の混合物中に、珪素化合物微粒子が配合されている場合のジルコニウム化合物微粒子と珪素化合物微粒子の混合割合は、ジルコニウム化合物微粒子:珪素化合物微粒子=99〜1:1〜99(重量%)程度である。
【0021】
上記微粒子の混合物は、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリエスレルから選択された少なくとも一種を主成分とするエマルションまたは水可溶性バインダー樹脂に平均分散粒子径が0.003〜0.1μmで分散され、保温・抗菌・防臭・消臭性付与コーティング剤として使用される。
【0022】
ここで用いられるバインダー樹脂は、通常繊維加工で利用されているものが使用でき、必要に応じてメラミン等の硬化剤を併用することができる。微粒子の混合物とバインダー樹脂の混合比率は、微粒子の混合物:バインダー樹脂=95:5〜5:95(重量比)、より好ましくは微粒子の混合物:バインダー樹脂=80:30〜20:70(重量比)である。バインダー樹脂の割合いが5重量%以下になると、糸または布の表面に対する微粒子の混合物の定着力がほとんどなく、洗濯で落ち易く耐久性が問題になる恐れがある。また、バインダー樹脂の割合いが95重量%以上になると、糸または布に十分な保温効果を付与させると大量のバインダー樹脂も糸もしくは布に付着し著しく風合いを損ねる恐れがある。
【0023】
また、糸または布の重量に対する微粒子の混合物の付着量は、0.05〜20重量%で、より好ましくは0.2〜2重量%である。微粒子の付着量が0.05重量%以下になると、機能が十分に発現できなくなる恐れがある。また微粒子の付着量が20重量%以上になると顕著な効果の改善がないばかりか、糸もしくは布の風合いを損ねる恐れがある。
【0024】
ところで、正常皮膚細胞細菌は黄色ブドウ球菌・枯草菌のグラム陽性菌や大腸菌・サルモネラ菌・肺炎桿菌・緑膿菌のグラム陰性菌が上げられ、上述のように亜鉛化合物微粒子と、ジルコニウム化合物微粒子および/または珪素化合物微粒子から構成される微粒子の混合物が、上記糸または布の重量に対し0.05重量%〜20重量%付着された加工繊維は、上記陽性菌・陰性菌の両方の菌に対して効果が高い。このような効果を奏する抗菌効果成分は、亜鉛化合物微粒子である。
【0025】
次に、本発明の保温・抗菌・防臭・消臭性付与コーティング剤の製造方法の一例について説明する。
上記した平均一次粒子径0.1μm以下の微粒子の混合物と水及びバインダー樹脂を界面活性剤と配合し、サンドミル等の解砕力の高い分散機に掛けることで、平均分散粒子径0.1μm以下の微粒子に分散された保温・抗菌・防臭・消臭性付与コーティング剤が得られる。ここで用いられる界面活性剤は、アルキル硫酸エステル塩、アルキルりん酸エステル塩、ポリカルボン酸塩、脂肪酸塩、アルキルベンゼンスルフォン酸塩、アルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルフォン酸塩、ポリオキシエチレンアルキル硫酸エステル塩、アルキルアリル硫酸塩、ポリオキシエチレンアルキルりん酸エステル等のうちから選ばれた少なくとも一種類のものである。
【0026】
また、他の製造方法としては、上記平均一次粒子径0.1μm以下の微粒子の混合物と、上記した界面活性剤を水に添加し、サンドミル等に掛け予めサスペンジョンを作製し、使用時にバインダー樹脂を混合しても差し支えない。
【0027】
次に、本発明の保温・抗菌・防臭・消臭性効果のある加工繊維の製造方法について説明する。
上記した保温・抗菌・防臭・消臭性付与コーティング剤を、パッド法、沈漬法、コーティング法、印刷法等の通常繊維加工法として利用されている方法を用いて糸または布に後加工を施し、上記糸または布に上記コーティング剤中の微粒子の混合物とエマルションまたは水可溶性バインダー樹脂からなる被覆層を形成する。
【0028】
パッド法を用いる場合は、まず所定の濃度に調整した保温・抗菌・防臭・消臭性付与コーティング剤と必要に応じて硬化剤を併用してディップ槽に入れ、ついで加工したい糸または布を上記ディップ槽内のコーティング剤に浸漬した後、取り出してパッド率50〜100%で絞り、約100℃で5分乾燥させ、続いて約150℃で2分焼成することで簡単に加工することができる。
【0029】
このようにすると本発明の保温・抗菌・防臭・消臭性付与コーティング剤により糸または布に後加工が施され、上記糸または布に上記コーティング剤中の微粒子の混合物とエマルションまたは水可溶性バインダー樹脂からなる被覆層が形成された加工繊維が得られる。
このようにして得られた保温・抗菌・防臭・消臭効果のある加工繊維にあっては、使用時に直接肌に触れる衣料に好適に用いることができる。ここでの使用時に直接肌に触れる衣料としては、靴下、肌着、シャツ、ズボン、毛布、シーツなどが挙げられる。
【0030】
【実施例】
以下、本発明の実施例を具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
[実施例−1]
(配合)
▲1▼酸化亜鉛微粒子(平均一次粒子径10nm) 10重量部
▲2▼酸化ジルコニウム微粒子(平均一次粒子径10nm) 10重量部
▲3▼スルコハク酸ジオクチルナトリウム(界面活性剤) 4重量部
▲4▼純水 36重量部
▲5▼アクリル系バインダー(樹脂分50重量%) 36重量部
▲6▼メラミン硬化樹脂(樹脂分100重量%) 4重量部
上記配合品をボールミルにて24時間分散させコーティング剤を作製した。
そして得られたコーティング剤中の微粒子の分散粒度分布を電気泳動光散乱光度計(大塚電子(株)製)で測定した。その結果を下記表1に示す。
また、上記コーティング剤をポリエチレンテレフタレート(PET)フィルムに乾燥膜厚1μmで塗布し、ヘーズ及び全光線透過率を測定した。その結果を下記表1に示す。
【0031】
[実施例−2]
(配合)
▲1▼酸化亜鉛微粒子(平均一次粒子径10nm) 10重量部
▲2▼酸化珪素微粒子(平均一次粒子径10nm) 10重量部
▲3▼スルコハク酸ジオクチルナトリウム(界面活性剤) 4重量部
▲4▼純水 36重量部
▲5▼アクリル系バインダー(樹脂分50重量%) 36重量部
▲6▼メラミン硬化樹脂(樹脂分100重量%) 4重量部
上記配合品をボールミルにて24時間分散させコーティング剤を作製した。
そして得られたコーティング剤を上記実施例−1と同様に評価し、その結果を下記表1に示す。
【0032】
[実施例−3]
(配合)
▲1▼酸化亜鉛微粒子(平均一次粒子径10nm) 10重量部
▲2▼酸化ジルコニウム微粒子(平均一次粒子径10nm) 5重量部
▲3▼酸化珪素微粒子(平均一次粒子径10nm) 5重量部
▲4▼スルコハク酸ジオクチルナトリウム(界面活性剤) 4重量部
▲5▼純水 36重量部
▲6▼アクリル系バインダー(樹脂分50重量%) 36重量部
▲7▼メラミン硬化樹脂(樹脂分100重量%) 4重量部
上記配合品をボールミルにて24時間分散させコーティング剤を作製した。
そして、得られたコーティング剤を上記実施例−1と同様に評価し、その結果を下記表1に示す。
【0033】
[実施例−4]
上記実施例−1、実施例−2、実施例−3で作製したコーティング剤をそれぞれ純水で10倍に希釈し、綿ニットにパッド絞り100%、100℃で5分乾燥、160℃で1分焼成し加工繊維を作製した。
そして、得られた各々の加工繊維の抗菌性を繊維製品衛生加工協議会(SEK)基準に基づき、黄色ブドウ球菌の菌数測定法で評価した。その結果を下記表2に示す。
【0034】
[実施例−5]
上記実施例−4で作製し得られた各々の加工繊維の消臭性を3リッター臭い袋に3.0gの加工繊維を入れ、50ppm濃度のアンモニウム、トリメチルアミン、イソ吉草酸、酢酸、硫化水素の各々のガスを充填し、時間経過に伴う残留ガス濃度をガス検知管にて測定した。その結果を図1〜図5に残存ガス濃度と経過時間との関係を示す。ここでは残存ガス濃度を初期ガス濃度の百分率で示す。
【0035】
[実施例−6]
上記実施例−4で作製し得られた各々の加工繊維の保温性をASTM法に基づき、20℃、60%RHの恒温室内において、鉄板を繊維で被覆した状態で30℃に保持するのに必要なエネルギーより保温率を求めた。また、意匠性、風合いを評価した。これらの結果を下記表3に示す。
【0036】
[比較例−1]
(配合)
▲1▼酸化亜鉛微粒子(平均一次粒子径1000nm) 10重量部
▲2▼酸化ジルコニウム微粒子(平均一次粒子径1000nm) 5重量部
▲3▼酸化珪素微粒子(平均一次粒子径1000nm) 5重量部
▲4▼スルコハク酸ジオクチルナトリウム(界面活性剤) 4重量部
▲5▼純水 36重量部
▲6▼アクリル系バインダー(樹脂分50重量%) 36重量部
▲7▼メラミン硬化樹脂(樹脂分100重量%) 4重量部
上記配合品をボールミルにて24時間分散させコーティング剤を作製した。
そして、得られたコーティング剤を上記実施例−1と同様に評価し、その結果を下記表1に示す。
【0037】
[比較例−2]
上記比較例−1で作製し得られたコーティング剤を純水で10倍に希釈し、綿ニットにパッド絞り100%、100℃で5分乾燥、160℃で1分焼成し加工繊維を作製した。
そして、得られた加工繊維の抗菌性を繊維製品衛生加工協議会(SEK)基準に基づき、黄色ブドウ球菌の菌数測定法で評価した。その結果を下記表2に示す。
【0038】
[比較例−3]
上記比較例−2で作製し得られた加工繊維の消臭性を3リッター臭い袋に1.5gの加工繊維を入れ、50ppm濃度のアンモニウム、トリメチルアミン、イソ吉草酸、酢酸の各々のガスを充填し、時間経過に伴う残留ガス濃度をガス検知管にて測定した。その結果を図1〜図5に残存ガス濃度と経過時間との関係を示す。
【0039】
[比較例−4]
上記比較例−2で作製し得られた加工繊維の保温性を上記実施例6と同様に測定した。また、意匠性、風合いを評価した。これらの結果を下記表3に示す。
【0040】
【表1】

Figure 0003568613
【0041】
【表2】
Figure 0003568613
【0042】
【表3】
Figure 0003568613
【0043】
【発明の効果】
以上説明したように本発明の保温・抗菌・防臭・消臭性付与コーティング剤は、亜鉛化合物微粒子と、ジルコニウム化合物微粒子および/または珪素化合物微粒子とからなる微粒子の混合物を、エマルションまたは水可溶性バインダー樹脂に高分散状態で配合されてなるものであるので、衣料の色合いや風合いを損ねることなく、綿などの天然繊維への加工ならびに肌着への使用が可能で、かつ皮膚への安全性ならびに耐久性が良好であり、さらに保温性能、抗菌性能、防臭性能、消臭性能の全てを一度に糸または布に付与することができる後加工剤として好適に使用できるという利点がある。
また、本発明の保温・抗菌・防臭・消臭性付与コーティング剤を用いて糸または布に後加工を施し、上記糸または布に上記コーティング剤中の微粒子の混合物とエマルションまたは水可溶性バインダー樹脂からなる被覆層を形成することにより、保温性能、抗菌性能、防臭性能、消臭性能の全てが付与された加工繊維が得られるという利点がある。
従って、本発明の保温・抗菌・防臭・消臭性付与コーティング剤を用いて得られた加工繊維は、靴下、肌着、シャツ、ズボン、毛布、シーツなどの使用時に直接肌に触れる衣料として好適に利用することができる。
【図面の簡単な説明】
【図1】残存アンモニウム濃度と時間との関係を示したグラフである。
【図2】残存トリメチルアミン濃度と時間との関係を示したグラフである。
【図3】残存イソ吉草酸濃度と時間との関係を示したグラフである。
【図4】残存酢酸濃度と時間との関係を示したグラフである。
【図5】残存硫化水素濃度と時間との関係を示したグラフである。[0001]
[Industrial applications]
INDUSTRIAL APPLICABILITY The present invention can be processed into natural fibers such as cotton and used for underwear without impairing the color and texture of clothing, and has good skin safety and durability, and further has heat retention performance and antibacterial properties. A coating agent that can be suitably used as a post-processing agent capable of simultaneously imparting performance, deodorant performance, and deodorant performance to yarn and cloth, a method for producing the same, and a heat insulating performance, antibacterial performance, deodorant performance, It relates to a processed fiber provided with odor performance.
[0002]
[Prior art]
In recent years, in the field of thermal insulation, many attempts have been made to enhance the thermal insulation effect by using fibers into which carbonized / nitrided ceramic fine particles having far-infrared radiation capability are kneaded. In addition, attempts have been made to enhance the heat retaining effect of clothes by reflecting heat from the body on the surface of the lining by using fibers on which the metal such as aluminum or titanium is deposited as the lining. In the field of antibacterial and deodorant clothing, it is considered that fibers are kneaded with an organic or silver-based antibacterial agent, or are coated and processed. In the field of deodorant clothing, physical adsorption performance of activated carbon and physical adsorption and chemical adsorption performance of zeolite and kaolin are used to impart deodorant properties.
[0003]
[Problems to be solved by the invention]
However, ceramic particles used in warm clothing in recent years are mostly carbides and nitrides for the purpose of absorbing light in the near-infrared region from visible light and converting it into heat energy, and these have a dark color. Not only cannot it be used for white or light-colored fibers, but the diameter of these ceramic particles is on the order of several microns, which makes the kneaded fibers thicker, making it difficult to use as underwear, It could not be processed into natural fibers such as cotton, which are often used in such applications.
In addition, when a metal such as aluminum or titanium is vapor-deposited on the fiber surface, there are problems such as an increase in cost associated with the vapor-deposition process and generation of vapor deposition spots due to delicate handling of fibers in a preparation process before the vapor-deposition process.
[0004]
In addition, organic antibacterial agents such as quaternary ammonium salts used in antibacterial and deodorant clothing have problems in irritation to the skin and washing resistance, and silver antibacterial agents such as silver zeolite are colored. When it is used in post-processing because of its particle size and several μm, there are problems such as impairing the color and texture.
Activated carbon used in deodorant clothing has a dark color and cannot be used for white or light-colored fibers, but also has a problem of color transfer, and natural minerals of zeolite and kaolin are crushed. Since the average particle diameter that can be obtained is 0.1 μm or more, usually several μm, when used in post-processing, there are problems such as impairing the color and texture.
[0005]
The present invention has been made in view of such conventional problems, and can be processed into natural fibers such as cotton and used for underwear without impairing the color and texture of clothing, and can be applied to the skin. A coating agent that has good safety and durability, and can be suitably used as a post-processing agent capable of imparting all of the heat retaining performance, antibacterial performance, deodorant performance, and deodorant performance to the yarn or cloth at a time, The purpose of the present invention is to provide a processed fiber having heat retention, antibacterial, deodorant, and deodorant properties.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and found that the performance required for clothing etc. that often touches the skin, such as heat retention, antibacterial properties, deodorant properties, deodorant properties, and safety to the skin.・ It has been found that a post-processing coating agent which can be applied to a thread or a cloth at a time while satisfying all the design properties and textures such as colors, and a processed fiber provided with the functions thereof can be obtained. It has arrived.
The coating agent for imparting heat retention, antibacterial, deodorant and deodorant properties of the present invention has an average dispersed particle diameter of 0.003 to 0.1 μm and a specific surface area of 20 m. 2 / G or more zinc compound fine particles and an average dispersed particle diameter of 0.003-0.1 μm and a specific surface area of 20 m 2 / G or more of zirconium compound fine particles as a main component, and the mixing ratio in the mixture of the fine particles is zinc compound fine particles: zirconium compound fine particles = 5: 95 to 95: 5 (weight ratio). The solution to the above-mentioned problem is that the ratio of the mixture of the fine particles and the emulsion or the water-soluble binder resin is blended in a mixture of the fine particles: the binder resin = 95: 5 to 5:95 (weight ratio).
Further, the present invention provides the coating composition for imparting heat retention, antibacterial, deodorant, and deodorant properties of the present invention having the above constitution, wherein the mixture of the fine particles further has an average dispersed particle diameter of 0.003 to 0.1 μm and a specific surface area of 20 m. 2 / G or more of the silicon compound fine particles was used as a means for solving the above problem.
Further, the present invention solves the above problem in the heat retention / antibacterial / deodorization / deodorization imparting coating agent of the present invention having any one of the above constitutions, wherein the zirconium compound is a zirconium oxide or hydrate. Means.
Further, in the present invention, in the coating composition for imparting heat retention, antibacterial, deodorant, and deodorant properties of the present invention having any one of the above constitutions, the zinc compound is zinc oxide.
Further, the present invention provides the heat-retaining, antibacterial, deodorant, and deodorant-imparting coating agent of the present invention having any one of the above constitutions, wherein the emulsion or the water-soluble binder resin is an acrylic resin, an epoxy resin, a polyurethane, or a polyester. The object of the present invention is to use at least one selected material as a main component.
In addition, the processed fiber having the heat retaining / antibacterial / deodorizing / deodorizing effect of the present invention can be post-processed into yarn or cloth by the coating agent for imparting heat retaining / antibacterial / deodorant / deodorizing properties of the present invention having any one of the above constitutions. The solution to the above-mentioned problem is that a coating layer comprising a mixture of fine particles in the coating agent and an emulsion or a water-soluble binder resin is formed on the yarn or cloth.
Further, the present invention provides a processed fiber having the above-mentioned constitution, which has a heat retaining / antibacterial / deodorizing / deodorizing effect, wherein the amount of the mixture of the fine particles in the coating layer is 0. The solution of the above-mentioned problem is set to be from 05% by weight to 20% by weight.
Further, the present invention is characterized in that the processed fiber having the heat retaining / antibacterial / deodorizing / deodorizing effect of the present invention having any one of the above constitutions is used for clothing that directly touches the skin when used.
Further, the present invention provides the processed fiber having the heat retaining / antibacterial / deodorizing / deodorizing effect of the present invention having the above-mentioned structure, wherein the clothing that directly touches the skin at the time of use is selected from socks, underwear, shirts, pants, blankets and sheets. It is characterized by being selected from.
[0007]
That is,Of the present inventionThe coating agent for imparting heat retention, antibacterial, deodorant and deodorant properties has an average dispersed particle diameter of 0.1 μm or less and a specific surface area of 20 m.2/ G or more of zinc compound fine particles and an average dispersed particle diameter of 0.1 μm or less and a specific surface area of 20 m2/ G or more of zirconium compound fine particles as a main component, and the mixing ratio in the mixture of the fine particles is zinc compound fine particles: zirconium compound fine particles = 5: 95 to 95: 5 (weight ratio). The solution to the above-mentioned problem is that the ratio of the mixture of the fine particles and the emulsion or the water-soluble binder resin is blended in a mixture of the fine particles: the binder resin = 95: 5 to 5:95 (weight ratio).
[0008]
Also,Of the present inventionIn the case of coatings that provide heat retention, antibacterial, deodorant and deodorant properties,aboveThe solution to the above-mentioned problem is that silicon compound fine particles are blended in place of the zirconium compound fine particles in the coating agent for imparting heat retention, antibacterial, deodorant and deodorant properties.
Also,Of the present inventionIn the case of coatings that provide heat retention, antibacterial, deodorant and deodorant properties,aboveMeans for solving the above-mentioned problem is that 99 to 1% by weight of zirconium compound fine particles and 1 to 99% by weight of silicon compound fine particles are mixed in place of the zirconium compound fine particles in the coating agent for imparting heat retention, antibacterial, deodorant and deodorant properties. And
[0009]
Also,Of the present inventionFor processed fibers with heat retention, antibacterial, deodorant, and deodorant effects,Any of the aboveThe yarn or cloth is post-processed with the coating agent for imparting heat retention, antibacterial, deodorant, and deodorant properties described above, and the yarn or cloth has a coating layer comprising a mixture of fine particles in the coating agent and an emulsion or a water-soluble binder resin. What is formed is a means for solving the problem.
Also,Of the present inventionFor processed fibers with heat retention, antibacterial, deodorant, and deodorant effects,aboveThe object of the present invention is to provide a processed fiber in which the mixture of the fine particles is attached in an amount of 0.05 to 20% by weight based on the weight of the yarn or cloth.
[0010]
Hereinafter, the present invention will be described in detail.
The zinc compound fine particles, zirconium compound fine particles and / or silicon compound fine particles constituting the mixture of fine particles used in the coating agent of the present invention each have an average primary particle diameter of 0.1 μm or less, preferably 0.003 to 0.1 μm. 1 μm, more preferably 0.01 to 0.04 μm, and the specific surface area is 20 m2/ G or more, preferably 20 to 800 m2/ G, more preferably 100 to 300 m2/ G. Each of the fine particles constituting the mixture of the fine particles is a white fine particle.
[0011]
By setting the average dispersed particle size of the white fine particles to 0.1 μm or less, more preferably 0.04 μm, scattering of visible light is eliminated and the colorless and transparent material is used. Even if post-processing is performed on the yarn or cloth, the design properties such as the color of the yarn or cloth are not affected.
Further, the specific surface area of the white fine particles is 20 m2/ G or more can significantly increase the deodorizing properties.
As the zinc compound used in the coating agent of the present invention, it is preferable to use zinc oxide.
[0012]
Each metal compound fine particle constituting such a mixture of the fine particles can be produced by a method described in, for example, JP-A-2-31314 or JP-A-59-107969.
The above-mentioned Japanese Patent Application Laid-Open No. 2-311314 specifically mentions a method for producing zinc oxide fine particles. That is, soluble salts are removed from the obtained precipitate by passing hydrogen sulfide through a mixed solution of an acidic salt of zinc and ammonium acetate, and then the precipitate is dispersed in an organic solvent. Heating is performed at 400 ° C. to remove gas components, and then the obtained dry powder is heat-treated at 500 to 800 ° C. to obtain zinc oxide fine particles.
[0013]
Further, JP-A-59-107969 mentioned above particularly mentions a method for producing zirconium compound fine particles. That is, ammonium water is added to a mixed solution composed of an acid salt of zirconium and an acid salt of yttrium to form a coprecipitated gel, the coprecipitated gel is separated, a soluble substance is dissolved and removed with concentrated hydrochloric acid, and then washed with diluted hydrochloric acid. And drying to obtain zirconium-based single crystal fine particles. Further, the silicon compound fine particles can be obtained from colloidal silica, aerosil silica or the like by using a liquid phase method or a gas phase method.
[0014]
When the zinc oxide is finely divided, not only the antibacterial performance and the deodorant performance are exhibited, but also the ability to chemically deodorize acidic gases such as acetic acid and isovaleric acid due to decomposition of sweat due to body odor is enhanced. In addition, zinc oxide has been proven to be highly safe for the human body when used as a raw material for cosmetics, and is excellent as an antibacterial agent for clothing that often comes into direct contact with the skin and a deodorant for acidic gases.
[0015]
The zirconium compound used in the coating agent of the present invention is fine particles selected from amorphous or crystalline zirconium oxides, hydrates, and yttrium scandium and rare earth element additives. High ability to deodorize basic gases such as ammonia and trimethylamine. In addition, zirconium compounds have been proven to be highly safe for the human body as they are used in cosmetics materials, like zinc oxide, and are excellent as a basic gas deodorant in clothing that often comes into direct contact with the skin. .
[0016]
The silicon compound used in the coating agent of the present invention is a fine particle selected from silicon oxide and hydrate amorphous, and has an ability to deodorize a basic gas such as ammonia and trimethylamine having a body odor. high. In addition, it has been proven that it is highly safe for the human body as it is used as a raw material for cosmetics, like zinc oxide, and is excellent as a deodorant for clothing that often comes into direct contact with the skin.
[0017]
Therefore, the processed fiber post-processed with a coating agent in which the zinc oxide fine particles and the zirconium compound fine particles and / or the silicon compound fine particles are blended can be made of a basic gas such as ammonia and trimethylamine and an acidic gas such as acetic acid and isovaleric acid. Effective for both deodorants.
[0018]
By the way, in order to provide heat retention with clothing such as underwear, it is necessary to suppress the leakage of heat energy from the body to the outside. Zinc oxide has a high reflectance in the infrared region, so that heat energy can be prevented from leaking to the outside, and high heat retention can be secured.
In addition, zirconium compounds and silicon compounds have good infrared radiation, absorb heat energy generated from the human body and radiate infrared rays, so that when the processed fiber post-processed with the coating agent of the present invention is used as clothing, Warm up to the core of the body. As described above, by forming a composite (mixture of fine particles) of independent fine particles of zinc oxide fine particles as infrared reflective fine particles and zirconium compound fine particles and / or silicon compounds as infrared radiative fine particles, a synergistic heat retaining effect is obtained. I found it to be higher.
Therefore, a processed fiber post-processed with a coating agent in which the zinc compound fine particles having far-infrared reflectivity and the zirconium compound fine particles and / or silicon compound fine particles having far-infrared radiation properties are blended has an excellent heat retaining effect.
[0019]
The ratio of the average dispersed particle diameter of each of the zinc compound fine particles and the zirconium compound fine particles and / or the silicon compound fine particles in the mixture of the above fine particles is preferably within 10 times. , Deodorant and deodorant effects are obtained on average. This is because, when the ratio of the average dispersed particle diameter exceeds 10 times, the tendency of small particles to adhere to large particles becomes strong, and the properties of small particles as a whole become closer to the properties.
On the other hand, in order to maximize the heat retention performance, a structure is preferred in which zinc compound fine particles having high infrared reflectivity are used as nuclei, and zirconium compound fine particles and / or silicon compound fine particles having infrared radiation are attached around the core. Average dispersed particle diameter of zinc compound fine particles: Average dispersed particle diameter of zirconium compound fine particles and / or silicon compound fine particles = 10 or more: 1 is desirable.
[0020]
The mixing ratio of the zinc compound fine particles and the zirconium compound fine particles in the mixture of the fine particles is about zinc compound fine particles: zirconium compound = 5: 95 to 95 to 5 (weight ratio).
When the silicon compound fine particles are blended in the mixture of the fine particles, the mixing ratio of the zirconium compound fine particles and the silicon compound fine particles is as follows: zirconium compound fine particles: silicon compound fine particles = 99 to 1: 1 to 99 (% by weight). It is about.
[0021]
The mixture of the fine particles is dispersed in an emulsion or a water-soluble binder resin containing at least one selected from acrylic resin, epoxy resin, polyurethane, and polyester as a main component at an average dispersed particle size of 0.003 to 0.1 μm, and is kept warm. -Used as an antibacterial, deodorant and deodorant coating agent.
[0022]
As the binder resin used here, those usually used in fiber processing can be used, and if necessary, a curing agent such as melamine can be used in combination. The mixing ratio of the mixture of the fine particles and the binder resin is such that the mixture of the fine particles: the binder resin = 95: 5 to 5:95 (weight ratio), more preferably the mixture of the fine particles: the binder resin = 80: 30 to 20:70 (weight ratio). ). When the proportion of the binder resin is 5% by weight or less, the mixture of the fine particles hardly adheres to the surface of the yarn or the cloth, so that it may easily fall off by washing and durability may be a problem. When the proportion of the binder resin is 95% by weight or more, if a sufficient heat retaining effect is imparted to the yarn or the cloth, a large amount of the binder resin may also adhere to the yarn or the cloth and significantly impair the feel.
[0023]
Further, the amount of the mixture of fine particles adhered to the weight of the yarn or cloth is 0.05 to 20% by weight, more preferably 0.2 to 2% by weight. If the amount of the attached fine particles is 0.05% by weight or less, the function may not be sufficiently exhibited. When the amount of the attached fine particles is 20% by weight or more, not only the effect is not remarkably improved but also the feeling of the yarn or cloth may be impaired.
[0024]
Meanwhile, normal skin cell bacteria include gram-positive bacteria such as Staphylococcus aureus and Bacillus subtilis, and gram-negative bacteria such as Escherichia coli, Salmonella, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Alternatively, the processed fiber to which a mixture of fine particles composed of silicon compound fine particles is adhered in an amount of 0.05% by weight to 20% by weight based on the weight of the yarn or cloth, is resistant to both the positive bacteria and the negative bacteria. High effect. The antimicrobial component having such an effect is zinc compound fine particles.
[0025]
Next, an example of the method for producing the coating agent for imparting heat retention, antibacterial, deodorant, and deodorant properties of the present invention will be described.
The above-mentioned mixture of fine particles having an average primary particle diameter of 0.1 μm or less, water and a binder resin are mixed with a surfactant, and the mixture is applied to a dispersing machine having a high crushing power such as a sand mill to obtain fine particles having an average dispersed particle diameter of 0.1 μm or less. And a coating agent for imparting heat retention, antibacterial, deodorant, and deodorant properties dispersed therein. Surfactants used here include alkyl sulfates, alkyl phosphates, polycarboxylates, fatty acid salts, alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl diphenyl ether disulfonates, polyoxyethylene alkyl sulfates It is at least one selected from ester salts, alkyl allyl sulfates, polyoxyethylene alkyl phosphates and the like.
[0026]
As another production method, a mixture of the fine particles having an average primary particle diameter of 0.1 μm or less and the above-described surfactant are added to water, and the mixture is subjected to a sand mill or the like to prepare a suspension in advance. Mixing is not a problem.
[0027]
Next, a method for producing a processed fiber of the present invention having a heat retaining / antibacterial / deodorizing / deodorizing effect will be described.
The above-mentioned heat-retaining, antibacterial, deodorant, and deodorant-imparting coating agent is post-processed into yarn or cloth using a method commonly used as a fiber processing method such as a pad method, a sinking method, a coating method, and a printing method. Then, a coating layer comprising a mixture of the fine particles in the coating agent and an emulsion or a water-soluble binder resin is formed on the yarn or cloth.
[0028]
When using the pad method, first place the coating agent in a predetermined concentration adjusted to keep warm, antibacterial, deodorant, and deodorant properties together with a curing agent if necessary, and put it in a dip tank. After dipping in the coating agent in the dip tank, it is taken out, squeezed at a pad ratio of 50 to 100%, dried at about 100 ° C. for 5 minutes, and then baked at about 150 ° C. for 2 minutes, so that it can be easily processed. .
[0029]
In this case, the yarn or cloth is post-processed with the coating agent for imparting heat retention, antibacterial, deodorant, and deodorant properties of the present invention, and the mixture of fine particles in the coating agent and the emulsion or water-soluble binder resin is applied to the yarn or cloth. The processed fiber on which the coating layer made of is formed is obtained.
The thus obtained processed fiber having a heat-retaining, antibacterial, deodorizing and deodorizing effect can be suitably used for clothing that directly touches the skin during use. Clothing that directly touches the skin when used here includes socks, underwear, shirts, pants, blankets, sheets, and the like.
[0030]
【Example】
Hereinafter, examples of the present invention will be specifically described. However, the present invention is not limited to these examples.
[Example-1]
(Combination)
(1) 10 parts by weight of zinc oxide fine particles (average primary particle diameter 10 nm)
(2) 10 parts by weight of zirconium oxide fine particles (average primary particle diameter 10 nm)
(3) 4 parts by weight of dioctyl sodium succinate (surfactant)
(4) 36 parts by weight of pure water
5) Acrylic binder (resin content 50% by weight) 36 parts by weight
6) Melamine cured resin (resin content 100% by weight) 4 parts by weight
The above blend was dispersed in a ball mill for 24 hours to prepare a coating agent.
Then, the dispersed particle size distribution of the fine particles in the obtained coating agent was measured with an electrophoretic light scattering photometer (manufactured by Otsuka Electronics Co., Ltd.). The results are shown in Table 1 below.
The coating agent was applied to a polyethylene terephthalate (PET) film at a dry film thickness of 1 μm, and the haze and the total light transmittance were measured. The results are shown in Table 1 below.
[0031]
[Example-2]
(Combination)
(1) 10 parts by weight of zinc oxide fine particles (average primary particle diameter 10 nm)
(2) 10 parts by weight of silicon oxide fine particles (average primary particle diameter 10 nm)
(3) 4 parts by weight of dioctyl sodium succinate (surfactant)
(4) 36 parts by weight of pure water
5) Acrylic binder (resin content 50% by weight) 36 parts by weight
6) Melamine cured resin (resin content 100% by weight) 4 parts by weight
The above blend was dispersed in a ball mill for 24 hours to prepare a coating agent.
Then, the obtained coating agent was evaluated in the same manner as in Example 1 above, and the results are shown in Table 1 below.
[0032]
[Example-3]
(Combination)
(1) 10 parts by weight of zinc oxide fine particles (average primary particle diameter 10 nm)
(2) 5 parts by weight of zirconium oxide fine particles (average primary particle diameter 10 nm)
(3) 5 parts by weight of silicon oxide fine particles (average primary particle diameter 10 nm)
4) Dioctyl sodium succinate (surfactant) 4 parts by weight
▲ 5 Pure water 36 parts by weight
(6) 36 parts by weight of acrylic binder (resin content 50% by weight)
{Circle around (7)} Melamine cured resin (resin content 100% by weight) 4 parts by weight
The above blend was dispersed in a ball mill for 24 hours to prepare a coating agent.
Then, the obtained coating agent was evaluated in the same manner as in Example 1 above, and the results are shown in Table 1 below.
[0033]
[Example-4]
Each of the coating agents prepared in Example 1, Example 2, and Example 3 was diluted 10-fold with pure water, padded with cotton knit 100%, dried at 100 ° C. for 5 minutes, and dried at 160 ° C. for 1 minute. The fibers were fired separately to produce processed fibers.
The antibacterial property of each of the obtained processed fibers was evaluated by a method for measuring the number of Staphylococcus aureus bacteria, based on the standards of the Council for Textile Sanitation Processing (SEK). The results are shown in Table 2 below.
[0034]
[Example-5]
The deodorizing property of each of the processed fibers produced in Example-4 above was measured by putting 3.0 g of the processed fibers in a 3-liter odor bag, and adding 50 ppm of ammonium, trimethylamine, isovaleric acid, acetic acid, and hydrogen sulfide. Each gas was filled, and the residual gas concentration over time was measured with a gas detector tube. 1 to 5 show the relationship between the residual gas concentration and the elapsed time. Here, the residual gas concentration is shown as a percentage of the initial gas concentration.
[0035]
[Example-6]
Based on the ASTM method, the heat retention of each processed fiber produced in Example-4 was maintained at 30 ° C. in a constant temperature room at 20 ° C. and 60% RH with the steel plate covered with the fiber. The heat retention was determined from the required energy. In addition, the design properties and texture were evaluated. The results are shown in Table 3 below.
[0036]
[Comparative Example-1]
(Combination)
(1) 10 parts by weight of zinc oxide fine particles (average primary particle diameter 1000 nm)
(2) 5 parts by weight of zirconium oxide fine particles (average primary particle diameter 1000 nm)
(3) 5 parts by weight of silicon oxide fine particles (average primary particle diameter 1000 nm)
4) Dioctyl sodium succinate (surfactant) 4 parts by weight
▲ 5 Pure water 36 parts by weight
(6) 36 parts by weight of acrylic binder (resin content 50% by weight)
{Circle around (7)} Melamine cured resin (resin content 100% by weight) 4 parts by weight
The above blend was dispersed in a ball mill for 24 hours to prepare a coating agent.
Then, the obtained coating agent was evaluated in the same manner as in Example 1 above, and the results are shown in Table 1 below.
[0037]
[Comparative Example-2]
The coating agent produced in Comparative Example 1 was diluted 10-fold with pure water, pad squeezed on a cotton knit 100%, dried at 100 ° C for 5 minutes, and baked at 160 ° C for 1 minute to produce a processed fiber. .
Then, the antibacterial properties of the obtained processed fibers were evaluated by a method for measuring the number of Staphylococcus aureus bacteria based on the Standards of the Sanitary and Textile Processing Council (SEK). The results are shown in Table 2 below.
[0038]
[Comparative Example-3]
The deodorizing property of the processed fiber obtained in Comparative Example-2 was 1.5 g of the processed fiber in a 3-liter odor bag, and each gas of ammonium, trimethylamine, isovaleric acid, and acetic acid having a concentration of 50 ppm was charged. Then, the residual gas concentration over time was measured by a gas detector tube. 1 to 5 show the relationship between the residual gas concentration and the elapsed time.
[0039]
[Comparative Example-4]
The heat retention of the processed fiber obtained in Comparative Example 2 was measured in the same manner as in Example 6. In addition, the design properties and texture were evaluated. The results are shown in Table 3 below.
[0040]
[Table 1]
Figure 0003568613
[0041]
[Table 2]
Figure 0003568613
[0042]
[Table 3]
Figure 0003568613
[0043]
【The invention's effect】
As described above, the coating agent for imparting heat retention, antibacterial, deodorant, and deodorant properties of the present invention comprises a mixture of fine particles of zinc compound fine particles and zirconium compound fine particles and / or silicon compound fine particles, prepared by emulsion or water-soluble binder resin. Because it is formulated in a highly dispersed state, it can be processed into natural fibers such as cotton and used for underwear without sacrificing the color and texture of clothing, and is safe and durable to the skin And also has the advantage that it can be suitably used as a post-processing agent that can impart all of the heat retaining performance, antibacterial performance, deodorant performance, and deodorant performance to a thread or cloth at a time.
In addition, the yarn or cloth is subjected to post-processing using the coating agent for imparting heat retention, antibacterial, deodorant, and deodorant properties of the present invention, and the mixture of fine particles in the coating agent and the emulsion or water-soluble binder resin is applied to the yarn or cloth. By forming the coating layer, there is an advantage that a processed fiber having all of the heat retaining performance, the antibacterial performance, the deodorant performance, and the deodorant performance can be obtained.
Therefore, the processed fiber obtained using the coating agent for imparting heat retention, antibacterial, deodorant, and deodorant properties of the present invention is suitable for clothing that directly touches the skin when using socks, underwear, shirts, pants, blankets, sheets, and the like. Can be used.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between residual ammonium concentration and time.
FIG. 2 is a graph showing a relationship between residual trimethylamine concentration and time.
FIG. 3 is a graph showing the relationship between the concentration of residual isovaleric acid and time.
FIG. 4 is a graph showing the relationship between the concentration of residual acetic acid and time.
FIG. 5 is a graph showing the relationship between the concentration of residual hydrogen sulfide and time.

Claims (9)

平均分散粒子径が0.003〜0.1μmで比表面積が20m/g以上の亜鉛化合物微粒子と平均分散粒子径が0.003〜0.1μmで比表面積20m/g以上のジルコニウム化合物微粒子とからなる微粒子の混合物を主成分とし、上記微粒子の混合物中の混合割合が亜鉛化合物微粒子:ジルコニウム化合物微粒子=5:95〜95:5(重量比)であり、上記微粒子の混合物と、エマルションまたは水可溶性バインダー樹脂との割合が微粒子の混合物:バインダー樹脂=95:5〜5:95(重量比)で配合されてなることを特徴とする保温・抗菌・防臭・消臭性付与コーティング剤。The average dispersed particle diameter of 0.003 to 0.1 [mu] m a specific surface area of 20 m 2 / g or more zinc compound fine particles with the average dispersed particle diameter of 0.003 to 0.1 [mu] m a specific surface area 20 m 2 / g or more zirconium compound fine particles And a mixture ratio of zinc compound fine particles: zirconium compound fine particles = 5: 95 to 95: 5 (weight ratio) in the mixture of the fine particles, and the mixture of the fine particles and an emulsion or A coating agent for imparting heat retention, antibacterial, deodorant, and deodorant properties, wherein a ratio of water-soluble binder resin to a mixture of fine particles: binder resin = 95: 5 to 5:95 (weight ratio). 前記微粒子の混合物中にさらに平均分散粒子径が0.003〜0.1μmで比表面積が20m /g以上の珪素化合物微粒子が配合されていることを特徴とする請求項1記載の保温・抗菌・防臭・消臭性付与コーティング剤。Insulation antimicrobial according to claim 1, wherein the further average dispersed particle diameter in the mixture is a specific surface area in 0.003~0.1μm is 20 m 2 / g or more silicon compound fine particles are blended in the fine particles -Deodorizing and deodorizing coating agent. 前記ジルコニウム化合物が、ジルコニウムの酸化物又は水和物であることを特徴とする請求項1又は2に記載の保温・抗菌・防臭・消臭性付与コーティング剤。 3. The coating composition according to claim 1, wherein the zirconium compound is an oxide or hydrate of zirconium . 前記亜鉛化合物が酸化亜鉛であることを特徴とする請求項1乃至3のいずれか一項に記載の保温・抗菌・防臭・消臭性付与コーティング剤。 4. The coating composition according to claim 1, wherein the zinc compound is zinc oxide. 5. 前記エマルションまたは水可溶性バインダー樹脂が、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリエステルのうちから選択される少なくとも1種を主成分とするものであることを特徴とする請求項1乃至4のいずれか一項に記載の保温・抗菌・防臭・消臭性付与コーティング剤。 The said emulsion or water-soluble binder resin is a thing which has at least 1 sort (s) selected from acrylic resin, epoxy resin, polyurethane, and polyester as a main component, The Claims 1 to 4 characterized by the above-mentioned. Coating agent for imparting heat retention, antibacterial, deodorant, and deodorant properties described in 1 . 請求項1乃至5のいずれか一項に記載の保温・抗菌・防臭・消臭性付与コーティング剤により糸または布に後加工が施され、上記糸または布に上記コーティング剤中の微粒子の混合物とエマルションまたは水可溶性バインダー樹脂からなる被覆層が形成されてなることを特徴とする保温・抗菌・防臭・消臭効果のある加工繊維。 A thread or cloth is post-processed with the heat-retaining, antibacterial, deodorant, and deodorant-imparting coating agent according to any one of claims 1 to 5, and the yarn or cloth is mixed with a mixture of fine particles in the coating agent. A processed fiber having a heat-retaining, antibacterial, deodorant, and deodorizing effect, comprising a coating layer formed of an emulsion or a water-soluble binder resin. 前記被覆層中の微粒子の混合物の量が、上記糸または布の重量に対し0.05重量%〜20重量%であることを特徴とする請求項6に記載の保温・抗菌・防臭・消臭効果のある加工繊維。 7. The heat retention / antibacterial / deodorant / deodorant according to claim 6, wherein the amount of the mixture of the fine particles in the coating layer is 0.05% by weight to 20% by weight based on the weight of the yarn or cloth. Effective processed fiber. 使用時に直接肌に触れる衣料に用いられるものであることを特徴とする請求項6又は7に記載の保温・抗菌・防臭・消臭効果のある加工繊維。8. The processed fiber according to claim 6, which is used for clothing that directly touches the skin during use. 前記使用時に直接肌に触れる衣料が、靴下、肌着、シャツ、ズボン、毛布、シーツのうちから選ばれるものであることを特徴とする請求項8に記載の保温・抗菌・防臭・消臭効果のある加工繊維。 9. The warming / antibacterial / deodorizing / deodorizing effect according to claim 8, wherein the clothing that directly touches the skin during use is selected from socks, underwear, shirts, pants, blankets, and sheets. Some processed fibers.
JP04108295A 1995-02-28 1995-02-28 Coating agents and processed fibers for imparting heat retention, antibacterial, deodorant, and deodorant properties Expired - Fee Related JP3568613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04108295A JP3568613B2 (en) 1995-02-28 1995-02-28 Coating agents and processed fibers for imparting heat retention, antibacterial, deodorant, and deodorant properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04108295A JP3568613B2 (en) 1995-02-28 1995-02-28 Coating agents and processed fibers for imparting heat retention, antibacterial, deodorant, and deodorant properties

Publications (2)

Publication Number Publication Date
JPH08231897A JPH08231897A (en) 1996-09-10
JP3568613B2 true JP3568613B2 (en) 2004-09-22

Family

ID=12598552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04108295A Expired - Fee Related JP3568613B2 (en) 1995-02-28 1995-02-28 Coating agents and processed fibers for imparting heat retention, antibacterial, deodorant, and deodorant properties

Country Status (1)

Country Link
JP (1) JP3568613B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100570505B1 (en) * 1997-09-26 2006-04-12 가부시키가이샤 시세이도 Dermatologic preparation
JP2003052800A (en) * 2001-08-21 2003-02-25 Toagosei Co Ltd Deodorant composition suitable for deodorization of sulfur-base malodor
KR100921540B1 (en) * 2007-04-09 2009-10-12 에스씨씨(주) Volatile organic chemical compound removal and the fungicidal and the deodorizing function of the spray coating compound manufacturing method which excels
JP4942670B2 (en) * 2008-01-17 2012-05-30 日華化学株式会社 Fiber treatment agent and method for producing functional fiber product
JP5362416B2 (en) * 2009-04-15 2013-12-11 旭化成ケミカルズ株式会社 Organic / inorganic composite composition
JP2012086104A (en) * 2010-10-15 2012-05-10 Asahi Kasei Chemicals Corp Photocatalyst composition
JP5972602B2 (en) * 2012-02-23 2016-08-17 旭化成株式会社 Deodorant fiber fabric
IN2015DN00421A (en) 2012-07-06 2015-06-19 Sakai Chemical Industry Co
CN109456669A (en) * 2018-09-29 2019-03-12 江苏海田技术有限公司 High-strength water-based woodwork coating and its manufacturing method

Also Published As

Publication number Publication date
JPH08231897A (en) 1996-09-10

Similar Documents

Publication Publication Date Title
Mahltig et al. Functionalisation of textiles by inorganic sol–gel coatings
KR100926588B1 (en) Near Infrared radiation absorbing fiber and textile product using the same
JP3568613B2 (en) Coating agents and processed fibers for imparting heat retention, antibacterial, deodorant, and deodorant properties
CN101476240A (en) Textile finishing agent with thermal protecting, antibacterial and moisture-keeping functions, and health socks using the same
JP2006518697A (en) Antimicrobial action phosphate glass
KR20010103958A (en) A method of producing multi-functional fiber having anti-bacterial, deodorizing, anti-electrostatic properties and emitting negative ions, far-infrared ray, and fiber produced using the same
CN103469557A (en) Method for finishing ultraviolet-proof antibacterial fabric
CN111134121A (en) Microcapsule with mosquito repelling and ultraviolet resisting functions and preparation method thereof
KR19990030412A (en) Clothing which has far-infrared radiation ceramic powder mixed with silver powder inside and its manufacturing method
CN1057809C (en) Anti-ultraviolet ray cool and health fabric and it producing method
JPH0610126B2 (en) Antibacterial agent
JP2002053416A (en) Functional material
JP5022561B2 (en) Environmental purification materials
KR101968514B1 (en) Functional triple staff with fever function
CN1085617A (en) far-infrared radiation fabric and production method thereof
KR101966945B1 (en) Functional triple staff with cold function
JP2001247334A (en) Glass composition for imparting antimicrobial properties and antimicrobial fiber
JPH0913279A (en) Antimicrobial fiber product and its production
JP4585188B2 (en) Antibacterial component
KR20190110296A (en) Whole fabric radiating far-infrared ray and manufacturing process thereof
WO2014117286A1 (en) Impregnatable matrix of plant, animal or synthetic origin or mixtures of same, containing a uniformly distributed antimicrobial compound, method for impregnating said matrix with a compound, and use thereof in the production of antimicrobial elements
KR0128110B1 (en) Far-infrared radiator composition and manufacturing method thefeor
JP5855340B2 (en) Thermal barrier fabric
JPH08325479A (en) Coating agent having antistatic and heat-ray-absorbing properties and its production, coating material, processed fiber, and clothing
JPH0741800A (en) Leather for health and sanitation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees